2,436 research outputs found

    Grid Databases for Shared Image Analysis in the MammoGrid Project

    Full text link
    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UKComment: 10 pages, 5 figure

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care

    Get PDF
    Medical Informatics (MI) and Bioinformatics (BI) are two interdisciplinary areas located at the intersection between computer science and medicine and biology, respectively. Historically, they have been separated and only occasionally have researchers of both disciplines collaborated. The completion of the Human Genome Project has brought about in this post genomic era the need for a synergy of these two disciplines to further advance in the study of diseases by correlating essential genotypic information with expressed phenotypic information. Biomedical Informatics (BMI) is the emerging technology that aims to put these two worlds together in the new rising genomic medicine. In this regard, institutions such as the European Commission have recently launched several initiatives to support a new combined research agenda, based on the potential for synergism of both disciplines. In this paper we review the results the BIOINFOMED study one of these projects funded by the E

    Interoperability of Enterprise Software and Applications

    Get PDF

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    A web-based collaboration approach for teaching in medicine

    Get PDF
    Teaching medicine requires developing a vast range of manual, intellectual, visual and tactile skills as well as taking into account large amounts of factual information. Traditional medical teaching and individual learning in particular, can be complemented with electronic web based systems. One of the main impacts of e-Teaching in education resides in the fact that it provides opportunities to create resources that turn the learning process flexible. This implies a different relation between teachers and students and even between institutions, in the sense that the students participate on their own formation and the vertical hierarchy tends to become increasingly more horizontal. Awareness of the knowledge constructing process is increased, and consequently more satisfaction gained from learning. In this paper we describe a webbased collaboration approach for teaching that is being developed to simulate conversational dialogue in the area of Medicine, that enables the integration of highly heterogeneous sources of information into a coherent knowledge base accessed from web-based interfaces, either from the tutor’s point of view or the development of the discipline in itself, i.e. the system’s content is created automatically by the physicians as their daily work goes on

    Online GIS services for mapping and sharing disease information

    Get PDF
    © 2008 Gao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Information Technologies for the Healthcare Delivery System

    Get PDF
    That modern healthcare requires information technology to be efficient and fully effective is evident if one spends any time observing the delivery of institutional health care. Consider the observation of a practitioner of the discipline, David M. Eddy, MD, PhD, voiced in Clinical Decision Making, JAMA 263:1265-75, 1990, . . .All confirm what would be expected from common sense: The complexity of modern medicine exceeds the inherent limitations of the unaided human mind. The goal of this thesis is to identify the technological factors that are required to enable a fully sufficient application of information technology (IT) to the modern institutional practice of medicine. Perhaps the epitome of healthcare IT is the fully integrated, fully electronic patient medical record. Although, in 1991 the Institute of Medicine called for such a record to be standard technology by 2001, it has still not materialized. The author will argue that some of the technology and standards that are pre-requisite for this achievement have now arrived, while others are still evolving to fully sufficient levels. The paper will concentrate primarily on the health care system in the United States, although much of what is contained is applicable to a large degree, around the world. The paper will illustrate certain of these pre-requisite IT factors by discussing the actual installation of a major health care computer system at the University of Rochester Medical Center (URMC) in Rochester, New York. This system is a Picture Archiving and Communications System (PACS). As the name implies, PACS is a system of capturing health care images in digital format, storing them and communicating them to users throughout the enterprise
    corecore