We present a probabilistic model that uses both prosodic and lexical cues for
the automatic segmentation of speech into topically coherent units. We propose
two methods for combining lexical and prosodic information using hidden Markov
models and decision trees. Lexical information is obtained from a speech
recognizer, and prosodic features are extracted automatically from speech
waveforms. We evaluate our approach on the Broadcast News corpus, using the
DARPA-TDT evaluation metrics. Results show that the prosodic model alone is
competitive with word-based segmentation methods. Furthermore, we achieve a
significant reduction in error by combining the prosodic and word-based
knowledge sources.Comment: 27 pages, 8 figure