442 research outputs found

    Combining absolute and relative evaluations for determining sensory food quality : analysis and prediction

    Get PDF

    Spam elimination and bias correction : ensuring label quality in crowdsourced tasks.

    Get PDF
    Crowdsourcing is proposed as a powerful mechanism for accomplishing large scale tasks via anonymous workers online. It has been demonstrated as an effective and important approach for collecting labeled data in application domains which require human intelligence, such as image labeling, video annotation, natural language processing, etc. Despite the promises, one big challenge still exists in crowdsourcing systems: the difficulty of controlling the quality of crowds. The workers usually have diverse education levels, personal preferences, and motivations, leading to unknown work performance while completing a crowdsourced task. Among them, some are reliable, and some might provide noisy feedback. It is intrinsic to apply worker filtering approach to crowdsourcing applications, which recognizes and tackles noisy workers, in order to obtain high-quality labels. The presented work in this dissertation provides discussions in this area of research, and proposes efficient probabilistic based worker filtering models to distinguish varied types of poor quality workers. Most of the existing work in literature in the field of worker filtering either only concentrates on binary labeling tasks, or fails to separate the low quality workers whose label errors can be corrected from the other spam workers (with label errors which cannot be corrected). As such, we first propose a Spam Removing and De-biasing Framework (SRDF), to deal with the worker filtering procedure in labeling tasks with numerical label scales. The developed framework can detect spam workers and biased workers separately. The biased workers are defined as those who show tendencies of providing higher (or lower) labels than truths, and their errors are able to be corrected. To tackle the biasing problem, an iterative bias detection approach is introduced to recognize the biased workers. The spam filtering algorithm proposes to eliminate three types of spam workers, including random spammers who provide random labels, uniform spammers who give same labels for most of the items, and sloppy workers who offer low accuracy labels. Integrating the spam filtering and bias detection approaches into aggregating algorithms, which infer truths from labels obtained from crowds, can lead to high quality consensus results. The common characteristic of random spammers and uniform spammers is that they provide useless feedback without making efforts for a labeling task. Thus, it is not necessary to distinguish them separately. In addition, the removal of sloppy workers has great impact on the detection of biased workers, with the SRDF framework. To combat these problems, a different way of worker classification is presented in this dissertation. In particular, the biased workers are classified as a subcategory of sloppy workers. Finally, an ITerative Self Correcting - Truth Discovery (ITSC-TD) framework is then proposed, which can reliably recognize biased workers in ordinal labeling tasks, based on a probabilistic based bias detection model. ITSC-TD estimates true labels through applying an optimization based truth discovery method, which minimizes overall label errors by assigning different weights to workers. The typical tasks posted on popular crowdsourcing platforms, such as MTurk, are simple tasks, which are low in complexity, independent, and require little time to complete. Complex tasks, however, in many cases require the crowd workers to possess specialized skills in task domains. As a result, this type of task is more inclined to have the problem of poor quality of feedback from crowds, compared to simple tasks. As such, we propose a multiple views approach, for the purpose of obtaining high quality consensus labels in complex labeling tasks. In this approach, each view is defined as a labeling critique or rubric, which aims to guide the workers to become aware of the desirable work characteristics or goals. Combining the view labels results in the overall estimated labels for each item. The multiple views approach is developed under the hypothesis that workers\u27 performance might differ from one view to another. Varied weights are then assigned to different views for each worker. Additionally, the ITSC-TD framework is integrated into the multiple views model to achieve high quality estimated truths for each view. Next, we propose a Semi-supervised Worker Filtering (SWF) model to eliminate spam workers, who assign random labels for each item. The SWF approach conducts worker filtering with a limited set of gold truths available as priori. Each worker is associated with a spammer score, which is estimated via the developed semi-supervised model, and low quality workers are efficiently detected by comparing the spammer score with a predefined threshold value. The efficiency of all the developed frameworks and models are demonstrated on simulated and real-world data sets. By comparing the proposed frameworks to a set of state-of-art methodologies, such as expectation maximization based aggregating algorithm, GLAD and optimization based truth discovery approach, in the domain of crowdsourcing, up to 28.0% improvement can be obtained for the accuracy of true label estimation

    Representing and Inferring Visual Perceptual Skills in Dermatological Image Understanding

    Get PDF
    Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. Eliciting and representing their visual strategies and some aspects of domain knowledge will benefit a wide range of studies and applications. For example, image understanding may be improved through active learning frameworks by transferring human domain knowledge into image-based computational procedures, intelligent user interfaces enhanced by inferring dynamic informational needs in real time, and cognitive processing analyzed via unveiling the engaged underlying cognitive processes. An eye tracking experiment was conducted to collect both eye movement and verbal narrative data from three groups of subjects with different medical training levels or no medical training in order to study perceptual skill. Each subject examined and described 50 photographical dermatological images. One group comprised 11 board-certified dermatologists (attendings), another group was 4 dermatologists in training (residents), and the third group 13 novices (undergraduate students with no medical training). We develop a novel hierarchical probabilistic framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited by the three expertise-specific groups. A hidden Markov model is used to describe each subject\u27s eye movement sequence combined with hierarchical stochastic processes to capture and differentiate the discovered eye movement patterns shared by multiple subjects\u27 eye movement sequences within and among the three expertise-specific groups. Through these patterned eye movement behaviors we are able to elicit some aspects of the domain-specific knowledge and perceptual skill from the subjects whose eye movements are recorded during diagnostic reasoning processes on medical images. Analyzing experts\u27 eye movement patterns provides us insight into cognitive strategies exploited to solve complex perceptual reasoning tasks. Independent experts\u27 annotations of diagnostic conceptual units of thought in the transcribed verbal narratives are time-aligned with discovered eye movement patterns to help interpret the patterns\u27 meanings. By mapping eye movement patterns to thought units, we uncover the relationships between visual and linguistic elements of their reasoning and perceptual processes, and show the manner in which these subjects varied their behaviors while parsing the images

    A Systematic Literature Review of Software Visualization Evaluation

    Get PDF
    Abstract Context: Software visualizations can help developers to analyze multiple aspects of complex software systems, but their effectiveness is often uncertain due to the lack of evaluation guidelines. Objective: We identify common problems in the evaluation of software visualizations with the goal of formulating guidelines to improve future evaluations. Method: We review the complete literature body of 387 full papers published in the SOFTVIS/VISSOFT conferences, and study 181 of those from which we could extract evaluation strategies, data collection methods, and other aspects of the evaluation. Results: Of the proposed software visualization approaches, 62 lack a strong evaluation. We argue that an effective software visualization should not only boost time and correctness but also recollection, usability, engagement, and other emotions. Conclusion: We call on researchers proposing new software visualizations to provide evidence of their effectiveness by conducting thorough (i) case studies for approaches that must be studied in situ, and when variables can be controlled, (ii) experiments with randomly selected participants of the target audience and real-world open source software systems to promote reproducibility and replicability. We present guidelines to increase the evidence of the effectiveness of software visualization approaches, thus improving their adoption rate

    On intelligible multimodal visual analysis

    Get PDF
    Analyzing data becomes an important skill in a more and more digital world. Yet, many users are facing knowledge barriers preventing them to independently conduct their data analysis. To tear down some of these barriers, multimodal interaction for visual analysis has been proposed. Multimodal interaction through speech and touch enables not only experts, but also novice users to effortlessly interact with such kind of technology. However, current approaches do not take the user differences into account. In fact, whether visual analysis is intelligible ultimately depends on the user. In order to close this research gap, this dissertation explores how multimodal visual analysis can be personalized. To do so, it takes a holistic view. First, an intelligible task space of visual analysis tasks is defined by considering personalization potentials. This task space provides an initial basis for understanding how effective personalization in visual analysis can be approached. Second, empirical analyses on speech commands in visual analysis as well as used visualizations from scientific publications further reveal patterns and structures. These behavior-indicated findings help to better understand expectations towards multimodal visual analysis. Third, a technical prototype is designed considering the previous findings. Enriching the visual analysis by a persistent dialogue and a transparency of the underlying computations, conducted user studies show not only advantages, but address the relevance of considering the user’s characteristics. Finally, both communications channels – visualizations and dialogue – are personalized. Leveraging linguistic theory and reinforcement learning, the results highlight a positive effect of adjusting to the user. Especially when the user’s knowledge is exceeded, personalizations helps to improve the user experience. Overall, this dissertations confirms not only the importance of considering the user’s characteristics in multimodal visual analysis, but also provides insights on how an intelligible analysis can be achieved. By understanding the use of input modalities, a system can focus only on the user’s needs. By understanding preferences on the output modalities, the system can better adapt to the user. Combining both directions imporves user experience and contributes towards an intelligible multimodal visual analysis

    A scientific exploration of scenario planning, thinking, and cognitive biases

    Get PDF
    Scenario planning, as a recognised practice, is approaching the better part of a century. In this time it has experienced broad application across various industries and, as of late, growing popularity as an academic discipline. In stark contrast to its prolific use in the field and academia, is the lack in scholarly work that brings verifiable and robust knowledge regarding the efficacy of the practice. In order to understand the impact of scenario planning interventions, it is first necessary to understand scenario thinking. The importance of investigating scenario thinking lies in the notion that scenario planning has less to do with forecasting (i.e. aiming for facts) and more to do with futures-thinking (i.e. working with perceptions). The mental models, experiences, and abilities of scenario teams largely dictate the efficacy of a scenario planning intervention. At this time, however, scenario thinking remains a black box. The present investigation, first, provides a discussion on how to understand scenario thinking. A gestalt perspective is offered, where discrete cognitive features are defined, which comprise the structure of scenario thinking. The motivation to this discussion is understanding the level(s) of influence scenario thinking may succumb to, in the face of changes to external information. Next, three higher-order cognitions (creative, causal, and evaluative thinking) are explored, in depth, and tested against the Intuitive Logics model of scenario planning to help determine i) the robustness of scenario planning against ii) the influence of the cognitive experience. A multi-attribute approach is taken, borrowing methods from cognitive psychology, behavioural economics, and management science. A form of the traditional framing manipulation is used to measure for biases in scenario thinking. Results suggest that even the smallest change in information can lead to several biasing effects across the tested cognitive features of scenario thinking. Understanding the nature of influences on scenario thinking helps reveal the efficacy of scenario planning for management and organisations.Scenario planning, as a recognised practice, is approaching the better part of a century. In this time it has experienced broad application across various industries and, as of late, growing popularity as an academic discipline. In stark contrast to its prolific use in the field and academia, is the lack in scholarly work that brings verifiable and robust knowledge regarding the efficacy of the practice. In order to understand the impact of scenario planning interventions, it is first necessary to understand scenario thinking. The importance of investigating scenario thinking lies in the notion that scenario planning has less to do with forecasting (i.e. aiming for facts) and more to do with futures-thinking (i.e. working with perceptions). The mental models, experiences, and abilities of scenario teams largely dictate the efficacy of a scenario planning intervention. At this time, however, scenario thinking remains a black box. The present investigation, first, provides a discussion on how to understand scenario thinking. A gestalt perspective is offered, where discrete cognitive features are defined, which comprise the structure of scenario thinking. The motivation to this discussion is understanding the level(s) of influence scenario thinking may succumb to, in the face of changes to external information. Next, three higher-order cognitions (creative, causal, and evaluative thinking) are explored, in depth, and tested against the Intuitive Logics model of scenario planning to help determine i) the robustness of scenario planning against ii) the influence of the cognitive experience. A multi-attribute approach is taken, borrowing methods from cognitive psychology, behavioural economics, and management science. A form of the traditional framing manipulation is used to measure for biases in scenario thinking. Results suggest that even the smallest change in information can lead to several biasing effects across the tested cognitive features of scenario thinking. Understanding the nature of influences on scenario thinking helps reveal the efficacy of scenario planning for management and organisations

    Design and Evaluation of User-Centered Explanations for Machine Learning Model Predictions in Healthcare

    Get PDF
    Challenges in interpreting some high-performing models present complications in applying machine learning (ML) techniques to healthcare problems. Recently, there has been rapid growth in research on model interpretability; however, approaches to explaining complex ML models are rarely informed by end-user needs and user evaluations of model interpretability are lacking, especially in healthcare. This makes it challenging to determine what explanation approaches might enable providers to understand model predictions in a comprehensible and useful way. Therefore, I aimed to utilize clinician perspectives to inform the design of explanations for ML-based prediction tools and improve the adoption of these systems in practice. In this dissertation, I proposed a new theoretical framework for designing user-centered explanations for ML-based systems. I then utilized the framework to propose explanation designs for predictions from a pediatric in-hospital mortality risk model. I conducted focus groups with healthcare providers to obtain feedback on the proposed designs, which was used to inform the design of a user-centered explanation. The user-centered explanation was evaluated in a laboratory study to assess its effect on healthcare provider perceptions of the model and decision-making processes. The results demonstrated that the user-centered explanation design improved provider perceptions of utilizing the predictive model in practice, but exhibited no significant effect on provider accuracy, confidence, or efficiency in making decisions. Limitations of the evaluation study design, including a small sample size, may have affected the ability to detect an impact on decision-making. Nonetheless, the predictive model with the user-centered explanation was positively received by healthcare providers, and demonstrated a viable approach to explaining ML model predictions in healthcare. Future work is required to address the limitations of this study and further explore the potential benefits of user-centered explanation designs for predictive models in healthcare. This work contributes a new theoretical framework for user-centered explanation design for ML-based systems that is generalizable outside the domain of healthcare. Moreover, the work provides meaningful insights into the role of model interpretability and explanation in healthcare while advancing the discussion on how to effectively communicate ML model information to healthcare providers

    Predicting Assistive Technology Self-Efficacy in Teachers of Students with Visual Impairments

    Get PDF
    Students who are blind and visually impaired can use assistive technology (AT) improve their access to the educational environment. Mastering the use of AT is a crucial part of developing long-term independence and productivity in academic, vocational, and leisure settings. However, teachers of students with visual impairments (TVIs) report poor self-efficacy for teaching and supporting the use of AT. TVIs with low assistive technology self-efficacy (ATSE) may be less likely to use AT with their students, teach and support AT effectively, and persist through difficult experiences with students’ AT. Subsequently, students are at risk of not being exposed to AT that is useful and appropriate to them, and their AT skills may not reach mastery levels necessary for achieving desired outcomes. To date, the literature has not identified or examined any specific factors associated with TVIs’ ATSE. This study conducted such an investigation, using a quantitative, predictive correlational research design to examine the associations between 12 TVI experience factors and TVIs’ ATSE. A survey was distributed to TVIs across the United States, requesting input regarding their experiences, and a novel TVIs’ Assistive Technology Self-Efficacy Scale was developed to measure TVIs’ beliefs regarding their ATSE. The data were analyzed using a hierarchical multiple regression. Four TVI experience factors were found to be predictive of TVIs’ ATSE, and the variable categories of training experience and work experience factors were also found to be predictive of ATSE. These data, along with a variety of descriptive statistics, provide an updated examination of the state of AT in the field of visual impairments; researchers and practitioners now have specific aspects of TVIs’ experiences to design interventions around and further investigate in future research

    Integrating expert-based objectivist and nonexpert-based subjectivist paradigms in landscape assessment

    Get PDF
    This thesis explores the integration of objective and subjective measures of landscape aesthetics, particularly focusing on crowdsourced geo-information. It addresses the increasing importance of considering public perceptions in national landscape governance, in line with the European Landscape Convention's emphasis on public involvement. Despite this, national landscape assessments often remain expert-centric and top-down, facing challenges in resource constraints and limited public engagement. The thesis leverages Web 2.0 technologies and crowdsourced geographic information, examining correlations between expert-based metrics of landscape quality and public perceptions. The Scenic-Or-Not initiative for Great Britain, GIS-based Wildness spatial layers, and LANDMAP dataset for Wales serve as key datasets for analysis. The research investigates the relationships between objective measures of landscape wildness quality and subjective measures of aesthetics. Multiscale geographically weighted regression (MGWR) reveals significant correlations, with different wildness components exhibiting varying degrees of association. The study suggests the feasibility of incorporating wildness and scenicness measures into formal landscape aesthetic assessments. Comparing expert and public perceptions, the research identifies preferences for water-related landforms and variations in upland and lowland typologies. The study emphasizes the agreement between experts and non-experts on extreme scenic perceptions but notes discrepancies in mid-spectrum landscapes. To overcome limitations in systematic landscape evaluations, an integrative approach is proposed. Utilizing XGBoost models, the research predicts spatial patterns of landscape aesthetics across Great Britain, based on the Scenic-Or-Not initiatives, Wildness spatial layers, and LANDMAP data. The models achieve comparable accuracy to traditional statistical models, offering insights for Landscape Character Assessment practices and policy decisions. While acknowledging data limitations and biases in crowdsourcing, the thesis discusses the necessity of an aggregation strategy to manage computational challenges. Methodological considerations include addressing the modifiable areal unit problem (MAUP) associated with aggregating point-based observations. The thesis comprises three studies published or submitted for publication, each contributing to the understanding of the relationship between objective and subjective measures of landscape aesthetics. The concluding chapter discusses the limitations of data and methods, providing a comprehensive overview of the research
    • …
    corecore