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Summary

In the following, we provide a summary of this dissertation in English and

Dutch.

English Summary

In recent years, sensory evaluation has seen an increase in the development of its

science and application, and an increasing interest in the use of multiple sensory

evaluation tests has resulted in the collection of different types of sensory data.

In addition, chemical experiments have been prominent in gathering valuable

instrumental data about the quality of food. In this dissertation, we discuss

several approaches for analysing and predicting sensory evaluations in settings

where there is a limited number of available trained panellists who provide sensory

evaluations.

We start off with Chapter 1 by motivating the problem described above and

highlighting the most important research questions that this dissertation answers.

We then provide the structure and a brief overview of this dissertation.

In Chapter 2, we introduce the nature of sensory and instrumental data. First,

we provide a review of the discriminative, affective and descriptive methods of

sensory measurement and discuss the different types of sensory data generated

from using these methods for obtaining appropriate information about sensory

quality of food. Second, we introduce microbial spoilage as the most well-known

cause of spoilage in food and discuss how storage conditions affect the smell or

flavour of food. We briefly introduce several instrumental evaluation techniques,

namely chemical testing techniques for quantifying volatile organic compounds and

discuss several ways in which chemical analysis can be used to help interpret the

results of sensory analysis.

In Chapter 3, we provide mathematical (optimization) methods as they are the

foundation for understanding the main contributions presented in this dissertation.

We review general definitions and properties found in the field of mathematical

optimization and discuss solving convex optimization problems. Subsequently,

we review statistical learning theories that are used to build predictive models

and provide a motivation for the selection of different ingredients (loss function,

hypothesis space and a regularisation parameter). It is supposed to serve as a tool

for the reader to understand the different recipes used in this dissertation.

In Chapter 4, we describe the different foods, namely, chicken breasts, Atlantic cod
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Summary

(Gadus morhua), Atlantic brown shrimp (Crangon crangon) and Atlantic salmon

(Salmo salar) that are studied in this dissertation and delve into the techniques used

to gather the sensory and instrumental data. In this chapter, we collect a number

of datasets to answer the different research questions in this dissertation.

In Chapter 5, we discuss methods to determine the overall quality of food samples.

Normally, trained panellists are asked to provide absolute evaluations, in the form

of ordinal labels. These labels are used to assign a consensus label that describes

the overall quality of a food sample. We introduce the most prominent methods

used for the aggregation of ordinal labels to reach a consensus label. In addition,

we propose a novel approach, based on the search for monotonicity, to assign

(joint) consensus labels of multiple objects. Previously used techniques, such as the

median and the mode, are compared to our novel approach on data sets from three

real-world problems and are then applied to analyse the sensory data gathered in

Chapter 4. We illustrate the different methods to show possible consensus labels of

samples in settings where the consensus label is not clear.

In Chapter 6, we discuss methods to determine the overall ranking of food samples.

Normally, untrained (or less trained) panellists are asked to provide a relative

evaluation, in the form of a ranking. These rankings are used to determine a

consensus ranking of the samples in terms of freshness. We introduce the most

prominent methods used for the aggregation of rankings: the Borda count, the

method of Condorcet, and the method of Kemeny. In addition, we consider

the latest method that has been developed in-house, where the monotonicity of

a representation of rankings provided by the panellists is exploited to reach a

consensus ranking. The aforementioned methods are compared by applying them

to analyse the sensory data gathered in Chapter 4. We illustrate the different

methods to show possible consensus rankings of the samples in settings where the

consensus preference is not clear.

In Chapter 7, we present the problem of having a limited number of available

trained panellists, and, thus, having a limited amount of data available to reach

a consensus evaluation. Interestingly, it is quite common to invoke a more cost-

efficient source of information. Thus, untrained panellists are used to gather some

additional information. However, untrained panellists are obviously not as skilled

as trained panellists, and might be unable to accurately evaluate a given sample.

Since it is a conceptually easier task, untrained panellists are then just asked to

rank different samples according to their personal appreciation. We propose to

combine ordinal labels and rankings provided by trained and untrained panellists,

respectively, to assign an improved consensus ordinal label that describes the overall

quality of a food sample. We make use of the most prominent aggregation methods

of labels and rankings to make a first attempt at combining absolute data, in the

form of scores, and relative data, in the form of rankings. We first propose an

approach for integrating rankings with scores to improve the quality assessment
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of the consensus score. We propose a second approach for integrating scores with

rankings to improve the assessment of the consensus ranking. In addition, we

propose a third approach for incorporating different types of (relative) information

to improve the quality of the consensus score. The application of these methods

is illustrated on the sensory data gathered in Chapter 4, specifically, on scoring

and ranking data of salmon samples (Section 4.2.5). We illustrate the different

methods to show possible consensus scores of the samples, and provide guidelines

for choosing an optimal source of additional information.

In Chapter 8, the problem is similar to that discussed in Chapter 5, where trained

panellists are typically asked to provide absolute evaluations, in the form of ordinal

labels, however, we propose a method to predict an ordinal label of a new sample.

We present an ordinal regression model that takes instrumental data (i.e., features

of the studied samples) as input and sensory data (i.e, assigned ordinal labels by

trained panellists) as output. This model can then predict the quality of a food

sample based solely on its chemical information. However, as we have previously

discussed, training and (subsequently) collecting information from panellists usually

carries big expenses. For this reason, there usually is a limited amount of data

available to learn a good statistical model without the issue of overfitting the

data. We present an approach for including `1 regularisation into ordinal regression

models to reduce overfitting and improve its performance. The ordinal regression

problem is validated and applied on synthetic data and on real-life experimentation

on the sensory and instrumental data gathered in Chapter 4. We show that the

results of the studies are consistent and that this strategy is useful, especially for

problems where the number of samples is very small in comparison to the total

number of features.

In Chapter 9, the problem is similar to that discussed in Chapter 6, where untrained

(or less trained) panellists are asked to provide relative evaluations, in the form of

rankings, however, here we discuss methods to predict a ranking of a set of samples.

We discuss that ordinal regression can be used to predict rankings, however, we

illustrate the pairwise approach as an alternative approach, where a ranking model

takes instrumental data (i.e., difference in features of the pairs of samples) as input

and sensory data (i.e, rankings that constitute preferences of pairs of samples)

as output. This model can predict the preference of couples of samples, and,

subsequently, predict a ranking. Since the number of samples is very small in

comparison to the total number of features, we include `1 regularisation. The

pairwise approach is illustrated on the sensory and instrumental data gathered in

Chapter 4.

In Chapter 10, the problem is similar to that discussed in Chapter 7, where a

limited number of trained panellists is available, however, we discuss the issue of

having a limited amount of data to learn a good statistical model. We propose an

approach that allows to integrate relative information, in the form of rankings, to
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augment ordinal regression models. This approaches allows to reduce overfitting

and improve the performance of ordinal regression models. This approach is

validated and applied on synthetic data and on real-life experimentation on the

sensory and instrumental data gathered in Chapter 4. We show that this strategy

is useful, especially for problems where the number of samples is very small in

comparison to the total number of features.

In Chapter 11, we end this dissertation with some general conclusions and a

discussion on future research directions.

Dutch summary

– Nederlandstalige samenvatting

In de afgelopen jaren zijn zowel het onderzoek naar als de toepassing van sensorische

evaluatie toegenomen. Bovendien heeft een toenemende belangstelling voor het

gebruik van meerdere sensorische evaluatietests geresulteerd in de verzameling

van verschillende soorten van sensorische gegevens. Daarnaast zijn chemische

experimenten prominent aanwezig geweest bij het verzamelen van waardevolle in-

strumentele gegevens over de kwaliteit van voedsel. In dit proefschrift bespreken we

verschillende benaderingen voor het analyseren en voorspellen van sensorische evalu-

aties in onderzoeken/evaluaties waar slechts een beperkt aantal van de beschikbare

opgeleide panelleden sensorische evaluaties aanleveren.

In Hoofdstuk 1 wordt het hierboven beschreven probleem gemotiveerd en de belan-

grijkste onderzoeksvragen gëıntroduceerd die in dit proefschrift beantwoord zullen

worden. Vervolgens bespreken we de structuur en geven we een kort samenvatting

van dit proefschrift.

In Hoofdstuk 2 introduceren we de aard van sensorische en instrumentele gegevens.

Ten eerste geven we een overzicht van de discriminerende, affectieve en beschrijvende

methoden van sensorische meting en bespreken we de verschillende soorten van sen-

sorische gegevens die gegenereerd worden door het gebruik van deze methoden voor

het verkrijgen van gepaste informatie over de sensorische kwaliteit van voedsel. Ten

tweede introduceren we microbieel bederf als de meest bekende oorzaak van bederf

in voedsel en bespreken we hoe opslagomstandigheden de geur of smaak van voedsel

bëınvloeden. We introduceren kort een aantal instrumentele evaluatietechnieken,

namelijk chemische testtechnieken voor het kwantificeren van vluchtige organische

stoffen en we bespreken verschillende manieren waarop chemische analyse kan

worden gebruikt om de resultaten van sensorische analyse te interpreteren.

In Hoofdstuk 3 leveren we wiskundige optimalisatiemethoden aan, aangezien ze de

basis vormen voor het begrijpen van de belangrijkste bijdragen die in dit proefschrift

gepresenteerd zullen worden. We bekijken algemene definities en eigenschappen
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die gevonden zijn op het gebied van wiskundige optimalisatie en we bespreken het

oplossen van convexe optimalisatieproblemen. Vervolgens bekijken we statistische

leer theorieën die gebruikt zullen worden om voorspellende modellen op te bouwen

en leveren we een motivatie aan voor de selectie van verschillende ingrediënten

(verliesfunctie, hypotheseruimte en een regularisatieparameter). Het hoofdstuk zal

als hulpmiddel moeten zijn voor de lezer om de verschillende recepten te begrijpen

die in dit proefschrift gebruikt zullen worden.

In Hoofdstuk 4 beschrijven we de verschillende voedingsmiddelen, namelijk kippen-

borsten, Atlantische kabeljauw (Gadus morhua), Atlantische bruine garnaal (Cran-

gon crangon) en Atlantische zalm (Salmo salar) die in dit proefschrift bestudeerd

zullen worden en gaan we dieper in op de technieken die gebruikt zullen worden

om de sensorische en instrumentele gegevens te verzamelen. In dit hoofdstuk

verzamelen we een aantal datasets om de verschillende onderzoeksvragen in dit

proefschrift te beantwoorden.

In Hoofdstuk 5 bespreken we methoden om de algemene kwaliteit van voedsel-

monsters te bepalen. Normal gesrpoken worden opgeleide panelleden gevraagd

absolute evaluaties, in de vorm van ordinale labels, aan te leveren. Deze labels

worden gebruikt om een consensuslabel toe te wijzen dat de algemene kwaliteit van

een voedselmonster beschrijft. We introduceren de meest prominente methoden die

gebruikt worden voor de aggregatie van ordinale labels om een consensuslabel te

bereiken. Daarnaast stellen we een nieuwe aanpak voor, gebaseerd op het zoeken

naar monotoniciteit, om (gezamenlijke) consensuslabels van meerdere objecten toe

te wijzen. Eerder gebruikte technieken, zoals de mediaan en de modus, worden

vergeleken met onze nieuwe benadering door datasets uit drie praktijkproblemen en

worden vervolgens toegepast om de sensorische gegevens te analyseren die in Hoofd-

stuk 4 verzameld werden. We illustreren de verschillende methoden om mogelijke

consensuslabels van monsters te laten zien in instellingen waar het consensuslabel

niet duidelijk is.

In Hoofdstuk 6 bespreken we methoden om in de algemene rangschikking van

voedselmonsters te bepalen. Normal gesrpoken worden niet opgeleide (of min-

der opgeleide) panelleden gevraagd een relatieve evaluatie, in de vorm van een

rangschikking, aan te leveren. Deze rangschikkingen worden gebruikt om een con-

sensusrangschikking van de monsters te bepalen qua versheid. We introduceren de

meest prominente methoden die gebruikt worden voor aggregatie van rangschikkin-

gen: het Borda-aantal, de methode van Condorcet en de methode van Kemeny.

Daarnaast beschouwen we de nieuwste methode die intern ontwikkeld wordt, waar-

bij de monotonie van een representatie van rangschikkingen door de panelleden

wordt benut om een consensus te bereiken. De bovengenoemde methoden worden

vergeleken door ze toe te passen om de sensorische gegevens te analyseren die

in Hoofdstuk 4 verzameld werden. We illustreren de verschillende methoden om

mogelijke consensusrangschikkingen van de monsters te tonen in instellingen waar
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de consensusvoorkeur niet duidelijk is.

In Hoofdstuk 7 presenteren we het probleem van een beperkt aantal aan beschik-

bare opgeleide panelleden, waarbij er dus slechts een kleine hoeveelheid gegevens

beschikbaar is om tot een consensusevaluatie te komen. Het is opmerkelijk dat

het vrij gebruikelijk is om een meer kosteneffcinte bron van informatie aan te

roepen. Niet-opgeleide panelleden worden dus gebruikt om wat extra informatie

te verzamelen. Niet-opgeleide panelleden zijn echter duidelijk niet zo bekwaam

als opgeleide panelleden en ze zouden mogelijks niet in staat zijn om een bepaald

monster accuraat te evalueren. Omdat het een conceptueel eenvoudigere taak

is, worden niet-opgeleide panelleden vervolgens slechts gevraagd om verschillende

monsters te rangschikkingen op basis van hun persoonlijke waardering. We stellen

voor om ordinale labels en rangschikkingen die opgegeven worden door zowel

opgeleide en niet-opgeleide panelleden te combineren, om een verbeterd algemeen

ordinaal label toe te wijzen dat de algemene kwaliteit van een voedingsmonster

beschrijft. We maken gebruik van de meest prominente aggregatiemethoden van

labels en rangschikkingen om een eerste poging te doen om absolute gegevens, in

de vorm van scores, en relatieve gegevens, in de vorm van rangschikkingen, te

combineren. We stellen eerst een benadering voor om rangschikkingen met scores

te integreren om de kwaliteitsbeoordeling van de consensusscore te verbeteren. We

stellen een tweede benadering voor om scores met rangschikkingen te integreren

om de beoordeling van de consensusrangschikking te verbeteren. Daarnaast stellen

we een derde benadering voor om verschillende soorten (relatieve) informatie op te

nemen om de kwaliteit van de consensusscore te verbeteren. De toepassing van

deze methoden wordt gëıllustreerd aan de hand van de sensorische gegevens die

in Hoofdstuk 4 verzameld werden, met name over het scoren en rangschikken van

gegevens van zalmmonsters (sectie 4.2.5). We illustreren de verschillende methoden

om mogelijke consensusscores van de monsters te laten zien, en geven richtlijnen

voor het kiezen van een optimale bron van aanvullende informatie.

In Hoofdstuk 8 is het probleem vergelijkbaar met het probleem dat in Hoofd-

stuk 5 besproken wordt, met name waar opgeleide panelleden doorgaans worden

gevraagd om absolute evaluaties, in de vorm van ordinale labels, aan te leveren.

In Hoofdstuk 8 daarentegen, stellen we een methode voor om een ordinaal label

van een nieuw monster te voorspellen. We presenteren een ordinaal regressiemodel

dat instrumentele gegevens (d.w.z. kenmerken van de onderzochte monsters) als

invoer en sensorische gegevens (d.w.z. toegewezen ordinale labels door opgeleide

panelleden) als uitvoer neemt. Dit model kan vervolgens de kwaliteit van een

voedselmonster voorspellen op basis van alleen de chemische informatie. Zoals we

eerder hebben besproken, brengt de opleiding en (vervolgens) het verzamelen van

informatie van panelleden meestal grote kosten mee. Om deze reden is er meestal

een kleine hoeveelheid gegevens beschikbaar om een goed statistisch model te leren

zonder de kwestie van overfitting van de gegevens. We presenteren een aanpak

om `1 regularisatie op te nemen in ordinale regressiemodellen om overfitting te
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verminderen en de prestaties ervan te verbeteren. Het ordinale regressieprobleem

wordt gevalideerd en toegepast op synthetische gegevens en op experimenten in de

praktijk op de sensorische en instrumentele gegevens die in oofdstuk 4 verzameld

werden. We laten zien dat de resultaten van de onderzoeken consistent zijn en dat

deze strategie nuttig is, vooral voor problemen waarbij het aantal monsters erg

klein is in vergelijking met het totale aantal functies.

In Hoofdstuk 9 is het probleem vergelijkbaar met het probleem dat in Hoofdstuk 6

besproken wordt, met name waar niet opgeleide (of minder opgeleide) panelle-

den worden gevraagd om relatieve evaluaties, in de vorm van rangschikkingen

aan te leveren. In Hoofdstuk 9 daarentegen bespreken we methoden om een

rangschikking van een reeks monsters voor te spellen. We bespreken dat ordinale

regressie kan gebruikt worden om rangschikkingen voor te spellen. We illustreren

echter de paarsgewijze benadering als een alternatieve benadering, waarbij een

rangschikkingsmodel instrumentele gegevens (d.w.z. verschil in kenmerken van

de paren samples) als invoer en sensorische gegevens (d.w.z. rangschikkingen die

voorkeuren van paren monsters vormen) als uitvoer neemt. Dit model kan de

voorkeur van paren van monsters voorspellen en vervolgens een rangschikking

voorspellen. Omdat het aantal monsters erg klein is in vergelijking met het to-

tale aantal features, bevatten we `1 regularisatie. De paarsgewijze benadering

wordt gëıllustreerd op de sensorische eninstrumentele gegevens die in Hoofdstuk 4

verzameld werden.

In Hoofdstuk 10 is het probleem vergelijkbaar met het probleem dat in Hoofdstuk 7

besproken wordt, namelijk dat van een beperkt aantal aan beschikbare opgeleide

panelleden, maar in Hoofdstuk 10 bespreken we het probleem waarin slechts een

kleine hoeveelheid gegevens beschikbaar is om een goed statistisch model te leren .

We stellen een benadering voor die toelaat om relatieve informatie, in de vorm van

rangschikkingen, te integreren om de prestaties van ordinale regressiemodellen te

verbeteren. Deze benadering maakt het mogelijk om overfftting te verminderen

en de prestaties van ordinale regressiemodellen te verbeteren. Deze benadering

wordt gevalideerd en toegepast op synthetische gegevens en op experimenten in de

praktijk op de sensorische en instrumentele gegevens die in Hoofdstuk 4 verzameld

werden. We laten zien dat deze strategie nuttig is, vooral voor problemen waarbij

het aantal monsters erg klein is in vergelijking met het totale aantalfuncties.

In Hoofdstuk 11 beëindigen we dit proefschrift met enkele algemene conclusies en

een discussie over toekomstige onderzoeksrichtingen.
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1.4.3 Part III: Analysis of sensory data

1.4.4 Part IV: Prediction of sensory evaluation

1.1. Background

Over the past decades, there has been an excessive increase in the demand for

fresh perishable food. Perishable foods are a class of food (including meat, fish,

milk, eggs, and many raw fruits and vegetables) with limited shelf life after harvest,

processing, or slaughter [2]. The metabolism timeline, although inherent, is greatly

influenced by the immediate surroundings, whether they are temperature, light,

humidity, atmospheric gases or bacteria. High spoilage rates resulting from the

shelf life limitation can lead to large economic and environmental losses. This has

required the industry to develop new and improved methods for extending the

shelf life of food while maintaining food quality.

Packaging materials for perishable food play a major role in our society through

their increasing functionality. They offer appropriate protection to food and an

increased convenience towards the consumers. The packaging process alters the

spoilage evolution of food, eventually leading to a longer shelf life. The huge

variety in both packaging materials and packaging methods, however, leads to a

range of processes, which occur in the packaged food. Currently, there is a lack of

understanding of these processes that eventually lead to the production of a variety

of volatile organic compounds (VOCs) and, subsequently, the spoilage of the food.

This lack of understanding prevents the food industry from fully exploiting new

packaging materials and methods.

Generally, the implementation of optimal storage conditions through modified

atmospheres has been effective in reducing microbial spoilage processes and maxi-

mizing the shelf life, while preserving the quality of food [3, 4]. This procedure is

known as modified atmosphere packaging (MAP). The containment of the modified
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atmosphere within the package is crucial; however, quality assessment based on sen-

sory, microbial, or chemical analyses is not possible except by opening the package.

Unfortunately, measurement with destructive gas analysis equipment cannot be

used to check every single package. Therefore, both the food industries as well as

the distribution chains need to adapt their logistics and sampling plans to predict

product shelf life expectancies. In addition, large product and economic losses

occur while using the destructive sampling. In 2011, the Food and Agriculture

Organisation of the United Nations estimated that approximately 1 billion tons

of food is wasted every year: a third of the global food production [5]. In the

EU up to 39% of the wasted food occur during processing and quality assurance

measures [6]. These staggering numbers speak for themselves: our food system is

failing.

There is an increasing need for a technology that would provide a tool for fast,

accurate and non-destructive analysis of the quality status of packaged food. This

technology should be able to detect and measure the concentrations of a range of

different VOCs that are representative of spoilage processes that occur in packaged

food.

Intelligent packaging can be used, in principle, to inform all actors in the chain, like

wholesalers, retailers and consumers, about the quality status of food and offers the

possibility to take logistic actions based on dynamically estimated shelf life, thereby

reducing waste of food. In recent years, there have been several food packaging

innovations known as intelligent and active packaging, which monitor the quality

of packaged food [7]. When used exhaustively, they enable the monitoring of all

packages, which on the short run diminishes and eradicates sampling plans, and

on the long run predicts actual expiry dates, increases the margin of food safety,

indicates freshness level, and detects early spoilage.

Normally, food samples are examined and rated by sensory evaluation. Assuming

that intelligent food packaging will have the ability to describe the sensory properties

of food, however, it should be emphasized that sensory evaluations are still essential

when it comes to ensuring that the foods being produced are acceptable to the

consumer. Provided that the instrument performs according to the required sensory

properties, accuracy, and reproducibility, it could be applied to partly replace a

sensory panel in the industry [8]. However, it has been shown that both sensory

evaluation and intelligent food packaging are considered, in some cases, to be

complementary to each other [9].

Interestingly, intelligent food packaging technology is heading towards replacing

human decision-making, however, that would give rise to liability questions. The

use of machine learning in intelligent food packaging for determining food quality

has the potential for causing physical harm. Therefore, the liability question is

complicated by uncertainties as to the standard of reliability, performance and

accuracy which the hardware (i.e., sensor) and software (i.e., machine learning) in
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the intelligent food package are expected to achieve. For instance, if the intelligent

food package fails to detect food spoilage or food diseases, the most obvious response

of consumers is to sue the producer of the food product or the producer of the

intelligent food package. Therefore, as a start in the implementation of intelligent

food packaging technology, users (i.e., businesses and consumers) should be made

aware that this technology is merely for assisting in the decision-making process

and not replacing it.

A Flemish strategic basic research project called CheckPack, which was launched

in November 2013 (as described in [10]), focused on the research and development

of a silicon photonics-based chemical sensor with a small footprint sensing region

to measure concentrations of multiple VOCs and CO2 in the headspace of food

packages. As a research partner in this project, our aim was to develop mathe-

matical models for machine learning to be implemented alongside the sensor to

identify the internal situation of the package and predict spoilage of food. To

develop mathematical models of chemical sensors in intelligent food packaging, a

detailed knowledge of the structure of chemical sensors is essential, and includes

the understanding of the following three phases:

1. translating transducer signals (of the sensor into receptor signals),

2. translating receptor signals (into gas quantities in the package), and

3. translating gas quantities (into a label reflecting the quality of food).

A representation of the sensor concept and the three modelling phases are illustrated

in Figure 1.1.

It has proven difficult at this stage of the technology to develop a silicon photonics-

based chemical sensor with (microporous and mesoporous) coatings that are highly

selective of (most of) the spoilage-specific VOCs present in the headspace of most

food packages. As a result, the plan of building mathematical models (in phase 1)

to translate transducer signals of the sensor into receptor signals in the first phase

was abandoned. Due to the unavailability of the (receptor signals of the) sensor, it

seemed natural to divide phase 2 into two parts: (a) translating receptor signals

into adsorbed quantities on the chemical coating, and (b) translating adsorbed

quantities into gas quantities in the package. Clearly, phase 2(a) was abandoned

since it requires a sensor. The problem defined in phase 2(b) has been known to be

one of the most difficult challenges in the field of materials sciences and chemical

engineering [11], especially when dealing with a very large number of VOCs (at

least 50) in a food package. The difficulty lies in studying the interaction of the

VOCs during adsorption on a chemical coating (i.e., the inverse of phase 2(b)).

This phenomenon is called multi-component adsorption [12, 13]. Typically, multi-

component adsorption is studied for a very small number of compounds (up to five)

on a chemical coating that is (at best) selective to a specific group of compounds.

Currently, there exist very few chemical coatings that are highly selective, most
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Figure 1.1: An illustrative concept of a silicon photonics-based chemical sensor with a
matrix of selective coating materials and the three modelling stages.

Tranducer to

receptor signal

Receptor signal

to gas quantities

Gas quantities

to label

of which are selective to specific groups of compounds, and a very few of which

are selective to single compounds, which are not relevant to food packaging. In

addition, the sensitivity of the current chemical coatings is very low: only high

concentrations (parts per million) can be detected, whereas the concentrations of the

compounds found in packages were mostly in low concentrations (parts per billion).

Therefore, gathering data through experiments proved to be impossible in the entire

project period. In an attempt to find an alternative approach, adosprtion data of

compounds on chemical coatings were gathered from online databases, such as NIST

Chemistry WebBook. Consequently, quantitative structure-activity relationship

(QSAR) models [14, 15] were developed to predict adsorption characteristics of a

specific compound on a specific coating. However, the developed models did not

reflect accuracy nor precision, since the gathered data needed to be pre-processed,

which was not feasible in the remaining project period. As a result, phase 2(b) was

not continued.

Finally, the research was restricted to the modelling process of translating quantities

of different types of gases in the headspace (phase 3) into a label/score that reflects

the status of food. This modelling is independent of the type of receptor and

transducer incorporated in the chemical sensor. One implication of this restriction

was realizing existing problems in sensory evaluation of food. As a result, the

concept of improving the quality of the assessment of a sensory evaluation was
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born.

1.2. Problem setting

Sensory evaluation has seen an increase in the development of its science and

application over the past years [16]. Today, in the field of food science and in the

food and beverage industry, sensory evaluation is a core resource for gathering

valuable information about the quality of food. As a result, numerous research

studies have focused on different types of sensory data, namely, absolute evaluations,

in the form of ordinal labels, and relative evaluations, in the form of rankings.

In this dissertation, we develop methods to combine absolute and relative evalua-

tions for determining the quality of a (food) sample. As a first step, we focus on

the analysis of these different types of data to determine the overall freshness of

a sample. To analyse such data, an analyst typically has a variety of traditional

statistical methods at their1 disposal. Interestingly, these statistical methods

depend on the nature of the data and their collection. The problem arises that

most statistical methods do not fully exploit all the available information. In

addition, it is often the case that analysts deal with a limited amount of data

that entails inadequate statistical analysis. In this dissertation, we will develop

data-analysis techniques that can be used to provide an answer to such problems.

Firstly, we present an approach to reach consensus evaluations2 (ordinal labels) of

multiple samples, simultaneously. Secondly, we propose to combine ordinal labels

and rankings to improve the consensus label.

The next logical step is to utilize additional measurements such as instrumental data.

The main instrumental evaluation technique dealt with in this dissertation applies

to generating chemical data in analytical chemistry experiments and investigations.

In different packaged foods, a range of different VOCs are representative for

spoilage processes that could occur. Using instrumental measuring systems during

analytical chemistry experiments, the values of these VOCs can be quantified.

In this dissertation, we build a bridge between instrumental data and sensory

data with the aim of solving the problem of predicting sensory evaluations of new

samples. Firstly, we present an approach to build an ordinal regression model that

can better predict ordinal labels in settings where data is limited. Secondly, we

propose to integrate rankings in ordinal regression models to further improve the

prediction of ordinal labels.

1 We use the singular pronoun they and its derivative forms, such as them, their, etc., as an epicene
(i.e., gender-neutral) singular pronoun. Although the use of singular pronouns in formal English
has been the target of criticism since the late 19-th century, there is an increasing trend towards
an epicene language [17].

2 This problem differs from a consensus reaching process, in which panellists discuss and modify
their personal evaluations in order to reach a consensus evaluation [18, 19, 20].
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As a result, we present a question that this dissertation revolves around:

How can the consensus and predicted ordinal label of a (food) sample be improved

by integrating rankings?

1.3. The structure of this dissertation

This dissertation is organized as follows: one introductory part (Part I), three

main parts (Parts II, III and IV), and one concluding part (PartV). This structure

is illustrated in Figure 1.2. In this section we provide a roadmap to reading this

dissertation.

Part I contains two chapters to assist the reader in understanding the topics that

this dissertation will cover. Chapter 2 begins with considering the different types

of data and defines descriptions of data and their collection processes. Chapter 3

covers traditional mathematical techniques.

Part II consists of one chapter and contains the procedures for gathering the sensory

and instrumental data used throughout this dissertation for the demonstration of

applications in food science. Chapter 4 describes the different foods studied in this

dissertation and delves into the techniques used to perform microbial, chemical,

and sensory evaluations.

Parts III and IV contain the main contributions of this dissertation. Each of these

parts focuses on a number of research objectives for the characterization of food

quality. Therefore, these parts build upon the material presented in Chapters 2

and 4 for the demonstration of applications in food science. It should be noted

that these parts can be read independently from each other.

Part III consists of three chapters covering the analysis of sensory data. Chapter 5

focuses on the analysis of absolute evaluation data in the form of ordinal labels and

presents the most prominent methods for determining consensus labels. Chapter 6

continues with the analysis of relative evaluation data in the form of rankings and

presents the most prominent methods for aggregating rankings. Chapter 7 builds

upon the methods used in the previous two chapters to combine the two types of

sensory data.

Part IV consists of three chapters covering the prediction of sensory evaluations of

a food sample. Chapter 8 focuses on learning a predictive model from absolute

evaluation data for the prediction of ordinal labels. Chapter 9 continues with

learning a predictive model from relative evaluation data for the prediction of

rankings. Chapter 10 focuses on learning a predictive model from absolute and

relative evaluation data combined for the prediction of ordinal labels.
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Chapter 1
Introduction

Part I:
Preliminaries

Chapter 2
The nature of sensory
and instrumental data

Chapter 3
Mathematical prerequisites

Part II:
Gathering sensory

and instrumental data

Chapter 4
Sensory evaluation and

chemical analysis of different foods

Part III:
Analysis of

sensory data

Chapter 5
Aggregation of ordinal labels

Chapter 6
Aggregation of rankings

Chapter 7
Combining scores and rankings

Part IV:
Prediction of

sensory evaluations

Chapter 8
Learning to predict ordinal labels

Chapter 9
Learning to predict rankings

Chapter 10
Integrating rankings in or-
dinal regression problems

Part V:
Epilogue

Chapter 11
General conclusions and perspectives

Figure 1.2: The structure of this dissertation.

Part V provides general conclusions of the most important results in this dissertation

and a discussion on future research directions.
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1.4. A brief overview of this dissertation

1.4.1. Part I: Preliminaries

This part consists of two chapters to assist the reader in understanding the topics

this dissertation will cover and answers the question:

Question I: How do we collect sensory data and instrumental data and how can

we analyse these data?

Today, in the field of food science, sensory evaluation and chemical experiments

are prominent in gathering valuable sensory and instrumental data about the

quality of food. The nature of sensory and instrumental data are introduced in

Chapter 2. As the data depend largely on the focus of the experiment and the

particular measurement system, this chapter offers a description of several methods

of sensory measurement, namely, discriminative, affective and descriptive methods,

and discusses the different types of sensory data generated from using these methods

for different purposes. In addition, typical sensory analysis methods are introduced,

and the training requirement of panellists is briefly described. For instance, to be

able to evalaute specific characteristics of foods, such as spoilage, sensory quality

etc., trained panellists require extensive training, which is cost intensive and time

consuming. Unlike trained panellists, untrained (or less trained) panellists may be

not be well-equiped in accurately providing an evaluation describing food spoilage,

however, they are less costly to gather and are capable of detecting differences

among samples [21].

The next logical step after performing sensory evaluation of food is to understand

what causes the quality of food to change. Microbial spoilage has been seen as

the most important cause of spoilage in food [22] producing VOCs that result in

the change of smell or flavour of food. Thus, instrumental evaluation techniques

for quantifying these VOCs are essential. Chapter 2 introduces chemical testing

techniques for measuring VOCs and discusses several ways in which chemical

analysis can be used to help to interpret the results of sensory analysis. In short,

this chapter answers the question:

Question I.1: What do sensory evaluation and instrumental evaluation unequivo-

cally tell us?

The analysis methods introduced in Chapter 2 are borrowed from the field of

mathematical optimization, which is introduced in Chapter 3. Mathematical

(optimization) methods are the foundation for understanding the main contributions

presented in this dissertation. Section 3.3 focuses on providing general definitions

and properties found in the field of mathematical optimization and discusses solving

convex optimization problems.
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What follows the steps of analysing the different types of data is the use of in-

strumental data to build models for predicting the evaluation of a food sample

based solely on the features of the sample. Building a model is not a standard

recipe and requires the selection of ingredients (loss function, hypothesis space and

a regularization parameter). Thus, different models can be built using statistical

learning, which is introduced in Chapter 3. Statistical learning theories are the

foundation for understanding the main contributions presented in Part IV of this

dissertation. Readers who are familiar with basic notions of mathematical opti-

mization theory may skip Section 3.3 (or consult this section whenever necessary).

In the same way, being well experienced with statistical learning theory, readers

may skip Section 3.4. In short, Chapter 3 answers the question:

Question I.2: How does statistical learning relate to mathematical optimiza-

tion?

1.4.2. Part II: Gathering sensory and instrumental data

This part consists of one chapter and contains the procedures for gathering the sen-

sory and instrumental data used throughout this dissertation for the demonstration

of applications in food science, and answers the question:

Question II: Which foods were studied and what was collected?

Chapter 4 describes the different foods, namely, chicken breasts, Atlantic cod

(Gadus morhua), Atlantic brown shrimp (Crangon crangon) and Atlantic salmon

(Salmo salar), studied in this dissertation and delves into the techniques used to

perform sensory evaluation and analytical chemical experiments. This chapter is

one of the pillars of this dissertation and, thus, deserves its own part. For answering

the different questions in this dissertation, a number of datasets were collected, some

specific for one question, and some others useful for several questions. To give the

reader a structured introduction to the data, we gather them in Chapter 4.

1.4.3. Part III: Analysis of sensory data

This part consists of three chapters covering the analysis of sensory data, in case

no chemical information about the samples is collected. In this setting, panellists

build (implicit) features in their mind, and, thus, we call this setting a featureless

setting. Part III builds upon the preliminaries of Part I and the materials presented

in Part II and focuses on answering the question:

Question III: How can we analyse sensory data to reach a consensus evalua-

tion?

9
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To determine the overall quality of a food sample, trained panellists are normally

asked to provide absolute evaluations in the form of ordinal labels. The aim is to

assign a consensus label that describes the overall quality of a food sample. Thus,

the most prominent methods used for the aggregation of ordinal labels to reach a

consensus label are introduced in Chapter 5. This chapter is an extended version

of a manuscript published in Information Fusion [23], focusing on the analysis of

ordinal labels and proposes a novel approach, based on the search for monotonicity,

to assign (joint) consensus labels of multiple objects. Previously used techniques,

such as the median and the mode, are compared to our novel approach on data

sets from three real-world problems, and are then applied to analyse the sensory

data gathered in Chapter 4. In short, Chapter 5 answers the question:

Question III.1: How can we assign (joint) consensus ordinal labels?

Unfortunately, trained panellists are limited in number and (in some cases) expen-

sive to train. For this reason, there usually is a limited amount of data available

to reach a consensus evaluation. It is thus quite common to invoke untrained

panellists and to gather some additional information [24]. However, untrained

panellists are obviously not as skilled as trained panellists, and might be unable to

accurately evaluate a given sample. Since it is a conceptually easier task, untrained

panellists are then just asked to rank different samples according to their personal

appreciation. Untrained panellists may find the process of ranking a large number

of samples burdensome. It has also been shown that methods for analyzing rankings

on a large number of samples is difficult [25]. Therefore, a simple solution would be

to ask untrained panellists to rank only a subset of the large number of samples [26].

In sensory analysis of food, due to olfactory fatigue of panellists, it is recommended

to rank no more than six samples [24]. Thus, the aggregation of rankings to reach a

consensus ranking is introduced in Chapter 6, where the most prominent methods

date back to the 18-th century. These methods include: the Borda count, the

methods of Condorcet, and the method of Kemeny. However, we also consider

the latest method that has been developed in-house, where Raúl Pérez-Fernández

et al. [27] proposed to exploit the monotonicity of a representation of rankings

provided by the panellists to reach a consensus ranking. The aforementioned

methods are compared by applying them to analyse the sensory data gathered in

Chapter 4. In short, Chapter 6 answers the question:

Question III.2: How can we reach a consensus ranking?

However, rankings provide only relative information on the quality of food samples.

Thus, it is more interesting to reach a consensus ordinal label that provides

absolute information on the quality of a food sample. Therefore, we propose to

combine ordinal labels and rankings provided by trained and untrained panellists,

respectively, to assign an improved consensus ordinal label that describes the

overall quality of a food sample. This novel approach is introduced in Chapter 7

by making a first attempt at combining the most prominent methods used in
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the aggregation of ordinal labels (Chapter 5) and rankings (Chapter 6). This

chapter is an extended version of a manuscript published in International Journal

of Approximate Reasoning [28], which has also been published as a conference

paper [29], and an extended version of a manuscript under revision. We first propose

an approach for integrating rankings with labels, in the form of scores, to improve

the quality assessment of the consensus score. We propose a second approach

for integrating scores with rankings to improve the assessment of the consensus

ranking. In addition, we propose a third approach for incorporating different

types of (relative) information to improve the quality of the consensus score. The

application of these methods is illustrated on the sensory data gathered in Chapter 4,

specifically on scoring and ranking data of salmon samples (Section 4.2.5). In short,

Chapter 7 answers the research question:

Question III.3: How can we combine scores and rankings to reach an improved

consensus evaluation?

As the aforementioned techniques are based on mathematical optimization methods,

we suggest to the reader to consult Section 3.3.

1.4.4. Part IV: Prediction of sensory evaluation

This part consists of three chapters covering the prediction of food quality and are

parallel to the chapters in Part III. In addition to sensory data, instrumental data,

in the form of chemical information of samples, are collected. In this setting, each

sample is described by the quantities of the VOCs, which we refer to as features of

the samples, and, thus, we call this a setting with features. Part IV builds upon

the preliminaries of Part I and the materials presented in Part II and focuses on

answering the question:

Question IV: How can we predict the evaluation of a sample?

In parallel to Chapter 5, where trained panellists are typically asked to provide

absolute evaluations, in the form of ordinal labels, the aim now is to use sensory

and instrumental data to build a model that would take the features of the studied

samples as input and the ordinal labels as output. This model can then predict the

ordinal label of a new sample based solely on its chemical information. However,

as we have previously discussed, training and (subsequently) collecting information

from panellists usually carries big expenses. For this reason, there usually is a

limited amount of data available to learn a good statistical model. Chapter 8

introduces a novel recipe for building an ordinal regression model, while including

a regularization parameter. This chapter originates from a manuscript published

in Information Fusion [30]. A motivation for the selection of the ingredients of this

recipe, including the loss function, hypothesis space and regularization parameter,

is provided. The ordinal regression problem is illustrated on the sensory and

11
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instrumental data gathered in Chapter 4. In short, Chapter 8 answers the research

question:

Question IV.1: How can we predict an ordinal label?

In parallel to Chapter 6, where untrained (or less trained) panellists, who provide

relative evaluations in the form of rankings, are typically used, the aim now is to use

sensory and instrumental data to build a model that would take the features of the

studied samples as input and the rankings as output. This model can then predict

a ranking of new samples based solely on their chemical information. Chapter 9

introduces the pairwise approach, the most prominent approach for building a

ranking model to predict preferences. The predicted preferences are then used to

derive an associated ranking of the samples. The pairwise approach is illustrated

on the sensory and instrumental data gathered in Chapter 4. In short, Chapter 9

answers the research question:

Question IV.2: How can we predict rankings?

In parallel to Chapter 7, where it is more interesting to study ordinal labels that

provide absolute information (rather than just rankings that provide only relative

information) on the quality of food samples, we propose a strategy of integrating

rankings provided by untrained panellists to improve the prediction of an ordinal

label of new samples based solely on their chemical information. Chapter 10

presents this novel strategy building upon the works in Chapters 8 and 9 for

augmenting ordinal regression models. This chapter is an extended version of

the manuscript published in Information Fusion [30]. The proposed method is

illustrated on the sensory and instrumental data gathered in Chapter 4. In short,

Chapter 10 answers the research question:

Question IV.3: How can we combine ordinal labels and rankings to improve the

prediction of an ordinal label?

As the aforementioned mathematical models are based on statistical learning

theories (Section 3.4) and mathematical optimization (Section 3.3), we suggest to

the reader to consult Chapter 3.
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2 The nature of sensory and

instrumental data

Table of Contents
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2.3.1 Microbial spoilage of food

2.3.2 Instrumental techniques for quantifying VOCs

2.3.3 Chemical analysis

2.1. Introduction and overview

In this chapter we discuss mainly two issues: The first is “defining the nature

of data”: Quantitative, qualitative, subjective, objective, etc.; and the second is

“describing the methods of data gathering”: Discriminative, affective, descriptive,

gas chromatography, etc.

We define the nature of sensory and instrumental data and highlight the dif-

ferent measurement systems for gathering the data, by answering the following

question:

Question I.1: What do sensory evaluation and instrumental evaluation unequivo-

cally tell us?

The question is answered in two parts: The first concerning sensory evaluation

is answered in Section 2.2, and the second concerning instrumental evaluation is

answered in Section 2.3. The benefits of sensory data and instrumental data are

discussed below while briefly walking through typical analysis techniques.

2.2. Sensory evaluation and data

Sensory evaluation has been a traditional method for studying sensory properties

of food and offers scientific approaches to obtain appropriate information about
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sensory quality of food. The field of sensory evaluation has been comprehensively

reviewed by Amerine et al. [24], Lawless et al. [1], Meilgaard et al. [31], Moskowitz

et al. [32], and Stone and Sidel [16]. The mentioned works are recommended for

readers who would like to learn more in detail about sensory evaluation.

2.2.1. Introduction to sensory evaluation

The main objective of sensory evaluation is to provide an input for decision making.

Simply put, it is a scientific method that involves the principles and practices of

evoking, measuring, analysing, and interpreting the responses of (food) samples as

perceived through the five senses [16].

The first process in sensory evaluation is evoking. Sensory evaluation provides

guidelines for minimizing biasing factors in the preparation and serving of samples

under controlled conditions. For example, separate booths are normally used

to separate panellists and avoid the influence of their judgements on each other.

Another example is providing each panellist with samples in a different order

to counteract for possible effects caused by the order of the samples. Moreover,

samples are given random numbers to avoid the interaction of panellists’ evaluations

with the numbers.

The second process in sensory evaluation is (sensory) measurement. The measure-

ments can be either quantitative or qualitative. Quantitative measurements are

numeric in nature and can be either discrete, in the form of integers, or continuous,

in the form of any numeric value. Qualitative measurements are non-numeric in

nature and can either be categorical (or nominal), in the form of categories without

order, or ordinal, in the form of categories with order. We will further discuss the

different types of measurement and the data that can be generated in the following

subsection.

The third process in sensory evaluation is (sensory) analysis. In sensory evaluation,

proper analysis of the generated data is critical. Mathematical methods are

commonly used to analyse sensory data. However, the different types of data

require appropriate statistical analysis methods. As we are dealing with human

perception, the data generated is often highly variable. Hence, without proper

statistical data analysis techniques, reasonable judgements cannot always be made

on the relation between the sample characteristics and the sensory response of

the panellists. In the following subsection, we will further discuss the analyses of

different types of sensory data.

Finally, the fourth process in sensory evaluation is the interpretation of results.

Based on the generated data, the proper analyses, and the results, reasonable judge-

ments must be made to draw conclusions. Conclusions involve the consideration of

the applied methods, the limitations of the experiments, and the background and
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contextual framework of the study.

2.2.2. Sensory measurement and analysis

Three major measurement tests are commonly used for the sensory evaluation of

food: discriminative, affective, and descriptive tests [1]. These sensory tests have

different goals and measure different variables. Thus, there are several aspects

to the nature of data generated by these various sensory tests. We illustrate

the different types of data that can be generated from sensory measurement in

Figure 2.1.

Cardinal scale

Interval and ratio scales

Ordinal scale Nominal scale

Continuous Discrete Ordered Not ordered

Quantitative Qualitative

Data

Measured variable

Training of panellists

Figure 2.1: The nature of sensory data and the training requirement of panellists.

Discriminative tests

Discriminative tests are the simplest tests in sensory measurement. They are

used when comparing two (or more) samples to determine whether there exists

any perceivable difference or similarity between them. A typical example is the

triangle test, where there are three samples, two of which are from the same batch

or process, and panellists are asked choose the sample that is most different. An

extension to the triangle test is the two-out-of-five test, where there are five samples,

and panellists are asked to sort these samples into two groups. Another example
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is the duo-trio test, where, similar to the triangle test, there are three samples,

however, one is a reference that matches a second sample and the third is from a

different batch or process, and panellists are asked to choose the sample that best

matches the reference. A fourth popular example is the pairwise comparison test,

where two samples are provided, and panellists are asked to choose which sample

has a higher intensity of a given attribute. These four tests are summarized in

Table 2.1.

The data generated from the discriminative method are generally discrete, more

specifically, binary values. However, they can be interpreted as nominal data that

represent different groups or categories. Since most of the tests force panellists to

make a distinction, panellists may make mistakes due to chance. Thus, statistical

methods based on binomial, chi square, or normal distributions allow us to determine

whether the panellists were able to perceive a difference between the samples or

the results were due to chance alone. These methods are known as significance

tests [33].

Affective tests

Affective tests are the most common tests in sensory measurement. They aim

at measuring the degree of liking or disliking of a sample. These tests include:

acceptance and ranking tests. In acceptability tests, typically a 9-point hedonic

scale [34, 35] is used, where the points on the scale represent ordered categorical

labels ranging from “like extremely” to “dislike extremely”. Here, panellists are

asked to assign a label to each sample.

In recent years, affective tests have been modified requiring panellists to evaluate

samples according to the degree of fulfilment of specific criteria, such as perceived

freshness. In ranking tests, the fact that a sample is ranked above another sample

means that the former is perceived as fresher than the latter, and the fact that

samples are tied means that they are perceived as equally fresh. In acceptance

tests, ordered categorical labels can be expressed on an ordinal scale that represents

an increasing or decreasing magnitude of freshness. Typical labels for these classes

are “Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F), and “Very

Fresh” (VF), with the linear order: SP ≺ M ≺ S ≺ F ≺ VF.

In a ranking test, panellists are asked to order a number of samples (greater than

two) based on their personal preference. Pairwise comparison can be seen as a

ranking of two samples, however, in affective tests, ties are allowed and there is no

forced choice. In some cases, panellists are asked to use an unlabelled ordinal scale

where the samples are arranged in order of increasing or decreasing preference.

These two affective tests are summarized in Table 2.1.

The data generated from affective tests are generally qualitative, specifically absolute

evaluations in the form of ordinal labels and relative evaluations in the form of

rankings. In the case of ordinal labels, t-tests or analysis of variance (ANOVA)
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Table 2.1: Summary of the most common tests for sensory evaluation, as described in
Sensory Evaluation of Food [1].
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F-tests are used to test the variances among the means of the samples by assessing

the variation within the samples, relative to the variation between the samples. It

can be seen that the t-test is a special case of the ANOVA F-test when there are

only two samples to compare.

In the case of rankings, the Friedman test [36] is used, in a similar way to the

ANOVA F-test, to determine differences between samples, in which the ranks of

the samples are used to test the variances among the means of the samples by

assessing the variation within the samples in proportion to the variation between

the samples.

Descriptive tests

Descriptive tests are the most comprehensive and informative sensory tests. They

aim to quantify perceived intensities of the sensory attributes of a sample. Generally,

there are two main phases in descriptive tests: the first is qualitative in nature,

where panellists identify attributes that can be used to describe the characteristics

of samples, and the second is quantitative in nature, where panellists evaluate the

intensity of these attributes by assigning scores. The most widely used methods

combine these two phases into an integrated sensory method. The main methods

are consensus profiling, descriptive profiling, and free choice profiling, and the

main difference among these methods is whether the two phases are performed

collectively or individually. Descriptive profiling is the most conventional method,

which is a form of Quantitative Descriptive Analysis (QDA) [16], where the first

phase is performed collectively, while the second phase is performed individually. In

consensus profiling, both phases are performed collectively, however, in free-choice

profiling, both phases are performed individually.

The collective processes in consensus profiling and descriptive profiling require

reaching a consensus description/evaluation in the measurement process of sensory

evaluation, in which panellists discuss and modify their personal description/evalu-

ation in order to reach a consensus. This consensus reaching process is thus done

by the panellists before and/or during the evaluation of samples. However, in this

dissertation we discuss a consensus reaching process that is done by an analyst

after the evaluation of samples has been performed by the panellists.

Descriptive testing is used to obtain qualitative descriptors and quantitative eval-

uations of a sample. Apart from assigning a score to the individual descriptors,

some kind of “general scoring” is often desired. This may include: total intensity

of color, aroma or flavour, general difference, hedonic score, etc. A typical example

of a quantitative descriptive test is illustrated in Figure 2.2.

Qualitative descriptors are usually in the form of categorical labels, and quantitative

evaluations are numerical and usually in the form of either continuous or discrete

scores. Continuous scores are decimal values usually on interval or ratio scales.

In both interval and ratio scales, the order and the exact distance between the
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General score

Color intensity

Hardness

Fatness

Saltiness

Juiciness

Bitterness

Figure 2.2: Example of rating seven descriptors on 5-point scoring scales

values is meaningful and known, however, only ratio scales have an absolute zero.

Discrete scores are equally spaced non-decimal values on an interval or a discrete

ratio scale, summarized as a cardinal scale.

Similar to the analysis of data generated from affective tests, the quantitative

evaluations generated from descriptive tests are commonly analysed using t-tests

on means for two samples, or analysis of variance F-tests followed by comparisons

of means for more than two samples.

2.2.3. Determination of overall food quality

Describing the overall quality of food is the most common problem considered by

researchers in food science. Typically, the evolution of quality of food is studied

by storing food samples for a different number of days [37, 38, 39]. To solve the

problem of describing the result, a fundamental decision needs to be made whether

the evaluation should be: a) quantitative, such as flavour intensity or firmness, or

b) qualitative, such as liking, preference, or acceptability. It must be noted that a

further type of evaluation should also be considered: c) subjective, such as focusing

on consumer behaviour and psychology or d) objective, such as measuring one

particular attribute of a food rather than overall quality of the product.

Quantitative data of numerical nature that are ultimately generated from descriptive

tests will allow for straightforward analysis to determine the overall quality of a

sample. Typically, panellists are asked to evaluate a sample and provide either

discrete or continuous values, and the arithmetic mean is assigned as the overall

quality of a sample. Other measures of central tendency, such as the median, which

is the value that separates the lower half from the upper half of the data, and
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the mode, which is the value that is mostly assigned by the panellists, are also

considered. Quantitative data generated from descriptive tests can be considered

as subjective evaluations, where the panellists provide their subjective judgement

when describing a food sample. Typically, panellists are trained to use predefined

descriptors in order to generate more objective evaluations.

We have to note that descriptive tests require extensive training of panellists over

long periods of time, thus, often deterring researchers from using this method.

Consequently, affective tests, more specifically acceptance tests, have become an

attractive alternative, in which training of panellists is required to a lesser extent.

The panellists then are considered as “experts” in the evaluation of only one sensory

attribute. However, since the data is in the form of ordinal labels, the relative

distance between the labels is not always equal, thus, making it difficult to determine

the overall quality of a sample. In the field of food science, such a scale is known as

the Labeled Hedonic Scale [40]. We would like to bring the reader to the attention

of recent studies that deal with non-uniform ordinal scales [41, 42, 43, 44, 45]. In

these studies, the notion of ordinal proximity measure is introduced to deal with

psychological proximities among linguistic terms of ordered qualitative scales. In

the field of food science, the median and the mode are typically used. In some

cases, the labels are identified with discrete values [46] (usually assumed to be

equidistant) to assign the (rounded) arithmetic mean. This assumes the existence

of a certain notion of distance between the labels.

Note that qualitative evaluations are typically considered to be subjective, when

asking consumers to provide their personal opinion or judgement on their preference

of a food sample. In cases where trained panellists are asked to provide a qualitative

evaluation on an attribute of a food sample that has a major effect on quality, then

such evaluations are considered to be objective.

Finally, in the case of rankings and discriminative tests, little to no training of

panellists is required, making it easier to gather data. Unfortunately, the major

weakness of these tests is that the resulting data provide no information on the

degree of difference between the samples. These data are relative and an overall

ranking or preference is assigned using methods based on the median, the mode

and the mean.

Therefore, it is important for a researcher in the field of food science to first

determine the type of data to be generated by sensory evaluation tests, and,

subsequently, determine the type of sensory evaluation test.

Note that it can be seen in Figure 2.1 that more training of the panellists is required

the more we move to the left of the diagram (i.e., when moving from qualitative

data that are not ordered to quantitative data that are continuous). In other words,

panellists providing an evaluation on a nominal scale require no training, whereas

panellists providing a continuous score on an interval or ratio scale require the
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most training.

Thus, it can be seen that describing the overall quality of food based on the results

of the aforementioned tests is often based on the distribution of the frequencies of

the sensory responses of the panellists. Typically, the frequencies are summarized

using a histogram that clearly displays the frequency distribution of the responses

and highlights any central tendency. In this problem setting, mathematical methods

for determining the central tendency of the data are borrowed from statistics. The

use of the above-mentioned methods will be illustrated in Part III.

Typically, sensory evaluation is constrained to an available budget. As a result,

it is critical to keep in mind the time, cost and resources involved with training

panellists and performing sensory evaluations. For instance, the cost of gathering

a certain amount of data from panellists can be derived by considering the costs

for training the panellists, processing the food samples and organizing the sensory

evaluation tests. Furthermore, the time for generating the data can be derived by

considering the time required for gathering and training the panellists, processing

the food samples and performing sensory evaluation. As a result, a value can be

derived on the cost and time for obtaining the desired data, which can be used

for determining a budget. Therefore, the scale of experimentation needs to be

balanced against the available budget, sensory resources and panellists.

2.3. Instrumental evaluation and data

So far, we have described sensory evaluation tests for studying sensory quality

of food. Before we introduce mathematical methods for analysing sensory data,

we first describe instrumental techniques for measuring spoilage compounds in

food.

Microbial spoilage has been seen to be the most important cause of food spoilage [22].

It is defined as an ecological phenomenon in which spoilage-specific organisms

(SSOs) prevail and produce VOCs. Even though microbial enzymes will not be

discussed in this dissertation, it is important to understand the factors that influence

microbial spoilage, and, thus result in the production of different VOCs.

2.3.1. Microbial spoilage of food

It is well established that the ecological determinants influencing microbial spoilage

can be categorized into five main factors: intrinsic, processing, extrinsic, implicit,

and emergent [47]. It has been shown that the most important determinants are

the intrinsic and extrinsic factors [48].
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Intrinsic factors are the inherent physical, chemical and structural properties

of the food, such as the SSOs, available substrates, water activity (or moisture

content), nutrients, and pH. These parameters greatly influence the composition of

the microbial population that will colonize the food. For instance, the microbial

growth rate is dependent on water and the types of SSOs that will prevail each

require a specific pH. In addition, different kinds and amounts of nutrients and

available substrates act as a rich source of energy for microbial growth allowing

certain SSOs to colonize the food and produce VOCs, subsequently, off-odours or

off-flavours.

Extrinsic factors are environmental parameters that affect food, notably, tempera-

ture, humidity, and atmosphere composition. It is well known that temperatures

below −32 ◦C cause bacteria to enter a dormant stage, and, thus, inhibit spoilage

and temperatures between 2–4 ◦C cause bacteria to gradually grow, and, thus, slow

spoilage [48, 49]. Modified atmosphere packaging (MAP) is another effective way

to inhibit microbial spoilage1, while preserving nutrients and other properties of

food, such as odour, colour and texture [50, 51]. MAP is a technique in which the

composition of the packaging atmosphere is altered, using three most commonly

used gasses: O2, CO2 and N2. To optimize the use of a MAP, an optimal gas

composition and type of food is required. Carbon dioxide (CO2, E 290) has an-

timicrobial properties against some SSOs that delay the initiation of microbial

spoilage. Oxygen (O2, E 948) is mainly important to preserve or enrich the color

of food. Nitrogen (N2, E 941) is normally used as a filler gas, since it is inert and

has minimal effects on the metabolic reactions in meat. This gas is also used to

replace O2 in MAP in order to create an anaerobic atmosphere and select for a

more anaerobic microbial population.

The other three determinants are briefly described as follows: Processing factors

refer to the physical or chemical treatments during production that change the char-

acteristics of a sample. Implicit factors are the result of the initial development of

microorganisms and their interactions together, such as antagonism and synergism,

which affect the microbial activity in the food. Finally, emergent factors are the

interactive factors on top of the expected individual action of the aforementioned

factors.

To quantify the impact of these factors on the quality of food samples, microbio-

logical analysis, chemical analysis and sensory evaluation have to be performed.

Consequently, a correlation can be made between these factors and the instrumental

and sensory evaluation of food samples. In the field of food science, research on

the influence of intrinsic and extrinsic factors on microbiological growth, VOCs

and sensory evaluation are limited [38, 52, 53, 54]. In these studies, the influence

of individual factors was studied. For instance, a correlation was made between

1 The use of a MAP cannot reduce the initial contamination of a sample. Thus, it is not a
replacement of good hygiene and handling practices throughout the food chain, which will assure
that a MAP’s spoilage inhibiting factors can be fully taken advantage of.
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intrinsic factors and microbiological parameters and sensory evaluation at a con-

stant extrinsic factor (i.e, at a constant temperature). Unfortunately, research on

the influence of all the factors combined on the quality of the food samples, as far

as we know, is non-existent. The reason for this could be that a large number of

experiments are required to study the different combinations of factors and their

combined impacts on microbiological, chemical and sensory evaluations. This is

time and cost intensive.

2.3.2. Instrumental techniques for quantifying VOCs

As previously discussed, VOCs are produced by SSOs, and when the concentrations

of these compounds exceed certain levels, odours (and flavours) are often produced

by the VOCs, resulting in an olfactory impact that is associated with the spoilage

of food. Thus, the composition of the VOC profiles could be used to evaluate

the quality of food samples. It is clear that different food samples have different

VOCs. For instance, in most meats, the main groups of VOCs produced are

alcohols, aldehydes, ketones, esters, volatile fatty acids, and sulfur compounds [55].

These groups of VOCs can be measured and quantified using chemical testing

techniques.

The most widely used chemical testing technique is gas chromatography, such

as flame ionization detector (GC-FID) and mass spectrometry (GC-MS), which

has seen wide applications in food analysis [56, 57, 58]. However, GC is not very

convenient, requiring calibration by highly skilled operators and having a rather

slow chromatographic process. This has led to the development of simpler and faster

analytical techniques that allow direct mass spectrometric measurement without

chromatographic separation. One of the most well-known technique for direct

analysis of volatile compounds in air is selected ion flow tube mass spectrometry

(SIFT-MS) [59], which is based on the chemical ionization of gases using specific

precursor (positive) ions (H3O+, NO+, and O+
2 ). Hence, the quantification of

gases by their reaction with precursor ions results in ionized masses. These

ionized masses are monitored by a mass spectrometer, measuring the amplitude

of the product ion signal and providing a quantitative measure for the amount

of selected gases in the headspace. Recently, SIFT-MS has been described as a

tool used for the determination of quality parameters in food by quantifiying the

VOCs [60, 61, 62, 63]. Perhaps the most important advantage of SIFT-MS over

other analytical techniques is that VOCs can be quantified in real time without

external calibration.

Essential for SIFT-MS is the kinetics library of reactions of the precursor ions with

a wide variety of compounds. This database provides the reaction rates and the

(primary and secondary) ion products for the analysis of trace gas molecules. There

are two basic types of scans used to acquire data in this analytical method: full
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mass (FM) scans and selected ion mode (SIM) scans. FM scans are most commonly

used to identify unknown compounds. Data from the scans can be matched against

the kinetics library, identifying the compounds and their concentrations. Relative

to FM scans, SIM scans target specific compounds by devoting more time to specific

target ions. Thus, SIM scans offer a more sensitive analysis.

2.3.3. Chemical analysis

Interpreting the results of analysed sensory data is often a difficult task. Usually,

when studying the evolution of the overall quality of food, samples from different

origins of the same food (i.e., different chicken breasts, fish fillets, etc.) are not

necessarily identical. For instance, one cannot simply presume that samples from

different fish fillets that have been stored for the same number of days will be

the same. Similarly, one cannot presume that a sample from one fillet is always

preferred over a sample from another fillet that has been stored for longer. Therefore,

interpreting the results of analysing sensory data cannot be done based solely on

the storage day of the samples.

While sensory evaluation gives a subjective understanding of the overall quality

of a food sample, instrumental evaluation gives an objective response. However,

instrumental evaluation is only able to measure one aspect of a food sample. Thus,

this may not always be sufficient to determine whether the quality of a food sample

is acceptable. Both sensory and instrumental evaluation of food are essential in

the food industry to routinely monitor the quality and ensure the acceptability of

the produced food. Thus, it can be seen that these two methods of evaluation are

complementary to each other. It has been shown that the combination of data

from sensory and instrumental evaluation may provide insights into the chemical

and physical properties that drive sensory attributes (such as appearance, odour,

flavour, taste, and texture) [64]. As odours (and flavours) are often produced by

VOCs, the composition of the VOC profiles has been successfully used to evaluate

the quality of food, such as seafood [65] and meats [66]. SIFT-MS has attracted

the attention of many researchers for rapid and accurate characterization of VOCs

and has been validated for fish metabolite research [61, 65].

As we have previously discussed, evaluations of samples, provided by panellists,

are commonly analysed to determine the overall quality of these samples. As

it can be understood, the production of VOCs in a sample results in off-odours

and/or off-flavours affecting the assessment of the overall quality or freshness of

the sample by panellists. Therefore, it would be interesting to study the impact of

the evolution of the VOCs on the sensory evaluation of food samples. An effective

way to interpret these evaluations is by chemical analysis of these samples. Thus,

chemical analysis allows to establish a relation between the VOC profiles and the

determined overall quality of samples. An effective way of doing this is by performing
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hierarchical agglomerative clustering [67], a data analysis tool that merges similar

groups of samples based on the similarity of their VOC profile, resulting in a

dendrogram. Recently, there has been interest in determining the similarities and

differences between VOC profiles by using clustering methods [68, 69]. However,

in many real-world datasets, the clusters are not so well-defined. Typically, high

similarity within a cluster is a criterion for the quality of clustering. Thus, several

methods to measure the quality of clustering by using density, distances of samples

within each cluster, the distance between the clusters themselves, etc., have been

proposed [70, 71, 72, 73, 74].

Another way in which chemical analysis of samples can also help in the evaluation

is to build mathematical models that can predict the overall quality of food. To do

this, a relationship between the VOC profiles and the results of sensory analysis has

to be determined. This problem setting involves the prediction of the quality of a

sample based solely on the instrumental measurement of that sample. This problem

can be classified as a prediction problem. More precisely, we are interested in

constructing a function that maps data from a chemical measurement to a sensory

evaluation. Stated differently, the food sample can be represented in two manners.

Firstly, it can be represented by means of the VOC profile in the headspace of the

food sample. Secondly, it can be represented by the evaluation of the sample by

panellists. In this problem setting, mathematical methods for building models are

borrowed from the field of statistical learning and will be covered in detail in the

following chapter (Section 3.4).

Over the past years, mathematical methods have been developed to predict mi-

crobial spoilage. Notable examples include: predicting microbial spoilage based

on spectral data [75, 76], predicting microbial spoilage based on concentrations

of VOCs [77, 78, 79, 80, 81, 82], and predicting sensory evaluations based on

spectroscopic data [83, 84]. However, research on learning a relationship between

VOC profiles of food samples and sensory analysis is, as far as we know, limited

to a few studies [85, 86]. In these studies, the models were developed to simply

predict a score. We will discuss later on in Part IV the difficulties encountered

while merging instrumental and sensory data, and predicting ordinal labels and

rankings.
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3.1. Introduction

This dissertation revolves around using mathematical optimization methods, which

are briefly discussed in this chapter. The aim of this chapter is to serve as a general

introduction to the field of mathematical optimization. By providing a collection

of definitions and properties, this chapter may assist the reader to appreciate the

contributions of this dissertation.

Mathematical optimization is the foundation of many statistical learning methods.

More specifically, most statistical learning problems may be reduced to optimization

problems. Indeed, statistical learning could be labelled as “optimzation enabaled

learning”. Mathematical optimization is at the heart of many engineering, scientific,

economic, social and personal decision that is taken by an individual or a collective

representation of people or machines.

In this chapter, we will answer the following question:

Question I.2: How does statistical learning relate to mathematical optimiza-

tion?

29



Chapter 3. Mathematical prerequisites

3.2. Notations and mathematical conventions

Throughout this dissertation, we use consistent mathematical notations to formalize

problems. In this section, we gather our notations and some mathematical facts

and conventions.

Sets

Sets are denoted as script capitalized characters. For example X will be used

to denote a generic set. If X is a set and x is an element of X, then we write

x ∈ X. A set can be specified by X = {x | x satisfies P}, as the set of all elements

x satisfying property P. The set of real numbers (also referred to as scalars) is

denoted by R. Thus, we denote by X ⊂ Rn that X is a proper subset of the

n-dimensional real vector space. We denote by [a, b] the set of real numbers x

satisfying a ≤ x ≤ b. An inverted square bracket denotes strict inequality in the

definition. Thus, ]a, b], [a, b[, and ]a, b[ denote the set of all x satisfying a < x ≤ b,
a ≤ x < b, and a < x < b, respectively.

When dealing with order relations in this dissertation, parentheses () are used for

representing an ordered set of elements and curly brackets {} are used for repre-

senting a set of elements without considering a specific order among them.

Order relations

Here, we introduce some basic properties of order relations. We refer to the works

of Birkhoff [87], Davey and Priestley [88], Roberts and Tesman [89], Ehrgott [90],

and Anandalingam and Friesz [91] for more detailed information.

Binary relations are used in many branches of mathematics to describe whether a

relation exists between two objects. For example, in arithmetic, binary relations are

used to model concepts like “is greater than”, “is equal to”, “divides”, etc.

Definition 3.1 (Binary relation). A binary relation R : A2 → {0, 1} (on a set

A) may satisfy the following properties:

(i) Reflexivity: ∀a ∈ A, it holds that

aRa .

(ii) Irreflexivity: ∀a ∈ A, it holds that

¬(aRa) .

(iii) Transitivity: ∀a, b, c ∈ A, it holds that

(aRb) ∧ (bRc)⇒ (aRc) .
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(iv) Antitransitivity: ∀a, b, c ∈ A, it holds that

(aRb) ∧ (bRc)⇒ ¬(aRc) .

(v) Symmetry: ∀a, b ∈ A, it holds that

(aRb)⇒ (bRa) .

(vi) Asymmetry: ∀a, b ∈ A, it holds that

(aRb)⇒ ¬(bRa) .

(vii) Antisymmetry: ∀a, b ∈ A, it holds that

(aRb) ∧ (bRa)⇒ a = b .

(viii) Completeness: ∀a, b ∈ A, it holds that

(aRb) ∨ (bRa) .

Definition 3.2 (Order relations). A binary relation (on a set A) is an order

relation if it satisfies reflexivity, antisymmetry, and transitivity; a strict order

relation is the irreflexive part of an order relation; a total order relation is an

order relation that satisfies completeness; a binary relation is called a weak order

relation if it satisfies transitivity and completeness (and, consequently, reflexivity);

a binary relation is called a strict weak order relation if it satisfies transitivity

and irreflexivity (and, consequently, asymmetry).

An example of an order relation is the subset relation ⊆. An example of a strict

order relation is the relation < on a set of integers. An example of a total order

relation is the relation ≤ on a set of integers. Finally, an example of a strict weak

order relation is a relation ≺ that compares multiple objects to determine which

object precedes the other. The complement of the strict weak order relation ≺ is a

weak order relation -, and vice versa.

Note that in this dissertation we use the term “ranking with ties” to refer to a weak

order and the term “ranking (without ties)” to refer to a strict weak order.

Normally, a Hasse diagram is used to comprehend and view an order relation

on a finite set. Intuitively, a Hasse diagram is a graphical representation of an

order relation on a set in which the vertices of the graph represent the elements in

the set, and an edge between two vertices represents a covering relation between

comparable elements in the set. Typically, the element at the top is greater than

the element at the bottom.
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For example, consider the set A = {a, b, c} and the relations a < c and b < c. The

resulting Hasse diagram of the order relation < on set A is shown in Fig. 3.1.

c

a b

Figure 3.1: Example of a Hasse diagram of the order relation < on set A.

Vectors and matrices

Vectors are denoted as boldface characters and are assumed to be row vectors.

For example, x ∈ Rn represents a 1× n row vector, where the i-th element of the

vector is denoted xi or x(i) (these notations are used interchangeably). A (row)

vector can be specified in the form x = (x1, . . . , xn). The transpose of vector x is

denoted x>. We denote by ‖x‖1 =
∑n
i=1 |xi| and by ‖x‖2 =

√
x · x1 the `1-norm

and `2-norm of x, respectively. Vectors can be indexed. For example, x1 ∈ Rn

and x2 ∈ Rn indicate that both x1 and x2 are 1× n vectors. Moreover, the j-th

element of a vector xi ∈ Rn is denoted xij and can be described as the element in

the i-th row and j-th column of a matrix.

Matrices are denoted as boldface capitalized characters. For example, X ∈ Rm×n

is an m × n matrix. The transpose of X is denoted by X>. For a square n × n
matrix X, X−1 denotes the inverse of X (if it exists). The element of a matrix

X in the i-th row and j-th column is denoted xij or Xij (these notations are

used interchangeably). Matrices are indexed by using a superindex. For example,

X1 ∈ Rm×n and X2 ∈ Rm×n are both m× n matrices.

Vectors 0n and 1n denote an 1× n vector of zeros and ones, respectively, and the

matrix In is the n× n identity matrix.

Given two vectors x1,x2 ∈ Rn, we write x1 = x2 if x1j = x2j for any j ∈ {1, . . . , n}.
Moreover, we write x1 ≤ x2 if x1j ≤ x2j for any j ∈ {1, . . . , n}. Note that x1 < x2

means that x1 ≤ x2 and that there is at least one index j for which x1j < x2j .

Random vectors (or multivariate random variables) are denoted as boldface italic

capitalised characters. For example, X is a random vector that consists of real-

valued random variables. In this dissertation, we will be mostly using notations

like Pr(X ≤ x) to denote the probability that the random vector X takes a value

that is smaller than or equal to x ∈ Rn.

Functions

1 Note that a dot product (x · x) is computationally equivalent to multiplying x (a 1× n vector)
with x> (an n× 1 vector).
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A function f is specified in the form f : X → Y to indicate that f is defined

on a nonempty set X and takes values in a set Y. We denote by dom(f) and

codom(f) the domain and co-domain of f , respectively. We consider that X ⊆ Rn,

and we use X for the closure of a set X (i.e., all the points that are either in or

“near” X) and Xc for the complement of a set X (i.e., points not in X). Thus, we

use bd(X) = X ∩Xc for the boundary of a set X. We denote the interior of the

domain of f as int(X) = X \ bd(X). Note that the boundary can also be written

as bd(X) = X \ int(X).

The gradient vector of f is denoted ∇f (i.e., the collection of all the partial

derivatives of f in a vector) and the Hessian matrix ∇2f (i.e., the square matrix

of second-order partial derivatives of f). Functions that are Rm-valued (i.e.,

the co-domain of the functions are subsets of Rm) for m > 1 are denoted as

boldface characters. For example, f(x) : X → Rm represents the function f(x) =

(f1(x), . . . , fm(x))>.

3.3. Mathematical optimization methods

3.3.1. Motivation

We will start with a motivation for mathematical optimization. Optimization prob-

lems are ubiquitous in statistics and machine learning. They appear throughout

the two disciplines in terms of the estimators we are trying to form, the problems

we are trying to solve, and so forth. We are often taught in statistics and ma-

chine learning about how a certain conceptual idea translates into a particular

optimization problem.

Numerous problems in engineering, statistics, machine learning, etc., involve solving

an optimization problem. For example, given that we have been gathering sensory

evaluation data of several food samples, we are now provided with a new food

sample and asked to find the overall quality of this new food sample. This can be

seen as fitting a function (e.g. a linear function) to our gathered sensory evaluation

data, and using this function to predict an output (in this case the overall quality)

given an input (the new food sample). Now, let us suppose we want to impose

some kind of structure on the coefficients of that function. For instance, we want

the coefficients to be sparse or shrunken. We normally learn how to take that

conceptual idea and translate it into an optimization problem. Another example

would be the problem where we are given chemical data and are asked to determine

similarities between the different VOCs. This can be seen as a problem of fitting

the best hyperplanes with the biggest margins separating the different classes that

the VOCs belong to. In this setting, we normally learn how that idea translates

into a particular problem that we want to solve to achieve that goal.
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The main motivation for solving an optimization problem can be reduced down to

two major points:

1. Different algorithms for solving particular problems can perform better or

worse depending on the “flavour” of the problem. It can even be the same

problem we are trying to solve, but with a different instantiation of the data

(i.e., the data comes from a different distribution or of a different nature,

however, the problem is the same). It could also be that the problem we are

solving is very similar, in appearance, to another problem, but each problem

requires a different effective algorithm.

2. Understanding how to solve a problem and things about its nature, in terms

of optimality and different views that we can take from the perspective of

convex analysis, can actually lend a deep understanding to the statistical

side of the problem (i.e., the conceptual side).

3.3.2. General definitions

This section is written as a compilation of several definitions and properties that

are found in the field of mathematical optimization. Most of these definitions are

key to understanding mathematical optimization, and will be used frequently in

this dissertation. These definitions can be found more in detail in the works of

Rockafellar [92], Boyd and Vandenberghe [93] and Nocedal and Wright [94].

As a starting point, we define a mathematical optimization problem. We use the

following notation:

� X is a set called the domain of the optimization problem;

� x = (x1, . . . , xn)> is a vector called the optimization variable;

� f is the objective function that we want to minimize or maximize;

� g(x) ≤ b is an inequality constraint ;

� h(x) = Ax− b is an equality constraint

The inequality constraint function g(x) is a function of x that defines certain

inequalities that the vector x must satisfy. The equality constraint function h(x)

is defined as h(x) = Ax− b, where A ∈ Rq×n is a matrix and b ∈ Rn is a vector.

Using this notation, we define a mathematical optimization problem.

Definition 3.3 (Mathematical optimization problem). Consider a set X ⊆ Rn,

the functions f : X → R, g : X → Rp and h : X → Rq. A (mathematical)

optimization problem is the problem of finding an element x ∈ X that minimizes

the function f and satisfies the inequality constraint g(x) ≤ b and the equality

constraint h(x) = Ax− b. We denote such a problem as:
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minimize
x∈X

f(x)

subject to g(x) ≤ b ,

h(x) = Ax− b ,

The solution of an optimization problem is called an optimum, which we refer to

as a minimizer throughout this dissertation. A vector x∗ is called a minimizer if

for any x satisfying g(x) ≤ b and h(x) = Ax− b, we have f(x∗) ≤ f(x). In other

words, x∗ is a solution if it respects the inequality constraints and has the smallest

objective function value.

In this section, we will always consider X ⊆ Rn. We start off by defining convex

sets.

Definition 3.4 (Convex set). A set X ⊆ Rn is convex if the line segment between

any two points x1 ,x2 ∈ X is made by any scalar α ∈ [0, 1] that lies in X. This is

denoted as:

αx1 + (1− α) x2 ∈ X .

A convex combination is considered as a special type of linear combination. More

precisely, it is a combination of points of the form
∑k
i=1 αi xi, where x1, . . . ,xk ∈

Rn, such that αi ≥ 0, for i ∈ {1, . . . , k} and
∑k
i=1 αi = 1. As can be expected,

a set X is then convex if and only if it contains every convex combination of its

points.

Definition 3.5 (Convex hull). For a set X ⊆ Rn, let conv(X) be the convex hull

of the set X. This is denoted as:

conv(X) =

{
k∑
i=1

αi xi | xi ∈ X, αi ≥ 0, i ∈ {1, . . . , k} ;

k∑
i=1

αi = 1

}
.

The convex hull conv(X) is the smallest convex set that contains X.

Convex functions

Convex sets are considered the building blocks of convex functions. Convex functions

are essential in the field of mathematical optimization. For convex functions, we

will assume that dom(f) = X is a convex subset of Rn.

Definition 3.6 (Convex function). Let X be a convex subset of Rn. A function

f : X → R is called convex if for all x1, x2 ∈ X and α ∈ [0, 1] we have that

f(αx1 + (1− α) x2) ≤ α f(x1) + (1− α) f(x2) .

Definition 3.7 (Concave function). Let X be a convex subset of Rn. A function

f : X → R is called concave if −f is convex.
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There are two important modifiers in terms of convex functions: strictly convex

functions and strongly convex functions.

Definition 3.8 (Strictly convex function). Let X be a convex subset of Rn. A

function f : X → R is called strictly convex if for all x1, x2 ∈ X and α ∈]0, 1[ we

have that

f(αx1 + (1− α) x2) < αf(x1) + (1− α) f(x2) .

Loosely speaking, a strictly convex function is more convex (i.e., has a greater

curvature) than a linear or affine function.

Definition 3.9 (Strongly convex function). Let X be a convex subset of Rn. A

function f : X → R is called strongly convex if there exists a parameter m > 0,

which means that f − m
2 ‖x‖

2
2 is convex. Equivalently, f is strongly convex if there

exists m > 0 such that for all x1, x2 ∈ X and α ∈ [0, 1], we have that

f(αx1 + (1− α) x2) ≤ α f(x1) + (1− α) f(x2)− m

2
α (1− α) ‖x1 − x2‖22 .

Meaning that a strongly convex function is at least as convex as a quadratic

function. The motivation for studying strong convexity is that it allows us to prove

fast convergence rates of certain algorithms. Clearly, there is a hierarchy that

strong convexity implies strict convexity, which in turn implies convexity. However,

the converse is not generally true.

The definitions of the modifiers are analogous for concave functions. One would

simply substitute the convex function f with its negative as shown in Defini-

tion 3.7.

Properties of convex functions

A key property of convex functions states that a function is convex if and only if

its restriction to any line is convex. The converse is always true.

Definition 3.10 (Epigraph). Let X be a convex subset of Rn. The epigraph of a

given function f : X → Rn is defined as

epi(f) = {(x, α) ∈ X × R | f(x) ≤ α}

The function f is convex if and only if epi(f) is a convex set.

Definition 3.11 (Sublevel set). Let f : X → Rn be a convex function and α ∈ R
be a scalar. The sublevel set of f is defined as

{x ∈ X | f(x) ≤ α}

If f is convex, then its sublevel set is convex for all α ∈ R. The converse is not
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necessarily true.

When a function f : X → R is differentiable over its domain, X is convex, and

f(x2) ≥ f(x1) +∇ f(x) · (x2 − x1),∀x1,x2 ∈ X, then we have that f is convex.

Therefore, for a differentiable convex function, it holds that ∇ f(x) = 0 if and only

if x minimizes f .

Similarly, if f is twice differentiable, convex and ∇2f(x) ≥ 0 (the Hessian is positive

semi-definite) for every x ∈ X, then f is convex.

3.3.3. Solving convex optimization problems

As a starting point, we define a convex optimization problem. Both constraint

functions g(x) and h(x) are functions of x and define certain inequalities and

equations that the vector x must satisfy. If there are no constraints (i.e., p = q = 0)

the optimization problem is called unconstrained. Formally, a point x ∈ X is

said to be feasible if it satisfies the equality constraint h(x) = 0q and inequality

constraint g(x) ≤ 0p. Thus, a convex optimization problem is said to be feasible

if there exists at least one feasible point, and infeasible otherwise. Moreover, the

set of all feasible points is called the feasible set. Using this notation, the convex

optimization problem can be defined as follows:

Definition 3.12 (Convex optimization problem). A convex optimization problem

is the problem of finding an element x ∈ X that minimizes the function f and

satisfies the inequality constraint g(x) ≤ 0p and the equality constraint h(x) = 0q.

We denote such a problem as:

minimize
x∈X

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q ,

and this problem is called convex provided that f(x), g(x) and h(x) are convex.

Note that the set X = dom(f) ∩ dom(g) ∩ dom(h) is the common domain of all

functions.

The minimum p∗ of the optimization problem in Definition 3.12 is defined as

p∗ = inf{f(x) | x ∈ X ,g(x) ≤ 0p ,h(x) = 0q} .

We allow that p∗ = ±∞. More precisely, if there exist feasible points xk with

f(xk) → −∞ as k → +∞, then we say that the problem is unbounded below.

Moreover, we say that x∗ is a minimizer, or solves the problem, if it is feasible and

f(x∗) = p∗. We say that a feasible point x∗ is a local minimizer if there exists a
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c > 0 such that:

f(x∗) = inf{f(x) | x ∈ X ,g(x) ≤ 0p ,h(x) = 0q , ‖x− x∗‖22 ≤ c} . (3.1)

In other words, the feasible point x∗ solves the optimization problem

minimize
x∈X

f(x)

subject to g(x) ≤ 0p ,

h(x) = 0q ,

‖x− x∗‖22 ≤ c .

(3.2)

This means that x∗ minimizes f over nearby points in the feasible set.

Note that if x∗ is feasible and gi(x
∗) = 0, where i ∈ {1, . . . , p}, then the i-th

inequality constraint gi(x
∗) ≤ 0 is called active at x∗. Otherwise, if gi(x

∗) < 0,

then we say that the constraint is inactive.

3.3.4. Subclasses of convex optimization problems

For all convex optimization problems in this dissertation, we shall assume that

X = Rn. Situations that require X ⊂ Rn will be solved by adding inequality con-

straints to reduce the feasible set. We now describe two typical classes of continuous

optimization problems: least-squares and linear programming problems.

Least-squares problems

A least-squares problem is an unconstrained optimization problem that is widely

known and used. Given an objective function that is a sum of squares of terms

ai · x− bi, a least-squares problem is defined as

minimize
x∈X

f(x) = ‖Ax− b‖22 =

k∑
i=1

(ai · x− bi)2 , (3.3)

where A ∈ Rk×n (k ≥ n) and b ∈ Rn. The least-squares problem is the standard

approach for regression analysis and the basis for many parameter estimation and

data fitting methods. The solution of a least-squares problem (3.3) is considered

to be simple. It can be reduced to solving a set of linear equations

(A>A)x = A>b .

Precisely, the problem is non-complex and has a straightforward solution. The

criterion used to determine easy to solve problems from hard ones can be found in

the theoretical reference [95].
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Linear programs

A linear program is an optimization problem where the objective function and all

constraint functions are affine (linear):

minimize
x∈X

f(x) = c · x

subject to g(x) = Ax ≤ b .
(3.4)

Here c ∈ Rn,A ∈ Rp×n, and b ∈ Rp are the parameters that specify the objective

and constraint functions.

Both least-squares problems and linear programs can be solved efficiently and

reliably. However, many processes in science and engineering are inherently non-

linear, therefore, linear models may not effectively fit the data well.

3.4. Statistical learning theory

This section gives an overview of the key ideas and insights of statistical learning

theory. This introductory section is mainly intended for the reader who is unfa-

miliar with the mathematical concepts and notations of statistical learning theory,

regularization and hypothesis spaces. No assumption is made that the reader has

a deep background in mathematics, statistics, or computer science. It should be

noted that this introduction is the result of grouping several technical studies of

the mathematics of statistical learning theory, and the material can be found in

the works of Vapnik [96], Schölkopf and Smola [97], Bishop [98] and Bousquet et

al. [99].

3.4.1. The standard framework

Machine learning is a field in computer science that deals with the development and

application of algorithms that can be used to learn from data, for instance, to gain

new insights, and/or make predictions on (future) data. Three main categories can

be distinguished here: unsupervised machine learning, supervised machine learning

and semi-supervised machine learning. Unsupervised machine learning mainly

focuses on the discovery of patterns in high-dimensional datasets. Dimensionality

reduction techniques are probably the most well-known category of unsupervised

learning techniques. Supervised machine learning deals with the problem of deriving

a prediction function from a dataset. Therefore, the data space is partitioned into

an input space and an output space, and it is assumed that there exists some

(unknown) mapping between these spaces. The goal of supervised machine learning

is to infer this mapping from the data. Semi-supervised machine learning falls
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between unsupervised machine learning and supervised machine learning, and

mainly deals with the problem of discovering patterns in high-dimensional datasets

and deriving a prediction function from the dataset.

The three categories appear to exhaustively classify machine learning paradigms,

but they do not. Reinforcement machine learning, which deals with learning by

interaction and does not rely on examples of correct behaviour, is also considered to

be another category of machine learning, alongside unsupervised machine learning,

supervised machine learning and semi-supervised machine learning. In reinforce-

ment machine learning, the learner instead of being told which actions to take, must

discover which actions yield the most reward by learning from their own experience.

Although one might be tempted to think of reinforcement machine learning as a

kind of unsupervised machine learning, reinforcement machine learning is trying to

maximize a reward signal instead of trying to find hidden structure.

Statistical learning theory is a framework that provides a statistical basis for dealing

with (mainly) supervised machine learning problems. Let X be the input space

and Y be the output space. Statistical learning theory takes the assumption that

there exists an (unknown) probability density function P over X ×Y, such that

PX ,Y(x,y) is the probability of observing the couple (x,y) ∈ X×Y. The training

set T is a random sample from P . The outputs y may not always be a deterministic

function of the inputs x, but can be random themselves. Notably, given an input

x, there exists multiple outputs with conditional probability distribution function

PY|X (· | x).

3.4.2. Estimation and hypothesis space

The quality of a prediction function w.r.t. a given supervised learning problem is

often determined using a loss function. We define a loss function as a function

L : Y ×Y → R+ that measures the dissimilarity between two elements in Y. For

a given input vector x, we define the risk of a function as the average loss over a

predicted vector ŷ according to the underlying probability density function PX ,Y
as follows:

∫
Y

L(ŷ,y)PY|X (y | x) dy . (3.5)

In other words, the risk of a function f is the expected loss when ŷ is used to

predict the output given an input x ∈ X. Intuitively, a function is optimal when

the risk is minimal. We define an optimal prediction function f∗ : X → Y as

follows:
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f∗(x) = arg min
ŷ

∫
Y

L(ŷ,y)PY|X (y | x) dy . (3.6)

The use of Eq. (3.6) requires the conditional probability distribution PY|X to be

known for all x ∈ X . The risk of a function f is defined as follows:

r(f) =

∫
X×Y

L(f(x),y)PX ,Y(x,y) dx dy . (3.7)

Up to this point, f could be any function, however, in practice f is typically limited

to a set of admissible functions that is called the hypothesis space H. For example,

H can be the space of all convex functions f : X →Y. Subsequently, the optimal

prediction function f∗r ∈ H that minimizes this risk is computed as follows:

f∗r (x) = arg min
f∈H

∫
X×Y

L(f(x),y)PX ,Y(x,y) dx dy (3.8)

= arg min
f∈H

∫
X×Y

L(f(x),y)PY|X (y | x)PX (x) dx dy . (3.9)

Interestingly, Eq. (3.9) the joint probability distribution PX ,Y in Eq. (3.8) is

transformed as a function of the conditional probability distribution PY|X and

PX , the probability distribution of the random vector X . This shows a direct link

between Eq. (3.8) and (3.6). As Eq. (3.7) (and Eq. (3.8)) still requires a known joint

distribution PX ,Y , the risk r(f) cannot be computed. We can, however, try to infer

from the training set T a function f has the lowest risk. A more straightforward

approach is to compute an approximation, called empirical risk (or, in some cases,

the training error), by using the training set T to estimate the risk of a function

f ∈ H. Formally, the loss function is averaged over T, and the resulting quantity

is defined as follows

remp(f) =
1

n

n∑
i=1

L(f(xi),yi) . (3.10)

The learning algorithm should choose a hypothesis that minimizes the empirical

risk, and that can be used to obtain a function to make predictions. This principle

is called empirical risk minimization. We define an optimal prediction function

f∗emp ∈ H as follows:

f∗emp(x) = arg min
f∈H

1

n

n∑
i=1

L(f(xi),yi) . (3.11)
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3.4.3. Overfitting and regularization

In general, the aim is to find a function f∗r ∈ H that minimizes the risk r(f).

However, in practice, this is infeasible since r(f) requires knowledge of the joint

distribution. Therefore, an approximating function f∗emp ∈ H is learned instead.

Unfortunately, f∗emp is not always a good approximation of f∗r , especially as the

hypothesis space H becomes larger, it is likely that remp(f) < r(f), and as a result

f∗emp and f∗r become very dissimilar. In such a case, we say that the learned model

is complex and that f∗emp would be an overly optimistic estimate of f∗r .

In the terminology of statistics, this is known as the bias-variance trade-off. If

the learned model shows low bias but high variance (complex model), then this

would result in overfitting. Otherwise, if the model shows low variance but high

bias (overly simple model), then this would lead to underfitting.

Minimizing the empirical risk remp(f) and then comparing it to the overall risk

r(f) using the performance measure has been argued to result, in some cases, in

overfitting or underfitting leading to poorly built predictive models. An implicit

and direct approach of solving this is the principle of regularization. We define the

regularized empirical risk as

rreg(f) = remp(f) + λR(f) , (3.12)

where R(f) is the so-called regularizer, and λ > 0 is the regularization parame-

ter2. In addition, the term λR(f) of the regularized empirical risk is called the

regularization term.

By substituting Eq. (3.10) into Eq. 3.12), we get the regularized risk as follows

rreg(f) =
1

n

n∑
i=1

(L(f(xi),yi)) + λR(f) . (3.13)

One can minimize the regularized risk that results in the optimal prediction function

freg as follows

freg = arg min
f∈H

rreg(f) . (3.14)

The regularizer R(f) is supposed to exclude all the ‘unlikely’ functions (i.e., the

extremely irregular functions are eliminated). Moreover, the regularization param-

eter λ is considered a bias-variance trade-off constant. More specifically, it handles

the trade-off between the fit of a function that can be used for prediction, and the

2 The case where λ = 0 is not considered because the problem would boil down to minimizing the
(non-regularized) empirical risk.
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complexity of that function. To fine-tune λ, cross-validation is normally performed.

In a nutshell, cross-validation splits the available data, once or several times, for

minimizing the empirical risk. Part of data (the training sample) is used to train

the model, and the remaining part (the validation sample) is used to test the model

by estimating the empirical risk. The optimal value of λ is obtained by repeating

this procedure for different values of λ and then selecting the value that results in

the smallest estimated risk [100].

3.5. Statistical learning as an optimization prob-

lem

In statistical learning, generalization is by far the most important property used to

validate a learning approach. In a typical learning problem, firstly, a training loss

function has to be picked. Then, an appropriate optimal function that generalizes

well, based on the given training data, has to be searched for. This function will

be used to build a model. Typically, this process introduces errors that diminish

the quality of the resulting optimal functions. We now consider three causes of

such errors. The first cause of error stems from having an unknown distribution.

Therefore, any choice of models and loss functions could introduce an inappropriate

bias and may not be suitable for the problem. The second cause of error is the

fact that there exists only a finite number of (possibly noisy) training examples.

Therefore, for a given hypothesis space even after choosing appropriate models

and loss functions, the model could still be unsuitable and the results also may

be inappropriate. The third cause of error arises from the difficulty of searching

for an appropriate optimal function that results in a small generalization error

and an appropriate model. This problem can be improved (or even solved) by

transforming it into a convex optimization problem. This is achieved by mainly

defining the appropriate loss functions, hypotheses spaces, regularization functions,

and constraints.

3.5.1. Regression problems

We start off with the regularized empirical risk function to transform the statistical

learning model into a mathematical optimization problem:

minimize
f∈H

n∑
i=1

L(f(xi), yi) + λ ‖a‖ . (3.15)

We define the input and output space as X = Rp and Y = R, respectively.

A common choice of loss function in regression problems is the squared loss
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function L(y, ŷ) = ‖y − ŷ‖22, and a hypothesis space of all affine functions such

that H : X → Y. For instance, we can define the function f(x) = a · x + b

for all f ∈ H and x ∈ X. To measure the irregularities of such a function, we

take the squared Euclidean norm (also known as `2-norm) of a. Therefore, the

regularization function is defined as the `2-norm ‖a‖22. Given all these components,

we describe one of the most popular regression methods used in practice, known as

ridge regression [101]. It is defined as the following optimization problem:

minimize
a,b

n∑
i=1

(a · xi + b− yi)2 + λ ‖a‖22 . (3.16)

Alternatively, we could also use other loss functions instead of the squared loss. One

popular alternative is the ε-insensitive loss function L(y, ŷ) = max(0, |y − ŷ| − ε).
The strategy described is known as support vector regression [102, 103], and is as

follows:

minimize
a,b

n∑
i=1

max (0, |a · xi + b− yi| − ε) + λ ‖a‖22 . (3.17)

Moreover, an alternative to the `2-norm of the parameter vector a is the `1-norm.

There, the regularization function is defined as R(a) = ‖a‖1. The applied strategy

on (3.16) is known as lasso regression [104] and results in:

minimize
a,b

n∑
i=1

(a · xi + b− yi)2 + λ ‖a‖1 . (3.18)

In an optimization setting, problem (3.16) can be solved as an unconstrained

convex optimization problem. Moreover, problem (3.17) can be transformed into

an equivalent linearly constrained convex optimization problem with a quadratic

objective function [97].

3.5.2. Classification problems

Up to this point, we have been discussing typical regression problems, where the

output space is R. The case where the output space is the discrete set of labels

is called a classification problem. One of the widely used methods for solving

classification problems is logistic regression where the output space is the discrete

set of binary labels. Classification problems solved suing logistic regression are

dealt with in a similar as regression problems, however, the goal is to find a

function f : X → {0, 1}. In statistical learning theory, this function is defined

as f(x) = Pr(Y = 1 | X = x). Interestingly, the opposite case is simply defined
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as 1 − f(x). Logistic regression transforms its output using the logistic sigmoid

function to return a probability value which can then be mapped to two discrete

classes. In machine learning, the sigmoid function is used for mapping predictions to

probabilities. The sigmoid function maps any real value into another value between

0 and 1 and is defined as f(x) = exp(a·x+b)
1+exp(a·x+b) for all f ∈ H and x ∈ X. Computing

the component-wise squared loss function results in a highly non-convex problem

that can only be solved locally, and the exponential terms can result in numerical

instability. As an alternative, we use the notation yi ∈ {0, 1} and generalize f(x)

by computing the likelihood that Pr(Y = yi | X = xi) as follows:

n∏
i=1

(f(xi))
yi (1− f(xi))

1−yi . (3.19)

For computational convenience, the negative log-likelihood is considered in Eq. (3.19)

as loss function. To follow the tradition in the field of mathematical optimization,

the loss function is minimized as follows:

minimize
a,b

−
n∑
i=1

(
yilogf(xi) + (1 + yi)log(1− f(xi))

)
+ λ ‖a‖1 . (3.20)

In machine learning, Eq. (3.20) is known as `1-regularized logistic regression and

has been used for many classification problems, particularly ones with many

features. It can be seen that this problem is convex, however, the sparsity-

inducing regularization term is non-smooth. There exist several strategies to

solve optimization problems with sparsity-inducing penalties [105, 106, 107, 108].

In logistic regression, one way of solving this problem requires solving a constrained

convex optimization problem [109], where the regularization term is transformed

into an equivalent constraint, as follows:

minimize
a,b

−
n∑
i=1

(yilogf(xi) + (1 + yi)log(1− f(xi))) ,

subject to ‖a‖1 ≤ B .
(3.21)

The optimization problems Eq. (3.20) and Eq. (3.21) are equivalent, in the sense

that for any choice of λ in Eq. (3.20), there is a choice of B in Eq. (3.21) that will give

the same λ . In practice, B (similar to λ) can be chosen via cross-validation.

An extension of the binomial logistic regression is known as the multi-class logistic

regression [110], which is very popular in multi-class classification. Multi-class

logistic regression is used when the output variable has more than two (unordered)

categories. Using the notation yi ∈ {0, 1}q, a function f : Rp → {0, 1}q, such that

f ∈ H, can be written as follows:
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fj(x) =


exp(aj ·x+bj)

1+
∑q−1

j=1 exp(aj ·x+bj)
, for j = 1, . . . , q − 1 ,

1

1+
∑q−1

j=1 exp(aj ·x+bj)
, for j = q ,

(3.22)

where aj ∈ Rp and bj ∈ R.

Similar to the case of logistic regression, the use of a component-wise squared loss

function results in a highly non-convex problem that can be numerically unstable.

Therefore, the multinomial deviance [110] can be used as a loss function, such that

L(y, ŷ) = −
∑q
j=1 yj log(ŷj) and leads to the following optimization problem:

minimize
a,b

q∑
j=1

n∑
i=1

(yij logfj(xi)) + λ ‖a‖1 . (3.23)

Problem (3.23) (similar to Problem (3.20)) is convex and can be solved as a

constrained convex optimization problem.

The setting where the output variable has multiple ordered (rather than unordered)

categories is considered in Part IV of this dissertation. In this setting, the disad-

vantage of a multi-class regression model is that information about the ordering is

neglected. Therefore, we will delve into another extension of the binomial logistic

regression, namely, ordinal logistic regression (or ordinal regression for short) that

incorporates the information about the ordering of categories. We will also discuss

a method for transforming a sparsity-inducing penalty term into an equivalent

constraint similar to Eq. (3.22).
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4 Sensory evaluation and chemical

analysis of food products

Table of Contents

4.1 Introduction

4.2 Experimental sensory evaluation set-up

4.2.1 Preliminaries

4.2.2 Chicken breast

4.2.3 Atlantic cod

4.2.4 Atlantic brown shrimp

4.2.5 Atlantic salmon

4.3 Quantification of spoilage-related VOCs

4.1. Introduction

The determination of food quality is not a perfect science. Panellists have different

preferences, and samples of the same food provided to these panellists can be differ-

ent. Therefore, it becomes difficult to compare the quality of different food samples.

As a result, guidelines have been set for consistent evaluation of food.

In this chapter, we present the guidelines followed for studying different foods and

compile the different experimental set-ups for data acquisition. As a result, we

answer the question:

Question II: Which foods were studied and what was collected?

The experiments described in this chapter revolve around two main points:

1. Sensory evaluation of the following packaged foods:

� Chicken breasts: labelling and ranking

� Atlantic Cod (Gadus morhua): labelling and ranking

� Atlantic Brown Shrimp (Crangon crangon): labelling and ranking

� Atlantic Salmon (Salmo salar): labelling, scoring and ranking

2. Chemical experimentation using SIFT-MS techniques for the above foods.

All the food samples were packaged under different conditions and stored for a

different number of days before beginning the evaluation. The origin, packaging,
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storage temperature, storage day, sample size and panel size are all scrutinized

during the process.

4.2. Experimental sensory evaluation set-up

4.2.1. Preliminaries

In this section, we describe the different experimental sensory evaluation set-ups

for the different foods: chicken breasts, cod, brown shrimp and salmon. Samples

of these foods are studied under different packaging conditions and for different

numbers of storage days.

As a starting point, we provide an example of a sensory evaluation facility in

Figure 4.1 showing various activities, particularly, a product preparation area,

where researchers can package the food product at specific storage conditions, a

sensory evaluation preparation area, where researchers can divide the food product

into samples for use in sensory evaluation, and booths, where panellists are provided

specific samples and asked to evaluate the samples at their own booth.

Figure 4.1: Example of sensory evaluation facility showing the various activities for
gathering sensory evaluation data.
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Now, we provide an overview of the notations used to describe the sensory evaluation

tests and the variables in this chapter:

Tests:

� Labelling tests: Samples were assigned a label on an ordinal scale with labels

“Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F), “Very Fresh”
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§4.2. Experimental sensory evaluation set-up

(VF), such that SP ≺ M ≺ S ≺ F ≺ VF. Chicken samples were assigned a

label on an ordinal scale with labels SP, S and F only.

� Ranking tests: Samples were ranked from least fresh to most fresh. The fact

that a sample was ranked above another sample means that the former was

preferred over the latter.

� Scoring tests: Samples were assigned a score on a 5-point scale, where the

extreme scores of “1” and “5” represent spoiled and fresh, respectively, and

the intermediate score of “3” represents a neutral response of neither spoiled

nor fresh.

Variables:

� ak: the sample a that has been stored for k days

� zi: the list z of n labels assigned by the i-th trained panellist to the n samples

� ≺i: the ranking provided by the i-th untrained panellist for the n samples

� si: the vector of scores (si1, . . . , sin) assigned by the i-th trained panellist to

the n samples that are ordered according to increasing storage days

4.2.2. Chicken breast

Fresh double skinless chicken breast fillets weighing around 300–400 g were first

prepared at a local company, without the use of any additives. The fillets were

delivered the same day to the Research Unit Food Microbiology and Food Preser-

vation (FMFP, UGent) in a cooler box with cooling elements. Then, the fillets

were hand mixed (with disinfected latex gloves) by moving them around in the box

for five minutes to ensure homogeneous contamination on the surface and were

then each packaged1.

These packages were stored under different MAP conditions and temperatures,

where the notation of the MAP conditions indicates high (H) or low (L) O2 content

and temperature in Celsius degrees (4 or 8), as follows:

� L4: 40/30/30 (CO2/O2/N2) at 4± 1 ◦C;

� L8: 40/30/30 (CO2/O2/N2) at 8± 1 ◦C;

� H4: 30/70 (CO2/O2) at 4± 1 ◦C;

� H8: 30/70 (CO2/O2) at 8± 1 ◦C.

For each individual storage experiment, trays were randomly sampled on specific

storage days for quantification of VOCs (Section 4.3) and were then frozen at

1 Packaging was done in 950 ml trays (PP/EVOH/PP), and a top film (PA/EVOH/-
PA/PP) with a thickness of 65µm that allowed for O2, N2 and CO2 transmission rates
< 5, 1 and 23 cm3/(m2 · 24h · bar), respectively, at 23 ◦C and 50 % RH and 1 atm.
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−32 ◦C under vacuum2. The sampling of the chicken samples was performed on

the storage days shown in Table 4.1.

Storage days

Experiment Labelling tests Ranking tests

L4: 0, 5, 7, 9, 11, 13, 15

L8: 0, 2, 4, 5, 6

H4: 0, 5, 7, 8, 9, 11, 13, 15 0, 5, 7, 9, 11, 13, 15

H8: 0, 2, 4, 5, 6

Table 4.1: Sampling chicken samples packaged at day 0 for quantification of VOCs and
sensory evaluation (labelling and ranking) tests.

Sensory evaluation, namely, ranking and labelling tests, was then performed on the

chicken samples in several experiments. It must be noted that the samples used

for the labelling tests are different from those used for the ranking tests. In these

experiments, the samples on the day of evaluation were thawed at 2 ◦C overnight,

cut to 15.0±0.1 g portions and presented to the panellists at 4 ◦C in odour-free and

transparent plastic cups, closed with lids3 and labelled with three-digit random

codes according to an n-sample Latin Square Design, where n is the number of

samples provided to panellists at one time in each experiment. Sensory evaluation

was based on olfactory evaluation and performed in individual booths under red

light (SensoLab UGent).

Labelling

The labelling test was carried out only for storage experiment condition H4. The

eight samples were served to 33 panellists, as shown in Table 4.2. The panellists

were recruited from the Faculty of Bioscience Engineering at Ghent University

with previous experience in performing sensory evaluation of chicken and were

considered as trained panellists. The panellists were asked to assign to each sample

provided to them a label (“Spoiled” (SP), “Satisfactory” (S), or “Fresh” (F)) on

an ordinal scale, such that: SP ≺ S ≺ F.

Samples Panellists

a0, a5, a7, a8, a9, a11, a13, a15 33

Table 4.2: Chicken samples for labelling tests and the number of panellists in storage
experiment H4.

2 Packaging was done in high barrier film bags (O2 transmission rate < 2.7 cm3/(m2 · 24h · bar) at
23 ◦C and 0 % RH).

3 Plastic cups and lids with a diameter of 67 mm were purchased from AVA in Temse, Belgium.
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The labels provided by the panellists are gathered in Table A.1.

Ranking

The ranking tests were carried out for each storage experiment condition separately.

The tests in 4 ◦C conditions were planned in a randomized design of two sessions,

where four samples were selected and served in session 1 and the three remaining

samples were served in session 2. It must be noted that the samples provided to

the panellists are the same, however, in the order described in Table 4.3, while

experiments in 8 ◦C conditions were planned in one session, where five samples were

served simultaneously to the panellists. Fourteen panellists were recruited from the

Faculty of Bioscience Engineering at Ghent University with previous experience in

performing sensory evaluation of chicken. However, as the ranking tests in 4 ◦C

conditions were planned in a randomized design of two sessions, the panellists were

divided among the different groups of samples that were randomly selected for

each panellist. The panellists were asked to rank the samples according to their

perceived freshness from least fresh to most fresh.

Samples Panellists

Group Session 1 Session 2 L4 H4

1 a0, a5, a7, a9 a11, a13, a15 4 3

2 a0, a5, a7, a11 a9, a13, a15 4 4

3 a0, a7, a9, a15 a5, a11, a13 3 2

4 a5, a7, a11, a13 a0, a9, a15 4 4

Panellists

Group Samples L8 H8

1 a0, a2, a4, a5, a6 14 14

Table 4.3: Chicken samples for ranking tests and the number of panellists in each storage
experiment.

The rankings provided by the panellists in experiments L4 and H4 in Table 4.3 are

gathered in Table A.2, and the rankings provided by the panellists in experiments

L8 and H8 in Table 4.3 are gathered in Table A.3.

4.2.3. Atlantic cod

Atlantic cod was caught in the North Atlantic Ocean4, weighing around 4.5 kg, was

gutted, filleted and skinned at a commercial seafood processing company, which we

4 FAO Major Fishing Areas. Atlantic, Northeast (Major Fishing Area 27).
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will refer to as company A, without the use of any additives. Similarly, Atlantic

cod, weighing around 4 kg, was gutted, filleted and skinned at a second commercial

seafood processing company, which we will refer to as company B. The fresh fillets,

weighing around 217± 5 g, were transported to Belgium by air and delivered to

FMFP at Ghent University in polystyrene boxes under ice. The cod fillets were

first manually mixed for one minute to ensure homogeneous contamination on the

surfaces of each fillet and were each then packaged5.

These packages were stored under different MAP conditions and temperatures,

where the notation of the MAP conditions indicates high (H) or low (L) O2

content or O2 content in air (A) and temperature in Celsius degrees (4 or 8), as

follows:

� L4: 60/5/35 (CO2/O2/N2) at 4± 0.7 ◦C;

� L8: 60/5/35 (CO2/O2/N2) at 8± 1.4 ◦C;

� H4: 60/40 (CO2/O2) at 4± 0.7 ◦C;

� H8: 60/40 (CO2/O2) at 8± 1.4 ◦C;

� A4: air at 4± 0.7 ◦C.

For each individual storage experiment, trays were randomly sampled on specific

storage days for quantification of VOCs (Section 4.3) and were then frozen at

−32 ◦C under vacuum6. The sampling of the cod samples was performed on the

storage days shown in Table 4.4.

Storage days

Experiment Labelling tests Ranking tests

L4: 0, 4, 8, 13 0, 4, 5, 6, 7, 8, 13

L8: 0, 3, 5, 7 0, 3, 5, 7

H4: 0, 4, 8, 13 0, 4, 6, 7, 8, 11, 13

H8: 0, 3, 5, 7 0, 3, 4, 5, 6, 7

A4: 0, 1, 2, 3 0, 1, 2, 3

Table 4.4: Sampling cod samples packaged at day 0 for quantification of VOCs and
sensory evaluation (labelling and ranking) tests.

Sensory evaluation, namely, ranking and labelling tests, was then performed on

5 Packaging was done with tray sealer MECA 900 (DecaTechnic, Herentals, Belgium) using
multilayer packaging trays (PP/EVOH/PP) that allowed for an O2 transmission rate of
0.035cm3/(tray · 24h) at 23� and 50 % RH and top film (PA/EVOH/PA/PP) that allowed
for an O2 transmission rate of 6.57 cm3/(m2 · 24h · atm) at 23�, 50 % RH and 1 atm.

6 Packaging was done in high barrier film bags (O2 transmission rate < 2.7 cm3/(m2 · 24h · bar) at
23 ◦C and 0 % RH).
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the cod samples in several experiments. It must be noted that the samples used

for the labelling tests are different from those used for the ranking tests. In these

experiments, the samples on the day of evaluation were thawed at 2 ◦C overnight,

cut to 5.0± 0.1 g portions and presented to the panellists at 4 ◦C in odour-free and

transparent plastic cups, closed with lids7 and labelled with three-digit random

codes according to a 4-sample Latin Square Design. Sensory evaluation was based on

olfactory evaluation and performed in individual booths under red light (SensoLab

UGent).

Labelling

The labelling test was carried out for cod samples of fillets from company A for

all storage experiment conditions. The labelling test was also carried out for

cod samples of fillets from company B for storage experiments H4, H8, and A4.

A number of panellists (between 8 and 12) were recruited from the Faculty of

Bioscience Engineering at Ghent University with previous experience in performing

sensory evaluation of cod. The samples provided to the panellists and the number

of panellists in each labelling test are described in Table 4.5.

Company A Company B

Experiment Samples Panellists Samples Panellists

L4 a0, a4, a8, a13 8

L8 a0, a3, a5, a7 10

H4 a0, a4, a8, a13 10 a0, a4, a8, a13 10

H8 a0, a3, a5, a7 12 a0, a3, a5, a7 10

A4 a0, a1, a2, a3 10 a0, a1, a2, a3 10

Table 4.5: Cod samples for labelling tests and the number of panellists in each storage
experiment.

The panellists were asked to assign to each sample provided to them a label

(“Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F), “Very Fresh”

(VF)) on an ordinal scale, such that: SP ≺ M ≺ S ≺ F ≺ VF. The labels assigned

by the panellists are gathered in Table A.4. Unfortunately, data gathered from

some labelling tests were provided only in the form of frequency distributions.

These data are gathered in Table A.5.

Ranking

The ranking tests were carried out for cod samples from company A for each

storage experiment condition separately. For each of the storage experiments, four

samples were studied. For storage experiments L4, H4 and H8 a second session

7 Plastic cups and lids with a diameter of 67 mm were purchased from AVA in Temse, Belgium.
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was performed to study the critical storage days that were identified in the first

session. Note that samples in the second session with the same storage day as the

samples in the first session are actually different samples.

The samples provided to the panellists and the number of panellists in each ranking

test are described in Table 4.6. The panellists were asked to rank the samples

according to their perceived freshness from least fresh to most fresh.

Session 1 Session 2

Experiment Samples Panellists Samples Panellists

L4 a0, a4, a8, a13 10 a5, a6, a7, a8 8

L8 a0, a3, a5, a7 9

H4 a4, a6, a8, a13 8 a6, a7, a8, a11 9

H8 a0, a3, a5, a7 8 a3, a4, a5, a6 8

A4 a0, a1, a2, a3 8

Table 4.6: Cod samples for ranking tests and the number of panellists in each storage
experiment.

The rankings provided by the panellists are gathered in Table A.6.

4.2.4. Atlantic brown shrimp

Atlantic brown shrimps were caught in the North Atlantic Ocean8 in October and

November 2015 were sorted according to size and washed before cooking without

the use of any additives according to normal Belgian fishing practices. The fresh

shrimp were then cooked and, subsequently, cooled and stored overnight in plastic

bags under ice. The following morning, the shrimp were directly transported to

FMFP at Ghent University, where they were hand-peeled. During peeling, the

shrimp were kept on ice in plastic bags while avoiding direct contact between

the shrimp and the ice. Shrimp portions, weighing around 150 ± 2 g, were then

packaged at 2 : 1 headspace-product ratio9.

These packages were stored under different MAP conditions at 4 ◦C, where the

notation of the MAP conditions indicates high (H) or low (L) CO2 content, as

follows:

� L4: 30/0/70 (CO2/O2/N2) at 4± 0.7 ◦C;

8 FAO Major Fishing Areas. Atlantic, Northeast (Major Fishing Area 27).
9 Packaging was done with a tray sealer (MECA 900, DecaTechnic, Herentals, Belgium) us-

ing multilayer packaging trays (PP/EVOH/PP) that allowed for an O2 transmission rate of
0.03cm3/(tray · 24h) at 23 ◦C and 50 % RH and top film (PA/EVOH/PA/PP) that allowed for
an O2 transmission rate of 6.57 cm3/(m2 · 24h · atm) at 23 ◦C, 50 % RH and 1 atm.
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� H4: 50/0/50 (CO2/O2/N2) at 4± 0.7 ◦C.

For each individual storage experiment, trays were randomly sampled on specific

storage days for quantification of VOCs (Section 4.3) and were then frozen at

−32 ◦C under vacuum10. The sampling of the shrimp samples was performed on

the storage days shown in Table 4.7.

Storage days

Experiment Labelling tests Ranking tests

L4 0, 3, 5, 10 0, 3, 5, 10

H4 0, 3, 5, 7, 12 0, 3, 5, 7, 12

Table 4.7: Sampling shrimp samples packaged at day 0 for quantification of VOCs and
sensory evaluation (labelling and ranking) tests.

Sensory evaluation, namely, ranking and labelling tests, was then performed on

the shrimp samples in several experiments. It must be noted that the samples

used for the labelling tests are different from those used for the ranking tests.

In these experiments, the samples on the day of evaluation were thawed at 2 ◦C

overnight, cut to 5.0±0.1 g portions and presented to the panellists at 4 ◦C in odour-

free and transparent plastic cups, closed with lids11 and labelled with three-digit

random codes according to a 4-sample Latin Square Design. Sensory evaluation

was based on olfactory evaluation and performed in individual booths under red

light (SensoLab UGent).

Labelling

The labelling test was carried out for shrimp samples for each MAP condition

separately. The storage experiments were divided into two sessions in which four

samples were studied in each session. Note that samples in the second session

with the same storage day as the samples in the first session are actually different

samples. A number of panellists (nine or ten) were recruited from the Faculty of

Bioscience Engineering at Ghent University with previous experience in performing

sensory evaluation of shrimp. The samples provided to the panellists and the

number of panellists in each ranking test are described in Table 4.8.

The panellists were asked to assign to each sample provided to them a label

(“Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F), “Very Fresh”

(VF)) on an ordinal scale, such that: SP ≺ M ≺ S ≺ F ≺ VF. The labels assigned

by the panellists are gathered in Table A.7.

Ranking

10Packaging was done in high barrier film bags (O2 transmission rate < 2.7 cm3/(m2 · 24h · bar) at
23 ◦C and 0 % RH).

11Plastic cups and lids with a diameter of 67 mm were purchased from AVA in Temse, Belgium.
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Session 1 Session 2

Experiment Samples Panellists Samples Panellists

L4 a0, a3, a5, a10 10 a0, a3, a5, a10 10

H4 a0, a3, a7, a12 9 a0, a3, a5, a7 10

Table 4.8: Shrimp samples for labelling tests and the number of panellists in each storage
experiment.

The ranking tests were carried out for shrimp samples for each MAP condition

separately. The storage experiments were divided into two sessions in which four

samples were studied in each session. Note that samples in the second session

with the same storage day as the samples in the first session are actually different

samples.

The samples provided to the panellists and the number of panellists in each ranking

test are described in Table 4.9. The panellists were asked to rank the samples

according to their perceived freshness from least fresh to most fresh.

Session 1 Session 2

Experiment Samples Panellists Samples Panellists

L4 a0, a3, a5, a10 9 a0, a3, a5, a10 10

H4 a0, a3, a7, a12 9 a0, a3, a5, a7 10

Table 4.9: Shrimp samples for ranking tests and the number of panellists in each storage
experiment.

The rankings provided by the panellists are gathered in Table A.8.

4.2.5. Atlantic salmon

Atlantic salmon, caught in the North Atlantic Ocean12, was gutted, filleted and

skinned at a commercial seafood processing company, without the use of any

additives. Fresh fillets, weighing around 1–1.5 kg, were delivered after four days

from harvest to FMFP at Ghent University in Styrofoam boxes, wrapped in

plastic and covered with crushed ice. The salmon fillets were first manually mixed

by moving them around in the boxes for one minute to ensure homogeneous

contamination on the surfaces of each fillet and were each then divided into five

samples (ca. 203± 2 g each) and packaged in 610 ml trays13.

12FAO Major Fishing Areas. Atlantic, Northeast (Major Fishing Area 27).
13Packaging was done with tray sealer MECA 900 (DecaTechnic, Herentals, Belgium), using 610 ml

trays (PP/EVOH/PP) that allowed for an O2 transmission rate of 0.001 cm3/(tray · 24h) at 23 ◦C
and 50 % RH) and top film (PA/EVOH/PA/PP) that allowed for an O2 transmission rate of

58



§4.2. Experimental sensory evaluation set-up

These packages were stored under different MAP conditions at 4 ◦C, where the

notation of the MAP conditions indicates high (H), medium (M) or low (L) O2

content, O2 content in air (A), and anaerobic condition (AN) with no O2 content

and with high (ANH) CO2 content, as follows:

� L4: 60/5/35 (CO2/O2/N2) at 4± 0.7 ◦C;

� M4: 60/21/19 (CO2/O2/N2) at 4± 0.7 ◦C;

� H4: 60/40/0 (CO2/O2/N2) at 4± 0.7 ◦C;

� AN4: 0/0/100 (CO2/O2/N2) at 4± 0.7 ◦C;

� ANH4: 60/0/40 (CO2/O2/N2) at 4± 0.7 ◦C;

� A4: air at 4± 0.7 ◦C.

For each individual storage experiment, trays were randomly sampled on specific

storage days for quantification of VOCs (Section 4.3) and were then frozen at

−32 ◦C under vacuum14. The sampling of the salmon samples was performed on

the storage days shown in Table 4.10.

Storage days

Experiment Labelling tests Ranking tests Scoring tests

L4 1, 5, 7, 11 1, 5, 7, 11

M4 1, 5, 9, 11 1, 5, 9, 11

H4 1, 3, 5, 7, 9, 11 1, 3, 5, 7, 9, 11

AN4 1, 3, 5, 7, 9, 11, 13 1, 3, 5, 7, 9, 11, 13

AN4* - 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8

ANH4 1, 3, 5, 7, 9, 11 1, 3, 5, 7, 9, 11

A4 1, 3, 5, 7, 9, 11 1, 3, 5, 7, 9, 11

Table 4.10: Sampling salmon samples packaged at day 0 for quantification of VOCs and
sensory evaluation (labelling, ranking and scoring) tests. Experiment AN4 denoted with *
consists of scoring tests instead of labelling tests.

Sensory evaluation, namely, ranking and labelling tests, was then performed on the

salmon samples in several experiments. It must be noted that the samples used for

the labelling tests are different from those used for the ranking tests. In addition,

scoring and ranking tests were then performed on the salmon samples in storage

experiment AN4*. It must be noted that the samples used for the scoring tests are

different from those used for the ranking tests. In these experiments, the samples on

the day of evaluation were thawed at 2 ◦C overnight, cut to 5.0± 0.1 g portions and

6.57 cm3/(m2 · 24h · atm) at 23 ◦C, 50 % RH and 1 atm.
14Packaging was done in high barrier film bags (O2 transmission rate < 2.7 cm3/(m2 · 24h · bar) at

23 ◦C and 0 % RH).
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presented to the panellists at 4 ◦C in odour-free and transparent plastic cups, closed

with lids15 and labelled with three-digit random codes according to a 4-sample

Latin Square Design. Sensory evaluation was based on olfactory evaluation and

performed in individual booths under red light (SensoLab UGent).

Labelling

The labelling test was carried out for salmon samples for each MAP condition

separately. Similar to the ranking test, storage experiments H4, AN4, ANH4 and

A4 were divided into four sessions in which four samples were studied in each

session. Note that samples in all the sessions are different. The samples provided

to the panellists and the number of panellists in each ranking test are described in

Table 4.11.

Session 1 Session 2

Experiment Samples Panellists Samples Panellists

H4 a1, a5, a9, a11 8 a1, a3, a5, a7 8

AN4 a1, a5, a9, a13 12 a3, a7, a9, a11 12

ANH4 a1, a5, a9, a11 9 a1, a3, a5, a7 5

A4 a1, a5, a9, a11 11 a1, a3, a5, a7 10

L4 a1, a5, a7, a11 9

M4 a1, a5, a9, a11 8

Session 3 Session 4

Experiment Samples Panellists Storage days Panellists

H4 a1, a5, a9, a11 9 a3, a5, a7, a9 10

AN4 a1, a5, a9, a11 8 a1, a3, a5, a7 9

ANH4 a1, a5, a9, a11 8 a1, a3, a5, a7 9

A4 a1, a5, a9, a11 9 a1, a3, a5, a7 9

Table 4.11: Salmon samples for labelling tests and the number of panellists in each
storage experiment.

The panellists were asked to assign to each sample provided to them a label

(“Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F), “Very Fresh”

(VF)) on an ordinal scale, such that: SP ≺ M ≺ S ≺ F ≺ VF. The labels assigned

by the panellists are gathered in Table A.9.

Ranking

The ranking tests were carried out for salmon samples for each MAP condition

separately. Storage experiments H4, AN4, ANH4 and A4 were divided into four

sessions in which four samples were studied in each session. Note that samples

in all the sessions are different. The samples provided to the panellists and the

number of panellists in each ranking test are described in Table 4.12.

15Plastic cups and lids with a diameter of 67 mm were purchased from AVA in Temse, Belgium.
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Session 1 Session 2

Experiment Samples Panellists Samples Panellists

H4 a1, a5, a9, a11 9 a1, a3, a5, a7 8

AN4 a1, a5, a9, a13 12 a3, a7, a9, a11 12

ANH4 a1, a5, a9, a11 9 a1, a3, a5, a7 5

A4 a1, a5, a9, a11 10 a1, a3, a5, a7 9

L4 a1, a5, a7, a11 9

M4 a1, a5, a9, a11 8

Session 3 Session 4

Experiment Samples Panellists Samples Panellists

H4 a1, a5, a9, a11 9 a3, a5, a7, a9 10

AN4 a1, a5, a9, a11 7 a1, a5, a5, a7 8

ANH4 a1, a5, a9, a11 8 a1, a3, a5, a7 9

A4 a1, a5, a9, a11 9 a1, a3, a5, a7 9

Table 4.12: Salmon samples for ranking tests and the number of panellists in each
storage experiment.

The panellists were asked to rank the samples according to their perceived freshness

from least fresh to most fresh. The rankings provided by the panellists are gathered

in Table A.10.

Scoring and ranking with ties

The scoring and ranking tests for experiment AN4* were carried out for salmon

samples from four fresh salmon fillets (A, B, C and D). The samples were selected

in the order described in Table 4.13.

Storage day 1 2 3 4 5 6 7 8

Sample A A,B A,B,C A,B,C,D A,B,C,D B,C,D C,D D

Table 4.13: The procedure to select at different storage days the samples from salmon
fillets A, B, C and D packaged at day 0.

To gather sensory evaluation data, a number of panellists (nine or ten depending

on the day) were recruited from FMFP at Ghent University with previous training

in evaluating the overall quality of salmon and were considered as trained panellists.

A number of panellists (between 23 and 28 depending on the day) were recruited

from multiple departments at the Faculty of Bioscience Engineering with no prior

experience in sensory evaluation of salmon and were considered as untrained

panellists.

The different samples of salmon fillets are differentiated by adding a superindex

representing the corresponding storage day. Four samples were grouped, one sample
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from each fillet, into five groups and were provided to the panellists at random

in the order shown in Table 4.14. The groups of samples were not provided in

chronological order to prevent the panellists from recognizing a pattern in the

experiments that could affect their evaluations.

Group Samples Day

1 (A1, B2, C3, D4) Tuesday

2 (A2, B3, C4, D5) Thursday

3 (A3, B4, C5, D6) Monday

4 (A4, B5, C6, D7) Wednesday

5 (A5, B6, C7, D8) Friday

Table 4.14: The order of grouping the salmon samples from different storage days
(represented by the corresponding superindex) and the day of the week each group was
provided to the panellists.

The trained panellists were each provided with a group of four samples of salmon,

one sample at a time. Since the trained panellists were experienced enough to

assign to a score on a 5-point scale, the panellists were asked to assign to each

sample a score on the 5-point scale shown in Figure 4.2. In Figure 4.2, the scores

are equidistantly spaced from each other, and the labels “Spoiled”, “Fresh” and

“Neither spoiled nor fresh” are provided as anchoring labels on the extreme scores

“1” and “5” and the intermediate score “3”, respectively, to point to the trained

panellists the representation of these scores. It is important to note that in the

scoring test only scores are assigned to each sample, and subsequently collected.

The untrained panellists were each asked to express a ranking with ties of the four

samples of salmon by ordering them from least fresh to most fresh.

1 2 3 4 5

Spoiled
Neither spoiled

nor fresh Fresh

Figure 4.2: 5-point scale used by panellists, where the extreme scores of “1” and “5”
represent spoiled and fresh, respectively, and the intermediate score of “3” represents a
neutral response of neither spoiled nor fresh.

The scores provided by the trained panellists are gathered in Table A.11 and the

rankings with ties provided by the untrained panellists in Table A.12.
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4.3. Quantification of spoilage-related VOCs

In this section, we describe the use of Selective Ion Flow Tube-Mass Spectrometry

(SIFT-MS) as a tool to monitor spoilage metabolites in packaged food. We describe

the use of SIFT-MS on the aforementioned foods, namely, chicken breasts, cod,

brown shrimp and salmon.

The VOCs were quantified from the package headspace using SIFT-MS (Voice 200,

Syft TechnologiesTM, Christchurch, New Zealand) operating in multiple ion mode

(MIM) for each sample of the aforementioned foods. A non-destructive technique

was performed that allowed the measurement of the VOCs without opening the

package, where PTFE/Silicone septa were applied on the two opposite corners of

each tray, one for the inlet of the SIFT-MS and the other for a syringe, creating

an open system that prevented hypo-pressure within the tray while measuring, as

shown in Fig. 4.3. As the VOCs were introduced through the inlet of the SIFT-MS,

the syringe allowed environmental air inside the package to compensate for the

amount of gas lost by the measurement. The gas, containing the VOCs, that was

introduced through a heated inlet into the flow tube reacted with precursor ions

(H3O+, NO+, O+
2 ) resulting in ionized masses. These masses were then detected

by a mass-spectrometer at the end of the flow tube. The headspace of each package

was sampled at a flow rate of 30 ml/min for 90 s. After every measurement, the

syringe used for the SIFT-MS was changed and flushed with compressed air to

remove any VOCs that may contaminate future measurements. Laboratory air was

routinely measured before every experiment to check for the out-of-the-ordinary

existence of any VOCs.

Figure 4.3: The setup for monitoring spoilage metabolites in packaged chicken using
syringes for the inlet of the SIFT-MS and for creating an open system.

air

SIFT-
MS

The VOCs were selected on the basis of literature survey and previous research
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regarding spoilage of the aforementioned foods [38, 52, 111]. The average concen-

tration of each product ion was determined by sampling the package headspace for

approximately 300 s through a septum inserted on the package lid. To avoid package

collapse as well as contamination from the external atmosphere, the headspace

was connected with a needle to a bag filled with 100 % N2. Prior to analysing the

samples, the flow rate was measured on each day with Gilibrator-2 (Sensidyne, St.

Petersburg, FL, USA) and all measured concentrations were corrected according

to it. Relative standard deviations were calculated for each product ion, and one

product ion was selected for quantifying each VOC according to:

1. average relative standard deviation < 25 % during a scan,

2. high branching ratio, and

3. minimum amount of mass overlaps

If multiple product ions fulfilled the aforementioned criteria equally, the one with

the lowest concentration was selected.

Based on the developed procedure, 23 compounds were analysed in packaged

chicken breasts, 20 compounds were analysed in packaged cod, 20 compounds

were analysed in packaged brown shrimp, and 25 compounds were analysed in

packaged salmon. The reported results are summarized in Table B.1, Table B.4,

Table B.7 and Table B.10 for chicken breasts, cod, brown shrimp and salmon,

respectively.

The VOCs were targeted through multiple ion monitoring mode (MIM), while

their quantification was carried out using the reaction rate coefficients and the

branching ratios of the reaction between the selected VOCs and the precursor

ions that generated specific ionized masses. The results are reported in Table B.2

(for chicken samples used for labelling tests), Table B.3 (for chicken samples used

for ranking tests), Table B.5 (for cod samples used for labelling tests), Table B.6

(for cod samples used for ranking tests), Table B.8 (for shrimp samples used for

labelling tests), Table B.9 (for shrimp samples used for ranking tests), Table B.13

(for salmon samples used for labelling tests), Table B.11 (for salmon samples used

for ranking tests) and Table B.14 (for salmon samples used for scoring and ranking

tests).

Note that all the measured concentrations are averages of measurements performed

on three replicates of each sample for every food product, except for the salmon

samples used in experiment AN4* (scoring and ranking with ties).
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5.1. Introduction

Consensus labels are usually assigned based on one of the following three simple

methods. The first is the method of the mode, often used by researchers to assign

to each sample the label expressed by the largest number of panellists. The second

is the method of the median, and its value is considered as that which separates the

lower half from the upper half of the assigned labels. And, finally, the arithmetic

mean, which is used when labels are identified with numbers (usually assumed to

be equidistant). When consensus labels are generated from arithmetic values there
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is one important criteria or assumption that we should be aware of: the existence

of a certain notion of distance between labels.

Actually, the three methods can be understood as the search for the label that

minimizes the distance to all labels expressed by the trained panellists (considering

the zero-one distance function for the mode, the absolute distance function for

the median and the squared difference function for the mean). Unfortunately,

when these labels represent abstract concepts, as mentioned above, this distance

assumption may be too strong. Dealing with perceptions is not an easy task. The

search for new methods reducing the reliance on the chosen distance function thus

becomes of utmost importance.

In this chapter, we propose a new method for obtaining the consensus label of

each sample (from now on referred to as consensus labelling of multiple samples)

based on the search for a consensus state. In the field of social choice theory,

where voters almost never unanimously agree, different types of consensus states

have been analysed [27, 112]. In that context, a consensus state is a set of voting

results, where (even when unanimity does not hold) the result of the election is

still clear. In our context, the labels expressed by the trained panellists are said to

be in (or to belong to) a consensus state if determining the consensus labelling is

obvious.

Monometrics [27], which are closely related to distance functions, will be a key

tool for measuring how close the labels expressed by the trained panellists are said

to be in (or belong to) the chosen consensus state. Here, five consensus states

are discussed: unanimity, majority, marginal majority, marginal monotonicity

and monotonicity. We advocate for the use of the latter, which is similar to that

of monotonicity of a profile of rankings discussed in [113] for the aggregation of

rankings, resulting in a method for simultaneously exploiting the labels expressed

for all different samples, something that was not previously considered. A consensus

labelling of the samples obtained by exploiting the information expressed for all

samples simultaneously will be referred to as joint consensus labelling.

In this chapter, we will answer the following question:

Question III.1: How can we assign (joint) consensus ordinal labels?

We will discuss the methods for aggregating ordinal labels assigned by trained

panellists to food samples to obtain a consensus labelling. The application of these

methods will be illustrated on the sensory data in Chapter 4. Since ordinal labels

are also assigned to samples other than food, we explore applications typically

found in movie recommendation systems to determine the consensus rating of

a movie and on online dating sites to provide the consensus ordinal label of a

candidate profile.
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5.2. Assigning a consensus label

Let A = {a1, . . . , an} be a set of n samples and L = {L1, . . . , Ll} be an ordinal

scale equipped with a total order relation ≤L. The labels are indexed in such a

way that Ll1 ≤L Ll2 , when l1 ≤ l2, for any l1, l2 ∈ {1, . . . , l}. The converse of the

relation ≤L is denoted by ≥L.

We consider the setting where nT trained panellists have expressed a label in L

for each sample in A. The goal is to agree on the label that should be assigned to

each sample. For any i ∈ {1, . . . , nT }, we denote by fi : A →L the label function

associating to each sample in A the label expressed by the i-th trained panellist.

Any list of n labels where the j-th label corresponds to sample aj is referred to

as a labelling of the samples. The matrix of nT × n labels where the label at the

i-th row and j-th column corresponds to the label expressed by the i-th trained

panellist for sample aj is referred to as the (matrix of) labellings expressed by the

trained panellists:

Z =


f1(a1) . . . f1(an)

...
. . .

...

fnT
(a1) . . . fnT

(an)

 .

We denote by f : A → L the consensus label function assigning to each sample

in A a consensus label in L according to the labellings expressed by the trained

panellists. When the number of samples is small, a (consensus) label function is

usually given in the form of a list
(
f(a1), . . . , f(an)

)
.

In mathematics, the notion of distance function or metric is a well-known concept,

and is defined as follows:

Definition 5.1 (Distance function). A function ∂ : A×A → R is called a distance

function (on the set A) if the following conditions are met:

(i) Non-negativity: for any a, b ∈ A, it holds that

∂(a, b) ≥ 0 .

(ii) Coincidence: for any a, b ∈ A, it holds that

∂(a, b) = 0 ⇔ a = b .

(iii) Symmetry: for any a, b, c ∈ A, it holds that

∂(a, b) = ∂(b, a) .
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(iv) Triangle inequality: for any a, b, c ∈ A, it holds that

∂(a, c) ≤ ∂(a, b) + ∂(b, c) .

The simplest and most widely used methods for assigning a consensus label are

based on the analysis of the frequency distribution of the labels expressed by the

trained panellists [1]. Usually, the most frequent label expressed by the trained

panellists (the mode) is assigned as the consensus label [114]. This procedure is

equivalent to assigning the label that minimizes the sum of the zero-one distances to

the labels expressed by the trained panellists, where the zero-one distance function

is defined as ∂0(Ll1 , Ll2) = 0, if l1 = l2, and ∂0(Ll1 , Ll2) = 1, otherwise. The

choice of the median, which is the label that separates the higher half from the

lower half of the given labels, is also common in practice [1]. This procedure is

equivalent to assigning the label that minimizes the sum of absolute distances to

the labels expressed by the trained panellists, where the absolute distance function

is defined by ∂1(Ll1 , Ll2) = |l1 − l2|. Often, the labels are identified by indices, and

the available information is treated quantitatively by calculating the (rounded)

arithmetic mean of the indices of the labels expressed by the trained panellists [1, 40].

This procedure is equivalent to assigning the label that minimizes the sum of the

squared difference to the labels expressed by the trained panellists, where the

squared difference function is defined by ∂2(Ll1 , Ll2) = (l1 − l2)2. A generalization

of the median and the mean is equivalent to assigning the label that minimizes the

sum of the p-th order difference to the labels expressed by the trained panellists,

where the p-th order difference function is defined by ∂p(Ll1 , Ll2) = |l1 − l2|p, for

p > 0.

Note that the use of the absolute distance function or the squared difference

function on L assumes that all labels are equidistant. However, when these labels

represent abstract notions, such as “Bad”, “Acceptable”, or “Good”, this may be

too strong an assumption. Wichchukit et al. [115] argue that it is preferable to

represent the labellings expressed by the trained panellists using a histogram. A

histogram clearly displays the frequency distribution of the labels and highlights

any central tendency. Along this line of research in which the entire frequency

distribution is analysed, we discuss a new method for assigning a consensus label

to each sample that does not rely on the ‘distance’ between the different labels,

but, instead, better exploits the information expressed by the trained panellists,

resulting in a joint consensus labelling of all samples at the same time.

Although the distances between labels could not be determined accurately, perhaps

due to a qualitative nature of the scale, there always exists the natural notion of

a label being in between two other labels. This notion is captured by a ternary

relation called betweenness relation [116, 117].

Definition 5.2 (Betweenness relation). A ternary relation R on a set A is called
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a betweenness relation on A if it satisfies the following two properties:

(i) Symmetry in the end points: for any a, b, c ∈ A, it holds that

(a, b, c) ∈ R ⇔ (c, b, a) ∈ R .

(ii) Closure: for any a, b, c ∈ A, it holds that(
(a, b, c) ∈ R ∧ (a, c, b) ∈ R

)
⇔ b = c .

Interestingly, if, for any a, b ∈ A, it always holds that (b, a, a) ∈ R due to the

closure axiom, then (a, a, b) ∈ R due to the symmetry in the end points. Thus,

since it always holds that (a, a, b) ∈ R, due to the closure axiom, we conclude that

if it holds that (a, b, a) ∈ R, then a = b.

For any betweenness relation R, the fact that a triplet (a, b, c) belongs to R is

referred to as ‘b is in between a and c’.

In this chapter, the betweenness relations considered are always induced by an

order relation [118].

Proposition 5.1. For any total order relation ≤ on a set A, the following two

statements hold:

(i) The relation R≤ defined as

R≤ =
{

(a, b, c) ∈ A3 | min(a, c) ≤ b ≤ max(a, c)
}

is a betweenness relation on A.

(ii) The relation R≤n defined as

R≤n =
{

(a,b, c) ∈ (An)3 | (∀i ∈ {1, . . . , n})((ai, bi, ci) ∈ R≤)
}

is a betweenness relation on An.

Here, we are interested in the betweenness relation induced by the total order

relation ≤L on the ordinal scale L. In that way, any label of the ordinal scale is

considered to be in between two other labels if it is greater than or equal to the

minimum of the two labels and smaller than or equal to the maximum of the two

labels.

A function satisfying the axioms of non-negativity and coincidence of a distance

function and, at the same time, an axiom of compatibility with a betweenness

relation is called a monometric [27]. Thus, a monometric is closely related to

a distance function or metric, but does not impose symmetry nor the triangle

inequality. Therefore, not every monometric is a distance function, and vice

versa.
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Definition 5.3 (Monometric). Let R be a betweenness relation on a set A. A

function M : A ×A → R is called a monometric on A (w.r.t. R) if it satisfies the

following three properties:

(i) Non-negativity: for any a, b ∈ A, it holds that

M(a, b) ≥ 0 .

(ii) Coincidence: for any a, b ∈ A, it holds that

M(a, b) = 0 ⇔ a = b .

(iii) Compatibility: for any a, b, c ∈ A such that (a, b, c) ∈ R, it holds that

M(a, b) ≤M(a, c) .

For any two elements a, b ∈ A, M(a, b) is referred to as the cost of changing the

element a into the element b.

In order to measure the cost of changing a label of the ordinal scale into another one,

we consider a monometric M on L w.r.t. the betweenness relation R≤L
. The axiom

of compatibility w.r.t. this betweenness relation is illustrated in Fig. 5.1.

L1 L2 L3 L4 L5

0 < M(L2, L4) ≤M(L2, L5)

Figure 5.1: Natural interpretation of the use of a monometric on the ordinal scale
L = {L1, L2, L3, L4, L5}.

Remark The zero-one distance function, the absolute distance function and the

squared difference function are three natural examples of a monometric w.r.t. the

betweenness relation induced by ≤L.

The choice of a proper monometric is not an easy task. Actually, there is no

truly best monometric when dealing with a qualitative scale. In several fields

of application, the choice of a monometric1 is subject to a preceding thorough

1 The reader may note that these functions are not known by the name of monometric in other
fields of application, although most of the times the considered functions turn out to satisfy the
three axioms of a monometric.
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validation by a group of trained panellists. For instance, we refer to a survey that

shows different ways of dealing with the (9-point) hedonic scale [115].

A natural method for assigning a consensus label to a sample aj ∈ A based on

the labellings expressed by the trained panellists is then defined by means of a

monometric M on L w.r.t. R≤L
:

f(aj) = arg min
L∈L

nT∑
i=1

M(fi(aj), L) . (5.1)

In case M is the zero-one distance function, the absolute distance function or the

squared difference function, the consensus labelling of the samples coincides with

that obtained by the usual methods for assigning a consensus labelling mentioned

in the beginning of this section.

Remark In real-life problems, it is common to have a list of weights (wi)
nT
i=1

(adding up to one) weighing the performance of each trained panellist. In this case,

the following alternative to Eq. (5.1) is considered:

f(aj) = arg min
L∈L

nT∑
i=1

wiM(fi(aj), L) .

Note that each trained panellist is actually expressing a label for each sample

in A and that, due to several factors, the labellings of the different samples

might interact with each other. This is a common problem in, for instance, smell

experiments where trained panellists might not be able to express an appropriate

label after smelling more than four to six food products during a short period of

time due to olfactory fatigue [24]. This is also a common problem in the field of

recommender systems, such as movie recommendation and online dating systems,

where personality is an important factor that influences the labelling of different

movies or profiles of candidates [119, 120]. In addition to personality, social and

environmental contexts as well as visual experience and exposure are important

sources of individual differences in online dating systems [119, 121]. Therefore, it

seems natural to simultaneously exploit the information provided for all samples

when assigning a consensus labelling of these samples.

With the intention of assigning a consensus label to all samples simultaneously, a

monometric M : Ln ×Ln → R w.r.t. R≤L
n needs to be fixed. In that way, the

consensus label assigned to a sample aj ∈ A based on the labellings expressed by

the trained panellists is defined as

f(aj) =

(
arg min

z∈Ln

nT∑
i=1

M
(
(fi(a1), . . . , fi(an)), z

))
(j) .
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Obviously, the particular case where M is defined as

M
(
(fi(a1), . . . , fi(an)), z

)
=

n∑
j=1

M(fi(aj), z(j)) ,

for a given monometric M on L, reduces to the previous setting where the labels

of all samples are considered independent w.r.t. each other when calculating the

cost.

5.3. Consensus state problem

As discussed in [27], the aggregation of rankings can generally be understood as a

two-step procedure that measures the closeness to a desired state of the world in

which determining the result of the aggregation of the given rankings is obvious.

Usually, we refer to these desired states of the world leading to an obvious result

of the aggregation process as consensus states.

Here, we adapt this notion of consensus state to our problem setting. A consensus

state will now be the set of all matrices of labels for which identifying the consensus

labelling of the samples is obvious. Naturally, all matrices of labels in which all

rows coincide (i.e., all trained panellists agree on the label that should be assigned

to each sample), need to belong to any consensus state. Various consensus states

may be considered. Ideally, the chosen consensus state should be linked to a

natural way of deciding the consensus labelling of the samples. According to

some consensus states, more than one consensus labelling of the samples could be

considered ‘natural’. For instance, in case we consider the most frequent label for

each sample, this natural way of deciding the consensus labelling of the samples

might not be unique, resulting in a function where the codomain is the power set

P(Ln) of Ln, rather than Ln itself.

Definition 5.4 (Consensus state). A subset S of Ln×nT is called a consensus state

if there exists an underlying consensus label function f : S → P(Ln) satisfying

that, for any Z ∈ LnT×n such that Zi1j = Zi2j for any i1, i2 ∈ {1, . . . , nT } and

any j ∈ {1, . . . , n}, it holds that Z ∈ S and f(Z) = {(Z11, . . . ,Z1n)}.

The goal of a consensus state problem is to find the matrix of labels belonging

to the consensus state that is closest to the labellings expressed by the trained

panellists. Such a matrix is referred to as a closest matrix of labels (in the chosen

consensus state), and will lead to a natural consensus labelling of the samples.

Considering a broader consensus state leads to methods that are less dependent

on the chosen monometric and more dependent on the consensus state itself.

Analogously, considering a narrower consensus state leads to methods that are

more dependent on the chosen monometric and less dependent on the consensus
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state itself. When dealing with, for instance, qualitative scales, where the choice

of the proper monometric is unclear, we aim to reduce the importance of the

monometric, while still considering a meaningful consensus state.

In order to search for a closest matrix of labels in the chosen consensus state, the

cost of changing the matrix of labels expressed by the trained panellists into a

new matrix of labels needs to be defined. This cost is measured by means of a

monometric on LnT×n. In this case, the considered betweenness relation is defined

as:

R≤
LnT×n =

{
(Z1,Z2,Z3) ∈ (LnT×n)3

∣∣∣∣∣ (∀i ∈ {1, . . . , nT })(∀j ∈ {1, . . . , n})(
(Z1

ij ,Z
2
ij ,Z

3
ij) ∈ R≤L

) }
.

A closest matrix of labels belonging to the chosen consensus state S is then defined

by means of a monometric M on LnT×n w.r.t. R≤
LnT×n :

arg min
Z∈S

M



f1(a1) . . . f1(an)

...
. . .

...

fnT
(a1) . . . fnT

(an)

 ,Z

 . (5.2)

Remark Note that the minimizer of Eq. (5.2) does not need to be unique.

The consensus labelling is then given by the underlying consensus label function

f : S → P(Ln) evaluated in the minimizer(s) of Eq. (5.2).

Obviously, the particular case where M is defined as

M(Z,Z′) =

nT∑
i=1

n∑
j=1

M(Zij ,Z
′
ij) , (5.3)

for a given monometric2 M on L, reduces to the previous setting where all trained

panellists and all labels of all samples are considered independent w.r.t. each other

when calculating the cost.

As previously mentioned, the choice of the right monometric on L might be unclear.

Here, we propose a monometric that minimizes the number of labels being changed

into another label that is far away in the scale, while allowing for a larger number of

labels being changed into a neighbouring label. Intuitively, we consider that, for the

qualitative scale L = {“Bad”, “Acceptable”, “Good”}, in case the ‘true’ label of a

sample is “Bad”, it is more likely that several trained panellists express the label

“Acceptable” for this sample rather than a unique trained panellist expressing the

2 The monometric M can be understood as the ground distance function for the Earth Mover’s
Distance. Intuitively, the Earth Mover’s Distance is a distance between probability distributions
that describes the minimum amount of ‘soil’ that needs to be moved in order to transform the
first distribution into the second one [122].
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label “Good”. Formally, we aim to minimize, first, the number of labels changed

into a label at maximum absolute distance (l − 1), second, the number of labels

changed into a label at absolute distance l− 2, third, the number of labels changed

into a label at absolute distance l − 3, etc.

This hierarchical optimization problem is addressed straightforwardly by considering

a suitable monometric on L that assigns a cost to changing each label as follows:

the cost assigned to changing a unique label into another label at a certain absolute

distance ∂1 should be larger than the sum of costs assigned to changing all the

nT × n labels into other labels at an absolute distance strictly smaller than ∂1. We

do this by considering exponentially increasing costs for each absolute distance.

For more details on the hierarchical combination of monometrics, we refer to [27].

The proposed monometric on LnT×n is then defined as:

M(Z,Z′) =

nT∑
i=1

n∑
j=1

(
(nT · n+ 1)∂1(Zij ,Z

′
ij) − 1

)
. (5.4)

5.4. Interesting consensus states

In this section, we discuss five natural consensus states: unanimity, majority,

marginal majority, monotonicity and marginal monotonicity.

5.4.1. Unanimity

The smallest consensus state, called the unanimity consensus state, is the set of all

matrices of labels where all the rows coincide, i.e., all trained panellists agree on

the label that should be assigned to each sample. Formally, this consensus state is

defined as:

S0 = {Z ∈LnT×n | (∀i1, i2 ∈ {1, . . . , nT })(∀j ∈ {1, . . . , n})(Zi1j = Zi2j)} . (5.5)

The underlying consensus label function f : S0 → P(Ln) assigns to each matrix Z

of labels in S0 the (unique) list of labels that appears nT times as row of Z.

The unanimity consensus state is the only consensus state that unquestionably

identifies a consensus labelling of the samples. Obviously, in case all trained

panellists express the same labelling of the samples, the consensus labelling of these

samples is clear. Unfortunately, this unanimity situation almost never happens in

real-life problems. Therefore, any method focusing on the search for the unanimity

consensus state strongly depends on the chosen monometric. Thus, when dealing
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with qualitative scales, where there is no clear cost of changing a label into another

one, the need for a broader consensus state than the unanimity consensus state is

patent.

5.4.2. Majority

Another natural consensus state is the set of all matrices of labels where more than

half of the rows coincide, i.e., more than half of the trained panellists agree on the

labels that should be assigned to all samples:

S1 =

{
Z ∈LnT×n

∣∣∣∣∣ (∃I ⊆ {1, . . . , nT })(
(|I| > nT

2 ) ∧ (∀i1, i2 ∈ I)(∀j ∈ {1, . . . , n})(Zi1j = Zi2j)
) } . (5.6)

The underlying consensus label function f : S1 → P(Ln) assigns to each matrix Z

of labels in S1 the (unique) list of labels that appears more than nT

2 times as row

of Z.

Although the majority consensus state is a broader consensus state than the

unanimity consensus state, it still focuses too strongly on the need of the trained

panellists to agree on their labellings of the samples.

5.4.3. Marginal majority

Another natural consensus state is the set of all matrices of labels where for each

of the columns more than half of the elements coincide, i.e., more than half of the

trained panellists agree on the label that should be assigned to each sample:

S2 =

{
Z ∈LnT×n

∣∣∣∣∣ (∀j ∈ {1, . . . , n})(∃I ⊆ {1, . . . , nT })(
(|I| > nT

2 ) ∧ ((∀i1, i2 ∈ I)(Zi1j = Zi2j))
) } . (5.7)

The underlying consensus label function f : S2 → P(Ln) assigns to each matrix Z

of labels in S2 the (unique) list of labels in which the j-th label is the one appearing

more than nT

2 times in the j-th column of Z.

Note that this consensus state treats all samples independently and does not exploit

the fact that each trained panellist expresses a label for all samples in A.

Obviously, majority implies marginal majority. In particular, it holds that S0 ⊆
S1 ⊆ S2. In case the set of samples is a singleton, majority and marginal majority

coincide, i.e., it holds that S1 = S2 if k = 1.
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5.4.4. Monotonicity

We consider the setting where each trained panellist expresses a label for each of

the samples in A. Under the assumption that the closer a list of labels is to the

‘true’ labelling of the samples, the likelier it is that a trained panellist expresses

this list of labels, we can expect the number of trained panellists expressing each

list of labels to decrease whenever we deviate from the ‘true’ labelling of these

samples.

Note that any list of labels z ∈Ln induces a natural order relation on Ln:

vz=
{

(z1, z2) ∈ (Ln)
2 | (∀j ∈ {1, . . . , n})

(
(Lj , L

1
j , L

2
j ) ∈ R≤L

)}
.

The fact that (z1, z2) ∈vz is denoted by z2 vz z1 and can be understood as z1
being closer to z than z2.

Remark For any z ∈Ln, the relation vz defines an order relation on Ln. Due

to the fact that ≤L is an order relation, vz trivially is reflexive and antisymmetric.

Transitivity is proved easily in the following way. Consider z1, z2, z3 ∈ Ln such

that z2 vz z1 and z3 vz z2. Therefore, for any j ∈ {1, . . . , n}, it holds that (Lj ≤L

L1
j ≤L L2

j ∨ L2
j ≤L L1

j ≤L Lj) and that (Lj ≤L L2
j ≤L L3

j ∨ L3
j ≤L L2

j ≤L Lj).

We distinguish four cases:

(i) Lj ≤L L1
j ≤L L2

j and Lj ≤L L2
j ≤L L3

j . It trivially follows that

Lj ≤L L1
j ≤L L3

j .

(ii) Lj ≤L L1
j ≤L L2

j and L3
j ≤L L2

j ≤L Lj . It follows that L1
j = L2

j and,

therefore, that

L3
j ≤L L1

j ≤L Lj .

(iii) L2
j ≤L L1

j ≤L Lj and Lj ≤L L2
j ≤L L3

j . It follows that L1
j = L2

j and,

therefore, that

Lj ≤L L1
j ≤L L3

j .

(iv) L2
j ≤L L1

j ≤L Lj and L3
j ≤L L2

j ≤L Lj . It trivially follows that

L3
j ≤L L1

j ≤L Lj .

We conclude that vz is transitive and, therefore, an order relation on Ln.

Figure 5.2 displays a graphical representation of the Hasse diagram of vz for a set

of two samples3 and the qualitative scale L = {B,A,G}, where B means “Bad”,

3 Note that the cardinality of the set of samples usually is greater than two and this small set of
samples is only considered for illustrating the Hasse diagram of vz.
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A means “Acceptable” and G means “Good”. Obviously, the considered (strict)

total order relation is given by B ≺ A ≺ G.

(G,G)

(A,G) (G,A)

(B,G) (A,A) (G,B)

(B,A) (A,B)

(B,B)

(G,G)

(A,G)

(G,A)

(B,G)(A,A)

(G,B)

(B,A)(A,B)

(B,B)

Figure 5.2: Hasse diagram of vz for z = (G,G) (left) and z = (A,G) (right).

The number of trained panellists expressing each list of labels should be decreasing

on the Hasse diagram of vz for the list of labels z associated with the ‘true’

labelling of the samples. In such a case, the matrix of labels expressed by the

trained panellists is monotone w.r.t. the list of labels z.

Example 5.1. Consider the set A = {a1, a2}, the ordinal scale L = {A,B,G}
and nT = 12 trained panellists, where the (transposed) matrix of labellings expressed

by the trained panellists is the following:

Z> =

(
G G G A A G G B A G A B

G G G G G A A G A B B B

)
.

For simplicity, we now consider the ‘true’ labelling of the samples to be (G,G),

and plot the Hasse diagram of vz for the list of labels z associated with (G,G) in

Figure 5.3. We can see that there is monotonicity w.r.t. the list of labels (G,G),

where the number of trained panellists expressing each list of labels is decreasing

from top to bottom of the Hasse diagram.

Therefore, we conclude that the matrix of labels expressed by the trained panellists

is called monotone w.r.t the list of labels (G,G).

The set of all matrices of labels that are monotone w.r.t. at least one list of labels

leads to the following natural consensus state:

S3 =

{
Z ∈LnT×n

∣∣∣∣∣ (∃z ∈Ln)(∀z1, z2 ∈Ln)

(z2 vz z1 ⇒ nZ(z2) ≤ nZ(z1))

}
, (5.8)
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(G,G) 3

(A,G) 2 (G,A) 2

(B,G) 2 (A,A) 1 (G,B) 1

(B,A) 0 (A,B) 1

(B,B) 0

Figure 5.3: Hasse diagram of vz for z = (G,G).

where, for any z′ ∈LnT , nZ(z′) denotes the number of times the list of labels z′

appears as row of Z.

The underlying consensus label function f : S3 → P(Ln) assigns to each matrix Z

of labels in S3 the set of all lists of labels w.r.t. which it is monotone.

Example 5.2. Consider the set A = {a1, a2}, the ordinal scale L = {L1, L2, L3, L4, L5}
and nT = 20 trained panellists, where the transposed matrix of labellings expressed

by the trained panellists is the following:

Z> =

(
L1 L1 L2 L2 L2 L3 L3 L3 L3 L4 L4 L4 L4 L4 L4 L4 L5 L5 L5 L5

L3 L4 L3 L4 L4 L3 L4 L4 L5 L2 L3 L4 L4 L4 L4 L5 L3 L4 L4 L5

)
.

As can be seen in Fig. 5.4, the number of trained panellists expressing each list of

labels decreases when we move away from the list of labels (L4, L4). Therefore, the

matrix of labels expressed by the trained panellists is monotone w.r.t. (L4, L4).

5.4.5. Marginal monotonicity

In some settings, we may consider all the samples to be independent w.r.t. each

other and we require monotonicity for each of the samples independently. Under

the assumption that the closer a label is to the ‘true’ label of a sample, the likelier

it is that an trained panellist expresses this label for the sample, we can expect the

number of trained panellists expressing each label to decrease whenever we deviate

from the ‘true’ label of this sample.
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L1
L2

L3
L4

L5

L1 L2 L3 L4 L5

0

1

2

3

4

a1
a2

Figure 5.4: Example of a monotone matrix of labels w.r.t. (L4, L4).

Note that any label L ∈L induces a natural order relation on L:

vL=
{

(L1, L2) ∈L2 | (L,L1, L2) ∈ R≤L

}
,

which can be seen as a particular case of vz for a singleton set of samples.

Figure 5.5 displays a graphical representation of the Hasse diagram of vL for the

qualitative scale L = {B,A,G}.

B

A

G

B

A

G

Figure 5.5: Hasse diagram of vL for L = G (left) and L = A (right).

The number of trained panellists expressing each label should be decreasing on the

Hasse diagram of vLj for the ‘true’ label Lj of each sample in the set of samples.

In such a case, the matrix of labels expressed by the trained panellists is called

marginally monotone w.r.t. the list of labels z.

Remark Note that marginal monotonicity w.r.t. a list of labels z is equivalent to

the fact that, for each sample aj in the set of samples, Lj is a mode among all the

labels expressed for sample aj and, at the same time, the number of times that a
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label is expressed for sample aj decreases when we move away from Lj .

The set of all matrices of labels that are marginally monotone w.r.t. at least one

list of labels leads to the following natural consensus state:

S4 =

{
Z ∈LnT×n

∣∣∣∣∣ (∃z ∈Ln)(∀L1, L2 ∈L)(∀j ∈ {1, . . . , n})(
L2 vLj L

1 ⇒
∑nT

i=1 1(Zij = L1) ≤
∑nT

i=1 1(Zij = L2)
) } , (5.9)

where, for any L′, L′′ ∈ L, 1(L′ = L′′) equals one if L′ = L′′ and zero other-

wise.

The underlying consensus label function f : S4 → P(Ln) assigns to each matrix Z of

labels in S4 the set of all lists of labels w.r.t. which it is marginally monotone.

Obviously, monotonicity implies marginal monotonicity. In particular, it holds that

S0 ⊆ S3 ⊆ S4. In case the set of samples is a singleton, monotonicity and marginal

monotonicity coincide, i.e., it holds that S3 = S4 if k = 1.

Example 5.3. Consider the labellings of the samples given in Example 5.2. For

sample a1, the vector of frequencies (2, 3, 4, 7, 4) (displayed in the left side of the

diagram of Figure 5.6) is decreasing when we move away from the mode L4. For

sample a2, the vector of frequencies (0, 1, 5, 11, 3) (displayed in the right side of

the diagram of Figure 5.6) is also decreasing when we move away from the mode

L4. Therefore, the given matrix of labels is marginally monotone w.r.t. (L4, L4).

This result was already expected due to the fact that the given matrix of labels is

monotone w.r.t. (L4, L4) in view of Example 5.2 and the fact that monotonicity

implies marginal monotonicity.

L1 L2 L3 L4 L5

11
10
9
8
7
6
5
4
3
2
1
0

L1 L2 L3 L4 L5

11
10
9
8
7
6
5
4
3
2
1
0

Figure 5.6: Example of a marginally monotone matrix of labels w.r.t. (L4, L4).
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5.4.6. A general comparison

As previously discussed, unanimity is the smallest consensus state, and, therefore,

it implies the consensus states of majority, marginal majority, monotonicity and

marginal monotonicity. Moreover, the consensus states of majority and mono-

tonicity respectively imply the consensus states of marginal majority and marginal

monotonicity. In the following, we prove that there is no further relation between

these five consensus states.

Consider the singleton A = {a1}, the ordinal scale L = {L1, L2, L3, L4} and

nT = 5 trained panellists, where the transposed matrix of labellings expressed by

the trained panellists is the following:

Z> =
(
L1 L1 L1 L3 L4

)
.

The matrix of labels expressed by the trained panellists belongs to the (marginal)

majority consensus state, but not to the (marginal) monotonicity consensus

state.

Consider now the following transposed matrix of labellings expressed by the trained

panellists:

Z> =
(
L1 L1 L2 L3 L4

)
.

The matrix of labels expressed by the trained panellists belongs to the (marginal)

monotonicity consensus state, but not to the (marginal) majority consensus

state.

The relations between the different consensus states are illustrated in Figure 5.7.

In this figure, an arrow indicates that the consensus state from which the arrow

starts implies the consensus state to which the arrow points.

Marginal

majority

Marginal

monotonicity

Unanimity

Majority Monotonicity

Figure 5.7: Relations between the different consensus states.
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5.5. The optimization problem

The search for a closest matrix of labels in the unanimity or (marginal) majority

consensus state is a well-known and easy task. Indeed, it is a separable problem

that can be solved for each sample independently.

In this section, we address the search for a closest monotone matrix of labels4 by

solving a transportation problem [123]. In a transportation problem, there are

several supply points and several demand points. At each supply point, a certain

amount of product is produced, and it needs to be transported to the demand points.

The required demands at each demand point need to be satisfied. Transporting a

unit of product from a supply point to a demand point has an associated cost. The

goal of the transportation problem is to find an optimal transportation distribution

that minimizes the total transportation cost from sources to destinations.

Here, the supply points correspond to the different lists of labels appearing in the

labellings expressed by the trained panellists. The quantity of product produced

at each supply point is given by the number of times the list of labels appears in

the labellings expressed by the trained panellists. The demand points correspond

to all possible lists of labels that could be a result of a labelling of the samples.

There are no demands at each demand point.

We define p× ln variables auv (u ∈ {1, . . . , p} and v ∈ {1, . . . , ln}) taking values in

the set Z+ of non-negative integers, n being the number of samples in A, p being

the number of different lists of labels in the labellings expressed by the trained

panellists and l being the number of labels in the ordinal scale (it obviously holds

that p ≤ ln). auv is the number of units shipped from the u-th source to the v-th

destination. For any u ∈ {1, . . . , p} and any v ∈ {1, . . . , ln}, auv = m means that

m units of the u-th list of labels are assigned to m units of the v-th list of labels5.

We have an initial matrix of labels where the u-th list of labels appears su times.

These values su can be seen as the number of units of product that are produced at

each supply point. The goal is to distribute these products satisfying the required

monotonicity constraint. Unfortunately, the set of constraints corresponding to

monotonicity is formed by the union of the monotonicity constraints associated

with each list of labels. In order to obtain the solution of this optimization problem,

ln parallel transportation problems need to be solved considering the monotonicity

constraints associated with each possible list of labels. Finally, we consider the

lowest cost resulting from the transportation problem.

4 The search for a closest marginally monotone matrix of labels can be addressed as a particular
case of the optimization problem discussed in this section applied separately to each singleton
subset of the set of samples.

5 An order needs to be assigned to the elements in both sets, for instance, the lexicographical order.
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For each possible list z of n labels, the problem to be resolved is the following:

Minimize

p∑
u=1

ln∑
v=1

Cuvauv w.r.t. {auv}

s.t.

ln∑
v=1

auv = su, for any u ∈ {1, . . . , p} ,

auv ∈ Z+, for any u ∈ {1, . . . , p} and any v ∈ {1, . . . , ln} ,∑p
u=1 auv2 ≤

∑p
u=1 auv1 , for any v1, v2 ∈ {1, . . . , ln} s.t. zv2 vz zv1 ,

where Cuv denotes the cost of changing the u-th list of labels in the matrix of

labels into the v-th list of labels in the set of all possible lists of labels, and zv
represents the v-th list of labels in the set of all possible lists of labels.

Each optimization problem leads to the computation of a closest monotone matrix

of labels w.r.t. the corresponding list of labels z. Transportation problems are

solved in polynomial time [124]. However, here, this polynomial time is in terms

of p × ln. Obviously, this is a computational drawback for sets of samples of

large cardinality. Assignment problems have been deeply studied in combinatorial

optimization, resulting in several methods to solve this problem in polynomial time,

for instance, the Hungarian method [125] or the Auction algorithm [126].

5.6. Independence of the search for different con-

sensus states

In this section, we prove the independence of the search for the five mentioned

consensus states. First, we show that the search for unanimity, (marginal) majority

and (marginal) monotonicity are independent w.r.t. each other. Second, we show

that the search for majority and the search for marginal majority are independent

w.r.t. each other. Third, we show that the search for monotonicity and the search

for marginal monotonicity are independent w.r.t. each other.

5.6.1. Unanimity, (marginal) majority and (marginal) mono-

tonicity

Consider the singleton A = {a1}, the ordinal scale L = {L1, . . . , L7} and nT = 10

trained panellists, where the transposed matrix of labellings expressed by the

trained panellists is the following:

Z> =
(
L1 L2 L2 L3 L5 L5 L5 L5 L7 L7

)
.
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The frequencies corresponding to each of the labels are then represented by the

following vector:

(1, 2, 1, 0, 4, 0, 2) .

First, the consensus labelling associated with the unanimity consensus state is (L4)

due to the fact that any other list of labels will force to change at least one label

into another label that is at absolute distance four.

Second, the consensus labelling associated with the (marginal)6 majority consensus

state is (L6) due to the fact that it is the only list of labels that can reach a

frequency of six just by changing labels into an adjacent label7.

Third, we see that the consensus labelling associated with the (marginal)8 mono-

tonicity consensus state is (L5)9.

We conclude that the consensus labellings of A according to the search for una-

nimity, (marginal) majority and (marginal) monotonicity are (L4), (L6) and (L5),

respectively. Therefore, the search for unanimity, for (marginal) majority and for

(marginal) monotonicity are proved to be independent w.r.t. each other.

5.6.2. Marginal majority and majority

Consider the set A = {a1, a2}, the ordinal scale L = {L1, L2, L3} and nT = 11

trained panellists, where the transposed matrix of labellings expressed by the

trained panellists is the following:

Z> =

(
L1 L1 L1 L2 L2 L2 L2 L2 L2 L3 L3

L1 L1 L1 L1 L2 L2 L2 L2 L2 L1 L1

)
.

We note that, for sample a1, the trained panellists have expressed label L2 six

times, and, for sample a2, the trained panellists have expressed label L1 six times.

We conclude that the matrix of labels expressed by the trained panellists belongs

to the marginal majority consensus state, resulting in (L2, L1). However, one may

note that (L2, L2) appears five times as a row of the matrix of labellings expressed

by the trained panellists, while (L2, L1) appears only once, resulting in (L2, L2) in

case we consider the majority consensus state.

We conclude that the consensus labelling of A according to the search for marginal

6 We recall that, for a singleton, both the marginal majority and the majority consensus states are
equivalent.

7 It suffices to change four labels L5 and two labels L7 into six labels L6, leading to the vector of
frequencies (1, 2, 1, 0, 0, 6, 0).

8 We recall that, for a singleton, both the marginal monotonicity and the monotonicity consensus
states are equivalent.

9 It suffices to change one label L2 into a label L3, one label L3 into a label L4 and one label L7

into a label L6, leading to the vector of frequencies (1, 1, 1, 1, 4, 1, 1).
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majority is (L2, L1), while the consensus labelling of A according to the search for

majority is (L2, L2). Therefore, the search for marginal majority and majority are

proved to be independent w.r.t. each other.

5.6.3. Marginal monotonicity and monotonicity

Consider the set A = {a1, a2}, the ordinal scale L = {L1, L2, L3} and nT = 10

trained panellists, where the transposed matrix of labellings expressed by the

trained panellists is the following:

Z> =

(
L1 L1 L1 L2 L2 L2 L3 L3 L3 L3

L1 L1 L1 L3 L3 L3 L2 L2 L2 L3

)
.

We note that, for both samples, the trained panellists have expressed label L1 three

times, label L2 three times and label L3 four times. Therefore, for both samples a1
and a2, the frequencies corresponding to each of the labels are represented by the

following vector:

(3, 3, 4) .

The frequencies are obviously decreasing when we move away from L3. We conclude

that the matrix of labels expressed by the trained panellists is marginally monotone

w.r.t. the list of labels (L3, L3).

On the other hand, the consensus labelling associated with the monotonicity

consensus state is (L2, L2), leading to the following closest monotone transposed

matrix of labels:

Z> =

(
L1 L1 L2 L2 L2 L2 L2 L3 L3 L3

L1 L2 L1 L2 L3 L3 L2 L2 L2 L3

)
.

As shown in Fig. 5.8, the cost associated with a closest monotone matrix of labels

w.r.t. the list of labels (L3, L3), which equals six, is greater than the cost associated

with a closest monotone matrix of labels w.r.t. the list of labels (L2, L2), which

equals four.

We conclude that the consensus labelling of A according to the search for marginal

monotonicity is (L3, L3), while the consensus labelling of A according to the search

for monotonicity is (L2, L2). Therefore, the search for marginal monotonicity and

monotonicity are proved to be independent w.r.t. each other.
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1× (L3, L3)

3× (L2, L3) 3× (L3, L2)

0× (L1, L3) 0× (L2, L2) 0× (L3, L1)

0× (L1, L2) 0× (L2, L1)

3× (L1, L1)

0× (L2, L2)

3× (L2, L3) 3× (L3, L2) 0× (L1, L2) 0× (L2, L1)

1× (L3, L3) 0× (L1, L3) 0× (L3, L1) 3× (L1, L1)

Figure 5.8: Hasse diagram of vz for z = (L3, L3) (left) and z = (L2, L2) (right).

5.7. Case studies

This section is devoted to illustrate the method introduced in this chapter, using

two real-life examples that describe different types of problems. The goal is to

search for the consensus labelling of a given set of profiles of candidates and a set

of movies.

5.7.1. Dating system

In this subsection, we consider an entirely different real-life problem, where we

search for the consensus labelling of several dating profiles or candidates. Charles

University maintains a dataset, named “the collaborative filtering dataset - dating

agency” [127], which contains 17, 359, 346 labellings of 168, 791 candidates by

135, 359 users, where each user has evaluated at least 20 candidates, and users who

provided constant ratings were excluded. We consider a part of the dataset that

contains labellings by 526 users of three of the most evaluated candidates that we

term a1, a2 and a3.

The considered qualitative scale L consists of ten labels, where the labels represent

a certain labelling of candidate by a user, as follows: L1 “Very poor”; L2 “Poor”;

L3 “Significantly below average”; L4 “Below average”; L5 “Average”, L6 “Above

average”; L7 “Significantly above average”; L8 “Good”; L9 “Very good”; L10

“Best”. In Table 5.1, we show the 1, 578 labels expressed for the candidates by the

526 users.

By considering the monometric defined by Eq. (5.4), we address the search for a

closest monotone matrix of labels w.r.t. all possible lists of labels. After solving

the optimization problem formalized in Section 5.5, we conclude that the list of
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Freq. a1 a2 a3 Freq. a1 a2 a3 Freq. a1 a2 a3

1 6 10 6 1 8 7 7 42 9 10 5

1 6 10 7 2 8 8 5 101 9 10 6

1 7 1 6 1 8 8 6 26 9 10 7

4 7 10 5 1 8 9 7 8 9 10 8

8 7 10 6 60 8 10 5 2 9 10 9

1 7 10 7 114 8 10 6 10 9 10 10

2 8 1 5 56 8 10 7 1 10 2 5

2 8 1 6 9 8 10 8 11 10 10 5

1 8 2 6 7 8 10 10 22 10 10 6

1 8 3 5 1 9 1 5 11 10 10 7

1 8 4 7 1 9 1 6 2 10 10 8

1 8 5 5 1 9 2 6 1 10 10 9

1 8 5 8 1 9 5 5 7 10 10 10

1 8 7 5 1 9 8 6

Table 5.1: Expressed lists of labels and their frequency for the three candidates.

labels for which the associated closest monotone matrix of labels leads to the

lowest cost is (L8, L10, L6) (with a cost of 12, 541, 944, where 1, 525 expressed labels

remained unchanged, 48 expressed labels were changed into an adjacent label in

the scale L and five expressed labels were changed into a label at absolute distance

two). We note that the consensus labelling of the set of candidates according to

the search for unanimity, (marginal) majority and marginal monotonicity is also

(L8, L10, L6).

5.7.2. Movie preferences

We now consider another real-life problem, where we search for the consensus

labelling of several movies. The University of Minnesota maintains a dataset,

named MovieLens [128], which contains over 100, 000 labellings of 1, 682 movies by

943 users, where each user has evaluated at least 20 movies. We consider a part of

the dataset that contains labellings by 201 users of the four most evaluated movies:

a1, Star Wars (1977); a2, Contact (1997); a3, Fargo (1996); and a4, Return of the

Jedi (1983).

The considered qualitative scale L consists of five labels, where L1, L2, L3, L4,

and L5 represent that the user evaluated the movie as “Awful”, “Bad”, “Not

bad”, “Good”, and “Excellent”, respectively. In Table 5.2, we show the 804 labels
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expressed for the movies by the 201 users.

Freq. a1 a2 a3 a4 Freq. a1 a2 a3 a4 Freq. a1 a2 a3 a4

1 1 2 4 1 2 4 3 4 4 3 5 3 4 3

1 2 4 3 3 2 4 3 5 3 5 5 3 4 4

1 2 4 4 2 4 4 3 5 4 2 5 3 4 5

1 2 4 5 2 1 4 4 2 4 1 5 3 5 3

1 2 5 5 2 3 4 4 3 3 4 5 3 5 4

1 3 1 4 4 1 4 4 3 4 5 5 3 5 5

2 3 2 4 3 1 4 4 4 2 1 5 4 1 3

1 3 3 3 3 3 4 4 4 3 4 5 4 1 4

1 3 3 4 4 5 4 4 4 4 2 5 4 1 5

1 3 4 3 3 1 4 4 5 3 2 5 4 2 4

1 3 4 4 2 7 4 4 5 4 1 5 4 3 3

2 3 4 4 3 3 4 5 3 3 3 5 4 3 4

1 3 4 4 4 1 4 5 3 5 8 5 4 3 5

1 3 4 5 4 2 4 5 4 4 3 5 4 4 4

1 3 5 4 3 1 4 5 5 2 9 5 4 4 5

2 3 5 5 3 2 4 5 5 3 3 5 4 5 3

1 4 1 1 3 4 4 5 5 4 13 5 4 5 4

1 4 1 5 4 1 5 1 2 5 12 5 4 5 5

1 4 2 2 3 2 5 2 3 4 1 5 5 3 4

1 4 2 3 2 1 5 2 4 4 4 5 5 3 5

1 4 2 3 3 1 5 2 4 5 4 5 5 4 4

1 4 2 4 2 1 5 2 5 4 4 5 5 4 5

2 4 2 4 3 3 5 2 5 5 1 5 5 5 3

1 4 2 5 3 1 5 3 1 5 6 5 5 5 4

1 4 3 1 4 1 5 3 2 3 13 5 5 5 5

1 4 3 2 3 1 5 3 3 5

1 4 3 2 4 1 5 3 4 2

Table 5.2: Expressed lists of labels and their frequency for the four movies.

By considering the monometric defined by Eq. (5.4), we address the search for a

closest monotone matrix of labels w.r.t. all possible lists of labels. After solving

the optimization problem formalized in Section 5.5, we conclude that the list of

labels for which the associated closest monotone matrix of labels leads to the lowest

cost is (L5, L4, L5, L4) (with a cost of 63, 516, where 724 expressed labels remained

unchanged and 80 expressed labels were changed into an adjacent label in the

scale L). We note that the consensus labelling of the set of movies according to

the search for unanimity, (marginal) majority and marginal monotonicity is also
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(L5, L4, L5, L4).

5.8. Application to sensory data

In this section, we apply the methods discussed in this chapter to the datasets

gathered from labelling tests in Chapter 4 that measure the degree of freshness of

Atlantic cod, chicken breasts, brown shrimp and Atlantic salmon samples.

5.8.1. Atlantic cod

In this subsection, we consider the results of experiments L4, L8 and H4 gathered in

Table A.4, where a number of panellists (eight or ten, depending on the experiment)

assigned labels to the cod samples from company A described in Table 4.5, and

we apply the aforementioned methods to determine the consensus labels of these

samples. To illustrate the method introduced in this chapter, we first consider the

results of storage experiment H4 in Table A.4.

To illustrate the method introduced in this chapter using the sensory data, we begin

by considering the results of experiment H4 (A) in Table A.4. We first summarize

the results in Table 5.3 and show the 40 labels expressed for the cod samples

A = {a0, a4, a8, a13} by the 10 trained panellists. In the following subsections, the

considered qualitative scale L consists of five labels, where L1, L2, L3, L4, and

L5 represent that the degree of freshness of a sample is “Spoiled”, “Marginal”,

“Satisfactory”, “Fresh” and “Very Fresh”, respectively.

Trained panellist a0 a4 a8 a13

1 L5 L4 L3 L1

2 L5 L4 L2 L1

3 L5 L3 L3 L2

4 L5 L3 L2 L2

5 L5 L3 L1 L2

6 L5 L3 L1 L1

7 L5 L3 L1 L1

8 L5 L2 L4 L3

9 L4 L1 L3 L1

10 L3 L4 L2 L1

Table 5.3: Expressed list of labels for the four samples.
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We see that, for sample a0, eight trained panellists have expressed label L5. There-

fore, the label that minimizes the sum of the zero-one distances for sample a0

is L5 (it leads to a cost of two, while L3 and L4 lead to a cost of nine and L1

and L2 lead to a cost of ten). Analogously, L3 is the label that minimizes the

sum of the zero-one distances for sample a4 (leading to a cost of five); L1, L2

and L3 are the labels that minimize the sum of the zero-one distances for sample

a8 (leading to a cost of seven); and L1 is the label that minimizes the sum of

the zero-one distances for sample a13 (leading to a cost of four). Therefore, the

lists of labels that minimize the sum of the zero-one distances are (L5, L3, L1, L1),

(L5, L3, L2, L1) and (L5, L3, L3, L1).

In case we consider the absolute distance function, we see that the label that

minimizes the sum of the absolute distances for sample a0 is L5 (it leads to a cost

of three, while L4 leads to a cost of nine, L3 leads to a cost of 17, L2 leads to a cost

of 27 and L1 leads to a cost of 37). Analogously, L3 is the label that minimizes

the sum of the absolute distances for sample a4 (leading to a cost of six); L2 is the

label that minimizes the sum of the absolute distances for sample a8 (leading to a

cost of eight); and L1 is the label that minimizes the sum of the absolute distances

for sample a13 (leading to a cost of five). Therefore, the unique list of labels that

minimizes the sum of the absolute distances is (L5, L3, L2, L1).

Note that sample a0 is assigned eight times label L5 and one time label L4 and

label L3. Obviously, the frequencies decrease when we move away from label L5.

For the second sample, the frequencies decrease when we move away from label L3.

For the third sample, the frequencies decrease when we move away from either label

L1, L2, or L3. Finally, for the fourth sample, the frequencies decrease when we

move away from label L1. Therefore, the matrix of labels expressed by the trained

panellists already is marginally monotone w.r.t. the lists of labels (L5, L3, L1, L1),

(L5, L3, L2, L1) and (L5, L3, L3, L1). Unfortunately, monotonicity does not hold

w.r.t. any of these three lists of labels, and the search for a closest monotone matrix

of labels needs to be addressed.

By considering the monometric defined by Eq. (5.4), we address the search for a

closest monotone matrix of labels w.r.t. all possible lists of labels. After solving

the optimization problem formalized in Section 5.5, we conclude that the list of

labels for which the corresponding closest monotone matrices of labels lead to the

lowest cost are (L5, L3, L3, L1) and (L5, L3, L2, L1) (with a cost of 400, where 30

out of the 40 labels expressed for the samples remained unchanged and 10 labels

were changed into an adjacent label in the scale L).

In Table 5.4, a closest monotone matrix of labels w.r.t. both lists of labels (L5,

L3, L3, L1) (left) and (L5, L3, L2, L1) (right) is shown. The labels that have been

changed into a different label in one of the obtained closest monotone matrices of

labels in comparison with the matrix of labels expressed by the trained panellists

(see Table 5.3) are highlighted.
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Trained panellist a0 a4 a8 a13 Trained panellist a0 a4 a8 a13

1 L5 L4 L3 L1 1 L5 L4 L3 L1

2 L5 L4 L2 L1 2 L5 L4 L2 L1

3 L5 L3 L3 L1 3 L5 L3 L3 L1

4 L5 L3 L2 L2 4 L5 L3 L2 L2

5 L5 L3 L1 L2 5 L5 L3 L1 L2

6 L5 L3 L2 L1 6 L5 L3 L2 L1

7 L5 L3 L1 L1 7 L5 L3 L1 L1

8 L5 L3 L3 L2 8 L5 L3 L3 L2

9 L5 L2 L3 L1 9 L5 L2 L2 L1

10 L4 L3 L3 L1 10 L4 L3 L2 L1

Table 5.4: Closest monotone matrix of labels w.r.t. (L5, L3, L3, L1) (left) and
(L5, L3, L2, L1) (right) given in the form of a list of evaluations.

The consensus labelling of A according to the different methods are shown in

Table 5.5.

Method Consensus labelling

Min. sum of the zero-one distances

(L5, L3, L1, L1)

(L5, L3, L2, L1)

(L5, L3, L3, L1)

Min. sum of the absolute distances (L5, L3, L2, L1)

Search for unanimity

(L5, L3, L1, L1)

(L5, L3, L2, L1)

(L5, L3, L3, L1)

Search for majority
(L5, L3, L1, L1)

(L5, L3, L2, L1)

Search for marginal majority

(L5, L3, L1, L1)

(L5, L3, L2, L1)

(L5, L3, L3, L1)

Search for monotonicity
(L5, L3, L2, L1)

(L5, L3, L3, L1)

Search for marginal monotonicity

(L5, L3, L1, L1)

(L5, L3, L2, L1)

(L5, L3, L3, L1)

Table 5.5: Consensus labelling of A for the different methods.

Note that both the search for majority and marginal majority lead to labels L5,
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L3 and L1 for samples a0, a4 and a13, respectively. Nevertheless, majority leads

to labels L1 or L2 for sample a8, while marginal majority leads to labels L1, L2

or L3 for sample a8. Similarly, both the search for monotonicity and marginal

monotonicity lead to consensus labels L5, L3 and L1 for samples a0, a4 and a13,

respectively. Nevertheless, monotonicity leads to labels L2 or L3 for sample a8,

while marginal monotonicity leads to labels L1, L2 or L3 for sample a8. Since the

monotonicity consensus state is a broader consensus state than the unanimity or

majority consensus states, where it considers the understanding of all the labellings

of the samples provided by the trained panellists, we conclude that the consensus

labels of sample a8 are L2 and L3.

Furthermore, we notice that majority and monotonicity (i.e., consensus labelling of

multiple samples) result in different consensus labels than their marginal counterpart

(i.e., consensus labelling of independent samples). When considering some subsets

of the set of samples (for instance A′ = {a0, a4, a13}), the search for monotonicity

leads to label L4 as a possible consensus label for sample a4 in addition to L3.

We notice that sample a8 may have an influence on the consensus label of a4. In

subset A′, the consensus labels for a4 ∈ A according to the search for monotonicity

are greater than or equal to the consensus label for a4 ∈ A′. We conclude that

this case study raises the question whether the (cor)relations between the different

samples play a meaningful role in the problem of obtaining the consensus labelling

of multiple samples.

The consensus labellings of the cod samples in experiments L4, L8 and H4 according

to the different methods are now summarized in Table 5.6.

The consensus labelling of the set of cod samples {a0, a4, a8, a13} from company A

in experiment L4 according to the minimum sum of the zero-one distances and

absolute distances and according to the search for unanimity, (marginal) majority

and marginal monotonicity is (VF, S, S, M). We note that the consensus labellings

of the set of these cod samples according to the search for monotonicity are (VF, S,

S, M) and (VF, M, S, M). Therefore, we conclude that the possible consensus label

for sample a4 belongs to the set of (two consecutive) labels {S, M}. The result of

two consecutive consensus labels implies a small disagreement among the panellists.

We can see in Table 4.5 that there is a small disagreement among the panellists

assigning labels to sample a4 in experiment L4, where sample a4 is assigned one

time label F, two times labels M and SP, and three times label S. Therefore, by

using monotonicity, which considers the labels expressed by the panellists for all

the samples simultaneously, we conclude that the consensus labels for sample a4

are S and M.

We note that the methods show multiple consensus labellings of the set of cod

samples {a0, a3, a5, a7} from company A in experiment L8. However, we notice

that the consensus labels for samples a0, a5 and a7 according to all the methods

are VF, M and SP, respectively, and that the possible consensus label for sample
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Consensus labelling

Company A

L4 L8 H4

Method a0 a4 a8 a13 a0 a3 a5 a7 a0 a4 a8 a13

Min. sum of the zero-one distances

VF S S M VF F M SP VF S S SP

VF SP M SP VF S M SP

VF S SP SP

Min. sum of the absolute distances
VF S S M VF S M SP VF S M SP

VF M M SP

Search for unanimity

VF S S M VF F M SP VF S S SP

VF SP M SP VF S M SP

VF S SP SP

Search for majority
VF S S M VF F M SP VF S M SP

VF SP M SP VF S SP SP

Search for marginal majority

VF S S M VF F M SP VF S S SP

VF SP M SP VF S M SP

VF S SP SP

Search for monotonicity
VF S S M VF S M SP VF S S SP

VF M S M VF M M SP VF S M SP

Search for marginal monotonicity

VF S S M VF SP M SP VF S S SP

VF S M SP

VF S SP SP

Table 5.6: Consensus labelling of the set of cod samples from company A described in
Table 4.5 for each storage experiment by aggregating the labels gathered in Table A.4
using the different methods.

a3 belongs to the set of labels {F, S, M, SP}. Particularly, the consensus labels

for sample a3 are S and M. We conclude that the result of two non-consecutive

labels or more than two (consecutive or non-consecutive) labels implies a large

disagreement among the panellists. We can see in Table 4.5 that there is a large

disagreement among the panellists assigning labels to sample a3 in experiment L8

is assigned one time labels VF and S, two times label M, and three times labels F

and SP. Therefore, by using monotonicity, which considers the labels expressed by

the panellists for all the samples simultaneously, we conclude that the consensus

labels for sample a3 are S and M.

Since unanimity and majority focus too strongly on the need of the trained panellists

to agree on their labellings of the cod samples, we can rely more on monotonicity

to provide us with a better understanding on the consensus labels of the multiple

cod samples.
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5.8.2. Chicken breast

We consider the results of experiment H4 gathered in Table A.1, where 33 panellists

assigned labels to the chicken samples described in Table 4.2, and we apply the afore-

described methods to determine the consensus labelling of these samples.

The considered qualitative scale L consists of three labels F, S and SP that

represent that the panellist evaluated the sample as “Fresh”, “Satisfactory” and

“Spoiled”, respectively, with the (strict) total order relation SP ≺ S ≺ F. The

consensus labelling of these chicken samples according to the different methods is

shown in Table 5.7.

Consensus labelling

H4

Method a0 a5 a7 a8 a9 a11 a13 a15

Min. sum of the zero-one distances F F F F F S SP SP

Min. sum of the absolute distances F F F F F S SP SP

Search for unanimity F F F F F S SP SP

Search for majority F F F F F S SP SP

Search for marginal majority F F F F F S SP SP

Search for monotonicity F F F F F S SP SP

Search for marginal monotonicity F F F F F S SP SP

Table 5.7: Consensus labelling of the set of chicken samples described in Table 4.2
for experiment H4 by aggregating the labels gathered in Table A.1 using the different
methods.

The consensus labelling of the set of chicken samples in experiment H4 according to

the minimum sum of the zero-one distances and absolute distances and according to

the search for unanimity, (marginal) majority and (marginal) monotonicity is (F, F,

F, F, F, S, SP, SP). We conclude that all the methods yield the same result.

5.8.3. Brown shrimp

We consider the results of experiments L4 and H4 for every session (1 and 2)

gathered in Table A.7, where a number of panellists (nine or ten, depending on the

experiment) assigned labels to the brown shrimp samples described in Table 4.8,

and we apply the aforementioned methods to determine the consensus labelling of

these samples. The consensus labellings of these shrimp samples according to the

different methods are shown in Table 5.8.

We note that the methods show multiple consensus labellings of the set of shrimp

samples {a0, a3, a5, a10} in session 1 of experiment L4. However, we conclude
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Consensus labels

Session 1 Session 2

L4 H4 L4 H4

Method a0 a3 a5 a10 a0 a3 a7 a12 a0 a3 a5 a10 a0 a3 a5 a7

Min. sum of the zero-one distances

VF VF S M F F SP SP F F F SP VF F SP M

VF VF S SP F S F SP

VF F S M

VF F S SP

F VF S M

F VF S SP

F F S M

F F S SP

Min. sum of the absolute distances
F F S M F F SP SP F F F SP VF F M M

F S F SP

Search for unanimity

VF VF S M F F SP SP F F F SP VF F SP M

VF VF S SP F S F SP

VF F S M

VF F S SP

F VF S M

F VF S SP

F F S M

F F S SP

Search for majority
VF VF S SP F F SP SP F F F SP VF F SP SP

F S F SP

Search for marginal majority

VF VF S M F F SP SP F F F SP VF F SP M

VF VF S SP F S F SP

VF F S M

VF F S SP

F VF S M

F VF S SP

F F S M

F F S SP

Search for monotonicity
F VF S M F F SP SP F F F SP VF F M M

F F S M F S F SP VF F SP M

Search for marginal monotonicity

VF VF S M F F SP SP F F F SP VF F SP M

VF VF S SP F S F SP

VF F S M

VF F S SP

F VF S M

F VF S SP

F F S M

F F S SP

Table 5.8: Consensus labelling of the set of shrimp samples described in Table 4.8 for
every session (1 and 2) and for each storage experiment by aggregating the labels gathered
in Table A.7 using the different methods.

that the consensus label of sample a5 is S, and that the possible consensus label

for samples a0, a3 and a10 belongs to the sets of labels {VF, F}, {VF, F} and

{M, SP}, respectively. We can see in Table A.7 that there is a small disagreement

among the panellists assigning labels to samples a0, a3 and a10, Therefore, by

using monotonicity, which considers the labels expressed by the panellists for all

the samples simultaneously, we conclude that the consensus labels for samples a0,

a5 and a10 are F, S and M, respectively, and that the possible consensus label for

sample a3 belongs to the set of labels {VF, F}.

The consensus labelling of the set of shrimp samples {a0, a3, a7, a12} in session 1

97



Chapter 5. Aggregation of ordinal labels

of experiment H4 according to the minimum sum of the zero-one distances and

absolute distances and according to the search for unanimity, (marginal) majority

and (marginal) monotonicity is (F, F, SP, SP). Similarly, the consensus labellings of

the set of shrimp samples {a0, a3, a5, a10} in session 2 of experiment L4 according

to the minimum sum of the zero-one distances and absolute distances and according

to the search for unanimity, (marginal) majority and (marginal) monotonicity are

(F, F, F, SP) and (F, S, F, SP). We conclude that all the methods yield the same

result.

We note that the methods show multiple consensus labellings of the set of shrimp

samples {a0, a3, a5, a7} in session 2 of experiment H4. However, we conclude that

the consensus labels for samples a0 and a3 are VF and F, respectively, and that

the possible consensus label of samples a5 and a7 belongs to the set of labels

{M, SP}. Furthermore, we can see in Table A.7 that there is a small disagreement

among the panellists assigning labels to sample a5, where sample a5 is assigned

eight times a label greater than or equal to that of sample a7. Therefore, by using

monotonicity, which considers the labels expressed by the panellists for all the

samples simultaneously, we conclude that the consensus labels for sample a5 are M

and SP.

Since unanimity and majority focus too strongly on the need of the trained panellists

to agree on their labellings of the shrimp samples, we can rely more on monotonicity

to provide us with a better understanding on the consensus labels of the multiple

shrimp samples.

5.8.4. Atlantic salmon

Since the labelling test was carried out for salmon samples for 18 storage experi-

ments, we will discuss the consensus labelling of sets of salmon samples with the

most interesting results.

Session 1

First, we consider the results of experiments H4, AN4, ANH4, A4, L4 and M4 for

session 1 gathered in Table A.9, where a number of panellists (between eight and

12, depending on the experiment) assigned labels to the salmon samples described

in Table 4.11 for session 1, and we apply the aforementioned methods to determine

the consensus labellings of these samples. The consensus labellings of these salmon

samples according to the different methods are shown in Table 5.9.

The consensus labelling of the set of salmon samples {a1, a5, a9, a11} in session 1

of experiment AN4 according to the minimum sum of the zero-one distances

and according to the search for unanimity, (marginal) majority and marginal

monotonicity is (VF, M, M, SP). In case we consider the consensus labellings

according to the minimum sum of absolute distances, we have that the possible
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Consensus labelling

Session 1

H4 AN4 ANH4

Method a1 a5 a7 a11 a1 a5 a9 a11 a1 a5 a9 a11

Min. sum of the zero-one distances VF F M SP VF M M SP VF M SP SP

Min. sum of the absolute distances

VF F M SP VF S S SP F M SP SP

VF S M SP

VF M S SP

VF M M SP

F S S SP

F S M SP

F M S SP

F M M SP

Search for unanimity VF F M SP VF M M SP VF M SP SP

Search for majority VF F M SP VF M M SP VF M SP SP

Search for marginal majority VF F M SP VF M M SP VF M SP SP

Search for monotonicity VF F M SP F M M SP F M SP SP

Search for marginal monotonicity VF F M SP VF M M SP VF M SP SP

Table 5.9: Consensus labelling of the set of salmon samples described in Table 4.11 for
session 1 of each storage experiment by aggregating the labels gathered in Table A.9 using
the different methods.

consensus label of samples a5 and a9 belongs to the set of consecutive labels {S, M}.
We note that the consensus labelling of the set of these salmon samples according

to the search for monotonicity is (F, M, M, SP). Therefore, we conclude that the

possible consensus label for sample a1 belongs to the set of consecutive labels

{VF, F}. Furthermore, we can see in Table A.9 that there is a small disagreement

among the panellists assigning labels to samples a1, a5 and a9. Therefore, by using

monotonicity, which considers the labels expressed by the panellists for all the

samples simultaneously, we conclude that the consensus labels for the set of salmon

samples {a1, a5, a9, a11} in session 1 of experiment AN4 are(F, M, M, SP).

The same conclusion can be reached for sample a1 in the set of salmon samples

{a1, a5, a9, a11} in session 1 of experiment ANH4, where there is a small disagree-

ment among the panellists assigning labels to sample a1. Therefore, by using

monotonicity, which considers the labels expressed by the panellists for all the

samples simultaneously, we conclude that the consensus labels for the set of salmon

samples {a1, a5, a9, a11} in session 1 of experiment ANH4 are(F, M, SP, SP).

We note that the methods show multiple consensus labellings of the set of salmon

samples {a1, a5, a9, a11} in session 1 of experiment L4. However, we conclude that

the consensus labels of samples a1, a9 and a11 are F, S and M, respectively, and that

the possible consensus label of sample a5 belongs to the set of labels {VF, F, S, M}.
This implies a large disagreement among the trained panellists for sample a5. We

can see in Table A.9 for session 1 of experiment L4 that sample a5 is assigned six
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Consensus labelling

Session 1

A4 L4 M4

Method a1 a5 a9 a13 a1 a5 a9 a11 a1 a5 a9 a11

Min. sum of the zero-one distances

VF S SP M F VF S M F VF SP S

F VF SP M

F F SP S

F F SP M

Min. sum of the absolute distances VF S SP M F S S M F F SP M

Search for unanimity

VF S SP M F VF S M F VF SP S

F VF SP M

F F SP S

F F SP M

Search for majority

VF S SP M F VF S M F VF SP S

F VF SP M

F F SP S

F F SP M

Search for marginal majority

VF S SP M F VF S M F VF SP S

F VF SP M

F F SP S

F F SP M

Search for monotonicity

VF S SP M F F S M F VF M S

F S S M F VF M M

F VF SP S

F F M S

F F M M

F F SP S

Search for marginal monotonicity

VF S SP M F F S M F VF SP S

F S S M F VF SP M

F M S M F F SP S

F F SP M

Table 5.9: (Continued) Consensus labelling of the set of salmon samples described in
Table 4.11 for session 1 of each storage experiment by aggregating the labels gathered in
Table A.9 using the different methods.

times a label greater than or equal to that of sample a1 and eight times a label

less than or equal to that of sample a9. Therefore, by using monotonicity, which

considers the labels expressed by the panellists for all the samples simultaneously,

we conclude that the consensus labels for sample a5 are F and S.

Similarly, the methods show multiple consensus labellings of the set of salmon

samples {a1, a5, a9, a11} in session 1 of experiment M4. However, we conclude that

the consensus label of sample a1 is F. It is clear that the number of panellists (eight)

is small and that there is a large disagreement among these panellists. Therefore,

by using monotonicity, which considers the labels expressed by the panellists for

all the samples simultaneously, we conclude that the consensus labels for samples

a5, a9 and a11 (VF, F), (M, SP) and (S, M), respectively.
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Session 2

Second, we consider the results of experiments H4, AN4, ANH4 and A4 for session 2

gathered in Table A.9, where a number of panellists (between five and twelve,

depending on the experiment) assigned labels to the salmon samples described in

Table 4.11 for session 2, and we apply the aforementioned methods to determine

the consensus labels of these samples. The consensus labellings of these salmon

samples according to the different methods are shown in Table 5.10.

Consensus labelling

Session 2

H4 AN4

Method a1 a3 a5 a7 a3 a7 a9 a11

Min. sum of the zero-one distances VF F S M VF M M SP

Min. sum of the absolute distances
VF F F M VF M M SP

VF F S M

Search for unanimity VF F S M VF M M SP

Search for majority VF F S M VF M M SP

Search for marginal majority VF F S M VF M M SP

Search for monotonicity
VF F F M VF M M SP

VF F S M

Search for marginal monotonicity VF F S M VF M M SP

ANH4 A4

Method a1 a3 a5 a7 a1 a3 a5 a7

Min. sum of the zero-one distances
F F F M VF F M SP

F F S M

Min. sum of the absolute distances F F S M VF F M SP

Search for unanimity
F F F M VF F M SP

F F S M

Search for majority F F F M VF F M SP

Search for marginal majority
F F F M VF F M SP

F F S M

Search for monotonicity
F F F M VF F M SP

F F S M F F M SP

Search for marginal monotonicity
F F F M VF F M SP

F F S M

Table 5.10: Consensus labelling of the set of salmon samples described in Table 4.11
for session 2 of each storage experiment by aggregating the labels gathered in Table A.9
using the different methods.

The consensus labelling of the set of salmon samples {a1, a3, a5, a7} in session 2

of experiment H4 according to the minimum sum of the zero-one distances and
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absolute distances and according to the search for unanimity, (marginal) majority

and marginal monotonicity is (VF, F, S, M). We note that the consensus labellings

of the set of these salmon samples according to the search for monotonicity are (VF,

F, F, M) and (VF, F, S, M). Furthermore, we can see in Table A.9 that there is a

small disagreement among the panellists assigning labels to sample a5. Therefore,

by using monotonicity, which considers the labels expressed by the panellists for

all the samples simultaneously, we conclude that the consensus labels for sample

a5 are F and S.

It can be concluded that the consensus labels of salmon samples {a3, a5, a7} in

session 2 of experiment A4 are F, M and SP, respectively. However, from Table A.9

in session 2 of experiment A4, we see a small disagreement among the panellists

whether sample a1 is more fresh than or equally fresh to sample a3. Therefore, by

using monotonicity, we can conclude that the consensus labels of sample a1 are VF

and F.

Session 3

Third, we consider the results of experiments H4, AN4, ANH4 and A4 for session 3

gathered in Table A.9, where a number of panellists (eight or nine, depending on

the experiment) assigned labels to the salmon samples described in Table 4.11 for

session 3, and we apply the aforementioned methods to determine the consensus

labels of these samples. The consensus labellings of these salmon samples according

to the different methods are shown in Table 5.11.

We can see in Table A.9 that there is a small disagreement among the panellists

assigning labels to samples a1, a5 and a11. Keeping in mind that this disagree-

ment is for a large number of samples, we conclude that, by using monotonicity,

the consensus label of sample a9 is M, and that the possible consensus label of

samples a1, a5 and a11 belongs to the sets of labels {VF, F}, {F, S} and {M, SP},
respectively.

We note that the methods show multiple consensus labellings of the set of salmon

samples {a1, a5, a9, a11} in session 3 of experiment A4. We can see in Table A.9

that there is a small disagreement among the panellists assigning labels to sample

a11. The consensus labels of sample a11 according to the search for marginal

monotonicity are M and SP, whereas the consensus label according to the search

for monotonicity is SP. Since monotonicity exploits the the labels expressed by

the panellists for all the salmon samples, we conclude that the consensus label of

sample a11 is SP.

Session 4

Fourth, we consider the results of experiments H4, AN4, ANH4 and A4 for session 4

gathered in Table A.9, where a number of panellists (eight or nine, depending on

the experiment) assigned labels to the salmon samples described in Table 4.11 for

session 4, and we apply the aforementioned methods to determine the consensus
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Consensus labelling

Session 3

H4 AN4

Method a1 a5 a9 a11 a1 a5 a9 a11

Min. sum of the zero-one distances
VF VF M M VF F M SP

F VF M M

Min. sum of the absolute distances F VF M M VF F M SP

Search for unanimity
VF VF M M VF F M SP

F VF M M

Search for majority F VF M M VF F M SP

Search for marginal majority
VF VF M M VF F M SP

F VF M M

Search for monotonicity

VF VF M M VF S M SP

F VF M M F F M M

F S M SP

Search for marginal monotonicity
VF VF M M VF F M SP

F VF M M

ANH4 A4

Method a1 a5 a9 a11 a1 a5 a9 a11

Min. sum of the zero-one distances VF F S SP VF F M SP

Min. sum of the absolute distances
VF F S M VF F M M

VF F M M

Search for unanimity VF F S SP VF F M SP

Search for majority VF F S SP VF F M M

Search for marginal majority VF F S SP VF F M SP

Search for monotonicity VF F S SP VF F M SP

Search for marginal monotonicity
VF F S SP VF F M M

VF F M SP

Table 5.11: Consensus labelling of the set of salmon samples described in Table 4.11
for session 3 of each storage experiment by aggregating the labels gathered in Table A.9
using the different methods.

labels of these samples. The consensus labellings of these salmon samples according

to the different methods are shown in Table 5.12.

We note that the methods show multiple consensus labellings of the set of salmon

samples {a3, a5, a7, a9} in session 4 of experiment H4. We can conclude that the

consensus label for samples a5 and a7 is F. Furthermore, we can see in Table A.9

that there is a large disagreement among the panellists assigning labels to samples

a3 and a9. The consensus label of samples a3 and a9 according to majority is M.

However, by using monotonicity, which does not focus too strongly as majority on

the need of the trained panellists to agree on their labellings of the salmon samples,
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we conclude that the consensus label for samples a3 and a9 is S.

We note that the methods show multiple consensus labellings of the set of salmon

samples {a1, a3, a5, a7} in session 4 of experiment AN4. We can see from Table A.9

in session 4 of experiment AN4, that there is a small disagreement among the

panellists for samples a5 and a7. Therefore, by using monotonicity, we conclude

that the consensus label of samples a5 and a7 belongs to the set of labels {S, M}
and {M, SP}, respectively.

We note that the methods show multiple consensus labellings of the set of salmon

samples {a1, a3, a5, a7} in session 4 of experiment ANH4. We conclude that the

consensus labels of samples a3 and a5 are VF and F, respectively. We can see from

Table A.9 in session 4 of experiment ANH4, that there is a small disagreement

among the panellists for samples a1 and a7. Therefore, by using monotonicity, we

conclude that the consensus label of samples a1 and a7 belongs to the set of labels

{VF, F}.

Similarly, we can see from Table A.9 in session 4 of experiment A4, that there is a

large disagreement among the panellists for sample a5. Since the aforementioned

methods focus too strongly on the need of the trained panellists to agree on their

labellings of the salmon samples, we conclude that, by using monotonicity, the

consensus label of samples a5 belongs to the set of labels {F, S, M}.

Scoring

Finally, we consider the results of experiment AN4* gathered in Table A.11, where

a number of panellists (nine or ten, depending on the day) assigned scores on a

5-point scale (i.e. scores in the set {1, 2, 3, 4, 5}) to the salmon samples described in

Table 4.11 in the order described in Table 4.14. Here, we are dealing with vectors

of scores (rather than lists of labels), thus, we consider a scoring (rather than a

labelling) of the samples to be a vector of n scores where the j-th score corresponds

to the sample aj in the set of samples. A scoring approach can be seen as a specific

case of a labelling approach, in which the labels in L are equidistant. We apply

the aforementioned methods to determine the consensus vector of scores of these

samples according to the different methods are shown in Table 5.13.

The consensus scoring of the set of salmon samples {A1, B2, C3, D4} on Tuesday

(Group 1) according to the minimum sum of the zero-one distances and absolute

distances and according to the search for unanimity, (marginal) majority and

(marginal) monotonicity is (5, 4, 3, 4). We conclude that all the methods yield the

same result.

We note that the methods show multiple consensus scorings of the set of salmon

samples {A2, B3, C4, D5} on Thursday (Group 2). However, we conclude that

the consensus score of samples A2, C4 and D5 is 5, 4 and 2, respectively, and that

the possible consensus score of sample B3 belongs to the set of scores {3, 4} and

{2, 4}.
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We note that the methods show multiple consensus scorings of the set of salmon

samples {A3, B4, C5, D6} on Monday (Group 3). However, we conclude that

the consensus score of samples A2 and D5 is 5 and 4, respectively, and that the

possible consensus score of samples B3 and C4 belongs to the set of scores {4, 5}
and {2, 4}, respectively. We note that the consensus scoring of the set of these

salmon samples according to the minimum sum of the absolute distances and the

search for monotonicity is (5, 4, 2, 4).

The consensus scoring of the set of salmon samples {A5, B6, C7, D8} on Friday

(Group 5) according to the minimum sum of the zero-one distances and absolute

distances and according to the search for unanimity, (marginal) majority and

(marginal) monotonicity is (4, 3, 2, 2). We conclude that all the methods yield the

same result.

5.9. Conclusions

In this chapter, we have presented a new method for obtaining the joint consensus

labelling of multiple samples by better exploiting all the information expressed

by the trained panellists. The use of this method is endorsed by the fact that

it depends less on the choice of a monometric than any method based on the

search for unanimity. It has been concluded that this method can be used to

provide important information on the distribution of the labels assigned by the

trained panellists, whereas the other methods are not always as reliable, such as in

extreme cases where the labels are on opposite ends of the spectrum. The validity

and potential applications of the presented method have been shown using three

different real-world data sets and the sensory data gathered in Chapter 4.

It should be noted that our method is developed for settings where ordered labels

are provided. For the setting where each untrained panellist expresses a ranking

on the set of samples, some members of our research unit have already addressed

the search for a consensus ranking based on the search for monotonicity [113]. We

shed light on this method in the next chapter (Chapter 6).

However, in other settings, different kinds of information can be provided [129, 130,

131]. For instance, trained panellists and untrained panellists may provide different

kinds of information, such as absolute and relative information, respectively. These

types of information can be combined in order to exploit the information expressed

by both trained and untrained panellists. In Chapter 7, we introduce a first attempt

at combining vectors of scores and rankings to improve the quality of the assessment

of samples.
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Consensus labelling

Session 4

H4 AN4

Method a3 a5 a7 a9 a1 a3 a5 a7

Min. sum of the zero-one distances

F F F F VF VF S SP

F F F S

F F F M

M F F F

M F F S

M F F M

Min. sum of the absolute distances
F F F S VF VF M M

S F F S

Search for unanimity

F F F F VF VF S SP

F F F S

F F F M

M F F F

M F F S

M F F M

Search for majority M F F M VF VF S SP

Search for marginal majority

F F F F VF VF S SP

F F F S

F F F M

M F F F

M F F S

M F F M

Search for monotonicity

S F F S VF VF S M

VF VF S SP

VF VF M M

Search for marginal monotonicity

F F F S VF VF S SP

F F F M

S F F S

S F F M

ANH4 A4

Method a1 a3 a5 a7 a1 a3 a5 a7

Min. sum of the zero-one distances VF VF F VF F F S SP

Min. sum of the absolute distances VF VF F F F F S SP

Search for unanimity VF VF F VF F F S SP

Search for majority VF VF F VF F F S SP

Search for marginal majority VF VF F VF F F S SP

Search for monotonicity

VF VF F VF F F F SP

VF VF F F F F S SP

F VF F VF F F M SP

Search for marginal monotonicity VF VF F VF F F S SP

Table 5.12: Consensus labelling of the set of salmon samples described in Table 4.11
for session 4 of each storage experiment by aggregating the labels gathered in Table A.9
using the different methods.
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Table 5.13: Consensus vectors of scores of the sets of salmon samples described in
Table 4.14 for experiment AN4* and for every group (1–5) by aggregating the scores
gathered in Table A.11 using the different methods.
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6.1. Introduction

In this chapter we borrow ideas from the field of social choice theory to aggregate

relative evaluations in the form of rankings. In social choice theory, the rankings

expressed by several voters over a set of candidates are aggregated to reach a

decision. Therefore, we will be elaborating on concepts of social choice theory,

specifically the subdiscipline of ranking rules, hereafter.

Let us consider the problem of obtaining the consensus ranking of multiple food

samples. A traditional approach for solving this problem starts with a data

collection step, by asking a number of untrained panellists to express their personal

preference on these samples. From here on, we call the rankings gathered from

the untrained panellists a profile of rankings. A ranking rule is a function that,

given a profile of rankings, decides which ranking on the set of samples is the

winner.

In this chapter, we answer the following question:

Question III.2: How can we reach a consensus ranking?

We discuss a recent method for obtaining the consensus ranking of candidates

based on the search for a consensus state. In that context, a consensus state is a
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set of voting results, where (even when unanimity does not hold) the result of the

election is still clear. In our context, the rankings expressed by the panellists are

said to be in (or belong to) a consensus state if determining the consensus ranking

is obvious. Monometrics [27], which are closely related to distance functions, will

be a key tool for measuring how close the rankings expressed by the panellists are

belonging to the chosen consensus state. In this chapter, three consensus states

are discussed: unanimity, presence of a Condorcet ranking and monotonicity of

the votrix. We advocate for the use of monotonicity as a tool for differentiating

between truth and optimality in the aggregation of rankings [113], where we are

interested in minimizing the cost (loss) of changing the given profile of rankings

into another one in the required consensus state. Finally, the application of the

prominent methods for aggregating rankings will be illustrated on the sensory data

in Chapter 4.

6.2. Determining a consensus ranking

Let A = {a1, . . . , an} be a set of n samples. We consider the setting where nU
1

untrained panellists have expressed their preference on the set of samples in the

form of a strict order relation or ranking ≺i on A. This list of nU rankings is called

a profile of rankings and is denoted by r = (≺i)nU
i=1.

Three of the most well-known methods for the aggregation of rankings are that

of Borda [132], Condorcet [133] and Kemeny [134]. Typically, the methods of

Kemeny and Condorcet are viewed as methods minimization a distance (measured

in some way) between the profile of rankings and the postulated consensus ranking.

What distinguishes both methods is the notion of consensus. In what follows, we

will describe all three methods and introduce the notion of monotonicity of the

votrix.

6.2.1. The Borda count

The Borda count, proposed by Jean-Charles de Borda [132], is a method where in

a ranking of n samples, the most preferred sample (ranked highest) receives (n− 1)

points, the second most preferred sample receives (n− 2) points, and so on down

to the least preferred sample (lowest ranked) which receives 0 points. For more

than one ranking, the samples are sorted based on the total number of points they

obtained from the rankings.

Definition 6.1 (Borda count). Let A = {a1, . . . , an} be a set of n samples and

r = (≺i)nU
i=1 be a profile of nU rankings (on A). Let aj ∈ A be the j-th most

1 Note that the subscript ‘U ’ (in nU ) refers to untrained panellists as opposed to the subscript ‘T ’
(in nT ) which refers to trained panellists.
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preferred sample in a ranking, then the score assigned to aj in the i-th ranking ≺i
is B≺i

(aj) = n− j. Thus, the Borda count Br(aj) of sample aj in the profile of

rankings r is:

Br(aj) =

nU∑
i=1

B≺i
(aj) . (6.1)

Intuitively, the winning ranking can be seen as the one that is the result of

ordering the samples based on their Borda count2. Thus, the winning ranking

can be characterized by the distance to the set of profiles of rankings where the

first-ranked sample coincides for all rankings [135].

Note that even though the profile of rankings consists of all linear order relations,

the winning ranking can be a ranking with ties in which two or more samples result

in the same sum of Borda counts.

Example 6.1. Let us consider a set of four samples A = {a, b, c, d} and the profile

r = (≺i)15i=1 of fifteen rankings provided by the panellists shown in Table 6.1.

# ≺i Ranking on X

7 d ≺ a ≺ b ≺ c
5 c ≺ b ≺ d ≺ a
3 c ≺ d ≺ a ≺ b

Table 6.1: Profile of rankings on X given by fifteen panellists.

Considering the Borda count, the respective points for each sample are:

Br(a) = 5 · 3 + 3 · 2 + 7 · 1 + 0 · 0 = 28 ,

Br(b) = 3 · 3 + 7 · 2 + 5 · 1 + 0 · 0 = 28 ,

Br(c) = 7 · 3 + 0 · 2 + 0 · 1 + 8 · 0 = 21 ,

Br(d) = 0 · 3 + 5 · 2 + 3 · 1 + 7 · 0 = 13 .

A winning ranking on A is defined by sorting the samples according to their

respective points. Therefore, considering the Borda count, the winning ranking is:

d ≺ c ≺ b ∼ a .

It may not always be possible for panellists to differentiate between two samples,

and the panellists might consider two or more samples to be similar. In this case,

2 The Borda count is similar to the arithmetic mean, where the position of a sample in the
aggregated ranking is the average of the individual positions of the considered sample.
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every panellist should be allowed to provide a weak order relation or ranking with

ties -i on A. There exist several extensions of the Borda count to weak orders,

however, we follow the one where a weak order is first linearised and then the

relative positions of tied samples are the average corresponding positions in the

linear order [136, 137].

6.2.2. The method of Condorcet

The most important contribution to social choice theory subsequent to Borda is

the notion nowadays known as the Condorcet winner [133]. A Condorcet winner

can be seen as the sample that would be preferred over any other sample by a

simple majority (i.e., more than half of the panellists provide this preference) in

pairwise comparison.

Definition 6.2 (Condorcet winner). Let A = {a1, . . . , an} be a set of n samples

and r = (≺i)nU
i=1 be a profile of nU panellists. A profile r has a Condorcet winner

aw if

(∀j ∈ {1, . . . , n})
(
j 6= w =⇒

(
# {i ∈ {1, . . . , nU} | (aj≺iaw)} > nU

2

))
.

Analogously, a Condorcet loser can be seen as the sample that any other sample is

preferred over it by a simple majority in pairwise comparison.

Definition 6.3 (Condorcet loser). Let A = {a1, . . . , an} be a set of n samples and

r = (≺i)nU
i=1 be a profile of nU panellists. A profile r has a Condorcet loser al if

(∀j ∈ {1, . . . , n})
(
j 6= l =⇒

(
# {i ∈ {1, . . . , nU} | (al≺iaj)} >

nU
2

))
.

In this chapter, we are more interested in determining a winning ranking of samples

rather than a winning/losing sample. Another term associated with Condorcet

is the Condorcet ranking. A Condorcet ranking is a ranking where every sample

would be preferred over another sample ranked at a worse position than it by

a simple majority in pairwise comparison. It must be noted that a Condorcet

winner/ranking/loser does not always exist, but is unique if it does. When a

Condorcet winner (respectively loser) and a Condorcet ranking exist, then the

Condorcet winner (respectively loser) and the most preferred (respectively least

preferred) sample of the Condorcet ranking coincide. It can be seen that the order

of the samples in between the most preferred (Condorcet winner) and least preferred

(Condorcet loser) samples is determined by finding the Condorcet winner of the set

of samples and iteratively finding the next Condorcet winner of each of the resulting

sets minus the previous Condorcet winners, as follows awj
∈ A \ {aw1

, . . . , aw(j−1)
}
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for j ∈ {2, . . . , n− 1}.

A weaker definition of the Condorcet ranking has been proposed, such that instead of

a simple majority (i.e., more than half of the panellists provide the same preference),

one requires a weak-majority (i.e., at least half of the panellists provide the same

preference). As a result a weak Condorcet ranking is defined as a ranking where

every sample would defeat any other sample ranked at a worse position than it

by at least half of the panellists in pairwise comparison. It must be noted that

the Condorcet ranking is always a weak Condorcet ranking, but the converse is

only true when the number of panellists is odd. Moreover, the existence and the

uniqueness of a weak Condorcet ranking are not assured.

Remark A key observation of Condorcet, which is now known as Condorcet’s

paradox, is that the collective preferences can be cyclic. For instance, the collective

prefers a first sample over a second sample, prefers the second sample over a third,

and prefers the third sample over the first.

The fact that a Condorcet ranking might not exist has led to the introduction of

many different methods where the resulting ranking is the one that is the closest

to being a Condorcet ranking. Several ways of measuring such closeness have

been proposed. Here, we restrict our attention to two of the most prominent

methods in social choice literature: Copeland’s rule, which specifically attempts to

satisfy the Condorcet criterion by looking at pairwise comparisons [138], and the

method of Dodgson, who suggested a voting scheme that was reprinted at length

in [139].

The Copeland rule is the Condorcet method, in which samples are ordered by

the number of their pairwise comparison wins, while subtracting the number of

their pairwise comparison losses [140]. A variation of the Copeland rule exists,

where instead of subtracting the number of their pairwise comparison losses, half

of the number of ties is added. Even though Copeland’s rule is based on the simple

majority rule, the number of pairwise comparison losses and ties are taken into

consideration when determining the Condorcet winner. Thus, when there is no

Condorcet winner, Copeland’s rule often leads to ties.

For example, suppose that there are 11 samples. To calculate the score for sample

a, we look at how it performs against each of the other 10 samples, in a pairwise

comparison. Thus, if a panellist prefers sample a to sample b, we say that a wins

against b in the pairwise comparison, and sample a gets “1” point for each win.

Otherwise, if sample b is preferred to sample a, then we say that a loses against b

in the pairwise comparison, and sample a gets “−1” point for each loss. Finally, if

samples a and b are not preferred to each other, then we say that a is tied to b

in the pairwise comparison, and “0” points for each tie. So, if a won six pairwise

comparisons against of the 10 other samples, and lost to the other four, then its

score would be 6− 4 = 2.
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The method of Dodgson is an extension of Condorcet, where it ends up with a

Condorcet winner whenever there is one in the profile of rankings. If a Condorcet

winner does not exist, the method of Dodgson looks for the sample that is closest

to the Condorcet winner and is considered as a Condorcet winner after a minimum

number of preference changes of panellists3. The method of Dodgson can be

extended to the search for the Condorcet ranking.

Example 6.2. Let us consider a set of four samples A = {a, b, c, d} and the profile

r = (≺i)15i=1 of fifteen rankings provided by the panellists shown in Table 6.1.

Every profile of rankings is represented by a matrix4 V. This matrix is formed

by the pairwise comparisons between each couple of samples. In that way, Vij

denotes the number of panellists that prefer the i-th sample to the j-th sample (by

convention, values on the diagonal are zero).

Considering the Condorcet criterion, the respective number of times every sample

defeats another sample in pairwise comparison is:

V =


a b c d

a 0 5 8 15

b 10 0 8 10

c 7 7 0 7

d 0 5 8 0

 .

Sample b is preferred to all the other samples by more than half of the panellists: ten

panellists prefer sample b to sample a, eight panellists prefer sample b to sample c

and ten panellists prefer sample b to sample d. Therefore, sample b is the Condorcet

winner. In addition, sample a is preferred to sample c by eight panellists and

to sample d by fifteen panellists and sample d is preferred to sample c by eight

panellists. We conclude that sample c is the Condorcet loser and that the Condorcet

ranking is:

c ≺ d ≺ a ≺ b .

However, the existence of the Condorcet ranking is not assured for every profile of

rankings.

To illustrate the method of Dodgson, we now consider the profile of rankings where

fifteen other rankings are provided by the panellists, as shown in Table 6.2.

3 This is based on the Kendall distance function between rankings, which will be described in detail
in the following subsection.

4 Later on in this dissertation, this will be called a votrix, which will be defined more formally.
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# ≺i Ranking on A

6 d ≺ c ≺ b ≺ a
5 d ≺ a ≺ c ≺ b
4 b ≺ a ≺ d ≺ c

Table 6.2: Profile of rankings on A given by fifteen panellists.

The matrix V corresponding to this profile of rankings is:

V =


a b c d

a 0 10 6 11

b 5 0 11 11

c 9 4 0 15

d 4 4 0 0

 .

Here, it is seen that there is no Condorcet winner (and therefore no Condorcet

ranking) because none of the samples is preferred by more than half of the panellists.

Note that if we reverse the preference of two panellists w.r.t. samples a and c, then

we obtain the profile of rankings in Table 6.3.

# ≺i Ranking on X

6 d ≺ c ≺ b ≺ a
3 d ≺ a ≺ c ≺ b
2 d ≺ c ≺ a ≺ b
4 b ≺ a ≺ d ≺ c

Table 6.3: Profile of rankings on X given by thirteen panellists.

Thus, the matrix V′ corresponding to the new profile of rankings is:

V′ =


a b c d

a 0 10 8 11

b 5 0 11 11

c 7 4 0 15

d 4 4 0 0

 .

Now, the Condorcet winner, a, and the Condorcet ranking, d ≺ c ≺ b ≺ a exist. In

Table 6.4, the number of reversals required to reach the closest Condorcet ranking

is shown.

As we have previously discussed, it may not always be possible for panellists to
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Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

d ≺ c ≺ b ≺ a 2 c ≺ d ≺ b ≺ a 10 b ≺ d ≺ c ≺ a 10 a ≺ d ≺ c ≺ b 7

d ≺ c ≺ a ≺ b 5 c ≺ d ≺ a ≺ b 13 b ≺ d ≺ a ≺ c 8 a ≺ d ≺ b ≺ c 11

d ≺ b ≺ c ≺ a 6 c ≺ b ≺ d ≺ a 14 b ≺ c ≺ d ≺ a 14 a ≺ c ≺ d ≺ b 15

d ≺ b ≺ a ≺ c 4 c ≺ b ≺ a ≺ d 14 b ≺ c ≺ a ≺ d 16 a ≺ c ≺ b ≺ d 19

d ≺ a ≺ c ≺ b 3 c ≺ a ≺ d ≺ b 17 b ≺ a ≺ d ≺ c 22 a ≺ b ≺ d ≺ c 15

d ≺ a ≺ b ≺ c 7 c ≺ a ≺ b ≺ d 20 b ≺ a ≺ c ≺ d 22 a ≺ b ≺ c ≺ d 23

Table 6.4: The number of reversals needed to make each ranking a unanimous ranking.
The minimum number of reversals is shown in bold.

differentiate between two samples, and the panellists might consider two or more

samples to be similar. In this case, every panellist should be allowed to provide

a weak order relation or ranking with ties -i on A. Similar to the method of

Dodgson, one looks for the sample that is closest to the Condorcet winner and is

considered as a Condorcet winner after a minimum number of preference changes of

panellists based on the Kemeny (rather than Kendall)5 distance function between

rankings. This approach can be extended to the search for the Condorcet ranking

in the case of having a profile of rankings with ties.

6.2.3. The method of Kemeny

The method of Kemeny is explicitly geared to find a consensus ranking. In the case

where each panellist has the same ranking, then that is the obvious overall ranking.

In the absence of such a consensus, one looks for a ranking that could be reached

from the profile of rankings after a minimum number of preference changes.

By considering the method of Kemeny [134], one assigns a score to each ranking

based on the Kendall distances [141] to the given profile of rankings.

Definition 6.4 (Kendall distance). For any two rankings ≺1 and ≺2, the Kendall

distance between these rankings, denoted by ∂K(≺1,≺2), is the number of couples

(a, b) ∈ A2 for which the relative order in the rankings ≺1 and ≺2 differ, i.e.,

∂K(≺1,≺2) = #{(a, b) ∈ A2 | a ≺1 b ∧ b ≺2 a} .

The distance between rankings leads to a natural definition of a distance between

a ranking and a profile of rankings. The idea is to sum the distances between a

ranking and each panellist’s ranking in the profile. Thus, let r = (≺i)nU
i=1 be a

profile of nU panellists, then

5 The Kemeny distance and the Kendall distance will be described in detail in the following
subsection.
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dK(≺, r) =

nU∑
i=1

∂K(≺,≺i) . (6.2)

Let R be the set of all possible rankings. Thus, the ranking ≺ ∈R is a consensus

ranking if it minimizes the sum of Kendall distances dK(≺, r) to the profile r over

all possible rankings in R.

Example 6.3. Let us consider a set of four samples A = {a, b, c, d} and the profile

r = (≺i)15i=1 of fifteen rankings provided by the panellists shown in Table 6.1.

To determine the consensus ranking of these samples, we consider the problem

defined by Eq. (6.2), and, for each of the 24 rankings in R, we compute the

sum of the Kendall distances to the rankings provided by the untrained panellists.

In Table 6.5, the number of reversals required to reach each possible ranking is

summarized.

Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

d ≺ c ≺ b ≺ a 37 c ≺ d ≺ b ≺ a 36 b ≺ d ≺ c ≺ a 43 a ≺ d ≺ c ≺ b 48

d ≺ c ≺ a ≺ b 32 c ≺ d ≺ a ≺ b 31 b ≺ d ≺ a ≺ c 44 a ≺ d ≺ b ≺ c 49

d ≺ b ≺ c ≺ a 38 c ≺ b ≺ d ≺ a 41 b ≺ c ≺ d ≺ a 42 a ≺ c ≺ d ≺ b 47

d ≺ b ≺ a ≺ c 39 c ≺ b ≺ a ≺ d 56 b ≺ c ≺ a ≺ d 57 a ≺ c ≺ b ≺ d 52

d ≺ a ≺ c ≺ b 33 c ≺ a ≺ d ≺ b 46 b ≺ a ≺ d ≺ c 59 a ≺ b ≺ d ≺ c 54

d ≺ a ≺ b ≺ c 34 c ≺ a ≺ b ≺ d 51 b ≺ a ≺ c ≺ d 58 a ≺ b ≺ c ≺ d 53

Table 6.5: The number of reversals needed to reach each possible ranking. The minimum
number of reversals is shown in bold.

It may not always be possible for panellists to differentiate between two samples,

and the panellists might consider two or more samples to be similar. In this case,

every panellist should be allowed to provide a weak order relation or ranking with

ties -i on A. The first distance function for rankings with ties was proposed

by Kemeny and Snell [142]. This method considers all possible rankings and

assigns points to each ranking based on the Kemeny distance to the given profile

of rankings.

Definition 6.5 (Kemeny distance). For any two rankings with ties -1 and -2,

the Kemeny distance, denoted by dK(-1,-2), between two rankings is

dK(-1,-2) =2 #{(a, b) ∈ A2 | a ≺1 b ∧ b ≺2 a}
+ #{(a, b) ∈ A2 | a ≺1 b ∧ a ∼2 b}
+ #{(a, b) ∈ A2 | a ∼1 b ∧ a ≺2 b} .

(6.3)

The distance between two rankings leads to a natural definition of a distance

between a ranking and a profile of rankings with ties. The idea is to sum the
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distances between a ranking and each panellist’s ranking in the profile. Thus let

r̃ = (-i)
nU
i=1 be a profile of nU rankings, then

dK(-, r̃) =

nU∑
i=1

dK(-,-i) . (6.4)

Let R̃ be the set of all possible rankings with ties. Thus, the ranking - ∈ R̃ is a

consensus ranking if it minimizes the sum of Kemeny distances dK(-, r̃) over all

possible rankings with ties in R̃. Note that when the rankings contain no ties, the

Kemeny distance is equal to twice the Kendall distance [141].

In the study of sensory food quality, spoiled food samples can be considered as

highly relevant samples, which have to be ranked with higher accuracy than other

samples in the set of samples. In such decision problems, it is not the same to have

differences in the top samples than in the bottom ones. The Kemeny distance is

not sensitive to the positions at which the disagreements occur. A recent study

has proposed the weighted Kemeny distance, where weights are introducted to

distinguish where these differences occur [143].

Definition 6.6 (Weighted Kemeny distance). Let w = (w1, . . . , wn−1) ∈ [0, 1]n−1

be a weighting vector, such that w1 ≥ . . . ≥ wn−1 and
∑n−1
i=1 wi = 1. We denote by

-σ the ranking with ties obtained from - by ranking the samples according to a

permutation σ, i.e., a1-a2 ⇔ aσ1-
σaσ2 . For any two rankings with ties -1 and -2,

the weighted Kemeny distance, denoted by dK,w(-1,-2), between two rankings is

defined as follows:

dK,w(-1,-2) =
1

2

[
n∑

i,j=1, i<j

wi
∣∣sgn (pσ1

i − p
σ1
j )− sgn (qσ1

i − q
σ1
j )
∣∣

+

n∑
i,j=1, i<j

wi
∣∣sgn (qσ2

i − q
σ2
j )− sgn (pσ2

i − p
σ2
j )
∣∣ ] , (6.5)

where pi is the position of sample ai in -1, qi is the position of sample bi in -2,

σ1, σ2 are permutations such that -σ1

1 = -σ2

2 , and ‘sgn’ is the sign function:

sgn (x) =


1, if x > 0

0, if x = 0

−1, if x < 0

Example 6.4. Let us consider a set of four samples A = {a, b, c, d}, the weighting

vector w =
(
3
6 ,

2
6 ,

1
6

)
, and the rankings provided by the panellists shown in Table 6.6.

In Table 6.7, the Kemeny distance and the weighted Kemeny distance for each
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≺i Ranking on X

≺1 a ≺ b ≺ c ≺ d
≺2 a ≺ b ≺ d ≺ c
≺3 b ≺ a ≺ c ≺ d
≺4 b ≺ d ≺ c ≺ a

Table 6.6: Rankings on X given by four panellists.

couple of rankings are summarized.

(≺1,≺2) (≺1,≺3) (≺1,≺4) (≺2,≺3) (≺2,≺4) (≺3,≺4)

dK 2 2 8 4 6 6

dK,w
1
3 1 3 4

3
5
2

5
3

Table 6.7: Kemeny distance dK vs. weighted Kemeny distance dK,w.

Note that to sum the distances between a ranking and each panellist’s ranking in

the profile, the Kemeny distance dK(-,-i) in Eq. 6.4 can be replaced with the

weighted Kemeny distance dK,w(-,-i).

Remark Although the Borda count is undoubtedly one of the best-known ranking

rules in social choice theory, it is really sensitive to manipulation [144], which was

already criticized in the eighteenth century by Marquis de Condorcet. Interestingly,

Condorcet’s proposal has received criticism among the research community, in that

a “Condorcet winner” is a “sometimes” concept (sometimes it is useful; sometimes

it is not). This in itself suggests that the Condorcet winner should be critically

re-examined. Young and Levenglick [145] showed that Kemeny’s voting scheme is

the unique voting scheme that is neutral, consistent and satisfies the Condorcet

criteria. However, Bartholdi et al. [146] criticised against the method of Kemeny

in that determining the winner is NP-hard.

6.2.4. Monotonicity of the votrix

In the field of social choice theory, the preferences of the voters are usually com-

pressed into representations of votes gathering the most significant information. In

this chapter, we restrict our attention to the most common representation, where

each profile of rankings defines a matrix called the votrix [147], such that each row

represents a sample in A and each column represents a position j ∈ {1, . . . , n}.
In this way, the element at the i-th row and j-th column equals the number of
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times that the i-th sample has been preferred over the j-th sample in the profile of

rankings given by the panellists.

Definition 6.7 (Votrix). Let A be a set of n samples and nU be the number of

untrained panellists. A matrix V ∈ {0, 1, . . . , nU}n×n is called a votrix on A if

there exists a profile r of nU rankings, such that for any two samples aj1 , aj2 ∈ A,

it holds that

Vj1j2 = #{i ∈ {1, . . . , nU} | aj2≺i aj1} .

Any ranking ≺ on the set A naturally induces a strict order relation @ [148], such

that for any couples of samples (ai1 , aj1), (ai2 , aj2) ∈ A2, where ai1 6= aj1 and

ai2 6= aj2 , it holds that (ai2 , aj2) @ (ai1 , aj1), if

(ai2 � ai1) ∧ (aj1 � aj2) ∧ (ai2 ≺ ai1 ∨ aj1 ≺ aj2) .

This relation is graphically represented using the ranking d ≺ c ≺ b ≺ a in

Figure 6.1.

(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

(b, a) (c, b) (d, c)

(d, a)

(c, a) (d, b)

Figure 6.1: Hasse diagram of @ for the ranking d ≺ c ≺ b ≺ a.

The strict order relation @ between couples of samples associated with a given

ranking ≺ on A is used to define the monotonicity of the votrix w.r.t. this ranking.

According to the proposal of Rademaker and De Baets [149], a votrix is called

monotone w.r.t. to a ranking c ≺ b ≺ a if the number of preferences of a over

c is not less than both the number of preferences of a over b and the number of

preferences of b over c. Note that the values of a monotone votrix decrease from

the top of the Hasse diagram of @.

Definition 6.8 (Monotone votrix). A votrix is said to be monotone w.r.t a ranking
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≺ on the set A with corresponding order relation @ if, for any (ai1 , aj1), (ai2 , aj2) ∈
A2, such that ai1 6= aj1 , ai2 6= aj2 and (ai2 , aj2) @ (ai1 , aj1), it holds that

Vi2j2 ≤ Vi1j1 .

Example 6.5. Let us consider a set of four samples A = {a, b, c, d} and the profile

r = (≺i)15i=1 of fifteen rankings provided by the panellists shown in Table 6.1. This

profile of rankings is not monotone w.r.t. any ranking on A. However, we can

see in Figure 6.2 that, with a small number of reversals (four), where (b, a) is

reversed to (a, b) three times and (c, d) is reversed to (d, c) once, we can impose

monotonicity w.r.t. the ranking d ≺ c ≺ b ≺ a.

(a, d) 15

(a, c) 8 (b, d) 15

(a, b) �5 8 (b, c) 8 (c, d) �7 8

(b, a) ��10 7 (c, b) 7 (d, c) �8 7

(c, a) 7 (d, b) 7

(d, a) 0

Figure 6.2: Votrix represented on the Hasse diagram of @ for the ranking d ≺ c ≺ b ≺ a.

The number of changes needed to impose monotonicity w.r.t. each possible ranking

on A is summarized in Table 6.8.

Ranking Rev. Ranking Rev. Ranking Rev. Ranking Rev.

d ≺ c ≺ b ≺ a 4 c ≺ d ≺ b ≺ a 12 b ≺ d ≺ c ≺ a 15 a ≺ d ≺ c ≺ b 10

d ≺ c ≺ a ≺ b 8 c ≺ d ≺ a ≺ b 9 b ≺ d ≺ a ≺ c 16 a ≺ d ≺ b ≺ c 15

d ≺ b ≺ c ≺ a 7 c ≺ b ≺ d ≺ a 13 b ≺ c ≺ d ≺ a 14 a ≺ c ≺ d ≺ b 11

d ≺ b ≺ a ≺ c 13 c ≺ b ≺ a ≺ d 14 b ≺ c ≺ a ≺ d 15 a ≺ c ≺ b ≺ d 14

d ≺ a ≺ c ≺ b 9 c ≺ a ≺ d ≺ b 10 b ≺ a ≺ d ≺ c 17 a ≺ b ≺ d ≺ c 16

d ≺ a ≺ b ≺ c 12 c ≺ a ≺ b ≺ d 13 b ≺ a ≺ c ≺ d 16 a ≺ b ≺ c ≺ d 15

Table 6.8: The number of changes needed to impose monotonicity w.r.t. each ranking
on X.

The notion of monotonicity of weak votrices can be easily extended from a
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votrix.

Definition 6.9 (Weak votrix). Let A be a set of n samples and nU be the number

of untrained panellists. A matrix Ṽ ∈ {0, 1, . . . , nU}n×n is called a weak votrix on

A if there exists a profile r̃ of nU rankings with ties, such that for any two samples

ai1 , ai2 ∈ A, it holds that

Ṽj1j2 = #{i ∈ {1, . . . , nU} | aj2 -i aj1} .

Definition 6.10 (Monotone weak votrix). A weak votrix is said to be monotone

w.r.t. a ranking ≺ on the set A (with corresponding order relation @) if, for any

(ai1 , aj1), (ai2 , aj2) ∈ A2, such that ai1 6= aj1 , ai2 6= aj2 and (ai2 , aj2) @ (ai1 , aj1),

it holds that

Ṽi2j2 ≤ Ṽi1j1 , Ṽj1i1 ≤ Ṽj2i2 .

It must be noted that there always exists the natural notion of a sample being in

between two other samples. This notion is captured by the betweenness relation, as

defined in Chapter 5 (Definition 5.2). Note that transitivity axioms are necessary

conditions in order to guarantee the existence of an order relation that agrees with

a betweenness relation. We refer to [117] for further details about order relations

and their relationship with betweenness relations.

6.3. Consensus state problem

In most of the aforedescribed methods, deciding on the winning ranking is done

by imposing certain conditions on the profile of rankings. As these important

conditions allow to decide on the winner, they are called consensus states. A

consensus state satisfies the following three properties:

(i) Anonymity (the principle that all panellists are treated equally, such that

any permutation of (rankings provided by the) panellists should not affect

the belonging to the consensus state).

(ii) Neutrality (the principle that all samples are treated equally, such that any

permutation of samples in all the rankings provided by the panellists should

result in the same permutation in the consensus state).

(iii) Unanimity (the principle of reaching the highest consensus state, such that

if the same ranking is provided by all the panellists, then it belongs to the

consensus state).

Note that every profile of rankings does not usually satisfy a consensus state due

to the fact that is quite restrictive. Therefore, to aggregate a profile of rankings,
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it is easier to search for the ‘closest’ profile of rankings in the chosen consensus

state.

It has been argued that most ranking rules minimize the number of changes between

the consensus state that needs to be reached from the profile of rankings [112, 150].

As discussed in [27], the aggregation of rankings can generally be understood as

a two-step procedure that measures the closeness to a desired consensus state in

which determining the result of the aggregation of the given rankings is obvious, as

follows:

(i) The ‘closest’ profile of rankings r∗ in a consensus state is chosen based on a

distance function.

(ii) The winning ranking ≺∗ is obtained by analysing the consensus state.

Note that the Borda count is one of the ranking rules that does not require any

specific consensus state, since the winning ranking is determined by ordering the

samples based on the total number of points they were awarded. The method of

Kemeny uses the trivial notion of unanimity, where each panellist expresses the

exact same ranking on the set of samples. Requiring a profile of rankings to be

unanimous is a very restrictive property. Therefore, the presence of a Condorcet

ranking, which is a less restrictive property, is commonly accepted. This consensus

state holds when there exists a ranking such that every sample is preferred by at

least nU

2 panellists to all the samples ranked at a worse position. Another consensus

state is that of monotonicity of the votrix, where the number of panellists providing

each ranking should be decreasing on the Hasse diagram of @ for the profile of

rankings r associated with the ‘true’ ranking of the samples.

6.4. The optimization problem

In this chapter, we are interested in obtaining the ‘closest’ profile of rankings

satisfying a certain property given a profile of rankings r. Therefore, similar to the

search for a closest matrix of labels in Chapter 5 (Section 5.5), the search for a

closest profile of rankings (in the case of Condorcet ranking or monotone votrix)

can also be done by solving a transportation problem [123].

Note that in our setting, each ranking in R is both a supply point and a demand

point. The quantity of product produced at each supply point is given by r and,

as the number of rankings needs to be preserved, all the produced units need to be

transported to a demand point.

We define (n!)2 variables auv (u, v ∈ {1, . . . , n!}) taking values in the set N ∪ {0},
n being the number of samples in A. For any u, v ∈ {1, . . . , n!}, auv = m means

that m units of the u-th ranking in R are assigned to m units of the v-th ranking

in R. We have an initial profile of rankings where the u-th ranking appears su
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times. These values su can be seen as the number of units of product that are

produced at each supply point. The goal is to distribute these products satisfying

the required monotonicity of the votrix constraint. Finally, we consider the lowest

cost resulting from the transportation problem, as follows:

Minimize

n!∑
u=1

n!∑
v=1

Cuvauv w.r.t. {auv}

s.t.

n!∑
v=1

auv = su, for any u, v ∈ {1, . . . , n!} ,

auv ≥ 0, for any u, v ∈ {1, . . . , n!} ,
auv ∈ Z, for any u, v ∈ {1, . . . , n!} ,
P, the property to be satisfied by the profile of rankings ,

where Cuv denotes the cost of changing the u-th ranking in the profile of rankings

r into the v-th ranking in the set of all possible rankings R.

Thus, the optimization problem leads to the computation of a closest monotone

profile of rankings w.r.t. the profile of rankings r. This computation is done in

polynomial time in terms of n!. Obviously, this is a computational drawback for

sets of samples of large cardinality, even though the number of food samples is

typically quite small in sensory evaluation.

6.5. Application of ranking rules to sensory data

In this section, we apply the methods discussed in this chapter to the datasets

gathered from the ranking tests in Chapter 4, where samples of chicken breasts, cod,

brown shrimp and salmon samples are ranked in terms of freshness. Note that if

the goal of an experiment is to obtain a consensus ranking with no ties (respectively,

with ties), then the search for the ‘closest’ profile of rankings is measured on R

(respectively, R̃).

6.5.1. Chicken breast

We consider the results of experiments L4 and H4 in each group (1, 2, 3 and 4) and

for every session (1 and 2) in Table A.2, where two to four panellists ranked the

chicken samples described in Table 4.3, and we apply the aforedescribed methods

to determine the consensus rankings of these samples. The consensus rankings of

these samples according to the different methods are shown in Table 6.9.

Note that we will discuss the consensus rankings of sets of chicken samples with

the most interesting results.
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Consensus ranking for group 1

Session 1

Method L4 H4

Min. sum of Borda counts a9 ≺ a5 ≺ a7 ≺ a0 a9 ≺ a7 ∼ a0 ≺ a5

Search for unanimity a9 ≺ a5 ≺ a7 ≺ a0 a9 ≺ a7 ≺ a0 ≺ a5

Search for Condorcet ranking a9 ≺ a5 ≺ a7 ≺ a0 a9 ≺ a0 ≺ a7 ≺ a5

Search for monotone votrix
a9 ≺ a5 ≺ a7 ≺ a0 a9 ≺ a7 ≺ a0 ≺ a5

a9 ≺ a0 ≺ a7 ≺ a5

Session 2

Method L4 H4

Min. sum of Borda counts a15 ≺ a13 ≺ a11 a11 ≺ a13 ≺ a15

Search for unanimity a15 ≺ a13 ≺ a11 a11 ≺ a13 ≺ a15

Search for Condorcet ranking a15 ≺ a13 ≺ a11 a11 ≺ a13 ≺ a15

Search for monotone votrix a15 ≺ a13 ≺ a11 a11 ≺ a13 ≺ a15

Table 6.9: Consensus rankings of chicken samples described in Table 4.3 for experiments
L4 and H4 in every session (1 and 2), in Table A.2, for the different methods. The symbol
‘*’ means that the ranking is the closest Condorcet ranking.

Group 1

The consensus ranking of the set of chicken samples {a0, a5, a7, a9} in session 1 of

experiment L4 for group 1 according to the minimum sum of the Borda counts and

according to the search for unanimity, Condorcet ranking, and monotone votrix is

a9 ≺ a5 ≺ a7 ≺ a0. We conclude that all the methods yield the same result.

Based on the consensus rankings of the set of chicken samples {a0, a5, a7, a9} in

session 1 of experiment H4 for group 1 according to the different methods, we

conclude that sample a5 is most preferred, sample a9 is least preferred, and that

the order of samples a0 and a7 is unclear. This is due to the very small number of

panellists (four) who have a disagreement on the ranking of the samples.

Group 2

The consensus ranking of the set of chicken samples {a9, a13, a15} in session 2 of ex-

periment H4 for group 1 according to the minimum sum of the Borda counts and ac-

cording to the search for Condorcet ranking, and monotone votrix is a15 ≺ a13 ≺ a9.

We note that the consensus rankings according to the search for unanimity are

a15 ≺ a13 ≺ a9 and a13 ≺ a15 ≺ a9. We conclude that sample a9 is most preferred,

and that it is unclear which of the samples a13 and a15 is least preferred. This is

due to the very small number of panellists (four) who have a disagreement on the

ranking of the samples.
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Consensus ranking for group 2

Session 1

Method L4 H4

Min. sum of Borda counts a11 ≺ a5 ≺ a7 ≺ a0 a11 ≺ a7 ∼ a5 ∼ a0

Search for unanimity

a11 ≺ a5 ≺ a7 ≺ a0 a11 ≺ a7 ≺ a5 ≺ a0
a11 ≺ a7 ≺ a0 ≺ a5
a11 ≺ a0 ≺ a7 ≺ a5
a11 ≺ a5 ≺ a0 ≺ a7
a11 ≺ a5 ≺ a7 ≺ a0

Search for Condorcet ranking

a11 ≺ a5 ≺ a7 ≺ a0 a11 ≺ a7 ≺ a5 ≺ a0*

a11 ≺ a7 ≺ a0 ≺ a5*

a11 ≺ a5 ≺ a7 ≺ a0*

a11 ≺ a5 ≺ a0 ≺ a7*

a11 ≺ a0 ≺ a7 ≺ a5*

a11 ≺ a0 ≺ a5 ≺ a7*

Search for monotone votrix

a11 ≺ a5 ≺ a7 ≺ a0 a11 ≺ a7 ≺ a5 ≺ a0
a11 ≺ a7 ≺ a0 ≺ a5
a11 ≺ a5 ≺ a7 ≺ a0
a11 ≺ a5 ≺ a0 ≺ a7
a11 ≺ a0 ≺ a7 ≺ a5
a11 ≺ a0 ≺ a5 ≺ a7

Session 2

Method L4 H4

Min. sum of Borda counts a15 ≺ a13 ≺ a9 a13 ≺ a15 ≺ a9

Search for unanimity
a15 ≺ a13 ≺ a9 a13 ≺ a15 ≺ a9
a13 ≺ a15 ≺ a9

Search for Condorcet ranking a15 ≺ a13 ≺ a9* a13 ≺ a15 ≺ a9

Search for monotone votrix a15 ≺ a13 ≺ a9 a13 ≺ a15 ≺ a9

Table 6.9: (Continued) Consensus rankings of chicken samples described in Table 4.3 for
experiments L4 and H4 in every session (1 and 2), in Table A.2, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

Group 3

Based on the consensus rankings of the set of chicken samples {a0, a7, a9, a15} in

session 1 of experiment L4 for group 3 according to the different methods, we

conclude that sample a9 is least preferred, followed by sample a15, and that it is

unclear which sample between samples a0 and a7 is most preferred. This is due

to the very small number of panellists (three) who have a disagreement on the

ranking of the samples.

Based on the consensus rankings of the set of chicken samples {a0, a7, a9, a15} in
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Consensus ranking for group 3

Session 1

Method L4 H4

Min. sum of Borda counts a9 ≺ a15 ≺ a7 ∼ a0 a15 ∼ a7 ≺ a9 ≺ a0

Search for unanimity

a9 ≺ a15 ≺ a0 ≺ a7 a15 ≺ a9 ≺ a7 ≺ a0
a15 ≺ a7 ≺ a9 ≺ a0
a15 ≺ a7 ≺ a0 ≺ a9
a9 ≺ a15 ≺ a7 ≺ a0
a9 ≺ a7 ≺ a15 ≺ a0
a7 ≺ a15 ≺ a9 ≺ a0
a7 ≺ a15 ≺ a0 ≺ a9
a7 ≺ a9 ≺ a15 ≺ a0

Search for Condorcet ranking
a9 ≺ a15 ≺ a0 ≺ a7 a15 ≺ a9 ≺ a7 ≺ a0*

a9 ≺ a15 ≺ a7 ≺ a0*

Search for monotone votrix
a9 ≺ a15 ≺ a7 ≺ a0 a15 ≺ a7 ≺ a9 ≺ a0
a9 ≺ a15 ≺ a0 ≺ a7 a7 ≺ a15 ≺ a9 ≺ a0

Session 2

Method L4 H4

Min. sum of Borda counts a11 ≺ a13 ≺ a5 a11 ≺ a13 ≺ a5

Search for unanimity a11 ≺ a13 ≺ a5 a11 ≺ a13 ≺ a5

Search for Condorcet ranking a11 ≺ a13 ≺ a5* a11 ≺ a13 ≺ a5

Search for monotone votrix a11 ≺ a13 ≺ a5 a11 ≺ a13 ≺ a5

Table 6.9: (Continued) Consensus rankings of chicken samples described in Table 4.3 for
experiments L4 and H4 in every session (1 and 2), in Table A.2, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

session 1 of experiment H4 according to the different methods, the overall ranking

of these samples is unclear. This is due to the very small number of panellists (two)

who have a disagreement on the ranking of the samples.

Group 4

Based on the consensus rankings of the set of chicken samples {a0, a9, a15} in

session 2 of experiment L4 for group 4 according to the different methods, we

conclude that sample a0 is most preferred, and that it is unclear which of the

samples a9 and a15 is least preferred. This is due to the very small number of

panellists (four) who have a disagreement on the ranking of the samples.

We now consider the results of experiments L8 and H8 in Table A.3, where fourteen

panellists ranked the chicken samples described in Table 4.3, and we apply the

aforedescribed methods to determine the consensus rankings of these samples. The

consensus rankings of these samples according to the different methods are shown
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Consensus ranking for group 4

Session 1

Method L4 H4

Min. sum of Borda counts a13 ≺ a11 ≺ a5 ≺ a7 a11 ≺ a13 ≺ a7 ≺ a5

Search for unanimity a13 ≺ a11 ≺ a5 ≺ a7 a11 ≺ a13 ≺ a7 ≺ a5

Search for Condorcet ranking a13 ≺ a11 ≺ a5 ≺ a7 a11 ≺ a13 ≺ a7 ≺ a5

Search for monotone votrix a13 ≺ a11 ≺ a5 ≺ a7 a11 ≺ a13 ≺ a7 ≺ a5

Session 2

Method L4 H4

Min. sum of Borda counts a15 ∼ a9 ≺ a0 a9 ≺ a15 ≺ a0

Search for unanimity
a15 ≺ a9 ≺ a0 a9 ≺ a15 ≺ a0
a9 ≺ a15 ≺ a0

Search for Condorcet ranking
a15 ≺ a9 ≺ a0* a9 ≺ a15 ≺ a0
a9 ≺ a15 ≺ a0*

Search for monotone votrix
a15 ≺ a9 ≺ a0 a9 ≺ a15 ≺ a0
a9 ≺ a15 ≺ a0

Table 6.9: (Continued) Consensus rankings of chicken samples described in Table 4.3 for
experiments L4 and H4 in every session (1 and 2), in Table A.2, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

in Table 6.10.

Consensus ranking

Method L8 H8

Min. sum of Borda counts a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a0 ≺ a2

Search for unanimity

a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a0 ≺ a2
a5 ≺ a6 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a0 ≺ a4 ≺ a2

a6 ≺ a5 ≺ a0 ≺ a2 ≺ a4

Search for Condorcet ranking
a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a0 ≺ a2*

a6 ≺ a5 ≺ a0 ≺ a4 ≺ a2*

Search for monotone votrix a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0

Table 6.10: Consensus rankings of chicken samples described in Table 4.3 for experiments
L8 and H8, in Table A.3, for the different methods. The symbol ‘*’ means that the
ranking is the closest Condorcet ranking.

The consensus ranking of the set of chicken samples {a0, a2, a4, a5, a6} in experiment

L8 according to the minimum sum of the Borda counts and according to the

search for Condorcet ranking, and monotone votrix is a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0.

We note that the consensus rankings according to the search for unanimity are
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a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 and a5 ≺ a6 ≺ a4 ≺ a2 ≺ a0. Therefore, we conclude that

sample a0 is most preferred, followed by samples a2 and a4, in that order, and

that it is unclear which of the samples a5 and a6 is least preferred. This is due

to a slight disagreement among the panellists, where one half of the panellists has

preferred sample a5 over a6, while the other half of the panellists has preferred

sample a6 over a5, as shown in Table A.3.

Based on the consensus rankings of the set of chicken samples {a0, a2, a4, a5, a6} in

experiment H8 according to the different methods, we conclude that sample a6 is

least preferred, followed by sample a5, and that the order of samples {a0, a2, a4}
according to preference is unclear. This is due to a large disagreement among the

panellists.

6.5.2. Atlantic cod

We consider the results of experiments L4, H4 and H8 for every session (1 and

2) and experiments L8 and A4 in Table A.6, where eight to ten panellists ranked

the cod samples described in Table 4.6, and we apply the aforedescribed methods

to determine the consensus rankings of these samples. The consensus rankings of

these samples according to the different methods are shown in Table 6.11.

Note that we will discuss the consensus rankings of sets of cod samples with the

most interesting results.

The consensus ranking of the set of cod samples {a0, a4, a8, a13} in session 1

of experiment L4 according to the minimum sum of the Borda counts and ac-

cording to the search for unanimity, Condorcet ranking, and monotone votrix is

a13 ≺ a8 ≺ a4 ≺ a0. We conclude that all the methods yield the same result.

Based on the consensus rankings of the set of cod samples {a0, a3, a5, a7} in session 1

of experiment H8 according to the different methods, we conclude that sample

a0 is most preferred, followed by sample a3, and that it is unclear which of the

samples a5 and a7 is least preferred. This is due to a slight disagreement among

the panellists, where one half of the panellists has preferred sample a5 over a7,

while the other half of the panellists has preferred sample a7 over a5, as shown in

Table A.6.

Based on the consensus rankings of the set of cod samples {a3, a4, a5, a6} in session 2

of experiment H8 according to the different methods, we conclude that sample

a5 is least preferred, followed by sample a6, and that it is unclear which of the

samples a3 and a4 is most preferred. This is due to a slight disagreement among

the panellists, as shown in Table A.6.

Based on the consensus rankings of the set of cod samples {a0, a3, a5, a7} in

experiment L8 according to the different methods, we conclude that sample a0 is

most preferred, followed by sample a3, and that it is unclear which of the samples a5
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Consensus ranking

Session 1

Method L4 H4 H8

Min. sum of Borda counts a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a5 ≺ a7 ≺ a3 ≺ a0

Search for unanimity
a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

a5 ≺ a7 ≺ a3 ≺ a0

Search for Condorcet ranking
a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0*

a5 ≺ a7 ≺ a3 ≺ a0*

Search for monotone votrix a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

Session 2

Method L4 H4 H8

Min. sum of Borda counts a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a8 ≺ a7 ≺ a6 a5 ≺ a6 ≺ a4 ≺ a3

Search for unanimity
a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a8 ≺ a7 ≺ a6 a5 ≺ a6 ≺ a4 ≺ a3

a5 ≺ a6 ≺ a3 ≺ a4

Search for Condorcet ranking
a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a8 ≺ a7 ≺ a6 a5 ≺ a6 ≺ a4 ≺ a3*

a5 ≺ a6 ≺ a3 ≺ a4*

Search for monotone votrix a8 ≺ a7 ≺ a5 ≺ a6 a11 ≺ a8 ≺ a7 ≺ a6 a5 ≺ a6 ≺ a4 ≺ a3

Method L8 A4

Min. sum of Borda counts a7 ∼ a5 ≺ a3 ≺ a0 a3 ≺ a2 ∼ a0 ≺ a1

Search for unanimity a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a2 ≺ a0 ≺ a1

Search for Condorcet ranking a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a2 ≺ a0 ≺ a1

Search for monotone votrix
a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a2 ≺ a0 ≺ a1
a5 ≺ a7 ≺ a3 ≺ a0 a3 ≺ a0 ≺ a2 ≺ a1

Table 6.11: Consensus rankings of cod samples described in Table 4.6 for experiments
L4, H4 and H8 in every session (1 and 2) and experiments L8 and A4, in Table A.6, for
the different methods. The symbol ‘*’ means that the ranking is the closest Condorcet
ranking.

and a7 is least preferred. This is due to a slight disagreement among the panellists,

where five panellists have preferred sample a5 over a7, while the remaining four

panellists have preferred sample a7 over a5, as shown in Table A.6.

Based on the consensus rankings of the set of cod samples {a0, a1, a2, a3} in

experiment A4 according to the different, we conclude that sample a1 is most

preferred, sample a3 is least preferred, and that the order of samples a0 and a2

is unclear. This is due to a slight disagreement among the panellists, where five

panellists have preferred sample a0 over a2, while the remaining three panellists

have preferred sample a2 over a0, as shown in Table A.6.

130



§6.5. Application of ranking rules to sensory data

6.5.3. Brown shrimp

We consider the results of experiments L4 and H4 for every session (1 and 2) in

Table A.8, where eight to ten panellists ranked the shrimp samples described in

Table 4.9, and we apply the aforedescribed methods to determine the consensus

rankings of these samples. The consensus rankings of these samples according to

the different methods are shown in Table 6.12.

Consensus ranking

Session 1

Method L4 H4

Min. sum of Borda counts a10 ≺ a5 ≺ a3 ∼ a0 a12 ≺ a7 ≺ a3 ≺ a0

Search for unanimity a10 ≺ a5 ≺ a0 ≺ a3 a12 ≺ a7 ≺ a3 ≺ a0

Search for Condorcet ranking a10 ≺ a5 ≺ a0 ≺ a3 a12 ≺ a7 ≺ a3 ≺ a0

Search for monotone votrix a10 ≺ a5 ≺ a3 ≺ a0 a12 ≺ a7 ≺ a3 ≺ a0

Session 2

Method L4 H4

Min. sum of Borda counts a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ∼ a0

Search for unanimity a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ≺ a0

Search for Condorcet ranking a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ≺ a0

Search for monotone votrix a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a0 ≺ a3

Table 6.12: Consensus rankings of shrimp samples described in Table 4.9 for experiments
L4 and H4 in every session (1 and 2), in Table A.8, for the different methods.

We note that the methods show multiple consensus rankings of the set of shrimp

samples {a0, a3, a5, a10} in session 1 of experiment L4. However, we deduce that

sample a10 is least preferred, followed by sample a5, and that it is unclear which

of the samples a0 and a3 is most preferred. This is due to a slight disagreement

among the panellists, where five panellists have preferred sample a0 over a3,

while the remaining four panellists have preferred sample a3 over a0, as shown in

Table A.8.

We conclude that all the methods yield the consensus ranking a12 ≺ a7 ≺ a3 ≺ a0
for the set of shrimp samples {a0, a3, a7, a12} in session 1 of experiment H4,

and yield the consensus ranking a10 ≺ a5 ≺ a3 ≺ a0 of the set of shrimp samples

{a0, a3, a5, a10} in session 2 of experiment L4.

Based on the consensus rankings of the set of shrimp samples {a0, a3, a5, a7} in

session 2 of experiment H4 according to the different methods, we conclude that
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sample a7 is least preferred, followed by sample a5, and that it is unclear which of the

samples a0 and a3 is most preferred. This is due to a slight disagreement among the

panellists, where six panellists have preferred sample a0 over a3, while the remaining

four panellists have preferred sample a3 over a0, as shown in Table A.8.

6.5.4. Atlantic salmon

Session 1

First, we consider the results of experiments H4, AN4, ANH4, A4, L4 and M4 for

session 1 in Table A.10, where eight to twelve panellists ranked the salmon samples

described in Table 4.12, and we apply the aforedescribed methods to determine

the consensus rankings of these samples. The consensus rankings of these samples

according to the different methods are shown in Table 6.13.

Note that we will discuss the consensus rankings of sets of salmon samples with

the most interesting results.

Consensus ranking

Session 1

Method H4 AN4 ANH4

Min. sum of Borda counts a11 ≺ a9 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for unanimity
a11 ≺ a9 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

a9 ≺ a13 ≺ a5 ≺ a1

Search for Condorcet ranking a11 ≺ a9 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1* a11 ≺ a9 ≺ a5 ≺ a1
a9 ≺ a13 ≺ a5 ≺ a1*

Search for monotone votrix a11 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a13 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Method A4 L4 M4

Min. sum of Borda counts a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for unanimity a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for Condorcet ranking a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for monotone votrix a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Table 6.13: Consensus rankings of salmon samples described in Table 4.12 for experiments
H4, AN4, ANH4, A4, L4 and M4 in session 1 in Table A.10, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

The consensus ranking of the set of salmon samples {a1, a5, a9, a11} in session 1

of experiment H4 according to the minimum sum of the Borda counts and ac-

cording to the search for unanimity, Condorcet ranking, and monotone votrix is

a11 ≺ a9 ≺ a5 ≺ a1. We conclude that all the methods yield the same result.
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Based on the consensus rankings of the set of salmon samples {a1, a5, a9, a13} in

session 1 of experiment AN4 according to the different methods, we conclude that

sample a1 is most preferred, followed by sample a5, and that it is unclear which

of the samples a9 and a13 is most preferred. This is due to a slight disagreement

among the panellists, where one half of the panellists has preferred sample a9 over

a13, while the other half of the panellists has preferred sample a13 over a9, as shown

in Table A.10.

Session 2

Second, we consider the results of experiments H4, AN4, ANH4 and A4 for the other

three sessions (2, 3 and 4) in Table A.10, where five to twelve panellists ranked the

salmon samples described in Table 4.12, and we apply the aforedescribed methods

to determine the consensus rankings of these samples. The consensus rankings of

these samples according to the different methods are shown in Table 6.14.

Consensus ranking

Session 2

Method H4 AN4

Min. sum of Borda counts a7 ≺ a5 ≺ a3 ∼ a1 a11 ≺ a9 ≺ a7 ≺ a3

Search for unanimity a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3

Search for Condorcet ranking a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3

Search for monotone votrix a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3

Method ANH4 A4

Min. sum of Borda counts a7 ≺ a3 ∼ a1 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1

Search for unanimity a7 ≺ a3 ≺ a1 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1

Search for Condorcet ranking a7 ≺ a3 ≺ a1 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1

Search for monotone votrix
a7 ≺ a3 ≺ a1 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1
a7 ≺ a1 ≺ a3 ≺ a5

Table 6.14: Consensus rankings of salmon samples described in Table 4.12 for experiments
H4, AN4, ANH4 and A4 in sessions 2, 3 and 4 in Table A.10, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

The consensus ranking of the set of salmon samples {a1, a3, a5, a7} in session 2

of experiment H4 according to the search for unanimity, Condorcet ranking, and

monotone votrix is a7 ≺ a5 ≺ a3 ≺ a1. We note that the consensus ranking accord-

ing to the minimum sum of the Borda counts is a7 ≺ a5 ≺ a3 ∼ a1. We conclude

that sample a7 is least preferred, followed by sample a5, and that it is unclear

which of the samples a3 and a1 is most preferred. This is due to a slight disagree-

ment among the panellists, where five panellists have preferred sample a3 over a1,

while the remaining three panellists have preferred sample a1 over a3, as shown in
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Consensus ranking

Session 3

Method H4 AN4

Min. sum of Borda counts a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for unanimity a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for Condorcet ranking a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Search for monotone votrix a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

Method ANH4 A4

Min. sum of Borda counts a11 ≺ a5 ≺ a9 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1

Search for unanimity

a11 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1
a11 ≺ a5 ≺ a9 ≺ a1
a11 ≺ a5 ≺ a1 ≺ a9

Search for Condorcet ranking a11 ≺ a9 ≺ a5 ≺ a1* a9 ≺ a11 ≺ a5 ≺ a1
a11 ≺ a5 ≺ a9 ≺ a1*

Search for monotone votrix a11 ≺ a5 ≺ a9 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1

Table 6.14: Consensus rankings of salmon samples described in Table 4.12 for experiments
H4, AN4, ANH4 and A4 in sessions 2, 3 and 4 in Table A.10, for the different methods.
The symbol ‘*’ means that the ranking is the closest Condorcet ranking.

Consensus ranking

Session 4

Method H4 AN4

Min. sum of Borda counts a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3

Search for unanimity a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3

Search for Condorcet ranking a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3

Search for monotone votrix a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3

Method ANH4 A4

Min. sum of Borda counts a7 ≺ a5 ∼ a1 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

Search for unanimity a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

Search for Condorcet ranking a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

Search for monotone votrix a7 ≺ a1 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

Table 6.14: (Continued) Consensus rankings of salmon samples described in Table 4.12
for experiments H4, AN4, ANH4 and A4 in sessions 2, 3 and 4 in Table A.10, for the
different methods. The symbol ‘*’ means that the ranking is the closest Condorcet ranking.
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Table A.10.

Based on the consensus rankings of the set of salmon samples {a1, a3, a5, a7} in

session 2 of experiment ANH4 according to the different methods. However, we

deduce that sample a5 is most preferred, sample a7 is least preferred, and that

the order of the samples a1 and a3 is unclear. This is due to the small number of

panellists (five) who have slight disagreement, as shown in Table A.10.

Session 3

Based on the consensus rankings of the set of salmon samples {a1, a5, a9, a11} in

session 3 of experiment ANH4 according to the different methods, we conclude

that sample a11 is least preferred, and that the order of the samples a1, a5 and a9

is unclear. This is due to a large disagreement among the panellists, as shown in

Table A.10.

Session 4

The consensus ranking of the set of salmon samples {a1, a3, a5, a7} in session 4 of

experiment ANH4 according to the search for unanimity, Condorcet ranking, and

monotone votrix is a7 ≺ a5 ≺ a1 ≺ a3. We note that the consensus ranking accord-

ing to the minimum sum of the Borda counts and according to is a7 ≺ a5 ∼ a1 ≺ a3.

We deduce that sample a3 is most preferred, sample a7 is least preferred, and

that the order of samples a1 and a5 is unclear. This is due to a slight disagree-

ment among the panellists, where five panellists have preferred sample a1 over

a5, while the other four panellists have preferred sample a5 over a1, as shown in

Table A.10.

Ranking with ties

Based on the consensus rankings of the set of salmon samples in every group, we

conclude that sample D5 is preferred the least followed by sample C4 in group 2,

sample C5 is preferred the least followed by sample D6 in group 3, sample D7 is

preferred the least and sample A4 is preferred the most in group 4, and sample C7

is preferred the least followed by sample D8 in group 5.

6.6. Conclusions

In this chapter, we have discussed methods that are characterized by a distance

function and a consensus state. In addition, we have discussed the use of monomet-

rics that are endorsed by the fact that they better fit the nature of the problem

of looking for the ‘closest’ profile of rankings in the chosen consensus state. We

have presented the search of these ‘closest’ profiles in a consensus state as an

optimization problem. Finally, the discussed methods have been illustrated using
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Group 1 Group 2 Group 3

Method Tuesday Thursday Monday

Min. sum of Borda counts C3 ≺ D4 ≺ A1 ≺ B2 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ D6 ≺ A3 ≺ B4

Search for unanimity

C3 ≺ D4 ≺ B2 ∼ A1 D5 ≺ C4 ≺ B3 ∼ A2 C5 ≺ D6 ∼ A3 ≺ B4

D5 ≺ C4 ∼ B3 ∼ A2 C5 ≺ D6 ≺ B4 ∼ A3

D5 ≺ C4 ∼ B3 ≺ A2

D5 ≺ C4 ≺ B3 ≺ A2

Search for Condorcet weak order C3 ≺ D4 ≺ A1 ≺ B2 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ D6 ≺ A3 ≺ B4

Search for weak monotone votrix
D4 ≺ C3 ≺ A1 ≺ B2 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ D6 ≺ A3 ≺ B4

D4 ≺ C3 ≺ B2 ∼ A1

Group 4 Group 5

Method Wednesday Friday

Min. sum of Borda counts D7 ≺ B5 ≺ C6 ≺ A4 C7 ≺ D8 ≺ A5 ≺ B6

Search for unanimity D7 ≺ C6 ∼ B5 ≺ A4 C7 ≺ D8 ≺ A5 ≺ B6

Search for Condorcet weak order D7 ≺ B5 ≺ C6 ≺ A4 C7 ≺ D8 ≺ A5 ≺ B6

Search for weak monotone votrix
D7 ≺ B5 ≺ C6 ≺ A4 C7 ≺ D8 ≺ A5 ≺ B6

D7 ≺ C6 ∼ B5 ≺ A4 C7 ≺ D8 ≺ B6 ∼ A5

Table 6.15: The consensus rankings of salmon samples (A, B, C, D) in each group (1–4).

the sensory data gathered in Chapter 4 to obtain the consensus ranking of each

ranking experiment.

As we have previously mentioned, trained panellists and untrained panellists may

provide different kinds of information, such as, absolute and relative information,

respectively. These types of information can be combined in order to exploit the

information expressed by both trained and untrained panellists. In Chapter 7, we

introduce a first attempt at integrating absolute information, in the form of vectors

of scores, with rankings to improve the accuracy of the consensus ranking.
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7.1. Introduction

So far, we have discussed sensory evaluation performed by either trained (labelling)

or untrained (ranking) panels, however, it has been shown that both approaches

have their limitations [151, 21]. On the one hand, trained panellists are a limited

and (in some cases) very expensive source of (absolute) information. As a result,

there usually is a limited amount of data available to obtain a reasonable consensus

evaluation and determine the overall quality of a sample. On the other hand,

Rodrigue et al. [151] have suggested that one should instead consider untrained

panellists, with the obvious limitation of requiring a much greater number of
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panellists. Interestingly, untrained panellists could provide a cost-efficient source

of additional information. It is common that untrained panellists rank (two or

more) samples according to their personal degree of appreciation, yielding relative

information [24]. Conceptually, ranking of samples is recognized as a simpler task

than assigning scores [31] and is thus preferred for untrained panellists. Obviously,

absolute and relative information have different properties [152], and the methods

for gathering them have different limitations.

In this chapter, we focus on absolute and relative information in the form of

scores and rankings, respectively. Scores are typically discrete, equally spaced and

non-decimal values on an ordinal scale, thus, allowing for straightforward analysis

to determine the overall quality of a sample.

Studies in the field of social science on values and preference have recommended

the use of both scoring and ranking methods [153, 154] to provide a complete

understanding of the appreciation of samples. Recently, there has been a simulta-

neous adoption of scoring methods for determining the quality of food samples and

ranking methods for determining the existence of a significant difference between

the samples [52, 155, 156, 157]. However, the data resulting from these methods

were dealt with separately. Therefore, we advocate for a combined scoring and

ranking approach, resulting in a method for simultaneously exploiting the scores

and rankings, something that has not been previously developed.

In this chapter, we first propose an approach for integrating1 rankings provided

by untrained panellists with scores provided by trained panellists to improve the

assessment of the quality of the consensus score. We propose a second approach

for integrating scores with rankings to improve the assessment of the quality of the

consensus ranking. We make a first attempt at a combined scoring and ranking

approach to determine the consensus score that describes the overall quality of

a food sample or to determine the consensus ranking that describes the overall

ranking of multiple food samples in terms of preference by considering the median

and the Kemeny median because of their similarities (both of them minimize an

`1-type of distance).

On the one hand, quality control, where trained panellists could probably never be

replaced by untrained panellists [158], is a great example of where the developed

method for determining a consensus score of a sample would be of most use.

Research has shown that untrained panellists may be not be well-equiped in

accurately detecting spoilage, however, they are capable of detecting differences

among samples [21]. In a real-life setting, the number of trained panellists is limited,

thus, additional information obtained from untrained panellists can be exploited.

On the other hand, product development, where consumers (untrained panellists)

could never be represented by trained panellists, is another great example of where

1 We use the verb ‘to integrate’ to specify that the first part is united with the second part on the
basis of equality.
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the developed method for determining a consensus ranking of samples would be

of use. However, in a real-life setting, the number of untrained panellists can

be limited at times. Additional information obtained from a smaller number of

trained panellists would be of higher quality and utmost importance, and, thus,

such information must be exploited alongside.

In food evaluation, some unexploited information about the samples, retrieved from

earlier sensory and other non-sensory sources, is known beforehand. Typical exam-

ples of such information include: the storage days of the food sample, previously

performed sensory evaluation tests, such as ranking, discriminative, or threshold

detection tests, or previously performed clustering analysis of chemical data of the

samples. These types of information are usually relative and hint at some relations

between the consensus scores of the food samples. In this chapter, we make use of

such additional information of several food samples by incorporating2 them into

the scores provided by trained panellists to jointly find the consensus scores of

these samples.

In this chapter, we will answer the following question:

Question III.3: How can we combine scores and rankings to reach an improved

consensus evaluation?

We will discuss our proposed methods for combining scores assigned by trained

panellists and rankings provided by untrained panellists to reach an improved

consensus evaluation (score or ranking). The application of these methods will be

illustrated on the sensory data in Chapter 4.

7.2. Obtaining consensus scores

We start with a description of the methods that constitute the main building blocks

of our approach. We denote by aj the j-th sample in a set A = {a1, . . . , an} of n

samples.

We consider the setting where nT trained panellists each have assigned a score on

a 5-point scale to each of the samples. Note that other k-point scales can also be

used, such that k ∈ N, with a preference for an odd number of points allowing

for a neutral response in case of bipolar scales [159]. Typically, labels are placed

on the scale to specify the sensory attribute to be evaluated, such as intensity,

preference, overall quality, etc. The scale we use throughout this chapter is shown

in Figure 4.2. We denote by sij the score assigned by the i-th panellist to sample

aj , where i ∈ {1, . . . , nT } and j ∈ {1, . . . , n}. We denote by si the vector of scores

(si1, . . . , sin) assigned by the i-th panellist.

2 We use the verb ‘to incorporate’ to specify that the first part is assimilated with the second part
to form a whole.
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The goal is to agree on the consensus score that should be assigned to each sample

in A. We denote by ∂(s, s′) the distance between two scores and by d(s, s′) the

distance between two constant vectors of scores. Since the scale used in this chapter

allows for distances, the distance d can be defined as the sum of distances ∂ for all

the n scores. One could note that several examples of this procedure are commonly

used in practice. The simplest method for assigning a consensus score given a

list of scores is the mode, i.e., the score that appears with the highest frequency

in the scores provided by the panellists. This amounts to computing the sum of

zero-one distances. Another common technique is that of the median, i.e., the score

that separates the lower half from the higher half of the scores provided by the

panellists. This amounts to computing the sum of absolute distances. Arguably,

the third most common method is based on the notion of (arithmetic) mean, i.e.,

the average of the scores provided by the panellists. In case the considered scale is

a continuous segment of the real line, this amounts to computing the root of the

sum of squared differences between two scores.

Repeating the preceding procedure for all samples is equivalent to the following.

In order to describe the three methods at the same time, we consider the more

general setting in which, for each possible vector of scores, we compute the vector

of scores s∗ that minimizes the sum of distances d (for a fixed distance function ∂)

to the vectors of scores assigned by the trained panellists, as follows:

s∗ = arg min
s∈{1,...,k}n

nT∑
i=1

d(s, si) . (7.1)

The minimizer s∗ is thus assigned as the consensus vector of scores (note that there

can be multiple minimizers s∗). To determine s∗, the distance d is computed for

all possible vectors of scores, where the number of n-tuples of a set of 5 scores (also

known as arrangements with repetition) is equal to 5n [160].

Example 7.1. Consider a simple setting where three panellists each assign a score

to four samples a1, a2, a3 and a4 on the 5-point scale fixed in Figure 4.2. The

scores assigned by the panellists are summarized in Table 7.1.

a1 a2 a3 a4

s1 2 1 3 3

s2 2 2 5 4

s3 1 2 3 4

Table 7.1: The scores assigned to the samples a1, a2, a3 and a4 by the trained panellists
in Example 7.1.

To determine the consensus score that should be assigned to each of these samples,
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we consider the problem defined by Eq. (7.1), and, for each of the 625 possible

vectors of scores, we compute the zero-one distance, absolute distance and squared

difference to the vectors of scores s1, s2 and s3 provided by the trained panellists.

For simplicity, we only show the computation for the vector s = (2, 2, 3, 4) and

summarize the results in Table 7.2. We see that, for this vector of scores, the sum

of absolute distances is equal to five.

s (2, 2, 3, 4) d0(s, si) d1(s, si) d2(s, si)

s1 (2, 1, 3, 3) 2 2 2

s2 (2, 2, 5, 4) 1 2 4

s3 (1, 2, 3, 4) 1 1 1

Table 7.2: The zero-one distance d0(s, si), absolute difference d1(s, si) and squared
difference d2(s, si) between s = (2, 2, 3, 4) and each vector of scores s1, s2 and s3 provided
by the trained panellists.

For each of the 625 possible vectors of scores, we compute the sum of absolute

distances and conclude that s∗ = (2, 2, 3, 4) is the vector of scores with the smallest

sum of distances. As a result, we assign s∗ = (2, 2, 3, 4) as the consensus vector of

scores of the four samples.

7.3. Obtaining consensus rankings

We consider the setting where nU untrained panellists each have compared all

samples in the considered set A = {a1, . . . , an} of n samples. The untrained

panellists are asked to provide a complete ranking of the samples, however, they

are allowed to express ties in case they consider two or more samples to be equally

suitable. This results in nU rankings with ties, which we simply refer to as rankings.

We denote by -i the ranking with ties provided by the i-th panellist. Throughout

this chapter, we refer to rankings with ties as rankings. Recall that a ranking of n

samples corresponds to information for n(n− 1)/2 pairs of samples. For instance,

a ranking of three samples, say a1 ≺ a2 ∼ a3, corresponds to information for three

pairs {a1, a2}, {a1, a3} and {a2, a3} and expresses that a2 is ranked above a1, that

a3 is ranked above a1, and that a2 and a3 are tied. The fact that a sample is ranked

above another sample means that the former is preferred over the latter.

The goal is to attain a consensus ranking of the samples in A. We identify the

method of Kemeny [134], which determines the ranking that minimizes the sum of

the Kemeny distances to the rankings provided by the untrained panellists, as a

particularly desirable approach. We recall that the Kemeny distance (Definition 6.5)

between two rankings is computed as follows. Simply stated, for each pair of samples

{au, av}, if both rankings agree on the order of the samples, we write down 0;
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if in one ranking, au is ranked above av (or av is ranked above au) and, in the

other ranking, au and av are tied, we write down 1; and, if in one ranking, au is

ranked above av and, in the other ranking, av is ranked above au, we write down 2.

After writing down the numbers for all n(n− 1)/2 possible pairs, the Kemeny

distance between the two rankings equals the sum of these numbers. Note that

when the rankings contain no ties, the Kemeny distance is equal to the double

of the Kendall distance [141]. We denote by R̃ the set of all possible rankings

with ties. Consequently, for each possible ranking in R̃, we compute the ranking

-∗ that minimizes the sum of Kemeny distances to the rankings provided by the

untrained panellists, as follows:

-∗ = arg min
-∈R̃

nU∑
i=1

dK(-,-i) , (7.2)

where dK(-1,-2) denotes the Kemeny distance between any two rankings -1

and -23. The minimizer -∗, called the Kemeny median, is thus assigned as

the consensus ranking (note that there can be multiple minimizers -∗). To

determine -∗, the distance dK is computed for all possible rankings, where, for

n ≤ 15, the number of possible rankings can be estimated as the nearest integer to

n!/2 (log 2)n+1 [161].

Example 7.2. Consider a simple setting where five panellists each compare four

samples a1, a2, a3 and a4, resulting in five rankings. The rankings are gathered in

Table 7.3.

-1 a1 ∼ a2 ≺ a3 ∼ a4
-2 a1 ≺ a2 ∼ a3 ∼ a4
-3 a1 ∼ a2 ≺ a3 ≺ a4
-4 a1 ≺ a2 ∼ a3 ≺ a4
-5 a1 ∼ a2 ≺ a3 ∼ a4

Table 7.3: The rankings of samples a1, a2, a3 and a4 expressed by the untrained
panellists in Example 7.2.

To determine the consensus ranking of these samples, we consider the problem

defined by Eq. (7.2), and, for each of the 75 rankings, we compute the sum of

the Kemeny distances to the rankings -1, -2, -3, -4 and -5 provided by the

untrained panellists. For simplicity, we only show the computation for the ranking

- = a1 ∼ a2 ≺ a3 ∼ a4 and summarize the results in Table 7.4. We see that, for

this ranking, the sum of the Kemeny distances is equal to seven.

3 Note that the use of superscripts in this example denotes a first and second ranking. This is
not to be confused with the use of subscripts which denote the ranking with ties provided by a
panellist.

142



§7.4. Integrating scores and rankings

- a1 ∼ a2 ≺ a3 ∼ a4 dK(-,-i)

-1 a1 ∼ a2 ≺ a3 ∼ a4 0

-2 a1 ≺ a2 ∼ a3 ∼ a4 3

-3 a1 ∼ a2 ≺ a3 ≺ a4 1

-4 a1 ≺ a2 ∼ a3 ≺ a4 3

-5 a1 ∼ a2 ≺ a3 ∼ a4 0

Table 7.4: The Kemeny distance dK(-,-i) between ≺ = a1 ∼ a2 ≺ a3 ∼ a4 and each
ranking -1, -2, -3, -4 and -5 provided by the untrained panellists.

After computing all the sums of Kemeny distances for each of the 75 rankings,

we conclude that -∗ = a1 ∼ a2 ≺ a3 ∼ a4 is the ranking with the smallest sum of

Kemeny distances. As a result, we assign -∗ = a1 ∼ a2 ≺ a3 ∼ a4 as the consensus

ranking of the four samples.

7.4. Integrating scores and rankings

So far, we have described the median for scores and the Kemeny median for rankings.

In this section, we develop two methods: the first to assign a consensus score to

each sample by integrating rankings with scores, and the second to determine a

consensus ranking of multiple samples by integrating scores with rankings.

7.4.1. Improving the quality of the assessment of a consen-

sus vector of scores

We consider the setting where nT trained panellists each have assigned a score

to each of the n samples in A resulting in the vectors of scores s1, . . . , snT
. Due

to limitations in the number of trained panellists, any additional source of in-

formation could potentially improve the quality of the assessment of a sample.

Thus, assuming that the number of trained panellists is small, we consider that

nU untrained panellists are each asked to rank the n samples in A resulting in the

rankings -1, . . . ,-nU
. Typically, the number of untrained panellists is quite large

(nU > 75) [1].

The goal is to agree on the consensus score that should be assigned to each sample

in A, while integrating rankings with scores. We propose to consider a combination

of the median and Kemeny median associated with the vectors of scores provided

by the trained panellists and the rankings provided by the untrained panellists.

We denote by R̃ the set of all possible rankings of n samples. To compute the
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‘distance’4 between each possible vector of scores s and the rankings provided by

the untrained panellists, we first define the set ϑs of all possible rankings - ∈ R̃

that do not contradict the vector of scores s (i.e., the set of all rankings in which

samples that are assigned larger scores in s are ranked above samples that are

assigned smaller scores in s), as follows:

ϑs =
{
- ∈ R̃

∣∣∣(∀i, j ∈ {1, . . . , n})(si < sj ⇒ ai ≺ aj
) }

. (7.3)

We say that a vector of scores s is not contradicted by a ranking - if - ∈ ϑs. Note

that the set ϑs is never empty. Therefore, we determine the ranking -∗ among

those in ϑs that minimizes the sum of Kemeny distances to the rankings provided

by the untrained panellists, as follows:

-∗ = arg min
-∈ϑs

nU∑
i=1

dK(-,-i) . (7.4)

Combining the sum of absolute distances to the vectors of scores provided by

the trained panellists and the minimal sum of Kemeny distances to the rankings

provided by the untrained panellists requires the definition of a cost function. Thus,

we define Cα(s) as a convex combination of the distances associated with the

vectors of scores provided by the trained panellists and the rankings provided by

the untrained panellists, as follows:

Cα(s) =
α

BT

nT∑
i=1

d1(s, si) +
(1− α)

BU
min
-∈ϑs

nU∑
i=1

dK(-,-i) , (7.5)

where BT = nT ·n · (k−1) and BU = nU ·n · (n−1) are normalizing constants5, and

α ∈ [0, 1] is a weight that controls the influence of the ranking information. Larger

values of α give more importance to the trained panellists, whereas smaller values

of α give more importance to the untrained panellists. At one extreme, when α = 1,

only the scores provided by the trained panellists are used to obtain the vector of

scores that minimizes Cα(s) with no impact from the rankings provided by the

untrained panellists. At the other extreme, when α = 0, only the rankings provided

by the untrained panellists are used to assign the vector of scores that minimizes

Cα(s) with no impact from the scores provided by the trained panellists.

4 We write the word ‘distance’ in between quotation marks since we are comparing objects of
a different nature, and, thus, we are lacking the semantics associated with the mathematical
formalization of a distance (metric).

5 Generally, both terms to be combined in a convex combination may take values with significantly
different orders of magnitude. Hence, to normalize Cα(s), we divide the distances associated with
the vectors of scores and the rankings by their respective upper bounds BT and BU .
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We determine the vector of scores s∗α that minimizes Eq. (7.5), as follows:

s∗α = arg min
s∈{1,...,k}n

Cα(s) . (7.6)

Note that there can be multiple minimizers s∗α for the same α. In decision making

theory, specifically in the area of multiple criteria decision making, the optimization

problem (7.6) is seen as solving multiple objective problems by turning them into

a single objective problem [162, 163, 164].

Since α ∈ [0, 1], it is impossible to compute s∗α for each α. Therefore, bearing

in mind that, for any fixed vector of scores s, f(α) := Cα(s) can be visualized as

a (straight) line, we compare the lines of each possible pair of vectors of scores.

For each possible pair of lines, we distinguish three cases: there are no points of

intersection, there is exactly one point of intersection, or both lines coincide. These

facts can then be used to analytically compute s∗ as a function of α.

Remark The optimization problems (7.6) and (7.10) can also be solved as multi-

objective optimization problems [165, 166], where there is a trade-off between two

(conflicting) objectives: (1) minimizing the distance associated with the vector

of scores and (2) minimizing the distance associated with the rankings. Solving

multi-objective optimization problems can allow researchers to find a representative

set of (Pareto) optimal solutions, and quantify the trade-offs in satisfying the

different objectives. However, solving a multi-objective optimization problem is

not as straightforward as a single-objective optimization problem, as there may

exist, nor non-trivial problems, a large number of Pareto optimal solutions. We

refer to the texts of Multicriteria Optimization by Ehrgott [90] and Evolutionary

Algorithms for Solving Multi-Objective Problems by Coello et al. [167].

The total number of possible vectors of scores is typically larger than the total

number of possible rankings. Note that kn > n!/2 (log 2)n+1, for k ≥ n (i.e., when

the number of points on a k-point scale is greater than or equal to the number of

samples). Thus, there can be multiple vectors of scores that are not contradicted

by the Kemeny median. Therefore, in the special case when α = 0 (i.e., only

the rankings provided by the untrained panellists are used), there will always be

multiple minimizers s∗0. As will be discussed in the following example, this results

in the minimizers forming a fan-shaped pattern starting at α = 0.

Example 7.3. Consider the scores expressed by trained panellists in Example 7.1

and the rankings expressed by untrained panellists in Example 7.2 for the samples

a1, a2, a3 and a4.

To determine the consensus score that should be assigned to each of these samples,

we consider the problem defined by Eq. (7.6) by computing Cα(s) for each of the

625 vectors of scores. For simplicity, we show the computation for the vector of

scores s = (2, 2, 3, 4), which was identified as the consensus vector of scores in
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Example 7.1, with
∑5
i=1 d1(s, si) = 5. The sum of absolute distances associated

with the vectors of scores is upper bounded by BT = 3 · 4 · 4 = 48.

To compute the minimal sum of Kemeny distances
∑5
i=1 dK(-,-i), we first deter-

mine the set ϑs of all possible rankings that do not contradict s. Since the score of

a4 is the largest, a4 is ranked above the other samples. Similarly, a3 is ranked above

a1 and a2. Since the scores of a1 and a2 are equal, any of the following cases ap-

plies: a1 is ranked above a2, a1 and a2 are tied, and a2 is ranked above a1, as follows:

ϑ(2,2,3,4) =


a1 ≺ a2 ≺ a3 ≺ a4 ,
a1 ∼ a2 ≺ a3 ≺ a4 ,
a2 ≺ a1 ≺ a3 ≺ a4

 .

We compute the sum of the Kemeny distances between each - ∈ ϑs and the rankings

provided by the untrained panellists. The results are summarized in Table 7.5.

The sum of Kemeny distances associated with the rankings is upper bounded by

BU = 5 ·4 ·3 = 60. Therefore, - = a1 ∼ a2 ≺ a3 ≺ a4 is the ranking that minimizes

the sum of Kemeny distances, with
∑5
i=1 dK(-,-i) = 8.

-
∑5
i=1 d̃K(-,-i)

a1 ≺ a2 ≺ a3 ≺ a4 9

a1 ∼ a2 ≺ a3 ≺ a4 8

a2 ≺ a1 ≺ a3 ≺ a4 13

Table 7.5: Sum of Kemeny distances between each ranking ≺ that does not contradict
s = (2, 2, 3, 4) and the rankings provided by the untrained panellists.

It follows that

Cα(s) =
5

45
α+

8

60
(1− α) =

8

60
− 4

180
α .

After computing Cα(s) for each of the 625 possible vectors of scores s, we illustrate

in Figure 7.1 all the s∗α that minimize Cα(s) for at least one value of α ∈ [0, 1]. As

discussed above, for α = 0, there will always be multiple minimizers s∗0 associated

with all vectors of scores that are not contradicted by the Kemeny median. Since

we know from Example 7.2 that -∗ = a1 ∼ a2 ≺ a3 ∼ a4 is the Kemeny median,

we illustrate (in black) all the vectors of scores s∗0 that are not contradicted by this

-∗ in Figure 7.1. These vectors of scores form a fan-shaped pattern starting at

α = 0 since, at the left end, they all result in the same value C0(s), and, at the

right end, they result in (mostly) different values C1(s). In addition, we highlight

only the vectors of scores that are minimizers for α ∈ ]0, 1].

The obtained minimizers s∗α are summarized as follows:

146



§7.4. Integrating scores and rankings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

0.15

0.2

0.25

0.3

0.35

0.4

C
α
(s
)
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Figure 7.1: Illustrating the vectors of scores s∗α that minimize Cα(s) for α ∈ [0, 1] in
Example 7.3.

s∗α =



{(1, 1, 2, 2) , (1, 1, 3, 3) , (1, 1, 4, 4) , (1, 1, 5, 5),

(2, 2, 3, 3) , (2, 2, 4, 4) , (2, 2, 5, 5) , (3, 3, 4, 4),

(3, 3, 5, 5) , (4, 4, 5, 5) , (1, 1, 1, 1) , (2, 2, 2, 2),

(3, 3, 3, 3) , (4, 4, 4, 4) , (5, 5, 5, 5)}

, if α = 0 ,

{(2, 2, 3, 3) , (2, 2, 4, 4)} , if 0 < α < 4
9 ,

{(2, 2, 3, 3) , (2, 2, 3, 4) , (2, 2, 4, 4)} , if α = 4
9 ,

{(2, 2, 3, 4)} , if α > 4
9 .

Since we do not intend to rely solely on the rankings provided by the untrained

panellists, we ignore the minimizers for α = 0. We conclude that the consensus

vector of scores is (2, 2, 3, 4) for α > 4
9 , (2, 2, 3, 3) and (2, 2, 4, 4) for 0 < α < 4

9 ,

and all the three vectors of scores for α = 4
9 . We visualize these vectors of scores

in Figure 7.2.

We deduce on the basis of the vectors of scores provided by the trained panellists

that a4 is of higher quality than a3, since the former is assigned a higher score than

the latter in the consensus vector of scores (see α > 4
9). However, integrating the

rankings provided by the untrained panellists hints that these samples are similar

in terms of quality, since they were both assigned the same score in the consensus

vectors of scores (see α < 4
9). We conjecture that the low number of trained

panellists might have limited the quality of the initial assessment of the samples.
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Least
preferred

Neutral Most
preferred

1 2 3 4 5

a1, a2 a3 a4

(a)

1 2 3 4 5

a1, a2 a3, a4

(b)

1 2 3 4 5

a1, a2 a3, a4

(c)

Figure 7.2: A visualization of the scores assigned to each sample a1, a2, a3 and a4 in
Example 7.3 for (a) α > 4

9
and for (b) and (c) 0 < α < 4

9
.

Remark It is clear that the choice of α is difficult. To explain a potential rationale

behind the choice of α, we consider the setting where a small number of trained

panellists provide scores and a large number of untrained panellists provide rankings.

Thus, we can rely more on the rankings, however, not completely since rankings

only provide relative information. Therefore, we just consider the minimizers s∗α
for small values of α close to, but not equal to zero.

For instance, in Example 7.3, if we consider the setting where the above results

are obtained given a very large number of untrained panellists, which is a typical

setting where consumers are usually considered as untrained panellists, then we

would conclude that the consensus vectors of scores are (2, 2, 3, 3) and (2, 2, 4, 4)

since they are the solution for any α ∈ ]0, 49 [.

7.4.2. Improving the quality of the assessment of a consen-

sus ranking

Typically, quite a large number of untrained panellists (nU > 75) is required [1].

We now consider the setting where the number of untrained panellists is limited,

and any additional source of information could potentially improve the quality

of the assessment of the samples. Thus, assuming that the number of untrained
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panellists is not as large as required, we consider that nT trained panellists are

each asked to assign a score to each of the n samples in A resulting in the vecotrs

of scores s1, . . . , snT
.

The goal is to agree on the consensus ranking on the samples in A, while integrating

scores with rankings. We propose a similar approach to the aforementioned method

for improving the quality of the assessment of a consensus vector of scores. To

compute the ‘distance’ between each possible ranking - and the vectors of scores

provided by the trained panellists, we first define the set ϕ- of all possible vectors

of scores that do not contradict the ranking - (i.e., the set of all vectors of scores

in which samples that are ranked similar to or above other samples are assigned

larger or same scores in s), as follows:

ϕ- =
{

s ∈ {1, . . . , k}n
∣∣∣(∀i, j ∈ {1, . . . , n})(ai - aj ⇒ si ≤ sj

) }
. (7.7)

We say that a ranking - is not contradicted by a vector of scores s if s ∈ ϕ-. Note

that the set ϕ- is never empty. Therefore, we determine the vector of scores s∗

among those in ϕ- that minimizes the sum of absolute distances to the vectors of

scores provided by the trained panellists, as follows:

s∗ = arg min
s∈ϕ-

nT∑
i=1

d1(s, si) . (7.8)

Combining the minimal sum of absolute distances to the vectors of scores provided

by the trained panellists and the sum of Kemeny distances to the rankings provided

by the untrained panellists requires the definition of a cost function. Thus, we

define Dα(-) as a convex combination of the distances associated with the vectors

of scores provided by the trained panellists and the rankings provided by the

untrained panellists, as follows:

Dα(-) =
α

BT
min
s∈ϕ-

nT∑
i=1

d1(s, si) +
(1− α)

BU

nU∑
i=1

dK(-,-i) . (7.9)

Finally, we determine the ranking -∗α that minimizes Eq. (7.9), as follows:

-∗α = arg min
-∈R̃

Dα(-) . (7.10)

Note that there can be multiple minimizers -∗α for the same α.

Similar to the aforementioned approach, since α ∈ [0, 1], it is impossible to com-

pute -∗α for each α. Therefore, bearing in mind that, for any fixed ranking -,

g(α) := Dα(-) can be visualized as a (straight) line, we compare the lines of each
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possible pair of rankings. For each possible pair of lines, we distinguish three cases:

there are no points of intersection, there is exactly one point of intersection, or

both lines coincide. These facts can then be used to analytically compute -∗ as a

function of α.

In addition, as the total number of possible vectors of scores is typically larger

than the total number of possible rankings, there can be multiple rankings that are

not contradicted by the median. Therefore, in the special case when α = 1 (i.e.,

only the vectors of scores by the trained panellists are used), there will always be

multiple minimizers -∗1. As will be discussed in the following example, this results

in the minimizers forming a fan-shaped pattern starting at α = 1.

Example 7.4. We continue with the data from Example 7.3. To determine the

consensus ranking of the samples, we consider the problem defined by Eq. (7.10)

by computing Dα(-) for each of the 75 rankings. For simplicity, we show the

computation for the ranking -∗ = a1 ∼ a2 ≺ a3 ∼ a4, which was identified as the

consensus ranking in Example 7.2, with
∑5
i=1 dK(-,-i) = 7. The sum of Kemeny

distances associated with the rankings is upper bounded by BU = 5 · 4 · 3 = 60.

Now, we consider the set ϕ- of all possible vectors of scores that do not contradict

-, as follows:

ϕa1∼a2≺a3∼a4 =
{

s ∈ {1, . . . , 5}4
∣∣∣(s1 = s2 ≤ s3 = s4

) }
.

We compute the sum of the absolute distances between each s ∈ ϕ- and the vectors

of scores provided by the trained panellists. The results are summarized in Table 7.6.

The sum of absolute distances associated with the vectors of scores is upper bounded

by BT = 3 · 4 · 4 = 48. Therefore, s = {(2, 2, 3, 3), (2, 2, 4, 4)} are the vectors of

scores that minimize the sum of absolute distances, with
∑5
i=1 d1(s, si) = 6. Finally,

we obtain:

Dα(-) =
α

120
+

7

60
.

After computing Dα(-) for each of the 75 possible rankings -, we illustrate in

Figure 7.3 all the -∗α that minimize Dα(-) for at least one value of α ∈ [0, 1]. As

discussed above, for α = 1, there will always be multiple minimizers -∗1 associated

with all rankings that are not contradicted by the median. These vectors of scores

form a fan-shaped pattern starting at α = 1 since, at the right end, they all result

in the same value D1(-), and, at the left end, they result in (mostly) different

values D0(-).
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s
∑5
i=1 d1(s, si) s

∑5
i=1 d1(s, si)

(1, 1, 1, 1) 20 (2, 2, 5, 5) 10

(1, 1, 2, 2) 14 (3, 3, 3, 3) 12

(1, 1, 3, 3) 8 (3, 3, 4, 4) 12

(1, 1, 4, 4) 8 (3, 3, 5, 5) 16

(1, 1, 5, 5) 12 (4, 4, 4, 4) 18

(2, 2, 2, 2) 12 (4, 4, 5, 5) 22

(2, 2, 3, 3) 6 (5, 5, 5, 5) 28

(2, 2, 4, 4) 6

Table 7.6: Sum of absolute distances between each vector of scores s that does not
contradict - = a1 ∼ a2 ≺ a3 ∼ a4 and the vectors of scores provided by the trained
panellists.

The obtained minimizers -∗α are summarized as follows:

-∗α =



{a1 ∼ a2 ≺ a3 ∼ a4} , if α < 4
9 ,{

a1 ∼ a2 ≺ a3 ∼ a4
a1 ∼ a2 ≺ a3 ≺ a4

}
, if α = 4

9 ,

{a1 ∼ a2 ≺ a3 ≺ a4} , if 4
9 < α < 1 ,

a1 ∼ a2 ≺ a3 ≺ a4
a1 ≺ a2 ≺ a3 ≺ a4
a2 ≺ a1 ≺ a3 ≺ a4

 , if α = 1 .

Since we do not intend to rely solely on the scores provided by the trained panellists,

we ignore the minimizers for α = 1. We conclude that the consensus ranking is

a1 ∼ a2 ≺ a3 ∼ a4 for α < 4
9 , a1 ∼ a2 ≺ a3 ≺ a4 for 4

9 < α < 1, and both these

rankings for α = 4
9 .

We deduce on the basis of the rankings provided by the untrained panellists that a4
is similar to a3 (see α < 4

9). However, integrating the scores provided by the trained

panellists hints that sample a4 might be ranked above sample a3 (see 4
9 < α < 1).

We conjecture that the low number of untrained panellists might have limited the

quality of the initial assessment of the samples.

7.5. Information about samples

Typically, gathering together several panellists is a challenging and expensive

exercise and providing a score is a task that can be fulfilled quickly. Therefore, it
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Figure 7.3: Illustrating the rankings -∗α that minimize Dα(-) for α ∈ [0, 1] in Exam-
ple 7.4.

is common to provide the panellists with multiple food samples during the same

experiment. In general, the scores assigned to each sample are considered to be

independent, and the assessment of a consensus score to each sample is assumed to

be an independent task. Note that it is often difficult to gather the same number

of panellists for different experiments.

Consider the problem setting where several panellists provide scores for each of the

n food samples. These scores are not necessarily gathered in any particular order,

however, for simplicity reasons, they have been represented in an increasing order6.

For example, consider a simple setting where nine panellists each assign a score to

a given food sample on the 5-point scale fixed in Fig. 4.2. The scores provided by

the panellists are 4, 1, 2, 1, 4, 3, 3, 4, 3 and are represented in increasing order

as 1, 1, 1, 2, 3, 3, 3, 4, 4, 4. Denote by mj the number of scores assigned to the

j-th sample and by si(j) the i-th lowest score assigned by a panellist to sample aj ,

where j ∈ {1, . . . , n} and i ∈ {1, . . . ,mj}.

The goal is to agree on the consensus score that should be assigned to each

sample in A. Obtaining the median score for each sample is equivalent to directly

computing the vector s∗, as follows:

6 This is not to be confused with the notation used in Section 7.4.2, where the same problem setting
is considered, however, the scores are not represented in increasing order.
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s∗ = arg min
s∈{1,...,k}n

n∑
j=1

mj∑
i=1

∂(s(j), si(j)) , (7.11)

In case ∂ = ∂0, we refer to s∗(j) as the mode of the j-th sample; and in case

∂ = ∂1, we refer to s∗(j) as the median of the j-th sample. Note that to compute

the mean of the j-th sample, we consider ∂ = ∂2 and compute the root of the sum

of distances. Note that, in case mj is odd for all j, the median (and, thus, the

minimizer of Eq. (7.11) for ∂ = ∂1) is unique. In case mj is even for at least one j,

there can be multiple medians (and, thus, multiple minimizers of Eq. (7.11) for

∂ = ∂1).

One could note that some relations between the scores of the different samples

could also be known. We provide a non-exhaustive list of some potential real-life

situations here after.

7.5.1. Knowledge of storage days

Researchers are often interested in studying the evolution of attributes of perishable

food. This is typically done by asking panellists to provide a score to food samples

that come from different time spans of the shelf life of the same food product.

A common method used in this situation is the time-intensity (TI) method [1,

Chapter 8]. In general, it is expected that food samples should be less fresh as

time goes by. Thus, it is expected that the less fresh the sample is, the lower the

score should be. One example is evaluating the freshness or tenderness of meats,

where the score may only decrease with time [168].

Consider the setting where samples coming from the same food product are indexed

in increasing order of storage days. Thus, the potential consensus scores should

naturally reduce to those that satisfy the following constraints:

s(1) ≥ · · · ≥ s(n) .

Note that the overall trend of the scores should be decreasing, however, different

decreasing patterns are possible. One possible pattern of scores is illustrated in

Figure 7.4. Note that multiple consecutive samples could be assigned the same

score, as illustrated in Figure 7.4 for points 0, 1 and 2. Typically, this occurs when

the number k of points on the scale is small.

In studies on acceptability of beverages, the evolution of certain attributes of

beverages is of interest. Typically, beverage samples are studied at different

time spans of the air exposure of the same beverage. In general, it is expected

that beverage samples should have an increasing acceptance at first, eventually
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Figure 7.4: Example of scores describing freshness of food that decreases over time.

decreasing afterwards. Typical examples include the evaluation of the astringency

and flavour of beer and wine, where these attributes increase in intensity at first

and eventually decrease with time [169, 170].

Consider the setting where samples coming from the same beverage are indexed in

increasing order of time spans of air exposure. Thus, the potential consensus scores

should naturally reduce to those that satisfy the following constraints:

s(1) ≤ · · · ≤ s(a) and s(a) ≥ · · · ≥ s(n) , for a ∈ {1, . . . , n} .

This means that there should be a unimodal pattern. One possible pattern of

scores is illustrated in Figure 7.5. Note that if one considers a short duration, say

t ∈ {0, . . . , 3}, then the overall trend is only increasing. Similarly, if one considers

a long duration, however, at a later time, say t ∈ {2, . . . , 8}, then the overall trend

is only decreasing.

7.5.2. Results of clustering analysis

In many studies, food samples are stored at different (temperature and atmospheric)

conditions or represent the same food product but originate from a different initial

batch, manufacturer or season. In addition, the initial contamination of the samples

(i.e., initial microbial load) and the similarity of the samples, in terms of dimensions

and composition, play a big role in the spoilage rate of every sample, and, thus,

the decreasing pattern of the scores may not always hold. Thus, the storage days

could not be used as the only tool to compare these samples. For instance, it is

not always the case that samples that have been stored at different conditions

for the same duration of time will be similar. Similarly, it is not always the case
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Figure 7.5: Example of scores describing the intensity of wine flavour that is unimodal.

that a sample is always preferred over another sample that is stored at different

conditions and has been stored for longer.

It is well established that microbial growth is the most important cause of food

spoilage [22], producing volatile organic compounds (VOCs) and, subsequently,

off-odours and off-flavours. These odours and flavours result in an olfactory impact

that is associated with the spoilage of food. Therefore, the relation between the

VOC profiles and the quality of food has caught the attention of many researchers

in food science. Recently, the composition of the VOC profiles has been successfully

used to evaluate the quality of food, such as seafood [61, 65] and meat [66].

To establish a relation between the VOC profiles of the samples and their resulting

consensus scores, clustering analysis, a method for merging similar groups of

samples based on the similarity of their VOC profile, can be used. Hierarchical

agglomerative clustering [67] is a commonly used clustering analysis tool that has

been recently used by researchers in food science [38].

In general, it is expected that samples clustered together should be quite similar,

and, thus, their scores should not be very different. Therefore, the absolute

difference of the scores of these samples should not exceed a certain threshold.

Note that we prefer not to impose that samples in the same cluster should have

strictly the same scores because this might be too restrictive. However, this is still

a possibility, as will be further explained below.

The considered setting may naturally reduce the potential consensus scores to those

that satisfy the following constraints:

|s(i)− s(j)| ≤ ε , for i, j ∈ Ib ,

where Ib are the indices corresponding to the b-th cluster and ε is a threshold on
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the absolute difference of the scores of samples in the same cluster. Note that the

value of ε may depend on the number of points k on the scale used for scoring.

The special case where ε = 0 amounts to restricting with equality constraints only.

For instance, consider the case where samples {a1, a2} are found in one cluster and

samples {a3, a4, a5} are found in another cluster. It is expected that the absolute

difference of the scores of every pair of samples in each cluster should be less than

or equal to one. This process is illustrated in Figure 7.6. It can be seen that the

absolute difference of scores for each couple of samples in the same cluster is less

than or equal to one, thus, satisfying the constraints.

5
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1

a1 a2 a3 a4 a5

s(i)

Sample (ai)

� �

� �

�

Figure 7.6: Example of a dendrogram, where samples {a1, a2} are in the first (in blue)
cluster and samples {a3, a4, a5} are in the second (in orange) cluster. The scores are
consistent with the clusters, equivalently, satisfying the constraints.

7.5.3. Other sensory evaluation tests

Ranking test

Recently, researchers have been adopting scoring methods for determining the

quality of food along with ranking methods to determine the order of the samples

according to their quality [52, 155, 156, 157]. Ranking tests involve several panellists

providing rankings (with ties) on samples. Typically, these rankings are aggregated

to obtain a consensus ranking that describes an underlying order of the samples,

thus, it is expected that the scores agree with this consensus ranking of the samples.

For example, rankings have been previously used to study the desirability of
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different meats [171, 172]. In this setting, these rankings can be useful information

as a reference for relative desirability of meats.

In general, it is expected that samples ranked higher are preferred over samples

ranked lower, thus, it is expected that the higher the sample is ranked the greater

the score should be. Note that we do not impose that a sample ranked higher than

another sample should have a strictly greater score, instead, we allow their scores

to be equal as well. This is due to the fact that the considered scale is typically not

rich enough for allowing to distinguish similar samples. In case two samples are

tied, it is expected that their scores should be similar7. The considered setting may

naturally reduce the potential consensus scores to those that satisfy the following

constraints:

ai - aj ⇒ s(i) ≤ s(j) , for i, j ∈ {1, . . . , n} .

For instance, consider the ranking a1 ≺ a2 ∼ a3 ≺ a4. It is expected that a1
should be assigned a score smaller than or equal to that of sample a2, which should

be assigned a score equal to that of sample a3, which should be assigned a score

smaller than or equal to that of sample a4. More formally, the resulting constraints

are s(1) ≤ s(2) = s(3) ≤ s(4). This process is illustrated in Figure 7.7.
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s(i)

Sample (ai)

�

� �

�

a1 ≺ a2 ∼ a3 ≺ a4

Figure 7.7: Example of scores describing the ranking a1 ≺ a2 ∼ a3 ≺ a4.

Discrimination test

Many discrimination tests can be seen as a special case of a ranking test. For

7 The situation where samples are tied is similar to that where samples are in the same cluster.
For simplicity, the special case where ε = 0 is considered.
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instance, in an A-notA test, panellists are provided with one sample and asked

whether or not it is similar to a reference sample A [173, Chapter 4]. Based on

the responses of the panellists, if there is no significant difference between the

samples, then it is expected that they should be assigned a similar score. Therefore,

the absolute difference of the scores of these samples should not exceed a certain

threshold ε. This process is illustrated in Figure 7.8.
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Ref ∼ a2

Figure 7.8: Example of scores describing that there is no significant difference between
sample a2 and the reference sample a1, and where a threshold ε = 1 is considered.

Another instance is a duo-trio test, where panellists are provided with two samples

and a reference sample that is identical to one of the two samples and are asked

to match one of the two samples to the reference sample [173, Chapter 4]. It is

expected that the reference sample and the sample identical to it should be scored

equally. Moreover, if a large number of panellists are not able to distinguish the

identical samples, then it is expected that the third sample should be assigned a

similar score to that of the identical samples. Therefore, the absolute difference

of the scores of the non-identical samples should not exceed a certain threshold ε.

This process is illustrated in Figure 7.9.

Another instance is a two-out-of-five test, where panellists are given five samples

and are asked to distinguish two identical samples from the other three samples [173,

Chapter 4]. It is expected that the reference sample and the sample identical to it

should be scored equally. Moreover, if a large number of panellists are not able

to distinguish the identical samples from the other three, then it is expected that

there is no significant difference among the five samples and that all the samples

should be assigned similar scores. Therefore, the absolute difference of the scores
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Figure 7.9: Example of scores describing that there is no significant difference between a3
and the reference sample a1 (equivalently, its identical sample a2), and where a threshold
ε = 1 is considered.

of these samples should not exceed a certain threshold ε. For instance, if a large

number of panellists matched one sample with another sample, then it is expected

that these samples should be assigned equal scores. This process is illustrated in

Figure 7.10.

Threshold test

In threshold tests, panellists are asked to determine a threshold of noticing a certain

stimulus [1, Chapter 6]. Different versions of the threshold test have been proposed,

the differential threshold test and the absolute threshold test being the most

prominent examples. In the former, the aim is to determine the threshold at which

an increase in a noticed stimulus can be perceived, whereas in the latter, the aim

is to determine the lowest threshold at which a stimulus can be noticed. Note that

the case where there is a decrease in stimulus can also be considered. One example

is determining the (consumer) rejection of chocolate bitterness [174].

In differential threshold tests, it is expected that the sample where an increase in

stimulus is not noticed should have a quite similar score to the previous sample

that has one increment less of the stimulus, and, thus, their scores should not be

very different. Therefore, the absolute difference of the scores of these samples
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Figure 7.10: Example of scores describing that samples a1 and a2 are not distinguished
from the other samples, and a threshold ε = 1 is considered.

should not exceed a certain threshold ε. However, it is expected that the samples

where an increase in stimulus is noticed should have a score greater than or equal

to the score of the previous sample. Therefore, the absolute difference of the scores

of these samples should exceed this threshold.

Note that the scores should be either increasing s(i) ≤ s(i+ 1) or decreasing s(i) ≥
s(i+1) for i ∈ {1, . . . , n}. The considered setting may naturally reduce the potential

consensus scores to those that satisfy the following additional constraints:

|s(i)− s(i+ 1)| ≤ ε , for i ∈ κ1 ,
|s(i)− s(i+ 1)| ≥ ε , for i ∈ κ2 ,

where κ1 are the indices corresponding to the samples where a stimulus is not

noticed, κ2 are the indices corresponding to the samples where a stimulus is noticed,

and ε is a threshold on the absolute difference of the scores of consecutive samples.

For instance, consider that the stimulus is first noticed at sample a4. It is expected

that the absolute differences of the scores of consecutive samples a1 and a2, and

samples a2 and a3 should be smaller than or equal to ε = 1 and that the absolute

difference of the scores of samples a3 and a4 should be greater than or equal to

ε = 1. Similarly, given that the stimulus is noticed a second time at sample a6, it

is expected that the absolute difference of the scores of samples a4 and a5 should

be smaller than or equal to one and that the absolute difference of the scores of

samples a5 and a6 should be greater than or equal to one. This process is illustrated

in Figure 7.11.
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Figure 7.11: Example of scores in a differential detection test describing no detection of
a stimulus (in green) and the detection of a stimulus (in orange) at samples a4 and a6,
and where a threshold ε = 1 is considered.

In absolute threshold tests, samples with a stimulus are only compared to a reference

sample. Thus, if an increase in stimulus is not noticed in a sample, then it is

expected that this sample should be assigned a score similar to that of the reference

sample. Therefore, the absolute difference of their scores should not exceed a

certain threshold ε. However, it is expected that the samples where an increase in

stimulus is noticed should be assigned a different score than that assigned to the

reference sample. Therefore, the absolute difference of their scores should exceed

this threshold.

Note that the scores should be either increasing s(i) ≤ s(i + 1) or decreasing

s(i) ≥ s(i + 1) for i ∈ {1, . . . , n}. We consider the first sample (i = 1) to be

the reference sample. The considered setting may naturally reduce the potential

consensus scores to those that satisfy the following additional constraints:

|s(1)− s(i)| ≤ ε , for i ∈ {1, . . . , c− 1} ,
|s(1)− s(i)| ≥ ε , for i ∈ {c, . . . , n} ,

where c is the sample at which an increase in stimulus is noticed and ε is a

threshold on the absolute difference of the scores of each sample with the reference

sample.

For instance, consider that a stimulus is first noticed at sample a4. It is expected

that the absolute difference of the scores of samples a1 and a4 should be greater
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than or equal to one. Now, consider that sample a4, where the first stimulus is

noticed, is the new reference and that a second stimulus is noticed at sample a6. It

is expected that the absolute difference of the scores of samples a4 and a6 should

be greater than or equal to one. This process is illustrated in Figure 7.12.

5

4

3

2

1

a1 a2 a3 a4 a5 a6

Ref

s(i)

Sample (ai)

� �

�

� �

�

Ref a2 a3 a4 a5 a6

Figure 7.12: Example of scores that are increasing (dashed line) in an absolute detection
test describing no detection of a stimulus (in green) and the detection of a first stimulus
(in orange) at sample a4 when compared to the reference sample a1 and a second stimulus
(in orange) at sample a6 when compared to the new reference sample a4, and where a
threshold ε = 1 is considered.

7.5.4. The constrained mode, median and mean

As we have previously discussed, the considered settings may naturally reduce

the set of potential consensus scores from {1, . . . , 5}n to a non-empty subset

S ⊆ {1, . . . , 5}n. We conjecture that in most real-life situations it seems natural

for S to be defined as the conjunction of some (in)equality constraints on the

components of s. However, this condition should not be a requirement if it does

not comply with the characteristics of the considered problem.

Thus, the consensus scores should be the ones given by the vector that minimizes

the sum of distances while satisfying the constraints of S, as follows:
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s∗ = arg min
s∈S

n∑
j=1

mj∑
i=1

∂(s(j), si(j)) . (7.12)

In case ∂ = ∂0, we refer to s∗ as a constrained mode; and in case ∂ = ∂1, we refer

to s∗ as a constrained median. In case ∂ = ∂2, we compute the root of the sum of

distances ∂2 and refer to the minimizer as a constrained mean. These concepts are

illustrated in the following example.

Example 7.5. Consider a simple setting where nine panellists each assign a score

to two given food samples on the 5-point scale fixed in Figure 4.2. The scores

assigned to each sample are represented in increasing value in Table 7.7.

The i-th lowest score 1 2 3 4 5 6 7 8 9

Score of sample a1 (si(1)) 1 1 2 3 3 3 4 4 5

Score of sample a2 (si(2)) 2 2 3 3 3 5 5 5 5

Table 7.7: The scores assigned by the panellists in Example 7.5.

From Table 7.7, it can be clearly seen that the median for sample a1 is 3 and the

median for sample a2 is 3 (i.e., the score in the middle, in this case for i = 5).

Analogously, we consider the problem defined by Eq. (7.11), and we compute the

sum of distances between the scores provided by the panellists and every possible

vector of scores8. The results are illustrated in Table 7.8.

We see that the minimizer of the values in the first column – thus the mode – is

the vector of scores (3, 5), the minimizer of the values in the second column – thus

the median – is the vector of scores (3, 3), and the minimizer of the values in the

third column – thus the mean – is the vector of scores (3, 4). Note that, as expected,

these vectors coincide with the result of performing the mode, median and mean in

each of the different samples separately.

In the setting where it is known that the first sample is fresher than the second

sample (they are samples from different time spans of the shelf life of the same

food), it is expected that the score of the first sample should be greater than or equal

to the score of the second sample. Finding a solution by simply looking at the table

is not an easy task. Thus, the problem defined by Eq. (7.12) is considered. The

set of constraints S is formed by the vectors of scores in which the first sample

is assigned a score greater than or equal to the score of the second sample. Such

vectors are highlighted in gray in Table 7.8. It can be seen that the minimizer of

the values in each column – thus the constrained mode, median and mean – is the

vector of scores (3, 3). A conclusion is reached that the score assigned to sample a1
should be greater than that originally assigned.

8 In general, for n samples and k scores, the number of possible vectors of scores is kn.
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s
∑2
j=1

∑9
i=1 ∂0(s(j), si(j))

∑2
j=1

∑9
i=1 ∂1(s(j), si(j))

∑2
j=1

∑9
i=1 ∂2(s(j), si(j))

(1, 1) 16 41 125

(1, 2) 14 32 86

(1, 3) 13 27 65

(1, 4) 16 28 62

(1, 5) 12 29 77

(2, 1) 17 36 100

(2, 2) 15 27 61

(2, 3) 14 22 40

(2, 4) 17 23 37

(2, 5) 13 24 52

(3, 1) 15 33 93

(3, 2) 13 24 54

(3, 3) 12 19 33

(3, 4) 15 20 30

(3, 5) 11 21 45

(4, 1) 16 36 104

(4, 2) 14 27 65

(4, 3) 13 22 44

(4, 4) 16 23 41

(4, 5) 12 24 56

(5, 1) 17 43 133

(5, 2) 15 34 94

(5, 3) 14 29 73

(5, 4) 17 30 70

(5, 5) 13 31 85

Table 7.8: Sum of zero-one distance ∂0, absolute distance ∂1 and squared difference
∂2 between the scores provided by the panellists and all possible vectors of scores. The
minimizers are shown in bold and the vectors of scores in which the first sample is assigned
a score greater than or equal to the score of the second sample are highlighted in blue.

Remark Note that the difference between the number of panellists for each

experiment can be extremely large in some instances. For instance, a very small

number of panellists are gathered for one experiment, and a larger number of

panellists are gathered for another experiment. Such a scenario can be approached

from two different points of view: (a) each panellist is represented by one evaluation

or (b) each sample is represented by one evaluation. The former approach is

analogous to the problem defined by Eq. (7.12), whereas the latter approach can

be defined as follows:

s∗ = arg min
s∈S

n∑
j=1

mj∑
i=1

∂(s(j), si(j))

mj
, (7.13)

where the evaluations are averaged based on the number of panellists mj that

provide scores to the j-the sample. It must be noted that both approaches are
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equivalent if all mj ’s coincide. Moreover, both problems are also equivalent if there

are no constraints (i.e., solving the problem defined by Eq. (7.8).

Example 7.6. Consider a simple setting where one panellist assigns a score to a

given food sample and nine panellists each assign a score to a second given food

sample on the 5-point scale fixed in Figure 4.2, and only one panellist assigns a

score to a second given food sample. The scores are represented in increasing value

in Table 7.9.

The i-th lowest score 1 2 3 4 5 6 7 8 9

Score sample 1 (si(1)) 2

Score sample 2 (si(2)) 2 2 3 3 3 5 5 5 5

Table 7.9: The scores assigned by the panellists in Example 7.6.

To determine the vector of consensus scores, the problem defined by Eq. (7.11) is

considered, and, for each of the 25 possible vectors of scores, the sum of distances

to the scores provided by the panellists is computed. The minimizer of the sum of

zero-one distances - thus the mode - is the vector of scores (2, 5), the minimizer of

the sum of absolute distances - thus the median - is the vector of scores (2, 3), and

the minimizer of the sum of `2-distances - thus the mean - is the vector of scores

(2, 4).

Consider now that we know that the first sample is fresher than the second sample.

Based on the approach where each panellist is represented by one evaluation, the

problem defined by Eq. (7.12) is solved, resulting in the vectors of scores (5, 5) as

the constrained mode, (3, 3) as the constrained median, and (3, 3) and (4, 4) as the

constrained means. Based on the approach where each sample is represented by one

evaluation, the problem defined by Eq. (7.13) is solved, resulting in the vectors of

scores (2, 2) as the constrained mode, (2, 2) as the constrained median, and (3, 3)

as the constrained mean. If we consider that each panellist is represented by one

evaluation (i.e., the score of each sample depends on the number of panellists), then

it seems logical to change the mode and median score of a1 to 3. However, if we

consider that each sample is represented by one evaluation (i.e., the score of each

sample depends on the proportion of panellists), then it seems logical to change the

mode or median score of a2 to 2.

7.6. Application to sensory data

This section illustrates the proposed methods by presenting an experiment on raw

Atlantic salmon (Salmo salar), where trained panellists were asked to evaluate each

salmon sample and assign a score. As the number of trained panellists was limited,
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untrained panellists were asked to rank the salmon samples, and the influence of

integrating the rankings on the quality of the assessment of the overall freshness

of salmon samples was studied. This is illustrated by determining the consensus

scores of each salmon sample at different storage days. In addition, using the

same data, we illustrate the influence of integrating the scores on the quality of

the assessment of the consensus ranking of salmon samples. Finally, we apply the

method of incorporating additional information, such as knowledge of storage days,

consensus rankings and results of a clustering analysis, of the salmon samples with

the scores provided by the trained panellists to jointly find the consensus score of

each of these samples.

7.7. Integrating rankings for assigning consensus

scores

To determine the consensus score that can be assigned to each of the four samples on

each day, while integrating the rankings in Table A.12 with the scores in Table A.11,

we considered the problem defined by Eq. (7.6) and computed Cα(s) for each of

the 625 possible vectors of scores. Figure 7.13 illustrates all the minimizers s∗α
that minimized Cα(s) for at least one value of α ∈ ]0, 1] on each of the five days

(Monday–Friday).

Figure 7.13 illustrates (in black) all the vectors of scores s∗α that were not contra-

dicted by the minimizer(s) -∗ as a fan-shaped pattern starting at α = 0 and the

(highlighted) vectors of scores that were minimizers for α ∈ ]0, 1]. It can be seen

in Figures 7.13(b) and 7.13(c) that there was a single minimizer s∗α on Thursday

and Monday for all values of α ∈ ]0, 1] that was also not contradicted by -∗. Since

we wanted to study the influence of the rankings on the quality of the assessment

of the overall freshness of salmon samples, we focused on the results of Tuesday,

Wednesday and Friday, where there were multiple minimizers s∗α for different values

of α ∈ ]0, 1].

The obtained minimizers s∗α for Tuesday, Wednesday and Friday are summarized

as follows:
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s∗α,Tue =


{(4, 4, 3, 4)} , if 0 < α < 32

41 ,

{(4, 4, 3, 4) , (5, 4, 3, 4)} , if α = 32
41 ,

{(5, 4, 3, 4)} , if α > 32
41 .

s∗α,Wed =


{(4, 2, 2, 2)} , if 0 < α < 50

71 ,

{(4, 2, 2, 2) , (4, 3, 2, 2)} , if α = 50
71 ,

{(4, 3, 2, 2)} , if α > 50
71 .

s∗α,Fri =


{(4, 4, 2, 2)} , if 0 < α < 280

349 ,

{(4, 4, 2, 2) , (4, 3, 2, 2)} , if α = 280
349 ,

{(4, 3, 2, 2)} , if α > 280
349 .

The influence of integrating the rankings on the consensus vectors of scores for

α ∈ ]0, 1] is visualized in Figure 7.14. We deduce on the basis of the vectors of

scores provided by the trained panellists that A1 was fresher than B2 and D4.

However, integrating the rankings on that day indicates that these samples were

similar in terms of freshness. Similarly, we deduce on the basis of the vectors

of scores provided by the trained panellists that B5 was fresher than C6 and D7.

However, integrating the rankings on that day indicates that these samples were

similar. Finally, we deduce on the basis of the vectors of scores provided by the

trained panellists that B6 was less fresh than A5. However, integrating the rankings

on that day indicates that these samples were similar.

It must be noted that the different salmon fillets were not identical, and thus, the

storage days could not be used as the only tool to compare samples from different

fillets. For instance, one cannot simply presume that samples from different fillets

that have been stored for the same number of days will be similar. Similarly, one

cannot presume that a sample from one fillet is always preferred over a sample

from another fillet that has been stored for longer. Therefore, interpreting the

resulting consensus scores cannot be done based solely on the storage day of the

salmon samples.

As odours (and flavours) are often produced by volatile organic compounds (VOCs),

the composition of the VOC profiles has been successfully used to evaluate the

quality of food, such as seafood [65] and meats [66]. SIFT-MS has attracted the

attention of many researchers for rapid and accurate characterization of VOCs and

has been validated for fish metabolite research [65, 61].

To establish a relation between the VOC profiles and the resulting scores, hierarchi-

cal agglomerative clustering [67] was performed on the VOC profiles in Table B.14.

To measure how well a generated dendrogram reflects data accuracy, one can

compute the cophenetic correlation coefficient [72, 175]. Generally, the results of

different distance metrics and clustering algorithms should be compared and the
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(a) (b)

(c) (d)

(e)

Figure 7.13: The vectors of scores that minimize Cα(s) for at least one value of α ∈ ]0, 1].

combination resulting in the largest cophenetic correlation coefficient9 is normally

9 Values of the cophenetic correlation coefficient closer to 1 indicate a higher clustering accuracy.
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Spoiled
Neither spoiled

nor fresh Fresh

1 2 3 4 5

C3 D4,B2,A1
��A

1

(a)
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D7,C6,B5
��B

5 A4

(b)
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D8,C7
��B

6 B6,A5

(c)

Figure 7.14: A visualization of the change in scores assigned to each sample on (a)
Tuesday for 0 < α < 32

41
(b) Wednesday for 0 < α < 50

71
and (c) Friday for 0 < α < 280

349
.

selected. To determine the optimal number of clusters, the gap value, which is

commonly used in hierarchical clustering [73], is computed. To obtain an ideal

clustering, the number of clusters that maximizes the gap value must be selected.

However, in many real-world datasets, the clusters are not so well-defined. As

a result, a balance between maximizing the gap value and the parsimony of the

model is usually determined.

The clusters were represented on the basis of the Euclidean distance between their

centroids resulted in the largest cophenetic correlation coefficient of 0.8053. The

corresponding dendrogram is shown in Figure 7.15(a), where it naturally divided

the samples into distinct clusters (i.e., the groups of samples were densely packed

in certain areas and not in others). From Figure 7.15(b), it can be seen that the

minimum number of clusters that maximized the gap value (i.e., the point where

the rate of increase of the gap value starts to decrease) was four. In Figure 7.15(a),

these four clusters correspond to a horizontal slice across the dendrogram at a

height of 1.8.

First, to obtain an ideal clustering, the number of clusters that maximizes the gap

value must be selected. However, in many real-world datasets, the clusters are
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Figure 7.15: (a) Hierarchical clustering of the samples of fillets A, B, C and D on
the basis of the log-transformed VOC profile data, with the optimal number of clusters
corresponding to the horizontal slice (dashed line). (b) Estimation of the optimal number
of clusters in hierarchical clustering by maximizing the gap value.

not as well-defined. As a result, a balance between maximizing the gap value and

the parsimony of the model is usually determined. Then, based on the clustered

samples in Figure 7.15(a), we try to explain the changes in the scores assigned

by the trained panellists when integrating the rankings provided by the untrained

panellists. We deduce, based on the dendrogram in Figure 7.15(a), that samples

A1 and A2 form the first cluster, sample B2 forms the second cluster, samples A3,

A4, A5, A6, B3, B4, B5, B6, C3, C4, C6, D4, D5 and D6 form the third cluster, and
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samples C5, C7, D7 and D8 form the fourth cluster.

We conclude that samples B6 and A5 are similar in terms of their VOC profiles,

thus, the change in the score assigned to sample B6 on Friday for 0 < α < 280
349

agrees with this conclusion. Similarly, we conclude that samples B5 and C6 are

similar in terms of their VOC profiles, thus, the change in the score assigned to

sample B5 on Wednesday for 0 < α < 50
71 also agrees with this conclusion. Finally,

since we cannot conclude that samples A1, B2 and D4 are similar, the change in

the score assigned to sample A1 on Tuesday for 0 < α < 50
71 is not validated by the

conclusion we obtained from the dendrogram.

In light of these findings, it appears that integrating rankings showed an increase

in the quality of the assigned consensus score. As relations between the resulting

consensus scores for any of the salmon samples of the different fillets and the

clustering of the samples were significant, these results support the idea of combining

scoring and ranking methods.

7.7.1. Integrating scores for determining consensus rankings

We now illustrate the method of improving the quality of the assessment of a

consensus ranking using the scores and rankings in Table A.11 and Table A.12,

respectively. Although these sensory data were gathered for the aim of improving

the quality of the assessment of a consensus vector of scores, we apply our method

to these data as an illustration of integrating scores to improve the quality of the

assessment of a consensus ranking.

To determine the consensus ranking of the four samples on each day, while integrat-

ing the gathered scores with the rankings, we considered the problem defined by

Eq. (7.10) and computed Dα(-) for each of the 75 possible rankings. Figure 7.16

illustrates all the minimizers -∗α that minimized Dα(-) for at least one value of

α ∈ [0, 1[ on each of the five days (Monday–Friday).

Figure 7.16 illustrates (in black) all the rankings -∗α that were not contradicted by

the minimizer(s) s∗ as a fan-shaped pattern starting at α = 1 and the (highlighted)

rankings that were minimizers for α ∈ [0, 1[. It can be seen in Figures 7.16(b)

and 7.16(c) that there were two overlapping minimizers -∗α on Thursday and

Monday for all values of α ∈ [0, 1[ that was also not contradicted by s∗. Since

we wanted to study the influence of the vectors of scores on the quality of the

assessment of the overall ranking of salmon samples, we focused on the results

of Tuesday, Wednesday and Friday, where there were multiple minimizers -∗α for

different values of α ∈ [0, 1[.

The obtained minimizers s∗α for Tuesday, Wednesday and Friday are summarized

as follows:
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-∗α,Tue =


{C3 ≺ D4 ≺ B2 ∼ A1} , if 0 < α < 32

41 ,{
C3 ≺ D4 ≺ B2 ≺ A1

C3 ≺ D4 ≺ B2 ∼ A1

}
, if α = 32

41 ,

{C3 ≺ D4 ≺ B2 ≺ A1} , if α > 32
41 .

-∗α,Wed =



{
D7 ≺ C6 ∼ B5 ≺ A4

}
, if α < 50

71 ,{
D7 ≺ C6 ∼ B5 ≺ A4

D7 ≺ C6 ≺ B5 ≺ A4

}
, if α = 50

71 ,{
D7 ≺ C6 ≺ B5 ≺ A4

}
, if 50

71 < α < 1 .

-∗α,Fri =



{
C7 ≺ D8 ≺ A5 ≺ B6

}
, if 0 < α < 280

349 ,{
C7 ≺ D8 ≺ A5 ≺ B6

C7 ≺ D8 ≺ B6 ≺ A5

}
, if α = 280

349 ,

{C7 ≺ D8 ≺ B6 ≺ A5} , if α > 280
349 .

We deduce on the basis of the rankings provided by the untrained panellists that

A1 and B2 are tied. However, integrating the scores on that day indicates that

A1 is preferred over B2. Similarly, we deduce that B5 and C6 are tied, however,

integrating the scores on that day indicates that B5 is preferred over C6. Finally,

we deduce that B6 is preferred over A5, however, integrating the scores on that

day indicates that A5 is preferred over B6.

7.7.2. Incorporating knowledge of storage days for assigning

joint consensus scores

To determine the consensus vectors of scores that should be assigned to the five

samples of each fillet, we considered the problem defined by Eq. (7.11), and, for

each of the 3125 vectors of scores, we computed the sum of distances to the vectors

of scores provided by the panellists in Table A.11. Similarly, to determine the

consensus vectors of scores that should be assigned to the five samples of the same

fillet, while integrating the knowledge of storage days of the samples, we considered

the problem defined by Eq. (7.12), where the constraints of a set S are summarized

in Table 7.10.

The median and the constrained median for each sample of every fillet are summa-

rized in Table 7.11.

The constrained medians for the samples are illustrated in Figure 7.17. After

incorporating the knowledge of storage days of the samples from each of fillets C

and D, improved results are seen in Figure 7.17, where there are no increasing

values of evaluations for any fillet.
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(a) (b)

(c) (d)

(e)

Figure 7.16: The rankings that minimize Dα(-) for at least one value of α ∈ [0, 1[.

Note that including the knowledge of storage days should be considered when

several factors of the initial conditions of the samples are similar, namely, their
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Fillet Constraints

A A5 ≺ A4 ≺ A3 ≺ A2 ≺ A1

B B6 ≺ B5 ≺ B4 ≺ B3 ≺ B2

C C7 ≺ C6 ≺ C5 ≺ C4 ≺ C3

D D8 ≺ D7 ≺ D6 ≺ D5 ≺ D4

Table 7.10: The constraints based on the storage days of the samples.

Method A1 A2 A3 A4 A5 B2 B3 B4 B5 B6

The median 5 5 4 4 4 4 4 4 3 3

The constrained median 5 5 4 4 4 4 4 4 3 3

Method C3 C4 C5 C6 C7 D4 D5 D6 D7 D8

The median 3 4 3 2 2 4 2 4 2 2

The constrained median 3 3 3 2 2 4 3 3 2 2

Table 7.11: The median and the constrained median for each sample after incorporating
knowledge of storage days. The differences are highlighted.

contamination, dimensions, composition and packaging and storage conditions.

Verifying the similarity of the samples (equivalently, their rate of spoilage) requires

measurements. From Table 8, it is deduced that, in an ideal situation where the

samples from the same fillet were initially similar, incorporating the knowledge

of storage days of the samples from fillet C indicates that sample C4 should be

assigned a lower score and that samples C3, C4, and C5 should be equally scored

in terms of freshness. Moreover, it is deduced that incorporating the knowledge

of storage days of the samples from fillet D indicates that sample D5 should be

assigned a higher score and sample D6 should be assigned a lower score and these

samples should be scored equally in terms of freshness.

There exist several potential risks when incorporating knowledge of storage days of

samples that are not initially similar. The main concern is that an assumption is

made that the samples have similar spoilage rates, and, thus, their assigned scores

might be incorrectly related to their storage days. Since microbiological analysis of

each salmon sample was not performed, the storage days will not be used as the

only tool to compare these samples.
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Figure 7.17: Illustrating the median and constrained median of fillets A, B, C and D
over time after incorporating knowledge of storage days.

7.7.3. Incorporating results of a clustering analysis for as-

signing joint consensus scores

Based on the aforedescribed methods of using SIFT-MS to quantify the VOC

profiles, the results of the clustering are summarized in Table 7.12. To determine

the consensus vectors of scores that should be assigned to the samples in each

group, while incorporating the results of the clustering analysis of the samples,

we considered the problem defined by Eq. (7.12), where the constraints are the

clusters summarized in Table 7.12.

To determine the consensus vector of scores that should be assigned to all the

samples, while incorporating the results of the clustering analysis of the samples,

the problem defined by Eq. (7.12) with a threshold ε = 1 on the absolute difference

of the scores of the samples is considered. The medians and the constrained medians
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Cluster Samples

Cluster 1 {A1, A2}
Cluster 2 {B2}

Cluster 3

{A3, A4, A5,

B3, B4, B5, B6,

C3, C4, C6,

D4, D5, D6}
Cluster 4 {C5, C7, D7, D8}

Table 7.12: Clustered samples based on the similarity of their VOC profile.

for the samples of each fillet are gathered in Table 7.13.

Cluster 1 Cluster 2 Cluster 4

Method A1 A2 B2 C5 C7 D7 D8

The median 5 5 4 3 2 2 2

The constrained median 5 5 4 3 2 2 2

Cluster 3

Method A3 A4 A5 B3 B4 B5 B6 C3 C4 C6 D4 D5 D6

The median 4 4 4 4 4 3 3 3 4 2 4 2 4

The constrained median 4 4 4 4 4 3 3 3 4 3 4 3 4

Table 7.13: The median and the constrained median for each sample after incorporating
the results of clustering analysis. The differences are highlighted.

From Table 7.13, it is deduced on the basis of the scores provided by the panellists

to all the panellists that in cluster 3, samples C6 and D5 are less fresh than all the

other samples in the cluster. However, incorporating the results of the clustering

analysis of all the samples indicates that samples C6 and D5 should each be assigned

a higher score.

Note that including the results of a clustering analysis should only be considered

when the measurements are accurate and the clusters are well defined. Otherwise,

there exists the potential risk of inaccurately clustering samples, and, thus, assigning

incorrect scores. In many real-world datasets, there is no absolute optimal number

of clusters. As a result, a balance between a clustering that reflects the data best

and a parsimonious model should be determined. For instance, a very small number

of clusters may result in a large number of samples in a single cluster, and, thus,

their assigned scores
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7.7.4. Incorporating consensus rankings for assigning joint

consensus scores

To determine the consensus scores and the consensus rankings of the samples on

each day, the problems defined by Eq. (7.1), using the absolute distance function

∂1, and Eq. (7.2) were considered, and the minimizers s∗ and -∗ of the scores

in Table A.11 and the rankings in Table A.12, respectively, were computed. The

results are gathered in Table 7.14.

Group 1 Group 2 Group 3

Tuesday Thursday Monday

s∗ (5, 4, 3, 4) (5, 4, 2, 2) (4, 4, 3, 4)

-∗

C3 ≺ D4 ≺ B2 ∼ A1 D5 ≺ C4 ≺ B3 ∼ A2 C5 ≺ D6 ∼ A3 ≺ B4

D5 ≺ C4 ∼ B3 ∼ A2 C5 ≺ D6 ≺ A3 ∼ B4

D5 ≺ C4 ∼ B3 ≺ A2

D5 ≺ C4 ≺ B3 ≺ A2

Group 4 Group 5

Wednesday Friday

s∗ (4, 3, 2, 2) (4, 3, 2, 2)

-∗ D7 ≺ C6 ∼ B5 ≺ A4 C7 ≺ D8 ≺ A5 ≺ B6

Table 7.14: The minimizers s∗ and -∗ of salmon samples of fillets (A, B, C, D) on each
day of the week in the order shown in Table 4.14.

To determine the consensus vectors of scores that should be assigned to the samples

in each group, while incorporating the consensus rankings of the samples, we

considered the problem defined by Eq. (7.12), where the constraints of a defined

set S are the consensus rankings summarized in Table 7.14.

To determine the consensus vectors of scores that should be assigned to the four

samples in each group, while incorporating the consensus rankings of the samples,

the problem defined by Eq. (7.12) is considered. The medians and the constrained

medians for the samples in each group are summarized in Table 7.15.

From Table 7.15, it is deduced on the basis of the vectors of scores provided by

the panellists to the samples in group 4 that sample B5 is fresher than sample C6

and sample D7. However, incorporating the consensus ranking of the samples in

group 4 indicates that sample B5 is similar to sample C6. Therefore, sample B5

should be assigned a lower score, resulting in equal scores assigned to samples B5,

C6 and D7. Similar conclusions can be drawn for groups (1, 2, 3 and 5).
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Group 1 Group 2 Group 3

Method A1 B2 C3 D4 A2 B3 C4 D5 A3 B4 C5 D6

The median 5 4 3 4 5 4 4 2 4 4 3 4

The constrained median
4 4 3 4 5 4 4 2 4 4 3 4

4 4 4 2

Group 4 Group 5

Method A4 B5 C6 D7 A5 B6 C7 D8

The median 4 3 2 2 4 3 2 2

The constrained median 4 2 2 2 4 4 2 2

Table 7.15: The median and constrained median for each sample in every group
after incorporating knowledge of consensus rankings in Table 7.14. The differences are
highlighted.

Note that incorporating a consensus ranking should only be considered when the

number of panellists providing a ranking is large enough. Otherwise, there exists

the potential risk of inaccurately ordering samples, and, thus, assigning incorrect

scores. In this experiment, the number of panellists providing rankings on the

salmon samples was between 23 and 28 depending on the group. This number may

be considered to be large enough for obtaining consensus rankings, however, having

more panellists would result in more reliable consensus rankings. Therefore, in this

study we will not use the consensus rankings as the only tool to compare these

samples.

7.7.5. Comparing the consensus vectors of scores

To study the influence of incorporating the previously discussed information that

invoked different constraints on the median of each sample, we summarize all the

medians and the constrained medians for each setting in Table 7.16.

It can be seen that the medians and the constrained medians for some of the samples

are equal. A conclusion is reached that the scores assigned to these samples agree

with each of the additional information of the samples. However, the medians and

the constrained medians for the other samples differ. The additional constraints

might provide a better understanding of the score that should be assigned to each

sample.

It is important for the reader to note that choosing an optimal source of additional

information depends on the quality of that information. For instance, to use the

previously described sources of information, it is recommended that the initial

conditions of the samples should be similar, the clustering methods should be
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Group 1 Group 2 Group 3

Method A1 B2 C3 D4 A2 B3 C4 D5 A3 B4 C5 D6

The median 5 4 3 4 5 4 4 2 4 4 3 4

s∗α 4 4 3 4 5 4 4 2 4 4 3 4

The constrained median

Inc. knowledge of storage days 5 4 3 4 5 4 3 3 4 4 3 3

Inc. results of clustering analysis 5 4 3 4 5 4 4 3 4 4 3 4

Inc. consensus ranking
4 4 3 4 5 4 4 2 4 4 3 4

4 4 4 2

Group 4 Group 5

Method A4 B5 C6 D7 A5 B6 C7 D8

The median 4 3 2 2 4 3 2 2

s∗α 4 2 2 2 4 4 2 2

The constrained median

Inc. knowledge of storage days 4 3 2 2 4 3 2 2

Inc. results of clustering analysis 4 3 3 2 4 3 2 2

Inc. consensus ranking 4 2 2 2 4 4 2 2

Table 7.16: The median, the consensus vector of scores s∗α (for small values of α close
to but not equal to zero) and the constrained medians for each sample in every group
after incorporating knowledge of storage days, results of clustering analysis and consensus
rankings.

reliable and consistent, and the number of panellists performing ranking tests

should be large.

Note that simultaneously incorporating knowledge of storage days, results of a

clustering analysis and consensus ranking(s) of the samples would result in many

constraints. As a result, the constrained median of samples C7, D7 and D8 stays

the same while the constrained median of all the other samples is either 3 or 4.

The reader should bear in mind that adding too many constraints may result in

forcing the scores of all the samples to be similar.

Interestingly, in groups 1, 3, 4, and 5, the consensus vector of scores s∗α (for small

values of α close to but not equal to zero) is identical to the constrained median

after incorporating the consensus rankings. However, in group 2 they are identical

only for the consensus rankings where sample A2 is ranked higher than sample

B3.
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7.8. Conclusions

In this chapter, we have proposed three methods for combining scores and rankings.

We have presented a first method for assigning consensus scores to food samples,

while integrating rankings. This is done by combining the median and the Kemeny

median that allows to compute the ‘distance’ between each possible vector of

scores and both the vectors of scores and the rankings provided by the trained

and untrained panellists, respectively. This method is especially useful for sensory

evaluation problems where the number of trained panellists providing scores is

very small, and where it is easier to obtain additional information, in the form of

rankings, by recruiting untrained panellists. This method is, however, not limited

by the number of untrained panellists or samples.

We have presented a second method for determining a consensus ranking of food

samples, while integrating scores. This is done by combining the median and

the Kemeny median that allows to compute the ‘distance’ between each possible

ranking and both the vectors of scores and the rankings provided by the trained

and untrained panellists, respectively. This method is especially useful for sensory

evaluation problems where the number of untrained panellists providing rankings

is very small, and where it is helpful to obtain additional information, in the form

of scores, by recruiting trained panellists. Similarly, this method is not limited by

the number of trained panellists or samples.

We have presented a third method for assigning a constrained mode, median or

mean by incorporating other types of information of the samples. The additional

information is incorporated in the form of constraints, and the constrained mode,

median or mean is the minimizer of sum of different distances. This method is

thus not limited to a certain distance. This method is especially useful for sensory

evaluation problems where the number of trained panellists providing scores is very

small, and where additional information on the samples is known.

We have illustrated the use of these three methods on an experiment for determining

the freshness of raw Atlantic salmon, as described in Chapter 4. We have shown the

influence of integrating rankings provided by untrained panellists on the consensus

vector of scores, the influence of integrating vectors of scores provided by trained

panellists on the consensus ranking, and the influence of incorporating additional

information of the samples, namely storage days, clustering analyses and consensus

rankings, on the consensus vector of scores. In addition, other potential applications

for the aforementioned methods include, but are not limited to, decision making

problems [130, 176], online valuation [177] and recommender systems (e.g., social

matching systems and gift, music and movie recommenders) [120].We end by noting

that, in the field of food science, researchers are not only interested in determining

the quality of food samples, but also in understanding and identifying the reasons

for the scores assigned to the samples. Thus, the resulting consensus scores can be
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of use in relating characteristics of samples to their assigned scores.

One could note that these methods are a starting point to apply the novel methods

presented in Chapters 5 and 6. Thus, it would be interesting to improve the search

for the closest monotone matrix of labels (respectively, the closest monotone profile

of rankings), while integrating rankings with ordinal labels. One approach would

be to consider a combination of the search for a closest monotone matrix of labels

and the search for the closest monotone profile of rankings. Another approach

would be to consider the optimization problem in Section 5.5 that leads to the

computation of a closest monotone matrix of labels while further satisfying the

constraints of S. Expressing the monotonicity property when dealing with ordinal

labels and rankings, at the same time, still remains an open problem that will be

addressed in the near future.
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8.1. Introduction

The problem of correlating certain data of food with sensory evaluation is not new

and has been tackled in the past [66, 178, 179, 180, 181, 182, 183]. Those studies

focus on statistical modelling of sensory evaluations and on testing statistical

hypotheses. Recently, studies have shown various ways of predicting sensory

evaluations [60, 75, 83, 84, 184]. However, those studies focus on unsupervised

statistical techniques.

In this chapter, we consider the problem of predicting the appreciation of a food

sample. A traditional approach for solving this supervised prediction problem starts

with a data collection step, where a number of samples is gathered and a feature

representation of these samples is obtained. Subsequently, several people are asked

to express their appreciation of these samples. From these data, we can, using

statistical approaches, learn a model that can map a sample’s feature representation

to an appreciation and thus solve the prediction problem. The feature representation

consists of a number of chemical and/or physical characteristics of these samples.

To obtain an appreciation, the samples are evaluated by one or more panellists in

terms of perceived freshness. Recently, the prediction of the appreciaiton of food

samples has appeared in several studies on food quality [84, 185, 186, 187], where
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the appreciation is in the form of a score. However, these scores are often associated

with ordinal labels, where the distance between them is latent. Therefore, in this

chapter, we answer the following question:

Question IV.1: How can we predict an ordinal label?

To predict ordinal labels, we use traditional ordinal regression models, but improve

their predictive performance by introducing regularization. Notably, numerous

models that describe absolute evaluations (in case of ordinal regression) use a latent

variable. These latent variable models assume that every sample can be mapped

to a real value using a so-called appreciation function. The variable obtained in

this way is called the latent variable, and the appreciation function is sometimes

called the latent variable function. Generally, the higher the value of the latent

variable of a sample, the more it will be appreciated. This latent variable thus

provides a way to rank samples according to their appreciation. Most preference

learning strategies try to approximate this (unknown) appreciation function by

means of a mapping g from the feature space X to R, and simply call g the latent

variable function. The use of the mapping g to predict the result of a relative

evaluation is rather straightforward. Consider a first sample with feature vector

x1 ∈ X and a second sample with feature vector x2 ∈ X. Whenever g(x2) < g(x1),

it is predicted that the first sample is ranked higher than the second. Analogously,

whenever g(x1) < g(x2), it is predicted that the second sample is ranked higher

than the first, and, whenever g(x1) = g(x2), it is predicted that the first sample is

ranked equal to the second. To predict the result of an absolute evaluation, i.e., to

which class of a set of linearly ordered classes a sample belongs, an additional step

is needed. The sampling space of the latent variable (typically R) is partitioned in

as many intervals as there are classes. Each class is then linked with an interval

of the partition such that the ordering of the classes matches the ordering of the

intervals. As a result, the partition provides a natural way to map the predicted

value of the latent variable to a class label and can thus be used to predict the

result of an ordinal label.

Over the last few decades, several ordinal regression methods have been proposed

to analyse ordinal data and learn a mapping from a feature space to a set of lin-

early ordered labels. Notable examples include the proportional-odds model [188],

support vector ordinal regression [189] and nearest neighbours for ordinal classifica-

tion [190]. Unfortunately, training and (subsequently) collecting information from

trained panellists usually carries big expenses. For this reason, there usually is a

limited amount of data available to learn a good predictive model, which does not

suffer from overfitting or low predictive power. Statistical methods for predicting

an ordinal label using sensory data and high-dimensional features are lacking.

Therefore, in the following sections, we propose a strategy for reducing overfitting

in ordinal regression models and improving their predictive power.
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8.2. Predictive modelling of ordinal labels

In this section, we present the ordinal regression problem and an approach that

can be adopted to include `1-norm regularization.

8.2.1. The ordinal regression problem

As a starting point, we introduce some notations. Assume that our training data

are identically and independently drawn observations of an unknown distribution

over X ×Y, where X = Rp is the input space and p is the number of features.

Y = {L1, . . . , Lq} is the label set containing q linearly ordered labels:

L1 ≺ . . . ≺ Lk ≺ . . . ≺ Lq ,

where k ∈ {2, . . . , q − 1}. We represent each sample by a p-dimensional vector

x ∈ X and an ordinal label y ∈Y. We describe our dataset D as a set of n couples

(xi, yi) with xi = (xi1, . . . , xip), where the couples (xi, yi) are realizations of the

random vector (X ,Y).

Ordinal regression has been studied quite extensively in statistics [110, 189, 191,

192, 193, 194, 195, 196, 197]. There are several types of ordinal regression models,

however, the latent variable models are generally considered the most important

ones [198, 199, 200, 201, 202]. These models assume that a linearly ordered label

set is the result of the discretization of an unobserved latent variable. Therefore,

these ordinal regression models f : X → R are of the following form:

f(x) =


L1 , if g(x) ≤ θ1 ,
Lk , if θk−1 < g(x) ≤ θk , for k ∈ {2, . . . , q − 1} ,
Lq , if θq−1 < g(x) ,

(8.1)

with θ1 < . . . < θk−1 < θk < . . . < θq−1 the set of threshold parameters and

g : X → R the function that models the latent variable.

Therefore, fitting an ordinal regression model consists of estimating a function g

and a set of thresholds, where g assigns a real value to a sample, and the thresholds

are used to partition the real line to obtain an ordinal response.

We now define the relationship between the output random variable Y and the

input random vector X as follows:
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Y =


L1 , if g(X ) + E ≤ θ1 ,
Lk , if θk−1 < g(X ) + E ≤ θk , for k ∈ {2, . . . , q − 1} ,
Lq , if θq−1 < g(X ) + E ,

(8.2)

where E is an error term following a random distribution that is uncorrelated

with X .

To specify the model fully, it is necessary to select a probability distribution for

Y and, equivalently, for E . We say that if the probability of observing a larger

outcome Y increases slowly for small values of X , more rapidly for intermediate

values of X , and more slowly for large values of X , then either the normal distribu-

tion or logistic distribution is appropriate for E . The former distribution yields the

ordered probit model [203] and the latter distribution yeilds the proportional odds

model [188]. One reason for their popularity is their connection to the motivation

of a continuous latent variable.

The difference in the overall results of both models is usually small, however, the

interpretation of the proportional odds model is known to be more intuitive [204].

Thus, we assume that E follows a logistic distribution with 0 mean and that

the latent variable function g can be written as a linear function of the type

g(X ) = w · X . The parameter vector w describes the effect of a unit change in

vector x on the unobserved function g. This can be seen in Figure 8.1(a) that

Y falls in the category Lk when the latent variable falls in the k-th interval of

values. Here, we assume G to be a latent random variable that follows a logistic

distribution with a mean g(X ) for a given vector X = x.

The cumulative probability of observing an outcome Y smaller than or equal to Lk,

given a variable vector X = x, is Pr (Y ≤ Lk | X = x). Given the relationship in

Eq. (8.2), it follows

Pr (Y ≤ Lk | X = x) = Pr (g(x) + E ≤ θk) = Pr (E ≤ θk − g(x)) . (8.3)

To provide an estimate of the model parameters w and θ = {θ1, . . . , θq−1}, instead

of fitting a decision rule f : X → Y directly, this model defines a probability

density function over the ordinal labels for a given variable vector x.

Using the cumulative distribution function of the logistic distribution, it can be

seen that the probability of observing an outcome Y smaller than or equal to Lk,

given X = x, is:
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1

0

Figure 8.1: (a) A model underlying ordinal data for the case of 3 ordinal labels, the
horizontal axis indicates the value of a (one-dimensional) feature vector x, the vertical
axes contain the random variable Y that falls in category Lk when the latent variable
g falls in the k-th interval of values. The intervals are determined by the thresholds
θ1 and θ2 on the latent variable. The latent random variable G is assumed to follow a
logistic distribution with mean g(X = x). The highlighted areas indicate the probabilities
for the case of k = 2, such that Pr (Y = L2 | X = x1) and Pr (Y = L2 | X = x2). (b) A
visualization of the proportional odds model with the latent variable on the horizontal
axis and the cumulative probabilities on the vertical axis.

Pr
(
Y ≤ Lk | X = x

)
=


exp(−w · x + θk)

1 + exp(−w · x + θk)
, if k = 1, . . . , q − 1 ,

1 , if k = q .
(8.4)

This is visualised in Figure 8.1(b), where the probability of observing an outcome

Y equal to Lk, given X = x, is simply the difference between the cumulative

probability of that ordinal label and the one below it. This probability is formulated

as follows:

Pr
(
Y = Lk | X = x

)
=

{
fk(x) , if k = 1 ,

fk(x)− fk−1(x) , if k = 2, . . . , q ,
(8.5)

where we used the short-hand notation fk(x) = Pr
(
Y ≤ Lk | X = x

)
.

The parameter vectors w and θ = (θ1, . . . , θq−1) are estimated by maximizing the

likelihood function:

l(w,θ) =

n∏
i=1

Pr
(
Y = yi | X = xi

)
. (8.6)
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Because of tradition and computational convenience, the negative log-likelihood is

minimized instead of maximizing the likelihood in Eq. (8.6) directly. There exist

various minimization algorithms that can be used to perform the computation [94,

205, 206]. Minimizing the log-likelihood is also the approach we adopt in this

chapter. Using the new variable yi,k, where yi,k = 1 if yi = Lk and yi,k = 0,

otherwise, we compute the negative log-likelihood function as follows:

−logl(w,θ) = −
n∑
i=1

log
(
f1(xi)

yi,1

)
−

n∑
i=1

q∑
k=2

log
((
fk(xi)− fk−1(xi)

)yi,k) . (8.7)

As a final step, we minimize Eq. (8.7) w.r.t. w and θ as follows:

minimize
w,θ

− log l(w,θ) . (8.8)

8.2.2. Performance measures for sensory evaluations

To evaluate the performance of an ordinal regression model, performance measures

such as the concordance index (C-index) [207], or the volume under the ROC

surface [208, 209] can be used. These measures use the predicted ordinal labels

to compute the performance. However, as the proportional odds model is a

probabilistic model, we can, given the estimates for w and θ, also estimate the

probability distribution over the ordinal labels. Moreover, in the setting of sensory

evaluation of food, it is common that a single food sample is evaluated by multiple

panellists. As a result, these replicated evaluations can be used to compute

the empirical distribution function of the panellists’ evaluations. Thus, for each

sample two distributions arise, one that is observed and one that is predicted (or

modelled).

To compare probability distributions, one of several (dis)similarity measures or

distance metrics described in literature (see for instance [210]) can be used. We

distinguish two types of measures: measures that are invariant to a change of

the ordering of the classes and measures that are not invariant to such a change.

Examples of the former type include the Hellinger distance metric, the Kullback-

Leibler divergence (KL divergence) measure, the total variation distance metric

and the χ2-distance, whereas examples of the latter type include the Kolmogorov

distance metric, the Levy distance metric and the Earth mover’s distance metric.

Note that, for the aforementioned measures and distance metrics, the type trivially

follows from their definition. For simplicity, we focus on the KL divergence measure

in this chapter. Given two probability distribution functions P and P̂ over a
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common sample space (in our case Y), the KL divergence dKL(P, P̂ ) is computed

as:

dKL(P, P̂ ) =
∑
L∈Y

P (L) log
P (L)

P̂ (L)
. (8.9)

We consider the distribution P to be the “test distribution” (usually considered to

be the true distribution) and the distribution P̂ to be the estimated distribution. A

high value of dKL(P, P̂ ) corresponds to a large separation of the two distributions,

i.e., P̂ is very dissimilar to P . Analogously, a low value of dKL(P, P̂ ) corresponds

to a better estimation. It must be noted that KL divergence is considered as a

measure of entropy increase due to the use of an estimated distribution P̂ to the

true distribution P rather than P itself. From Eq (8.9), it is clear that the order

on the classes does not influence the obtained KL divergence.

8.2.3. Regularization in ordinal regression

When estimating model parameters by maximizing the likelihood (minimizing

the negative log-likelihood in our case), the resulting model might overfit the

data and have a low predictive power. To counter that, `1 or `2 regularization

is usually performed. Typically, `1 regularization is more useful since it tends to

produce sparse parameters (i.e., only few parameters are non-zero) by encouraging

the sum of the absolute values of the parameters w to be small. Although `2
regularization produces non-sparse parameters, it is computationally more efficient

than `1 regularization. However, in the setting where there is a limited amount of

data available to learn an interpretable model, the advantages of `1 regularization

outweigh the computational efficiency of `2 regularization. The former is done by

adding a penalty term to the negative log-likelihood function, such that

− (1− α) log l(w,θ) + α

p∑
i=1

|wi| . (8.10)

Note that the regularization parameter λ > 0 is transformed into a parameter α to

write the expression as a convex combination. The parameter α ∈ [0, 1[ controls the

complexity of the model via a trade-off between fitting the data well, and having a

well-regularized model with a reduced number of model parameters1.

The `1-regularized likelihood function in Eq. (8.10) is a convex function. There-

fore, it can potentially be minimized efficiently using convex-programming solvers.

However, the sparsity-inducing regularization term is non-smooth. There exist

1 The case where α = 1 is not considered because the problem would boil down to minimising only
the regularization parameter.
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several strategies to solve optimization problems with sparsity-inducing penal-

ties [105, 106, 107, 108]. One of the advantages of the log-likelihood function

is the possibility of easily including constraints on the model parameters. We

choose to rewrite ‖w‖1 as ‖β‖1, such that −β ≤ w ≤ β for β ≥ 0p, and, thus,

transform Eq. (8.10) into the equivalent linearly constrained convex optimization

problem:

minimize
w,θ,β

−(1− α) log l(w,θ) + α

p∑
i=1

βi ,

subject to 0 ≤ βi − wi , for i = 1, . . . , p ,

0 ≤ βi + wi , for i = 1, . . . , p ,

(8.11)

Note that the model parameters now consist of w, θ and β.

8.3. Experimental analysis

This section is devoted to illustrate the proposed method using synthetic examples

that are representative of typical problem settings. The goal is to investigate how

the addition of an `1-regularization term to the constrained optimization problem

(8.11) influences the predictive performance of an ordinal regression model.

8.3.1. General experimental setup

It is to be expected that the performance of our ordinal regression model depends on

several characteristics of the data and the underlying phenomenon, including:

� The number of samples (n) provided to trained panellists.

� The number of labelling tasks (nl) performed by trained panellists, with one

sample in each labelling task.

� The number of features (p).

The combined influence of these characteristics on the overall predictive performance

of the ordinal regression model is investigated using synthetically generated data.

Note that, in this chapter, we do not focus on the number of trained panellists, but

on the number of tasks. In other words, we do not distinguish between a trained

panellist providing labels for all n samples or n trained panellists providing a label

for one sample.

We demonstrate the influence of adding an `1-regularization term to ordinal re-

gression models. We do this by considering the setting where five labelling tests
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are conducted, and, in each test, trained panellists are provided with n sam-

ples to perform labelling tasks. These five tests are used as folds for applying

5-fold cross-validation [100] and extracting the cross-validated performance of the

model.

The general data simulation process for the experiment is as follows:

Generate the feature vectors (x): Feature vectors (for all n samples evaluated

by trained panellists in each of the five labelling tests) are independent and

identically distributed observations of a Gaussian distribution with mean 0 and

standard deviation 1. This can be seen as drawing observations from a p-variate

Gaussian distribution with a covariance matrix equal to the identity matrix.

Defining the latent variable and thresholds: We consider different settings

where the number of features p is increased. The parameters in the vector w of the

latent variable function g are independent and identically distributed observations

of a Gaussian distribution with mean 0 and standard deviation 1. This can be seen

as drawing observations from a p-variate Gaussian distribution with a covariance

matrix equal to the identity matrix. We consider a setting with five classes (q = 5).

To obtain the threshold parameters (θ1, . . . , θ4), a large sample of the latent variable

is simulated, i.e., a large number of feature vectors is generated for each vector w

and only used to compute the latent variable (w ·x). The thresholds are chosen such

that the empirical distribution of the labels is uniform over the label set.

Sampling absolute evaluations (ordinal labels): In each of the five labelling

tests, trained panellists are provided with n samples to perform a total of nl labelling

tasks. To simulate this, based on the proportional odds model, we compute, for

each of the n generated feature vectors, the probability mass function over the

labels. To obtain labels from nl labelling tasks, we sample a feature vector from

the set of n feature vectors, nl times. For each sampled feature vector, we sample

a label from the label set (Y = {L1, . . . , L5}) according to the corresponding

probability mass function. After sampling all the labels, we compute, for each

feature vector, the empirical distribution function over the different labels.

Tuning and evaluating the model: By considering the optimization problem

defined by Eq. (8.11), we learn a linearly constrained `1-regularized ordinal regres-

sion model. To determine the optimal values of the tuning parameter α for solving

Eq. (8.11) and to evaluate the performance of the model learned, we perform nested

5-fold cross-validation. Nested cross-validation is used to avoid biased evaluations

of performance that that result from using the same data to tune the model and

evaluate its performance of the model [211]. First, we use inner cross-validation on

4n feature vectors to determine the optimal values of the tuning parameter in the

set {2−10, 2−9, . . . , 2−1, 2−0.9, . . . , 2−0.1} by selecting the tuning parameter that

provides the best model. Second, we perform outer cross-validation to evaluate

the model selected by the inner cross-validation on the remaining n feature vectors

in the labelling tests. We evaluate the performance in the five outer folds by
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calculating the KL divergence defined by Eq. (8.9) between the predicted proba-

bility distribution using the learned model and the originally computed empirical

probability distribution over the label set for each sample. We then compute the

mean KL divergence to extract the cross-validated performance of the model. Note

that the standard ordinal regression model does not require tuning, therefore, 5-fold

cross-validation is performed to assess its predictive power [100].

8.3.2. Experimental settings using synthetic data

We consider three settings in this experiment: in the first, trained panellists are

given four samples (n = 4) to perform 40 labelling tasks (nl = 40) in each of the

five labelling tests; in the second, trained panellists are given five samples (n = 5)

to perform 50 labelling tasks (nl = 50) in each of the five labelling tests; and, in

the third, trained panellists are given six samples (n = 6) to perform 60 labelling

tasks (nl = 60) in each of the five labelling tests. In each setting, 1000 vectors w

are first randomly generated to compute a latent variable (w · x) for each w and

the threshold parameters (θ1, . . . , θ4) are obtained. Then, n feature vectors are

generated (for all evaluated samples) and nl labels are sampled. Finally, we compute

the empirical probability mass function over the label set (Y = {L1, . . . , L5}) for

each sample.

By considering the optimization problem defined by Eq. (8.8), we learn an ordinal

regression model on 4n feature vectors and 4nl labels gathered from trained

panellists for each number of features p ∈ {10, 20, . . . , 100, 150, . . . , 300}. We

then consider the optimization problem defined by Eq. (8.11) to learn a linearly

constrained `1-regularized ordinal regression model on the 4n feature vectors and

the 4nl labels gathered from trained panellists for each number of features in p.

We then compute the KL divergence between the predicted probability distribution

using the model learned on the sampled 4nl labels and the originally computed

empirical probability distribution over the label set for each sample. We expect the

overall performance of the model to improve after including an `1-regularization

term. Note that, for each setting, we expect the performance to diminish after

increasing the number of features since the number of feature vectors is small in

comparison.

Figure 8.2 shows the mean KL divergence (cross-validated performance) of the

standard ordinal regression models and is considered as a reference. It is clear that

`1-regularized ordinal regression models outperform the standard ordinal regression

models. In Figures 8.2(a)-(c), we see that, as the number of features increases,

the overall performance of the standard ordinal regression models diminishes, and,

consequently, increasing the KL divergence. In comparison, the overall performance

of the `1-regularized ordinal regression models diminished less and, consequently,

resulting in lower and somewhat steady KL divergence values. Note that the
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variation in KL divergence values for the reference is much larger than that for the

`1-regularized ordinal regression models.

We now refer to the works of Murphy [212] and Gelman et al. [213] for detailed infor-

mation on a Bayesian interpretation of regularization. In general, `1-regularization

naturally arises when the model coefficients have a Laplace distribution. It can

be argued that fixing the model coefficients at a predefined value in the synthetic

experiment, such that they have the same importance, deviates from this theo-

retically ideal situation in which they are sampled from a Laplacian distribution.

However, we have two reasons why we still prefer to use `1-regularization:

1. Using some form of regularization will improve the predictive accuracy of

the predictive model as we have considered a setting with a large number of

features (50 in the synthetic experiment) and a limited number of labelling

tasks (no more than 60 for the synthetic experiment). This means that

without using regularization the model will highly over-fit the data (there

might not even be a unique solution to the optimization problem, or we

would observe a perfect fit on the training data), which would lead to poor

predictive power. The bias-variance trade-off, which is often used to motivate

the need for regularization, does not assume that the importance of the

elements in w is unequal. Other forms of regularization could be more

applicable to the scenario that we study in the synthetic experiments where

all inputs are equally important (such as for instance `2). However, we

do not want to focus on finding an optimal regularizer for this synthetic

experiment (mainly because the effect of the type of regularization (`1 versus

`2) is often not that important in practice). Moreover, the translation of the

`1 regularizer into a set of linear inequality constraints in the optimisation

problem closely resembles the way in which the ranking information is encoded

in the optimisation problem (also by means of linear constraints).

2. In a real-life setting, the feature-selecting behaviour of `1 regularization is

a highly appreciated property. For instance, if a good model can be found

that only uses a subset of the original number of VOCs this would reduce

the efforts needed in the chemical lab. Therefore, using `1 regularization is

particularly interesting here.

8.4. Application to sensory data

In this section, we apply the method introduced in this chapter to the datasets

gathered from labelling tests in Chapter 4 that measure the degree of freshness of

chicken breasts, cod, brown shrimp and salmon samples. Using the sensory data, we

illustrate the effect of adding `1 regularization to ordinal regression models.
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(a)

(b)

(c)

Figure 8.2: Experiment illustrating the mean KL divergence values of standard ordinal
regression models as reference (blue line) with possible values (shaded blue) in comparison
to the mean KL divergence values of `1-regularized ordinal regression models (orange line)
with possible values (shaded orange) for an increasing number of features p.
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§8.4. Application to sensory data

8.4.1. Chicken breast

First, the feature representations of chicken samples are obtained through the use

of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations

of 23 VOCs. Table B.2 summarizes the VOC profile (i.e., the feature vector) of

each of the eight chicken samples. Subsequently, 33 panellists were each asked to

give their appreciation of eight chicken breast samples (i.e., n = 8 and nl = 264)

by evaluating them, on an ordinal scale consisting of three labels: “Spoiled” (SP),

“Marginal” (M), and “Fresh” (F) such that SP ≺ M ≺ F. The labels provided by

the panellists are gathered in Table A.1, and, for each feature vector, we compute

the empirical distribution function over the different labels.

In this case, the model is learned on only eight samples, which is insufficient to

create large partitions for training and testing without losing significant training

or testing capabilities. Here, nested leave-one-out cross-validation is performed

using n folds to determine the optimal value of the tuning parameter α for solving

Eq. (8.11) and to estimate the general performance of the model. The resulting

mean KL divergence of the standard ordinal regression models is 25.8102, and the

resulting mean KL divergence of the `1-regularized ordinal regression models is

0.5602. To interpret these KL divergence values, we compare them with the entropy

of distribution P = 1.8684. Thus, the standard ordinal regression model result in a

1381% entropy increase, while the `1-regularized ordinal regression model result

in a 30% entropy increase. The large increase in entropy is due to the very small

dataset used in training the models.

It is important to consider a higher number of samples in the training dataset.

Therefore, to ensure good performance of the models, it is recommended to gather

more data, preferably from the same or similar storage experiments.

8.4.2. Atlantic cod

First, the feature representations of cod samples are obtained through the use of

selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations

of 20 VOCs. Table B.5 summarizes the VOC profile (i.e., the feature vector) of

each of the 32 cod samples. Subsequently, panellists (between 8 and 12) were each

asked to give their appreciation of the cod samples (i.e., n = 32 and nl = 320),

as described in Table 4.5 by evaluating them, on an ordinal scale consisting of

five labels: “Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F) and

Very Fresh (VF), such that SP ≺ M ≺ S ≺ F ≺ VF. The labels provided by the

panellists are used to compute the empirical distribution function over the different

labels, for each feature vector. The results are shown in Table A.5.

In this case, the model is learned on only 32 samples, which is insufficient to

create large partitions for training and testing without losing significant training
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or testing capabilities. Here, nested leave-one-out cross-validation is performed

using n folds to determine the optimal value of the tuning parameter α for solving

Eq. (8.11) and to estimate the general performance of the model. The resulting

mean KL divergence of the standard ordinal regression models is 18.4988, and the

resulting mean KL divergence of the `1-regularized ordinal regression models is

0.8129. To interpret these KL divergence values, we compare them with the entropy

of distribution P = 2.6834. Thus, the standard ordinal regression model result in a

689% entropy increase, while the `1-regularized ordinal regression model result in

a 30.3% entropy increase. The large increase in entropy is due to the very small

dataset used in training the models. However, it is clear that `1 regularization

reduced the amount of increased entropy.

8.4.3. Brown shrimp

First, the feature representations of shrimp samples are obtained through the use

of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations

of 20 VOCs. Table B.8 summarizes the VOC profile (i.e., the feature vector) of

each of the 16 shrimp samples. Subsequently, nine or ten panellists were each

asked to give their appreciation of the shrimp samples (i.e., n = 16 and nl = 147),

as described in Table 4.8 by evaluating them on an ordinal scale consisting of

five labels: “Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F) and

Very Fresh (VF), such that SP ≺ M ≺ S ≺ F ≺ VF. The labels provided by the

panellists are gathered in Table A.7, and, for each feature vector, we compute the

empirical distribution function over the different labels.

In this case, the model is learned on only 16 samples, which is insufficient to

create large partitions for training and testing without losing significant training

or testing capabilities. Here, nested leave-one-out cross-validation is performed

using n folds to determine the optimal value of the tuning parameter α for solving

Eq. (8.11) and to estimate the general performance of the model. The resulting

mean KL divergence of the standard ordinal regression models is 26.3282, and the

resulting mean KL divergence of the `1-regularized ordinal regression models is

2.5755. To interpret these KL divergence values, we compare them with the entropy

of distribution P = 3.4648. Thus, the standard ordinal regression model result in

a 759% entropy increase, while the `1-regularized ordinal regression model result

in a 74% entropy increase. The large increase in entropy is due to the very small

dataset used in training the models. However, it is clear that `1 regularization

reduced the amount of increased entropy.
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8.4.4. Atlantic salmon

First, the feature representations of salmon samples are obtained through the use of

selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations of

25 VOCs. Table B.13 summarizes the VOC profile (i.e., the feature vector) of each

of the 72 salmon samples. Subsequently, panellists (between 5 and 12) were each

asked to give their appreciation of the shrimp samples (i.e., n = 72 and nl = 748),

as described in Table 4.11, by evaluating them, on an ordinal scale consisting of

five labels: “Spoiled” (SP), “Marginal” (M), “Satisfactory” (S), “Fresh” (F) and

Very Fresh (VF), such that SP ≺ M ≺ S ≺ F ≺ VF. The labels provided by the

panellists are gathered in Table A.9, and, for each feature vector, we compute the

empirical distribution function over the different labels.

In this case, the model is learned on 72 samples, which are quite sufficient to create

large partitions for training and testing without losing significant training or testing

capabilities. Here, nested 10-fold cross-validation is performed using 10 folds to

determine the optimal value of the tuning parameter α for solving Eq. (8.11) and to

estimate the general performance of the model. The resulting mean KL divergence

of the standard ordinal regression models is 16.6718, and the resulting mean KL

divergence of the `1-regularized ordinal regression models is 0.9551. To interpret

these KL divergence values, we compare them with the entropy of distribution

P = 2.982. Thus, the standard ordinal regression model result in a 559% entropy

increase, while the `1-regularized ordinal regression model result in a 32% entropy

increase. The large increase in entropy is due to the very small dataset used in

training the models. However, it is clear that `1 regularization reduced the amount

of increased entropy.

It is important to note that not only would gathering larger amounts of data help

the predictive performance of the models, but also the quality of the gathered data.

We notice that the MAP conditions of the storage experiments vary a lot for each

food type, particularly in the levels of CO2. Therefore, in light of these findings,

in order to ensure good performance of the models, it is not only recommended to

gather more data, but also from the same or similar storage experiments.

8.5. Conclusions

In this chapter, we have presented an ordinal regression strategy that allows to

include `1 regularization. This is done by rewriting the ordinal regression model

as a constrained non-linear optimization problem that includes `1 regularization

in the form of constraints. The validity and application of the presented strategy

has been shown through simulation and real-world experimentation on the sensory

and instrumental data gathered in Chapter 4. Simulation studies show that the

performance of standard ordinal regression models decreases when the models
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are learned on a larger number of features. Moreover, these studies showed that

`1-regularized ordinal regression models are more robust to the increase in the

number of features, and, thus, their performance did not decrease as much as that

of the standard ordinal regression models.

Studies on the real-world data showed that the performance of the standard ordinal

regression models learned on the sensory data was very poor. This is due to the

fact that in each setting, the number of samples is small in comparison to the

total number of features. The performance of the `1-regularized ordinal regression

models learned on the same data was improved. We conclude that this strategy

is useful, especially for problems where the number of samples is very small in

comparison to the total number of features. The demonstrated strategy ensures

the sparsity of the feature vectors, and, thus, reducing overfitting and improving

the model’s predictive power. Moreover, results of the studies on the sensory data

were consistent with the results of the synthetic studies.

It should be noted that our method is developed for settings where ordered labels

are provided. For the setting where each untrained panellist expresses a ranking

on the set of samples, it can be seen that most preference learning and learning

to rank strategies also use a latent variable. We shed light on the use of a latent

variable function in the next chapter (Chapter 9).

However, in other settings, different kinds of information can be provided [129, 130,

131]. For instance, trained panellists and untrained panellists may provide different

kinds of information, such as, absolute and relative information, respectively. These

types of information can be combined in order to exploit the information expressed

by both trained and untrained panellists. In Chapter 10, we introduce a strategy for

combining ordinal labels and rankings to augment ordinal regression models.
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9.1. Introduction

Over the last few decades, learning from preference data (data resulting from relative

evaluations) has received a lot of attention, especially in the machine learning

subfields: learning-to-rank [214, 215] and preference learning [216, 217, 218].

It can be seen that the learning-to-rank problem shares properties with the ordinal

regression problem. The former focuses on predicting a relative order of samples

while the latter focuses on predicting an ordinal label for each sample. Interestingly,

it is possible for a ranking model (but not for an ordinal regression model) to predict

wrong labels and incur no loss, as long as the relative order of the predicted labels

is correct. Although learning-to-rank and ordinal regression problems are different

problems, there has been some confusion resulting from the unclear distinction

between both problems. For instance, some of the ordinal regression methods

featured the word “ranking” [219, 220], and, similarly, some methods presented

with the word “ordinal regression” in the title would be considered today ranking

methods [221].

Learning-to-rank methods have been commonly used to solve information retrieval

problems [215]. In this chapter, we introduce the most prominent approaches,

namely, the pointwise and the pairwise approach, and we answer the following

question:
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Question IV.2: How can we predict rankings?

9.2. Approaches to predictive modelling of rank-

ings

As a starting point, we define the problem of constructing a predictive model

to predict the ranking of packaged food samples in terms of freshness given the

concentrations of the VOCs in the headspace of the package. To tackle the problem

of predicting a ranking of samples, machine learning methods have been prominent

in building effective ranking models [222]. In particular, we focus on the pointwise

and the pairwise approach. Note that these approaches model the process of

learning-to-rank in different ways. They define different input and output spaces,

employ different loss functions, and use different hypothesis spaces.

9.2.1. The pointwise approach

In general, the pointwise approach is similar to the ordinal regression approach.

The input space X ⊆ Rp of the pointwise approach contains vectors of p features

for samples and the output space Y = {L1, . . . , Lq} contains the ranking scores of

the samples in a ranking. We assume that our training data are identically and

independently drawn observations of an unknown distribution over X ×Y. The

hypothesis space contains functions that take the feature vector of a sample as

input and predict the ranking score of the sample in a ranking. We usually call

such a function f the appreciation function. Note that, based on the appreciation

function, one can order all the samples and produce the final ranked list.

In literature, several algorithms have been proposed for predicting rankings [219,

223, 224]. However, we focus on the method that has been previously discussed in

Chapter 8, where the relationship between the output random variable Y and the

input random variable X is defined in Eq. (8.2). We represent each sample by a

p-dimensional vector x ∈ X and a ranking score y ∈Y. We describe our dataset

D as a set of n couples (xi, yi) with xi = (xi1, . . . , xip), where the couples (xi, yi)

are realizations of the random vector (X ,Y).

By considering the optimization problem defined by Eq. (8.8), an ordinal regression

model is learned on the couples (xi, yi). Similarly, by considering the optimization

problem defined by Eq. (8.11) a linearly constrained `1-regularized ordinal regression

model is learned on the couples (xi, yi). Since the loss function is defined on the basis

of single samples, the ranking score of each sample is predicted, and, consequently,

a final ranked list is produced. Thus, the interdependency (i.e. the relative order)

among these samples is naturally not considered in the learning process.
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Furthermore, this approach ignores the fact that some samples are associated with

the same experiment while some others are not. As a result, the ranking score of

each sample in the ranked list is invisible to the loss function. This may cause

the loss function to unconsciously overemphasize some of the samples that have

the same ranking score but are relatively different, and , thereby, injecting bias

into the loss function. Considering that sensory evaluation is mainly performed

through multiple experiments, intuitively speaking, the pointwise approach has its

limitations. So tackle the problem, an attempt has been made by considering pairs

of samples associated with the same experiment as input. This is called the pairwise

approach, where the relative order among samples can be better modelled.

9.2.2. The pairwise approach

Consider the set of samples A = {a1, . . . , an}. In general, a ranking of n samples

corresponds to information for n(n−1)
2 pairs of samples, or equivalently, n(n− 1)

couples of samples. For instance, the pair {x1,x2} represents both couples (x1,x2)

and (x2,x1). Since both couples provide the same information, we restrict to the

couples where the index of the first sample is smaller than the index of the second

sample, resulting in nP = n(n−1)
2 couples. We then order all these nP couples

lexicographically and identify each of them with an index j ∈ {1, . . . , nP}. We

denote by (xj1,x
j
2) the feature vectors of the couples of samples, where xj1 ∈ X is

the feature vector of the first sample of the j-th couple and xj2 ∈ X is the feature

vector of the second sample of the j-th couple, for any j ∈ {1, . . . , nP}.

In general, the input space X2 = Rp × Rp of the pairwise approach contains

couples of samples with feature vectors (xj1,x
j
2) ∈ X2. We describe our dataset

D ⊂ X2 ×Y as a set of n(n−1)
2 couples (xj1,x

j
2), where the couples (xj1,x

j
2) are

realizations of the random vector (X1,X2). Note that for any j 6= k, it holds that

{xj1,x
j
2} 6= {xk1 ,xk2}.

Interestingly, in the pairwise approach, models that describe relative evaluations

use a latent variable function g, as explained in the Chapter 8. Consider a first

sample with feature vector x1 ∈ X and a second sample with feature vector x2 ∈ X.

Whenever g(x2) < g(x1), it is predicted that the first sample is ranked higher than

the second. Analogously, whenever g(x1) < g(x2), it is predicted that the second

sample is ranked higher than the first, and, whenever g(x1) = g(x2), it is predicted

that the first sample is ranked equal to the second.

Note that, in real life situations, the case g(x1) = g(x2) is mathematically difficult

to occur, unless the feature vectors x1 and x2 are identical. Therefore, in this

chapter, we only consider strict rankings. As a result, the ordinal regression problem

is reduced to a logistic regression problem, where the output is binary (i.e., either

x1 ≺ x2 or x2 ≺ x1). Therefore, using the logistic distribution function, it can

be seen that the probability of observing an outcome X1 preferred over X2, given
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X1 = x1 and X2 = x2, is defined as follows:

Pr
(
X2 ≺ X1 | X1 = x1,X2 = x2

)
=

exp (w · (x1 − x2))

1 + exp (w · (x1 − x2))
, (9.1)

We use the notation yj ∈ {0, 1} and f(x1−x2) = Pr
(
X2 ≺ X1 | X1 = x1,X2 = x2

)
,

and we generalize Eq. (9.1) by computing the following likelihood function:

l(w,θ,X2 ≺ X1) =

nP∏
j=1

(
f(xj1 − xj2)

)yj(
1− f(xj1 − xj2)

)1−yj
. (9.2)

For computational convenience, the negative log-likelihood is considered in Eq. (9.2)

as the loss function. To follow the tradition of minimization in optimization, the

loss function is minimized as follows:

minimize
w

−
nP∑
j=1

(
yj logf(xj1 − xj2) + (1− yj)log

(
1− f(xj1 − xj2)

))
+ λ ‖w‖1 . (9.3)

9.2.3. From preferences to rankings

After predicting pairwise preferences for a set of samples, the next step is to derive

an associated final ranking. This is non trivial, since the predicted preferences

do not straighforwardly result in a unique ranking. In fact, this problem has

received a lot of attention in the field of fuzzy preference modelling and (multiple

criteria) decision making [225]. In the case of preference learning, several studies

have compared different ways of combining the predictions of preferences into a

ranking [226, 227].

The most common approach to deriving a ranking from preferences is a simple

scoring approach. This approach, similar to the Borda count (Eq. (6.1)), makes use

of a scoring function S(xi) that assigns a score to the i-th sample ai with feature

vector xi, and a ranking is derived as follows:
(
S(xi) ≤ S(xj)

)
⇒
(
ai - aj

)
, for

i 6= j and i, j ∈ {1, . . . , n}.

The simplest scoring function is defined by the sum of weighted preferences, and

is commonly used in pairwise classification and ranking [217]. However, since we

are dealing with probabilities, the scoring function S(xi) or maximum likelihood

function becomes difficult to compute. This is particularly due to the unknown

conditional probability of a pairwise preference in a ranking given the other relevant

pairwise preferences in the ranking. One way of solving this is by assuming that

there are no conditional probabilities, thus, simplifying the scoring function S(xi)
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into the product of the probabilities of preferences that contain the sample with

feature vector xi.

Note that this is just a preliminary approach to derive a ranking from pairwise

preferences.

9.2.4. Performance measures for preferences and rankings

To evaluate the performance of a ranking model, the Kendall (Kemeny for rankings

with ties) distance between the predicted ranking and the consensus ranking is

computed. Moreover, as the logistic regression model is a probabilistic model, we

can, given the estimates for w, also estimate the probability of a pairwise preference.

Moreover, in the setting of sensory evaluation of food, it is common that a set

of samples is ranked by multiple panellists. These rankings result in replicated

preferences that can be used to compute the empirical probability distribution of

the panellists’ preferences. Thus, for each couple of samples, two probabilities arise,

one that is observed and one that is predicted (modelled). These probabilities can

be compared by computing their absolute differences, and the overall performance

of the models is computed as the sum of these absolute differences.

In sensory evaluation of food, it is common that experiments include a different

number of samples. Therefore, for each experiment, the Kendall distance and the

sum of absolute differences are averaged based on the corresponding number of

couples.

9.3. Application to sensory data

In this section, we apply the method introduced in this chapter to the datasets

gathered from the ranking tests in Chapter 4 that order chicken breasts, cod, brown

shrimp and salmon samples in terms of freshness. Using the sensory data, we

illustrate the effect of adding `1 regularization to ordinal regression models.

9.3.1. Chicken breast

First, the feature representations of chicken samples are obtained through the use of

SIFT-MS to measure concentrations of 23 VOCs. Table B.3 summarizes the VOC

profile (i.e., the feature vector) of each of the chicken samples. Subsequently, a

number of panellists (between 2 and 14) was asked to rank different sets of chicken

breast samples as described in Tables A.2 and A.3. As can be seen, there are eight

sets of three samples in each set, eight sets of four samples in each set and two sets

of five samples in each set. For each set of samples, we compute the distribution of

the panellists’ preferences on the couples of samples.
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The model is learned on the computed distribution of the panellists’ preferences on

the couples of chicken samples. Here, nested k-fold cross validation is performed

using k folds, where each fold contains the corresponding number of couples for each

experiment, to determine the optimal value of the tuning parameter α for solving

Eq. (9.3). In addition, this procedure is performed to estimate the performance

of the model in every fold by computing the averaged absolute difference of the

predicted and observed preferences and the averaged Kendall distance between the

predicted and observed rankings. The results are gathered in Table 9.1.

From Table 9.1, it is difficult to relate the sum of absolute differences of the

probabilities of preferences to the Kendall distances between the predicted and

consensus rankings. One of the main reasons is the fact that, in the case of

experiments L4 and H4, a very small number (between two and four) of panellists

provided rankings on the different sets of samples. However, note that the model was

learned on the computed distribution of the panellists’ preferences on the couples

of samples in experiments L8 and H8, where 14 panellists provided rankings on the

sets of samples. Therefore, we can extract some meaningful conclusions concerning

the experiments where there were multiple consensus rankings. Interestingly, the

results hint at an overall ranking of a15 ≺ a9 ≺ a0 for group 2 in session 4 of

experiment L4, an overall ranking of a11 ≺ a7 ≺ a5 ≺ a0 for group 1 in session 2

of experiment H4 and an overall ranking of a15 ≺ a9 ≺ a7 ≺ a0 for group 1 in

session 3 of experiment H4.

In the case of experiments L8 and H8, the sum of absolute differences of the

probabilities of preferences was mostly lower than that in the other experiments.

Furthermore, since the consensus rankings of the samples in these experiments were

based on a larger number of panellists, then we can conclude that the probability

distributions of the preferences better resemble the overall preferences.

It is important to consider the number of the panellists who provided preferences on

the couples of samples; the larger this number is, the higher quality the consensus

rankings are for computing the Kendall distance. Furthermore, it is important to

consider a higher number of couples of samples in the training dataset. Therefore,

to ensure good performance of the models, it is recommended to gather more data,

preferably from the same or similar storage experiments.

9.3.2. Atlantic cod

The feature representations of cod samples are obtained through the use of SIFT-

MS to measure concentrations of 20 VOCs. Table B.6 summarizes the VOC profile

(i.e., the feature vector) of each of the 32 cod samples. Subsequently, a number of

panellists (between eight and ten) are asked to rank different sets of cod samples

as described in Table A.6. As can be seen, there are eight sets of four samples in

each set. For each set of samples, we compute the distribution of the panellists’
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Ranking
Session Group

Absolute Predicted Consensus Kendall

test difference ranking ranking distance

L4

1

1 0.0879 a9 ≺ a7 ≺ a0 ≺ a5 a9 ≺ a5 ≺ a7 ≺ a0 0.333

2 0.0459 a5 ≺ a0 ≺ a7 ≺ a11 a11 ≺ a5 ≺ a7 ≺ a0 0.833

3 0.0157 a9 ≺ a15 ≺ a7 ≺ a0 a9 ≺ a15 ≺ a0 ≺ a7 0.167

4 0.0319 a13 ≺ a11 ≺ a7 ≺ a5 a13 ≺ a11 ≺ a5 ≺ a7 0.167

2

1 0.234 a13 ≺ a11 ≺ a15 a15 ≺ a13 ≺ a11 0.667

2 0.235 a13 ≺ a15 ≺ a9 a15 ≺ a13 ≺ a9 0.667

a15 ≺ a13 ≺ a9 0.667

3 0.0076 a13 ≺ a11 ≺ a5 a11 ≺ a13 ≺ a5 0.333

4 0.0230 a15 ≺ a9 ≺ a0 a15 ≺ a9 ≺ a0 0

a9 ≺ a15 ≺ a0 0.333

H4

1

1 0.0351 a9 ≺ a7 ≺ a5 ≺ a0 a9 ≺ a7 ≺ a0 ≺ a5 0.167

a9 ≺ a0 ≺ a7 ≺ a5 0.333

2 0.0215 a11 ≺ a7 ≺ a5 ≺ a0

a11 ≺ a7 ≺ a5 ≺ a0 0

a11 ≺ a7 ≺ a0 ≺ a5 0.167

a11 ≺ a5 ≺ a0 ≺ a7 0.333

a11 ≺ a5 ≺ a7 ≺ a0 0.167

a11 ≺ a0 ≺ a7 ≺ a5 0.333

3 0.0505 a15 ≺ a9 ≺ a7 ≺ a0

a15 ≺ a9 ≺ a7 ≺ a0 0

a15 ≺ a7 ≺ a9 ≺ a0 0.167

a15 ≺ a7 ≺ a0 ≺ a9 0.333

a9 ≺ a15 ≺ a7 ≺ a0 0.167

a9 ≺ a7 ≺ a15 ≺ a0 0.333

a7 ≺ a15 ≺ a9 ≺ a0 0.333

a7 ≺ a15 ≺ a0 ≺ a9 0.5

a7 ≺ a9 ≺ a15 ≺ a0 0.5

4 0.0299 a13 ≺ a11 ≺ a7 ≺ a5 a11 ≺ a13 ≺ a7 ≺ a5 0.167

2

1 0.0567 a13 ≺ a15 ≺ a11 a11 ≺ a13 ≺ a15 0.667

2 0.0343 a13 ≺ a15 ≺ a9 a13 ≺ a15 ≺ a9 0

3 0.0533 a13 ≺ a11 ≺ a5 a11 ≺ a13 ≺ a5 0.333

4 0.0728 a15 ≺ a9 ≺ a0 a9 ≺ a15 ≺ a0 0.333

L8 - - 0.0196 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 0

a5 ≺ a6 ≺ a4 ≺ a2 ≺ a0 0.1

H8 - - 0.0106 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0
a6 ≺ a5 ≺ a4 ≺ a0 ≺ a2 0.1

a6 ≺ a5 ≺ a0 ≺ a4 ≺ a2 0.3

a6 ≺ a5 ≺ a0 ≺ a2 ≺ a4 0.2

Table 9.1: The averaged sum of absolute differences of the predicted and observed
pairwise preferences and the averaged Kendall distances between the predicted and
observed rankings of chicken samples.

preferences on the couples of samples.

The model is learned on the computed distribution of the panellists’ preferences on

the couples of cod samples. Here, nested k-fold cross validation is performed using

k folds, where each fold contains the corresponding number of couples for each
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experiment, to determine the optimal value of the tuning parameter α for solving

Eq. (9.3). In addition, this procedure is performed to estimate the performance

of the model in every fold by computing the averaged absolute difference of the

predicted and observed preferences and the averaged Kendall distance between the

predicted and observed rankings. The results are gathered in Table 9.2.

Ranking
Session

Absolute Predicted Consensus Kendall

test difference ranking ranking distance

L4
1 0.0070 a13 ≺ a8 ≺ a4 ≺ a0 a13 ≺ a8 ≺ a4 ≺ a0 0

2 0.0273 a8 ≺ a7 ≺ a6 ≺ a5 a8 ≺ a7 ≺ a6 ≺ a5 0

H4
1 0.0476 a13 ≺ a8 ≺ a6 ≺ a4 a8 ≺ a13 ≺ a6 ≺ a4 0.167

2 0.0384 a11 ≺ a8 ≺ a7 ≺ a6 a11 ≺ a8 ≺ a7 ≺ a6 0

H8

1 0.0313 a7 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ≺ a0 0

a5 ≺ a7 ≺ a3 ≺ a0 0.167

2 0.0521 a5 ≺ a3 ≺ a6 ≺ a4 a5 ≺ a6 ≺ a4 ≺ a3 0.333

a5 ≺ a6 ≺ a3 ≺ a4 0.167

L8 - 0.0311 a7 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ≺ a0 0

A4 - 0.0570 a0 ≺ a1 ≺ a2 ≺ a3 a3 ≺ a2 ≺ a0 ≺ a1 0.833

Table 9.2: The averaged sum of absolute differences of the predicted and observed
pairwise preferences and the averaged Kendall distances between the predicted and
observed rankings of cod samples.

It can be seen from Table 9.2 that the sum of absolute differences of the probabilities

of the preferences is positively correlated to the Kendall distances between the

predicted and consensus rankings. Therefore, we can conclude that the model

was able to predict most of the actual consensus rankings, particularly for storage

experiments L4, H4, L8 and H8 (session 1). Interestingly, we notice that for

experiment A4, the predicted and consensus ranking were different from each other.

This can be explained by the fact that the model was learned on mostly samples

stored for at least three days, while the predicted ranking in experiment A4 was of

samples stored for at most 3 days.

9.3.3. Brown shrimp

The feature representations of shrimp samples are obtained through the use of

SIFT-MS to measure concentrations of 20 VOCs. Table B.9 summarizes the VOC

profile (i.e., the feature vector) of each of the 16 shrimp samples. Subsequently, a

number of panellists (nine or ten) are asked to rank different sets of shrimp samples

as described in Table A.8. As can be seen, there are four sets of four samples in

each set. for each set of samples, we compute the distribution of the panellists’

preferences on the couples of samples.
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The model is learned on the computed distribution of the panellists’ preferences on

the couples of shrimp samples. Here, nested k-fold cross validation is performed

using k folds, where each fold contains the corresponding number of couples for each

experiment, to determine the optimal value of the tuning parameter α for solving

Eq. (9.3). In addition, this procedure is performed to estimate the performance

of the model in every fold by computing the averaged absolute difference of the

predicted and observed preferences and the averaged Kendall distance between the

predicted and observed rankings. The results are gathered in Table 9.3.

Ranking
Session

Absolute Predicted Consensus Kendall

test difference ranking ranking distance

L4
1 0.0284 a10 ≺ a5 ≺ a0 ≺ a3 a10 ≺ a5 ≺ a0 ≺ a3 0

2 0.0187 a10 ≺ a0 ≺ a5 ≺ a3 a10 ≺ a5 ≺ a3 ≺ a0 0.333

H4
1 0.0276 a12 ≺ a7 ≺ a3 ≺ a0 a12 ≺ a7 ≺ a3 ≺ a0 0

2 0.0191 a7 ≺ a5 ≺ a0 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a0 0.167

Table 9.3: The averaged sum of absolute differences of the predicted and observed
pairwise preferences and the averaged Kendall distances between the predicted and
observed rankings of shrimp samples.

From Table 9.3, it is difficult to relate the sum of absolute differences of the

probabilities of the preferences to the Kendall distances between the predicted

and consensus rankings. One reason could be due to the small dataset of 24

couples. Another reason could be the fact that, in the second session of the

experiments, some of the observed probabilities of preferences were close to 0.5

(i.e., close to half of the panellists had the opposite preference than that of the

other panellists). Thus, even though most of the predicted probabilities were close

to the observed probabilities of preferences, a small difference could still result in

an opposite preference. Therefore, the Kendall distance between the predicted and

the consensus rankings was larger than that of the other experiments.

9.3.4. Atlantic salmon

The feature representations of salmon samples are obtained through the use of

SIFT-MS to measure concentrations of 25 VOCs. Table B.11 summarizes the VOC

profile (i.e., the feature vector) of each of the 72 salmon samples. Subsequently, a

number of panellists (between eight and ten) are asked to rank different sets of

shrimp samples as described in Table A.10. As can be seen, there are 18 sets of

four samples in each set. for each set of samples, we compute the distribution of

the panellists’ preferences on the couples of samples.

The model is learned on the computed distribution of the panellists’ preferences on

the couples of salmon samples. Here, nested k-fold cross validation is performed
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using k folds, where each fold contains the corresponding number of couples for each

experiment, to determine the optimal value of the tuning parameter α for solving

Eq. (9.3). In addition, this procedure is performed to estimate the performance

of the model in every fold by computing the averaged absolute difference of the

predicted and observed preferences and the averaged Kendall distance between the

predicted and observed rankings. The results are gathered in Table 9.4.

Ranking
Session

Absolute Predicted Consensus Kendall

test difference ranking ranking distance

H4

1 0.1261 a5 ≺ a1 ≺ a9 ≺ a11 a11 ≺ a9 ≺ a5 ≺ a1 0.833

2 0.0535 a7 ≺ a1 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3 0.167

3 0.0282 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 0

4 0.0566 a7 ≺ a5 ≺ a9 ≺ a3 a9 ≺ a7 ≺ a5 ≺ a3 0.333

AN4

1 0.0254 a13 ≺ a9 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1 0

a9 ≺ a13 ≺ a5 ≺ a1 0.167

2 0.0185 a11 ≺ a9 ≺ a7 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3 0

3 0.0413 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 0

4 0.0117 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a5 ≺ a1 ≺ a3 0.167

ANH4

1 0.0160 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 0

2 0.0300 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a3 ≺ a1 ≺ a5 0.333

3 0.0367 a11 ≺ a9 ≺ a5 ≺ a1
a11 ≺ a9 ≺ a5 ≺ a1 0

a11 ≺ a5 ≺ a9 ≺ a1 0.167

a11 ≺ a5 ≺ a1 ≺ a9 0.333

4 0.0302 a7 ≺ a3 ≺ a5 ≺ a1 a7 ≺ a5 ≺ a1 ≺ a3 0.333

A4

1 0.0220 a9 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 0.167

2 0.0095 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a5 ≺ a3 ≺ a1 0

3 0.0291 a11 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1 0.167

4 0.0248 a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1 0.167

L4 - 0.0273 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 0

M4 - 0.0271 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 0

Table 9.4: The averaged sum of absolute differences of the predicted and observed
pairwise preferences and the averaged Kendall distances between the predicted and
observed rankings of salmon samples.

It can be seen from Table 9.4 that the sum of absolute differences of the probabilities

of the preferences is positively correlated to the Kendall distance between the

predicted and consensus rankings. Therefore, we can conclude that the model

was able to predict most of the actual consensus rankings, particularly for storage

experiments AN4, A4, L4 and M4. However, we notice some predictive errors (i.e.,
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large Kendall distance and absolute difference), particularly for experiments H4

and ANH4.

As was previously mentioned, it is important to gather a large number of experi-

ments, particularly a large number of couples of samples. Even though the salmon

dataset is large (108 couples of samples), it seems that the performance of the

models was affected by the quality of the data. We notice that the MAP conditions

of the storage experiments vary a lot, particularly in the levels of CO2. Therefore,

in light of these findings, in order to ensure good performance of the models, it is

recommended to gather more data, preferably from the same or similar storage

experiments.

9.4. Conclusions

In this chapter, we have briefly described two approaches for the prediction of

rankings. Learning-to-rank problems based on the pointwise approach share

properties with ordinal regression problems. However, the relative order among

the samples is not well-modelled. The pairwise approach tackles this limitation by

considering information on pairs of samples associated with the same experiment

as inputs. Based on the pairwise approach, we have illustrated an `1-regularized

logistic regression strategy that allows to include as input the difference of the

feature vectors of the samples in each pair. The application of the presented

strategy has been shown through real-world experimentation on the sensory and

instrumental data gathered in Chapter 4. This strategy is useful, especially for

problems where the number of samples is very small in comparison to the total

number of features. The demonstrated strategy exploits sparsity-inducing penalties,

and, thus, reducing overfitting and improving the model’s predictive power.

It should be noted that the pairwise approach is used to predict probabilities

of pairwise preferences. We have presented a preliminary approach to derive

rankings from the predicted pairwise preferences. However, it would be interesting

to expand other approaches that could potentially result in improved prediction of

rankings.

In the next chapter (Chapter 10), we borrow ideas from the pairwise approach

to integrate rankings in ordinal regression models. We introduce a strategy for

combining ordinal labels and rankings to augment ordinal regression models.
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10.1. Introduction

In this chapter, we consider the problem defined in Chapter 8 of predicting the

appreciation of a sample when there is a limited amount of data available. As a

result, learning a good statistical model becomes a difficult task. Therefore, any

additional source of information could potentially lead to learning an improved

model. One way of obtaining additional data is by using more panellists to evaluate

the samples. As the use of additional trained panellists is too expensive, untrained

panellists could provide a cost-efficient source of additional information. Although

untrained panellists may not be well equipped to make accurate absolute evaluations,

they can instead provide reliable information by comparing multiple samples and

ranking them according to their perceived freshness [228]. The evaluations obtained

in such a way are relative (as opposed to absolute); therefore, we call them relative

evaluations. A simple example of relative evaluation arises when untrained panellists

are asked to compare only two samples at a time.

As we have seen in the previous chapters, learning from absolute evaluation data

and learning from relative evaluation data are usually considered as two separate
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problems. It might be worthwhile to develop strategies to exploit these different

types of data simultaneously into a single learning problem.

The purpose of this chapter is to develop a learning strategy that can be used

to predict absolute evaluations. To achieve this goal, we use traditional ordinal

regression models, but augment them by exploiting information obtained from

the relative evaluations provided by untrained panellists. Notably, numerous

models that describe absolute evaluations (in case of ordinal regression) or relative

evaluations (in case of preference learning) use a latent variable, as explained

in the previous chapters. Therefore, in this chapter, we answer the following

question:

Question IV.3: How can we combine ordinal labels and rankings to improve the

prediction of an ordinal label?

The path we follow is similar to the one proposed by Ye and Doermann [229],

who developed an approach to integrate data resulting from absolute and relative

evaluations using a probabilistic model. Similar to our work, Ye and Doermann

assumed that both types of data stem from the same ordinal principle. However,

their goal was not to construct a predictive model, and they did not use a feature

representation of the objects. It should be noted that there exist other, non-

probabilistic, approaches to integrate these different types of data [129, 130, 131,

230]. However, we will not follow this line of research in this paper as it mainly

focuses on reaching a consensus in decision-making problems rather than inferring

an absolute evaluation.

We present a framework that is capable of learning an ordinal regression model

while combining two types of data: firstly, data that represent absolute evaluations,

namely ordinal data, and secondly, data that represent relative evaluations, namely

rankings. In what follows, we propose and solve a linearly constrained convex

optimization problem that guarantees that the learned mapping takes both types

of data into account, and is capable of attributing an ordinal label to a new sample

based on its features. We do this by relying on principles from machine learning

and optimization theory, combined with ideas from information fusion.

10.2. The ordinal regression problem

In this section, we introduce some notations and briefly review the methods that

constitute the main building blocks of our approach.

As a starting point of this section, recall the problem setting presented in the

previous chapter, where a predictive model needs to be constructed to predict the

freshness of packaged foods given the concentrations of the VOCs in the headspace

of the package. On one hand, the output space Y = {L1, . . . , Lq} is the label set
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containing q linearly ordered labels. We represent each sample by a p-dimensional

vector x ∈ X and an ordinal label y ∈Y. We describe our dataset D as a set of n

couples (xi, yi) with xi = (xi1, . . . , xip), where the couples (xi, yi) are realizations

of the random vector (X ,Y).

10.3. Incorporating relative evaluations

So far, we have described a traditional ordinal regression model with `1 regulariza-

tion. This model, as seen in Eq. (8.11), can be used to predict absolute evaluations.

Due to limitations in gathering large amounts of data to learn a good model,

any additional source of information could potentially lead to an improved model.

Therefore, we develop hereafter a learning strategy to augment ordinal regression

models by exploiting information obtained from relative evaluations provided by

untrained panellists.

10.3.1. Rankings

As a starting point, recall the problem of setting presented in the previous chapter,

where a number of untrained panellists compare n samples, resulting in a ranking

(with ties) for each untrained panellist. We denote by (xj1,x
j
2) the feature vectors

of the couples of samples, where xj1 ∈ X is the feature vector of the first sample

of the j-th couple and xj2 ∈ X is the feature vector of the second sample of the

j-th couple, for any j ∈ {1, . . . , nP}. Subsequently, we gather all nP couples in the

following set:

P =
{(

(xj1,x
j
2), (πj , π

′
j , µj)

)
| j ∈ {1, . . . , nP}

}
, (10.1)

where πj (respectively π′j) is the number of untrained panellists ranking xj1 higher

than xj2 (respectively xj2 higher than xj1) and µj is the number of untrained

panellists expressing a tie between xj1 and xj2. Note that for any j 6= k, it holds

that {xj1,x
j
2} 6= {xk1 ,xk2}.

Example 10.1. Consider four samples with feature vectors x1,x2,x3,x4 ∈ X.

Hence, the lexicographic order (≺lex) on the set of nP = 6 couples is

(x1,x2) ≺lex (x1,x3) ≺lex (x1,x4) ≺lex (x2,x3) ≺lex (x2,x4) ≺lex (x3,x4) .

These four samples are compared by an untrained panellist, resulting in a ranking

(with ties), say x4 < x1 ∼ x3 < x2, expressing that this untrained panellist prefers

x2 over x3, is indifferent between x3 and x1, and prefers x1 over x4. Due to the

inherent transitivity of a ranking, this ranking also expresses that this untrained
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panellist prefers x2 over x1, x2 over x4, and x3 over x4. This information is

gathered as follows:

P =
{(

(x1,x2), (0, 1, 0)
)
,
(
(x1,x3), (0, 0, 1)

)
,
(
(x1,x4), (1, 0, 0)

)
,(

(x2,x3), (1, 0, 0)
)
,
(
(x2,x4), (1, 0, 0)

)
,
(
(x3,x4), (1, 0, 0)

)}
.

Typically, not all untrained panellists rank all the samples. Actually, untrained

panellists may rank different subsets of the set of samples. As a result, for every

couple of samples (xj1,x
j
2), we have πj + π′j + µj = mj , where mj is the number of

untrained panellists that ranked samples xj1 and xj2. Note that mj might be equal

to zero.

Example 10.2. Consider four samples with feature vectors x1,x2,x3,x4 ∈ X.

Three untrained panellists are asked to rank three of the four samples, resulting in

three rankings (with ties), say x1 > x3 ∼ x4, x3 > x1 > x2, and x1 ∼ x4 > x3

This information is gathered as follows:

P =
{(

(x1,x2), (1, 0, 0)
)
,
(
(x1,x3), (2, 1, 0)

)
,
(
(x1,x4), (1, 0, 1)

)
,(

(x2,x3), (0, 1, 0)
)
,
(
(x2,x4), (0, 0, 0)

)
,
(
(x3,x4), (0, 1, 1)

)}
.

10.3.2. Constraints

We now consider a proportional odds model with a latent variable function

g : X → R. We can use this model to predict the preference of one sample,

with feature vector xj1 ∈ X, over another, with feature vector xj2 ∈ X, for any

j ∈ {1, . . . , nP}. If g(xj1) > g(xj2), then we predict that xj1 is preferred over xj2; if

g(xj1) < g(xj2), then we predict that xj2 is preferred over xj1; finally, if g(xj1) = g(xj2),

then we predict that xj1 and xj2 are indifferent. Clearly, a useful model should (to

some extent) respect the information in Eq. (10.1). This imposes a number of

constraints on the potential latent variable functions.

If πj > 0, then we consider the constraint g(xj1) > g(xj2). Since g is linear, i.e.,

g(x) = w>x, we obtain w>xj1 > w>xj2, or, equivalently,

w>(xj2 − xj1) < 0 . (10.2)

However, due to the complexity of the problem or noise in the data, such inequality

might be too strict for a linear model. For this reason, we relax the constraint by
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introducing a slack variable ξj ∈ R+ and require

w>
(
xj2 − xj1

)
≤ ξj . (10.3)

Similarly, if π′j > 0, then we consider the constraint g(xj2) > g(xj1) and relax it by

introducing a slack variable ξ′j ∈ R+ and require

w>
(
xj1 − xj2

)
≤ ξ′j . (10.4)

Finally, if µj > 0, then we consider the constraint g(xj1) = g(xj2) and relax it by

introducing a slack variable ζj ∈ R+ and require

− ζj ≤ w>
(
xj1 − xj2

)
≤ ζj . (10.5)

The constrained optimization problem defined by Eq. (8.11) can now be extended to

include constraints defined in Eq. (10.3), Eq. (10.4), and Eq. (10.5) as follows

minimize
w,θ,β,ξ,ξ′ζ

− (1− α1) logL(w,θ)

+ α1

(
(1− α2)

p∑
i=1

βi + α2

( nP∑
j=1

πjξj + π′jξ
′
j + µjζj

))
,

subject to 0 ≤ βi − wi , for i = 1, . . . , p ,

0 ≤ βi + wi , for i = 1, . . . , p ,

0 ≤ ξj −w>
(
xj2 − xj1

)
, for j = 1, . . . , nP ,

0 ≤ ξ′j −w>
(
xj1 − xj2

)
, for j = 1, . . . , nP ,

0 ≤ ζj −w>
(
xj2 − xj1

)
, for j = 1, . . . , nP ,

0 ≤ ζj −w>
(
xj1 − xj2

)
, for j = 1, . . . , nP ,

0 ≤ ξj , for j = 1, . . . , nP ,

0 ≤ ξ′j , for j = 1, . . . , nP ,

(10.6)

The parameters α1, α2 ∈ ]0, 1[ control the complexity of the model via a trade-off

between fitting the data well, and having a well-regularized model with a reduced

number of model parameters and additional ranking information.

Note that the objective function takes into account the multiplicity of the constraints

by weighing the slack variables ξj , ξ
′
j and ζj with πj , π

′
j and µj , respectively.

Note also that if πj = 0, π′j = 0, or µj = 0, then the corresponding constraint

becomes inactive (in accordance with the fact that we have actually not introduced

corresponding slack variables in these cases).
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The fact that approaches for integrating absolute and relative evaluations for

predicting ordinal labels, as far as we know, do not yet exist is one of the reasons

why our method is useful. Since the proportional odds model is a traditional

model that is considered to be the simplest to understand, it is natural to first

develop an augmented version of this model based on our proposed approach. As a

following step, it would be interesting to apply this approach to other models that

are designed for ordinal regression.

As an example, we show that relative information can be integrated to augment

support vector ordinal regression models [189, 231] based on our proposed approach.

First, we denote by xki ∈ X the i-th feature vector in the k-th class label and

by nk the number of feature vectors in the k-th class label, where k ∈ {1, . . . , q}
and i ∈ {1, . . . , nk}, such that n =

∑q
k=1 n

k is the total number of feature vectors.

Denote by φ(x) the feature vector in a high-dimensional reproducing kernel Hilbert

space related to x by transformation. Thus, the problem is tackled by optimizing

multiple thresholds to define parallel discriminant hyperplanes for the ordinal scale

as follows:

minimize
w,θ,γ,γ′

1

2
‖w‖22 + α1

(
q∑

k=1

nk∑
i=1

(
γki + γ′

k
i

))
,

subject to 0 ≤ −1 + γki −w>φ(xki ) + θk , for i = 1, . . . , nk

and k = 1, . . . , q ,

0 ≤ −1 + γ′
k
i + w>φ(xki )− θk−1 , for i = 1, . . . , nk

and k = 1, . . . , q ,

θk−1 ≤ θk , for k = 2, . . . , q − 1 ,

0 ≤ γki , for i = 1, . . . , nk

and k = 1, . . . , q ,

0 ≤ γ′ki , for i = 1, . . . , nk

and k = 1, . . . , q ,

(10.7)

where γk and γ′
k

are slack variables for the k-th parallel discriminant hyperplane

and α1 > 0 controls the complexity of the model.

The proposed approach for integrating relative information can be similarly applied

to extend support vector ordinal regression models as follows:
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minimize
w,θ,γ,γ′,ξ,ξ′ζ

1

2
‖w‖22 + α1

(
q∑

k=1

nk∑
i=1

(
γki + γ′

k
i

))

+ α2

(
nP∑
j=1

(
πjξj + π′jξ

′
j + εjζj

))
,

subject to 0 ≤ −1 + γki −w>φ(xki ) + θk , for i = 1, . . . , nk

and k = 1, . . . , q ,

0 ≤ −1 + γ′
k
i + w>φ(xki )− θk−1 , for i = 1, . . . , nk

and k = 1, . . . , q ,

θk−1 ≤ θk , for k = 2, . . . , q − 1 ,

0 ≤ ξj −w>
(
xj2 − xj1

)
, for j = 1, . . . , nP ,

0 ≤ ξ′j −w>
(
xj1 − xj2

)
, for j = 1, . . . , nP ,

0 ≤ ζj −w>
(
xj2 − xj1

)
, for j = 1, . . . , nP ,

0 ≤ ζj −w>
(
xj1 − xj2

)
, for j = 1, . . . , nP ,

0 ≤ γki , for i = 1, . . . , nk

and k = 1, . . . , q ,

0 ≤ γ′ki , for i = 1, . . . , nk

and k = 1, . . . , q ,

0 ≤ ξj , for j = 1, . . . , nP ,

0 ≤ ξ′j , for j = 1, . . . , nP ,

(10.8)

where ξj , ξ
′
j and ζj are slack variables with respective weights πj , π

′
j , and εj ,

nP is the number of couples in the set P of couples of objects, and α1, α2 > 1

control the complexity of the model. Note that the `2 regularization term can be

replaced with an `1 regularization term in an approach similar to the one shown in

Eq. (8.11).

The nearest neighbours model [190] for ordinal classification is another model that

can be augmented based on our approach. We hope that this approach inspires

readers to further develop other models.

10.4. Experimental analysis

This section is devoted to illustrate the proposed method using synthetic examples

and a real-life example that are representative of typical problem settings. The goal

is to investigate how the incorporation of relative evaluations (ranking information)

through constrained optimization problem defined by Eq. (10.6) influences the

predictive performance of an ordinal regression model.
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10.4.1. General experimental setup

It is to be expected that the performance of our data integration strategy depends on

several characteristics of the data and the underlying phenomenon, including:

� The number of samples (n) provided to trained panellists and untrained

panellists.

� The number of labelling tasks (nl) performed by trained panellists, with one

sample in each labelling task.

� The number of ranking tasks (nr) performed by untrained panellists, with

no samples in each ranking task.

The combined influence of these characteristics on the overall predictive performance

of the ordinal regression model is investigated using synthetically generated data.

Note that we do not focus on the number of trained panellists or untrained panellists,

but on the number of tasks. In other words, we do not distinguish between an

trained panellist providing labels for all n samples or n trained panellists providing

a label for one sample, or equivalently, an untrained panellist providing nr rankings

of no samples or nr untrained panellists providing one ranking of no samples.

We demonstrate the influence of removing a fraction of all labels gathered from

trained panellists and instead integrating ranking information from untrained

panellists. We do this by considering the setting where five labelling and ranking

experiments are conducted, and, in each experiment, trained panellists and un-

trained panellists are provided with n samples to perform labelling and ranking

tasks. These five experiments are used as folds for applying 5-fold cross valida-

tion [100] and extracting the cross-validated performance of the model.

Let us consider a case study of predicting the appreciation of meat products. In

the field of sensory evaluation of food, volatile organic compounds (VOCs) are seen

as good indicators of food spoilage [228, 232]. We try to mimic this setting and

choose a lower bound on the number of VOCs present in various types of meat

products [233, 234, 235] as the total number of features p equal to 50.

The general data simulation process for the experiments is as follows:

Generate the feature vectors (x): Feature vectors (for all n samples evaluated

by both trained panellists and untrained panellists in each of the five labelling and

ranking experiments) are independent and identically distributed observations of a

Gaussian distribution. This can be seen as drawing observations from a p-variate

Gaussian distribution with a covariance matrix equal to the identity matrix.

Defining the latent variable and thresholds: For simplicity, we assume that

all considered features are equally relevant (features that have an influence on

the response). Therefore, the parameters in the vector w of the latent variable

function g are set to one. We consider a setting with five classes (q = 5). To
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obtain the threshold parameters (θ1, . . . , θ4), a large sample of the latent variable

is simulated, i.e., a large number of feature vectors is generated and only used

to compute the latent variable (w>x). The thresholds are chosen such that the

empirical distribution of the labels is uniform over the label set. This results in

the vector of thresholds given by θ = [−7.6948, −2.6006, 2.4936, 7.5878].

Sampling absolute (trained) evaluations (labels): In each of the five labelling

experiments, trained panellists are provided with n samples to perform a total of

nl labelling tasks. To simulate this, based on the proportional odds model, we

compute, for each of the n generated feature vectors, the probability mass function

over the labels. To obtain labels from nl labelling tasks, we sample a feature vector

from the set of n feature vectors, nl times. For each sampled feature vector, we

sample a label from the label set (Y = {1, . . . , 5}) according to the corresponding

probability mass function. After sampling all the labels, we compute, for each

feature vector, the empirical distribution function over the different labels.

Sampling relative (untrained) evaluations (rankings): In each of the five

ranking experiments, untrained panellists are also given the same n samples as the

trained panellists and are asked to perform nr ranking tasks on no samples. In

sensory analysis of food, due to olfactory fatigue of panellists, it is recommended

to rank no more than six samples [24]. In our experimental analysis, we consider

two to four samples in each ranking task. To simulate this setting, we start by

sampling without replacement no feature vectors from the set of n feature vectors.

For each of the no feature vectors, we sample a label from the label set according

to the corresponding probability mass function. We gather nP = no(no−1)
2 couples

and identify each of them with the index j corresponding to the position of the

couple in the lexicographic order. In each couple, if the first label is larger than

the second, then the value of πj is increased by one. If the second label is larger

than the first, then the value of π′j is increased by one. Otherwise, if the labels are

equal, then the value of µj is increased by one. We repeat this procedure nr times

and gather the ranking information in a set P, as in Eq. (10.1).

Tuning and evaluating the model: By considering the optimization problem

defined by Eq. (10.6), we learn a linearly constrained ordinal regression model while

combining the labels and rankings. To determine the optimal values of the tuning

parameters α1 and α2 for solving Eq. (10.6) and to evaluate the performance of

the model learned, we perform nested 5-fold cross validation. We compute the

mean KL divergence and the Earth mover’s distance to extract the cross-validated

performance of the model, as described in Chapter 8. It must be noted that the

Earth mover’s distance dEMD(P, P̂ ) between P and P̂ is influenced by the ordering

of the class labels. For a complete description of this distance metric, we refer

to [236]. Intuitively, however, it can be described as the minimal amount of work

that needs to be performed to transform one distribution into another by moving

“probability mass” between classes. Transporting one unit of mass to an adjacent

class requires one unit of work. Therefore, transporting mass to classes that are
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farther apart will require more work. Note, however, that this choice implies, in

addition to the ordering, an equidistance assumption on the classes. Finally, to

obtain the overall performance of a predictive model over an entire dataset, the

mean dissimilarity or distance is computed over all objects in the dataset.

10.4.2. Experimental settings using synthetic data

We consider three settings: in the first, trained panellists are given four samples

(n = 4) to perform 40 labelling tasks (nl = 40) in each of the five labelling

experiments; in the second, trained panellists are given five samples (n = 5) to

perform 50 labelling tasks (nl = 50) in each of the five labelling experiments; and,

in the third, trained panellists are given six samples (n = 6) to perform 60 labelling

tasks (nl = 60) in each of the five labelling experiments. Note that, after n feature

vectors are generated (for all evaluated samples) and nl labels are sampled, we

compute the empirical probability mass function over the label set (Y = {1, . . . , 5})
for each sample.

By considering the optimization problem defined by Eq. (8.11), we learn a linearly

constrained `1-regularized ordinal regression model on 4n feature vectors and

4nl labels gathered from trained panellists. We now simulate the influence of

removing half of the 4nl labels that are available and instead integrate ranking

information from untrained panellists. We consider the optimization problem

defined by Eq. (10.6), however, we learn a model on the 4n feature vectors and

just 4nl/2 labels. We gather these labels by sampling nl/2 labels in each labelling

experiment. We then compute the KL divergence between the predicted probability

distribution using the model learned on the sampled 4nl/2 labels and the originally

computed empirical probability distribution over the label set for each sample.

We expect the performance of the model to improve after integrating ranking

information gathered from untrained panellists and, after large amounts of ranking

information, the performance to equal or maybe exceed the performance of the

model learned on all the labels gathered from trained panellists. Note that, for

each setting, the number of integrated ranking tasks (nr) is increased by multiples

of the number of labelling tasks (nl).

Figure 10.1 shows the mean KL divergence (cross-validated performance) of the

`1-regularized ordinal regression model learned on all labels and is considered as

reference. It is clear that including ranking information provided by untrained

panellists, in the form of an increasing number of ranking tasks (nr), improves the

overall performance of the models and, consequently, decreases the KL divergence.

In Figure 10.1(a), Figure 10.1(c) and Figure 10.1(e), we see that, for a certain

number of ranking tasks, the models learned on half the labels gathered from

trained panellists outperform the models learned on all the labels gathered from

trained panellists. For a very large number of ranking tasks, the performances of
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all the augmented models seem to converge.
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Figure 10.1: Experiments comparing `1-regularized ordinal regression models learned
on all labels as reference (dashed black line) with models learned on half the labels and
integrating an increasing number of ranking tasks of two samples (blue line), three samples
(green line), and four samples (orange line).
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Figures 10.2(a) and 10.2(b) show the performance of the models using the Earth

mover’s distance metric. When comparing Figures 10.1(a) and 10.2(a), it can

be seen that the overall patterns are highly similar. The most notable difference

can be found for the case no = 2. When the KL divergence measure is used

as a performance measure, only a limited number of ranking tasks are needed

to outperform the baseline model. However, when the Earth mover’s distance

metric is used, this number increases significantly. It can be understood that the

equidistance assumption on the classes implied by the Earth mover’s distance

metric may have resulted in some errors in the calculation of dEMD(P, P̂ ). For larger

values of no, this increase is less dramatical. The same conclusion can be drawn

when comparing Figures 10.1(c) and 10.2(b).
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Figure 10.2: Re-evaluation of the results shown in Figures 10.1(a) and 10.1(c) using
the Earth mover’s distance metric.

It is interesting to study the influence of additional information resulting from

the inherent transitivity of a ranking on the performance of the models. As we

have previously mentioned, a ranking of no samples corresponds to information

for nP = no(no−1)
2 couples of samples. In particular, a ranking of two samples

corresponds to information for one couple, a ranking of three samples corresponds

to information for three couples, and a ranking of four samples corresponds to

information for six couples. Hence, we rescale Figures 10.1(a), 10.1(c) and 10.1(e)

into Figures 10.1(b), 10.1(d) and 10.1(f), respectively, by multiplying the number of

ranking tasks by the respective number of couples (nP · nr). These figures suggest

that additional information resulting from the inherent transitivity of a ranking

improves the performance of the models.

It must be noted that the value of α2 cannot be interpreted easily because the

log-likelihood, the parameters βi, ξj , ξ
′
j and ζj are not measured on the same scale.

Parameters βi have the same scale as the parameter vectors, whereas parameters

ξj , ξ
′
j and ζj have the scale of the latent variable. Both scales might have different

orders of magnitude. Therefore, even if, e.g., α = 0.95 might suggest that the
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constraints have a strong influence as compared to the `1 regularization at first

sight, the opposite might be true if the scale of the latent variable is an order

of magnitude larger than the scale of the parameters. Moreover, the fact that

the KL divergence is decreasing as the number of ranking experiments increases

shows that the optimisation problem gives a considerable amount of ‘importance’

to the novice rankings (otherwise the solution, and thus the resulting model, and

its performance would be the same). The change in KL divergence is thus already

an indirect quantification of this importance.

10.5. Application to sensory data

In this section, we apply the method introduced in this chapter to the datasets

gathered from labelling tests in Chapter 4 that measure the degree of freshness of

chicken breasts, cod, brown shrimp and salmon samples. Using the sensory data,

we illustrate the effect of integrating ranking information on `1-regularized ordinal

regression models.

10.5.1. Chicken breast

First, the feature representations of eight chicken breast samples are obtained

through the use of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure

concentrations of 23 VOCs and are gathered in Table B.2. Subsequently, 33

panellists were each asked to give their appreciation of eight chicken breast samples

(i.e., n = 8 and nl = 264) by evaluating them, on an ordinal scale consisting of three

labels: “Spoiled” (SP), “Marginal” (M), and “Fresh” (F) such that SP ≺ M ≺ F.

These evaluations are gathered in Table A.1. In addition, the feature representations

of 25 chicken breast samples are gathered in Table B.3. Subsequently, different

groups of panellists were asked to rank different sets of these chicken breast samples.

These evaluations are gathered in Table A.2 and Table A.3. We summarize these

ranking tests in Table 10.1. In each ranking test, nr panellists perform one ranking

task of no samples. Note that the labelled chicken breast samples are different

from the ranked chicken breast samples, hence, resulting in different sets of feature

vectors.

The ranking data in Table 10.1 are integrated with the labels provided by trained

panellists to fit an augmented ordinal regression model. In this case, the model is

learned on only eight samples, which are insufficient to create large partitions for

training and testing without losing significant training or testing capabilities. Here,

nested leave-one-out cross validation is performed using n folds to determine the

optimal values of the tuning parameters α1 and α2 for solving Eq. (10.6) and to

estimate the general performance of the model.

225



Chapter 10. Integrating rankings in ordinal regression models

Ranking test R1 R2 R3 R4 R5 R6 R7 R8 R9

nr 3 4 4 3 4 4 4 4 3

no 4 4 3 3 4 4 3 3 4

Ranking test R10 R11 R12 R13 R14 R15 R16 R17 R18

nr 2 3 2 4 4 4 4 14 14

no 4 3 3 4 4 3 3 5 5

Table 10.1: Ranking tests on chicken breast samples with different numbers of ranking
tasks (nr) and samples (no) per task.

To illustrate the general impact of exploiting the ranking information, we monitor

the KL divergence while gradually increasing the number of ranking tests in

Table 10.1. For each m ∈ {1, . . . , 18}, we randomly sample 10 different sets of

m ranking tests, and compute the mean KL divergence. In Figure 10.3, we show

the mean KL divergence after integrating ranking information from 10 different

sets of m ranking tests, and we see a decrease in the mean KL divergence value.

In other words, as the amount of additional ranking information increases, the

performance of the model improves. Moreover, to illustrate the variation in the KL

divergence at every number of ranking tests, we plot the possible values between

the maximum and the minimum KL divergence values as shaded. Interestingly,

between three and ten ranking tests, the maximum KL divergence values slightly

exceed the “reference” KL divergence value. This could be due to incorrect ranking

of samples by panellists. However, it is clear that as we increase the number of

ranking tests, the variation in the KL divergence values decreases.

On the basis of the parameter vector w, it was observed that acetic acid, 2,3-

butanediol, acetoin, ethanol, ammonia and sulfur compounds were considered

relevant. Several studies on meat spoilage, particularly on chicken, have identified

that 3-methylbutanol, 2-propanol, acetic acid, 2,3-butanediol, acetoin, dimethyl

sulfide, ethanol and ethyl acetate have an impact on the spoilage of chicken [37, 237].

Therefore, the additional VOCs may also be considered as strong contributors for

detecting food spoilage, regardless of the different MAP conditions and tempera-

tures.

10.5.2. Atlantic cod

First, the feature representations of 24 cod samples are obtained through the

use of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concen-

trations of 20 VOCs and are summarized in Table B.5. Subsequently, different

groups of panellists were asked to give their appreciation of these cod samples
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Figure 10.3: Experiment illustrating the KL divergence value of an `1-regularized
ordinal regression model as reference (dashed black line) in comparison to the mean (blue
line) and range (shaded) of the KL divergence values of `1-regularized ordinal regression
models with integrated ranking information of chicken breasts.

by evaluating them, on an ordinal scale consisting of five labels: “Spoiled” (SP),

“Marginal” (M), “Satisfactory” (S), “Fresh” (F) and “Very Fresh” (VF) such that

SP ≺ M ≺ S ≺ F ≺ VF. These evaluations are gathered in Table 4.5. In addition,

the feature representations of another 24 cod samples are gathered in Table B.6.

Subsequently, different groups of panellists were asked to rank different sets of

these cod samples. These evaluations are gathered in Table A.6. We summarize

these ranking tests in Table 10.2. In each ranking test, nr panellists perform one

ranking task of no samples. Note that the labelled cod samples are different from

the ranked cod samples, hence, resulting in different sets of feature vectors.

Ranking test R1 R2 R3 R4 R5 R6 R7 R8

nr 10 8 8 8 9 8 9 8

no 4 4 4 4 4 4 4 4

Table 10.2: Ranking tests on cod samples with different numbers of ranking tasks (nr)
and samples (no) per task.

The ranking data in Table 10.2 are integrated with the labels provided by trained

panellists to fit an augmented ordinal regression model. In this case, the model

is learned on only 24 samples, which are insufficient to create large partitions for

training and testing without losing significant training or testing capabilities. Here,

nested leave-one-out cross validation is performed using n folds to determine the

optimal values of the tuning parameters α1 and α2 for solving Eq. (10.6) and to
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Chapter 10. Integrating rankings in ordinal regression models

estimate the general performance of the model.

To illustrate the general impact of exploiting the ranking information, we monitor

the KL divergence while gradually increasing the number of ranking tests in

Table 10.2. For each m ∈ {1, . . . , 8}, we randomly sample 10 different sets of m

ranking tests, and compute the mean KL divergence. In Figure 10.4, we show

the mean KL divergence after integrating ranking information from 10 different

sets of m ranking tests, and we see a decrease in the mean KL divergence value.

In other words, as the amount of additional ranking information increases, the

performance of the model improves. Moreover, to illustrate the variation in the KL

divergence at every number of ranking tests, we plot the possible values between

the maximum and the minimum KL divergence values as shaded. Interestingly,

between one and three ranking tests, the maximum KL divergence values slightly

exceed the “reference” KL divergence value. This could be due to incorrect ranking

of samples by panellists. However, it is clear that as we increase the number of

ranking tests, the variation in the KL divergence values decreases.

Figure 10.4: Experiment illustrating the KL divergence value of an `1-regularized
ordinal regression model as reference (dashed black line) in comparison to the mean (blue
line) and range (shaded) of the KL divergence values of `1-regularized ordinal regression
models with integrated ranking information of Atlantic cod.

It was observed that the following VOCs were relevant: ethanol, 2,3-butanediol,

2-methylpropanol, 3-methylbutanol, dimethylamine and trimethylamine. Respec-

tively, ethanol, 2,3-butanediol and 3-methylbutanol, have frequently been identified

as potential spoilage indicators of cod under different MAP conditions and tem-

peratures [238, 239, 240]. Therefore, the additional VOCs, 2-methylpropanol,

dimethylamine and trimethylamine, can also be recognized as strong contributors

for the predicting spoilage of cod fillets, regardless of the applied atmosphere.
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§10.5. Application to sensory data

10.5.3. Atlantic brown shrimp

First, the feature representations of 16 shrimp samples are obtained through the use

of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations

of 20 VOCs and are summarized in Table B.8. Subsequently, different groups of

panellists were asked to give their appreciation of these shrimp samples by evaluating

them, on the ordinal scale used to evaluate cod samples. These evaluations are

gathered in Table A.7. In addition, the feature representations of anther 16 shrimp

samples are gathered in Table B.9. Subsequently, different groups of panellists

were asked to rank different sets of these shrimp samples. These evaluations are

gathered in Table A.8. These ranking tests are suammrized in Table 10.3. In each

ranking test, nr panellists perform one ranking task of no samples. Note that

the labelled shrimp samples are different from the ranked shrimp samples, hence,

resulting in different sets of feature vectors.

Ranking test R1 R2 R3 R4

nr 9 9 10 10

no 4 4 4 4

Table 10.3: Ranking tests on shrimp samples with different numbers of ranking tasks
(nr) and samples (no) per task.

The ranking data in Table 10.3 are integrated with the labels provided by trained

panellists to fit an augmented ordinal regression model. Similar to the case study on

cod samples, the model is learned on only 24 samples. Thus, nested leave-one-out

cross validation is performed using n folds to determine the optimal values of the

tuning parameters α1 and α2 for solving Eq. (10.6) and to estimate the general

performance of the model.

To illustrate the general impact of exploiting the ranking information, we monitor

the KL divergence while gradually increasing the number of ranking tests in

Table 10.3. For each m ∈ {1, . . . , 4}, we randomly sample 10 different sets of m

ranking tests, and compute the mean KL divergence. In Figure 10.5, we show

the mean KL divergence after integrating ranking information from 10 different

sets of m ranking tests, and we see a decrease in the mean KL divergence value.

In other words, as the amount of additional ranking information increases, the

performance of the model improves. Moreover, to illustrate the variation in the KL

divergence at every number of ranking tests, we plot the possible values between

the maximum and the minimum KL divergence values as shaded. It is clear that as

we increase the number of ranking tests, the variation in the KL divergence values

decreases.

In a recent study on brown shrimp during aerobic storage, it was observed that

the relevant compounds are 1,2-butanediol, 2-propanol, 2-pentanone, butanone,
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Chapter 10. Integrating rankings in ordinal regression models

Figure 10.5: Experiment illustrating the KL divergence value of an `1-regularized
ordinal regression model as reference (dashed black line) in comparison to the mean (blue
line) and range (shaded) of the KL divergence values of `1-regularized ordinal regression
models with integrated ranking information of Atlantic brown shrimp.

acetone, methyl mercaptan, sulphur hydride, dimethyl disulphide, ethyl acetate,

acetic acid and ammonia [241]. However, in this dissertation, it was observed

that 2,3-butanediol, 3-methyl-1-butanol, dimethylamine and trimethylamine were

considered relevant. Therefore, since we considered different MAP conditions and

temperatures, it could be that these compounds are relevant, regardless of the

applied atmosphere.

10.5.4. Atlantic salmon

First, the feature representations of 72 salmon samples are obtained through the use

of selected-ion flow-tube mass spectrometry (SIFT-MS) to measure concentrations

of 20 VOCs and are summarized in Table B.13. Subsequently, different groups of

panellists were asked to give their appreciation of these salmon samples by evaluating

them, on the ordinal scale used to evaluate cod and shrimp samples. These

evaluations are gathered in Table 4.11. In addition, the feature representations

of anther 72 salmon samples are gathered in Table B.11. Subsequently, different

groups of panellists were asked to rank different sets of these salmon samples.

These evaluations are gathered in Table A.10. These samples are summarized in

Table 10.4. In each ranking test, nr panellists perform one ranking task of no
samples. Note that the labelled salmon samples are different from the ranked

salmon samples, hence, resulting in different sets of feature vectors.

The ranking data in Table 10.4 are integrated with the labels provided by trained
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§10.5. Application to sensory data

Ranking test R1 R2 R3 R4 R5 R6 R7 R8 R9

nr 9 12 9 10 9 8 8 12 5

no 4 4 4 4 4 4 4 4 4

Ranking test R10 R11 R12 R13 R14 R15 R16 R17 R18

nr 9 9 7 8 9 10 8 9 9

no 4 4 4 4 4 4 4 4 4

Table 10.4: Ranking tests on salmon samples with different numbers of ranking tasks
(nr) and samples (no) per task.

panellists to fit an augmented ordinal regression model. In this case, the model

is learned on 72 samples, which are quite sufficient to create large partitions for

training and testing without losing significant training or testing capabilities. Here,

nested 10-fold cross validation is performed using 10 folds to determine the optimal

values of the tuning parameters α1 and α2 for solving Eq. (10.6) and to estimate

the general performance of the model.

To illustrate the general impact of exploiting the ranking information, we monitor

the KL divergence while gradually increasing the number of ranking tests in

Table 10.4. For each m ∈ {1, . . . , 18}, we randomly sample 10 different sets of

m ranking tests, and compute the mean KL divergence. In Figure 10.6, we show

the mean KL divergence after integrating ranking information from 10 different

sets of m ranking tests, and we see a decrease in the mean KL divergence value.

In other words, as the amount of additional ranking information increases, the

performance of the model improves. Moreover, to illustrate the variation in the KL

divergence at every number of ranking tests, we plot the possible values between

the maximum and the minimum KL divergence values as shaded. It is clear that as

we increase the number of ranking tests, the variation in the KL divergence values

decreases.

In several studies, alcohols, ketones, dimethyl sulfide and hydrogen sulfide were

considered as relevant compounds [53, 77]. However, it was observed in this

dissertation that 3-methyl-1-butanol, dimethyl amine, ethyl acetate, methyl mer-

captan, 3-methylbutanal, acetone, butanone, ammonia and carbon disulfide were

considered relevant. Therefore, it is suggested that monitoring these additional

VOCs could provide a better understanding at different MAP conditions and

temperatures.
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Chapter 10. Integrating rankings in ordinal regression models

Figure 10.6: Experiment illustrating the KL divergence value of an `1-regularized
ordinal regression model as reference (dashed black line) in comparison to the mean (blue
line) and range (shaded) of the KL divergence values of `1-regularized ordinal regression
models with integrated ranking information of Atlantic salmon.

10.6. Conclusions

In this chapter, we have presented an ordinal regression strategy that allows to

combine absolute evaluations from trained panellists and relative evaluations from

untrained panellists in the form of ordinal labels and rankings, respectively. This

was done by applying the methods presented in Chapters 8 and 9 and rewriting

the ordinal regression model as a constrained non-linear optimization problem that

includes `1 regularization and ranking information in the form of constraints. We

have demonstrated a strategy of augmenting ordinal regression models that can

be applied in several fields of science that adopt evaluation tests with different

types of data. This strategy is useful, especially for problems where the number of

samples is very small in comparison to the total number of features. We showed

through simulation and real-world experimentation on the sensory and instrumental

data in Chapter 4 that this strategy is efficient and works well for small datasets.

Simulation studies showed that additional data in the form of rankings improved

the performance of `1-regularized ordinal regression models. Moreover, results of

the studies on the sensory data were consistent with the results of the synthetic

studies.
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PART V
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11 General conclusions and perspectives

This dissertation is motivated by the context of intelligent food packaging for

providing companies in the food industry with essential information on the quality

status of packaged food products. Such information can help companies improve

food logistics and traceability, increase convenience towards consumers and reduce

food waste. Therefore, intelligent food packaging plays an essential role in im-

proving processing, logistic operations and quality assurance measures. Currently,

to determine characteristics of a food sample, sensory evaluation is performed.

However, performing and analysing sensory evaluation can be complex, requiring a

considerable amount of time and effort. Therefore, in this dissertation, we propose

methods for analysing sensory evaluations to better determine the overall sensory

characteristics of food samples. In addition, the proposed methods can help in

achieving cost reduction and time efficiency. In this dissertation, we have further

provided methods to be implemented alongside intelligent food packaging for de-

termining the current quality status of a packaged food product. This enables the

monitoring of all packages by gathering instrumental data of food samples, which

on the short run diminishes and eradicates sampling plans for quality control, and

on the long run predicts actual expiry dates, increases the margin of food safety,

indicates freshness level and detects early spoilage.

11.1. Analysis of sensory evaluations

In Part III of this dissertation, we focused on answering the following ques-

tions:

1. How can we assign (joint) consensus ordinal labels?

2. How can we assign a consensus ranking?

Answering these questions is useful in sensory evaluation for determining the overall

sensory quality or preference of food samples. It is a whole process that begins with

data collection and ends ultimately with assigning a consensus evaluation.

In many sensory evaluation settings, trained panellists are asked to provide ordinal

labels of a set of food samples for describing the overall sensory quality of the

samples. In such settings, where only ordinal labels on the samples have been

gathered, it can be assumed that the main goal is to assign a consensus label that

describes the overall quality of a food sample. Therefore, the first question needs

to be addressed.
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In Chapter 5, ordinal labels were gathered from trained panellists to assign a

consensus label that describes the overall quality of a food sample. We proposed

a method for aggregating ordinal labels to obtain a consensus labelling. These

ordinal labels represent abstract concepts, and dealing with perceptions is not

an easy task. Therefore, we used monotonicity of the assigned ordinal labels for

the aggregation of ordinal labels, which resulted in a method that simultaneously

exploited all the information expressed by the trained panellists.

In many other sensory evaluation settings, untrained (or less trained) panellists are

asked to provide a preference or ranking of food samples for describing a consensus

ranking of the samples. In such settings, where only rankings on the samples

have been gathered, it can be assumed that the main goal is to assign a consensus

ranking that describes the relative sensory quality of the food samples. Therefore,

the second question needs to be addressed.

In Chapter 6, rankings were gathered from untrained panellists to assign a consensus

ranking that describes the relative sensory quality of food samples. We proposed a

method for aggregating rankings to obtain a consensus ranking. We advocated for

monotonicity of a profile of rankings for the aggregation of ordinal labels, which

resulted in a method that simultaneously exploited all the information expressed

by the untrained panellists.

In answering the first question, companies in the food industry are typically required

to hire trained panellists or provide extensive training to the panellists, which

can be costly, time consuming and resource intensive. As a result, they may find

themselves facing the problem of having a very small number of panellists (i.e., a

small number of evaluations). Therefore, they may risk describing wrong absolute

quality of the food samples. Interestingly, since untrained panellists require less to

no training, they may be an additional source of information on the food samples.

Additionally, other types of information on the food samples may also be known

and exploited.

In other settings, some companies are interested in determining the preference of

one product over another. Therefore, the second question needs to be answered.

To target a broad group of consumers, companies need to hire a very large number

of untrained panellists, which can be costly, time consuming and resource intensive.

As a result, they may find themselves facing the problem of having a very small

number of panellists (i.e., a small number of evaluations), and may risk describing

wrong relative quality of the food samples. Interestingly, trained panellists may be

an additional source of information of absolute evaluations.

In Chapter 7, we dealt with the above-described problems of having a very small

number of panellists. Scores and rankings were gathered from trained and untrained

panellists, respectively, and combined to assign a consensus label/ranking that

describes the absolute/relative quality of food samples. To tackle the problem of

having a small number of trained panellists, we proposed an approach for assigning
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§11.1. Analysis of sensory evaluations

consensus scores to food samples, while integrating rankings. To tackle the problem

of having a small number of untrained panellists, we proposed an approach for

assigning a consensus ranking of food samples, while integrating scores. These two

approaches resulted in assigning improved consensus scores/ranking of the samples.

Therefore, we advocated considering these two methods to answer the following

question:

3. How can we combine scores and rankings to improve the assessment of food

samples?

It has been realized that, when answering the third question, companies may not

always have additional information in the form of rankings. However, they may

have other types of (relative) information on the samples, such as the knowledge

of storage days, the results of a clustering analysis or other sensory evaluation

tests. Therefore, we have proposed a method for incorporating such additional

information in the form of constraints, to improve the quality of the consensus

scores of the samples. Applying this method helped us deduce possible consensus

vectors of scores of the samples in settings where the consensus preference was not

clear.

The methods presented to address the third question can be seen as a starting point

to combining different types of absolute and relative information. The following

step would be to apply the novel methods that addressed the first two questions

for combining ordinal labels and rankings. It would be interesting to express the

property of monotonicity when dealing with ordinal labels and rankings, at the

same time. Accordingly, this opens up several problems:

A. Integrating rankings: Obtaining the joint consensus labelling of multiple

samples by simultaneously exploiting all the information expressed by the

trained (labelling) and untrained (ranking) panellists.

B. Integrating labels: Obtaining the consensus ranking of samples by simultane-

ously exploiting all the information expressed by the trained (labelling) and

untrained (ranking) panellists.

C. Incorporating information:

i. Obtaining the joint consensus labelling of multiple samples by exploiting

all the information expressed by the trained (labelling) panellists and

incorporating additional information on the samples.

ii. Obtaining the consensus ranking of samples by incorporating additional

information on the samples.

Moreover, it would be interesting to develop a combined approach of A and C(i),

where the problem is to obtain the joint consensus labelling of multiple samples by

simultaneously exploiting all the information expressed by the trained (labelling)
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and untrained (ranking) panellists, and, at the same time, incorporating additional

information on the samples.

Furthermore, in some cases, a panellist may not be able to provide a label/score to

a subset of the samples provided to them. In other cases, there may be a limited

number of samples, due to lack of proper planning or due to mechanical or technical

failures of storage means, and, as a result provides a subset of the samples to a

number of panellists. In all these cases, there will be missing information for some

food samples. Therefore, a researcher may either consider the panellists’ partial

evaluations as insufficient and remove them, or, since the number of evaluations

(i.e., the number of panellists and samples) is small, the best and simplest solution

is to impute the missing values, such as by considering the mean/median. This

can also be seen as a problem in which one wants to predict the value of a pair

(panellist, sample), therefore, pairwise learning can be used [242].

These proposed methods offer support to companies in search of appropriate

solutions to problems, such as consumer rejection, food waste, etc. For instance,

the methods provide improved consensus evaluations of food samples, and, thus,

allow for cost reduction and time-saving measures during quality control of food

samples. Furthermore, combining absolute evaluations with relative informations

could provide a more accurate understanding of the general appreciation of a

food sample. For instance, while expert wine tasters are often used as quality

indicators, research has shown that there is an increasing demand for a more

consumer-orientated system of sensory evaluation of luxury food and wine [243].

Given the fact that wine experts and consumers perceive wine quality differently,

it would be interesting for wine producers to combine scores and rankings from

the experts and the consumers, respectively, to provide labelled wine bottles that

facilitate their customers’ decision-making. As a result, the customers would

appreciate the food product more, and, in effect, reduce their food waste.

11.2. Prediction of sensory evaluations

In Part IV of this dissertation, we focused on settings where instrumental informa-

tion about the samples was collected. In these settings, we dealt with the following

research questions:

4. How can we predict an ordinal label?

5. How can we predict rankings?

Answering these questions is useful in the development of intelligent food packages

for determining the overall sensory quality or preference of food samples. It is

238



§11.2. Prediction of sensory evaluations

a whole process that begins with the collection of sensory evaluation data and

chemical data of packaged food.

As has already been discussed, trained panellists are typically asked to provide

ordinal labels for a set of food samples for describing the overall sensory quality

of the samples. Many companies within the food industry have shown increased

interest in gathering direct information of the quality status of a packaged food

product. Therefore, it is of great importance to study the influence of VOC

concentrations in the food packages on the sensory quality of the samples. In such

a setting, measured VOC concentrations of samples and their respective assigned

ordinal labels are gathered. Consequently, it would be interesting to predict an

ordinal label given a measurement of the VOC concentrations of a new sample in a

food package. Therefore, the fourth question needs to be addressed.

In Chapter 8, the concentrations of VOCs in packaged food samples were measured.

Furthermore, trained panellists were asked to evaluate the sensory quality of the

food samples and assign ordinal labels to the food samples. Researchers looking to

answer the fourth question may encounter several methods that take advantage of

the ordinal nature of the sensory evaluation data. However, as far as we know, very

few of these methods provide a solution to having a large number of features (i.e.,

VOCs) compared to the number of instances (i.e., evaluated samples). Therefore,

we proposed an ordinal regression model that takes instrumental data (i.e., features

of the studied samples) as input and sensory data (i.e., assigned ordinal labels by

trained panellists) as output, while including `1 regularisation. It was shown that

including `1 regularisation resulted in feature selection, where features that are

more influential on the sensory evaluation were selected from the large number of

features. It was then concluded that this approach improved the performance of

ordinal regression models.

As has already been discussed, untrained (or less trained) panellists are typically

asked to provide a preference or ranking of food samples. A researcher may also be

interested in studying the influence of VOC concentrations in food packages on the

preference of the samples. In such a setting, where a researcher having gathered

measurements of VOC concentrations of samples and rankings of these samples,

it would be interesting to be able to predict a ranking given measurements of the

VOC concentrations of a new set of samples. Therefore, the fifth question needs to

be addressed.

In Chapter 9, apart from measuring the concentration of VOCs in packaged food

samples, untrained panellists were asked to provide a ranking or preference of the

food samples. Researchers looking to answer the fifth question may encounter

several methods, however, not all of these methods take advantage of the ordinal

nature of the sensory evaluation data. Furthermore, as far as we know, very few of

these methods provide a solution to having a large number of features (i.e., VOCs)

compared to the number of instances (i.e., evaluated samples). Therefore, we
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proposed a model to take instrumental data (i.e., features of the studied samples)

as input and sensory data (i.e, assigned rankings by untrained panellists) as output,

while including `1 regularisation. It was then concluded that this approach improved

the performance of the ordinal regression models.

In addition to gathering sensory evaluations from trained panellists, which can be

costly and time consuming, chemical analysis on a large number of packaged foods

needs to be performed, which can further be resource intensive. These additional

costs can have a negative impact on the size and quality of the generated dataset

(i.e., a small number of studied samples and a small number of trained panellists

providing an evaluation for the samples), and may risk building a weak model.

Interestingly, since untrained panellists require less to no training, they may be

considered to be a good source of additional information of preferences/rankings

on the food samples.

In Chapter 10, we dealt with the above-described problem of having a small dataset

to build an interpretable model. We proposed an approach for predicting an

ordinal label of a new sample in a food package, while including `1 regularisation

and integrating preferences/rankings. Interestingly, the proposed approach is not

limited to gathering preferences/rankings on the same samples for which ordinal

labels are provided by trained panellists. Therefore, this allows flexibility in

gathering more data. It was concluded that this strategy resulted in augmented

ordinal regression models and was important especially for cases where the number

of samples is very small in comparison to the total number of features. Therefore,

we advocated considering this method to answer the following question:

6. How can we combine ordinal labels and rankings to improve the prediction of

an ordinal label?

The methods presented to address the above questions can be seen as a starting

point to incorporating different types of relative information in ordinal regression

models. Moreover, it would be interesting to consider a combination of the likelihood

functions in Chapters 8 and 9. This has similarities with the method of integrating

scores and rankings in Chapter 10. Furthermore, it would be interesting to consider

prediction problems that involve a time component, such as predicting the sensory

quality of a food sample at a later time, which can be applied to predict the actual

expiry date or shelf-life of a food sample. However, while the time component adds

additional information, it also makes time series problems more difficult to handle,

compared to ordinal regression models.

These proposed methods offer support to companies in search of appropriate

solutions for gathering essential information on the quality status of packaged

food products to tackle problems, such as traceability, food-waste, etc. Firstly,

the methods provide early-on detection of packaged food that does not meet

predefined quality standards. For instance, logistic operations along the food

supply chain bear the risk of mechanical product damages. These damages may
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have different consequences, starting with simple package deformation and loss

of package integrity, which lead to a compromise on the quality and safety of

the food. Therefore, companies using the methods proposed in this dissertation

can monitor food products along the supply chain and obtain information on

the evolution of the sensory quality of the packaged food product. As a result,

the companies can uncover weak points in the logistic operations and determine

the reasons for these weak points, such as equipment defects, human errors, etc.

Secondly, the methods allow companies to better objectify the sensory quality

of food products. For instance, a food processing company can provide product

certification to retailers and ensure the correct classification of the food product.

Furthermore, the companies can take consumer preferences into consideration when

providing product certification.

As intelligent food packaging technology is bound to replace human decision-making,

this gives rise to many liability questions, particularly when the machine makes an

incorrect decision. A complicating factor is that machine learning is difficult for

users of the intelligent food packaging technology to understand, and, thus, they

can claim ignorance and consider it a ‘black box’. This is important because the

liability questions often revolve around who the responsible ‘party’ is and what

the responsible ‘party’ knew, or should have known, at the time of the liability.

Another complication in the liability questions is determining whether the machine

learning software is part of the intelligent food product. Therefore, in an event

that the technology fails to make a correct decision, at least one of the following

‘parties’ can be held accountable: the software producer, the hardware producer,

the package producer and the packaged food producer. Thus, the companies that

supplies the end product (i.e., the packaged food producer) should establish a duty

of care to ensure and prove that reasonable care has been taken to avoid events of

harm to the consumer, for example, through the process of testing and evaluating

the technology on the specific food product. Regulating intelligent food packages

may enforced to ensure that duty of care is established. It seems that regulating

intelligent food packaging technology would not be aimed at resolving the legal

liability questions, but rather at reassuring the consumers that this technology has

been developed with public safety in mind, and in a way which allows problems to

be identified and rectified.

This work has implications for analysing and predicting the sensory quality of food

samples. We believe that this work will open doors to many new approaches in

different fields of study. It is important for the reader to note that having optimal

results from the use of the proposed methods depends on the quality of the gathered

data. Thus, it is first recommended to collect asessments of samples according to

the general guidelines and practices in the field of study, such as Sensory Evalution

Practices [16] in the field of food science. Second, in the field of food science, it is

recommended to perform accurate measurements of the VOC profiles. Otherwise

there exists the potential risk of inaccurately quantifying the spoilage metabolites
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in packaged food. Furthermore, it is important to consider the recommendations

provided in Chapter 7 on choosing an optimal source of additional information. For

instance, based on accurate measurements of the VOC profiles, clustering analysis

should be performed carefully.

In conclusion, precise questioning based on the findings of this dissertation could

help in further studies to find incentives for which researchers and companies are

ready to apply improved quality assurance measures and further develop intelligent

food packaging for improving food logistics and traceability, increasing convenience

towards consumers and reducing food waste.
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clustering algorithms using cluster path lengths,” in Advances in Data Mining.

Applications and Theoretical Aspects (P. Perner, ed.), (Berlin), pp. 42–56,

Springer, 2010.

[75] D. I. Ellis and D. Broadhurst, “Rapid and quantitative detection of the

microbial spoilage of meat by Fourier transform infrared spectroscopy and

machine learning,” Applied and Environmental Microbiology, vol. 68, no. 6,

pp. 2822–2828, 2002.

[76] D. Wu and D.-W. Sun, “Potential of time series-hyperspectral imaging (TS-

HSI) for non-invasive determination of microbial spoilage of salmon flesh,”

Talanta, vol. 111, pp. 39–46, 2013.
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[147] R. Pérez-Fernández, M. Rademaker, P. Alonso, I. Dı́az, S. Montes, and B. De

Baets, “Representations of votes facilitating monotonicity-based ranking rules:

From votrix to votex,” International Journal of Approximate Reasoning,

vol. 73, pp. 87–107, 2016.

[148] M. Rademaker and B. De Baets, “A ranking procedure based on a natural

monotonicity constraint,” Information Fusion, vol. 17, no. 1, pp. 74–82, 2014.

[149] M. Rademaker and B. De Baets, “Aggregation of monotone reciprocal rela-

tions with application to group decision making,” Fuzzy Sets and Systems,

vol. 184, no. 1, pp. 29–51, 2011.

[150] N. G. Andjiga, A. Y. Mekuko, and I. Moyouwou, “Metric rationalization of

social welfare functions,” Mathematical Social Sciences, vol. 72, pp. 14–23,

2014.

[151] N. Rodrigue, M. Guillet, J. Fortin, and J.-F. Martin, “Comparing information

obtained from ranking and descriptive tests of four sweet corn products,”

Food Quality and Preference, vol. 11, no. 1-2, pp. 47–54, 2000.

254



Bibliography

[152] T. Næs, P. B. Brockhoff, and O. Tomic, Statistics for Sensory and Consumer

Science. 2010.

[153] S. Ovadia, “Ratings and rankings: Reconsidering the structure of values and

their measurement,” International Journal of Social Research Methodology,

vol. 7, no. 5, pp. 403–414, 2004.

[154] H. van Herk and M. van de Velden, “Insight into the relative merits of rating

and ranking in a cross-national context using three-way correspondence

analysis,” Food Quality and Preference, vol. 18, no. 8, pp. 1096–1105, 2007.

[155] D. P. Bolhuis, A. Costanzo, and R. S. Keast, “Preference and perception of fat

in salty and sweet foods,” Food Quality and Preference, vol. 64, pp. 131–137,

2017.

[156] T. L. Bowman and S. Barringer, “Analysis of factors affecting volatile com-

pound formation in roasted pumpkin seeds with selected ion flow tube-mass

spectrometry (SIFT-MS) and sensory analysis.,” Journal of Food Science,

vol. 71, no. 1, pp. C51–C60, 2012.

[157] A. Øvrum, F. Alfnes, V. L. Almli, and K. Rickertsen, “Health information

and diet choices: Results from a cheese experiment,” Food Policy, vol. 37,

no. 5, pp. 520–529, 2012.

[158] H. R. Moskowitz, “Experts versus consumers: A comparison,” Journal of

Sensory Studies, vol. 11, no. 1, pp. 19–37, 1996.

[159] E. P. Cox III, “The optimal number of response alternatives for a scale: A

review,” Journal of Marketing Research, vol. 17, no. 4, pp. 407–422, 1980.

[160] J. P. D’Angelo and D. B. West, Mathematical Thinking: Problem-Solving

and Proofs. Upper Saddle River: Prentice Hall, 2nd ed., 2001.

[161] R. W. Bailey, “The number of weak orderings of a finite set,” Social Choice

and Welfare, vol. 15, pp. 559–562, 1998.

[162] C.-L. Hwang and A. S. M. Masud, Multiple Objective Decision Making

- Methods and Applications, vol. 164 of Lecture Notes in Economics and

Mathematical Systems. Berlin: Springer, 1979.

[163] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 of International

Series in Operations Research & Management Science. Boston: Springer,

1998.

[164] A. V. Zykina, “A lexicographic optimization algorithm,” Automation and

Remote Control, vol. 65, no. 3, pp. 363–368, 2004.

[165] C.-L. Hwang and A. Masud, Multiple Objective Decision Making Methods

and Applications. Berlin, Heidelberg: Springer-Verlag, 1st ed., 1979.

255



Bibliography

[166] K. Miettinen, Nonlinear Multiobjective Optimization. New York: Springer

US, 1st ed., 1998.

[167] C. A. C. Coello, G. B. Lamont, D. A. V. Veldhuizen, D. E. Goldberg, and

J. R. Koza, Evolutionary Algorithms for Solving Multi-Objective Problems.

Springer US, 2nd ed., 2007.

[168] G. Butler, L. M. Poste, D. A. Mackie, and A. Jones, “Time-intensity as a

tool for the measurement of meat tenderness,” Food Quality and Preference,

vol. 7, no. 3-4, pp. 193–204, 1996.

[169] N. François, C. Guyot-Declerck, B. Hug, D. Callemien, B. Govaerts, and

S. Collin, “Beer astringency assessed by time-intensity and quantitative

descriptive analysis: Influence of pH and accelerated aging,” Food Quality

and Preference, vol. 17, no. 6, pp. 445–452, 2006.

[170] A. C. Noble, “Application of time-intensity procedures for the evaluation of

taste and mouthfeel,” American Journal of Enology and Viticulture, vol. 46,

no. 1, pp. 128–133, 1995.

[171] C. R. Calkins and J. M. Hodgen, “A fresh look at meat flavor,” Meat Science,

vol. 77, no. 1, pp. 63–80, 2007.

[172] G. A. Sullivan and C. R. Calkins, “Ranking beef muscles for Warner-Bratzler

shear force and trained sensory panel ratings from published literature,”

Journal of Food Quality, vol. 34, no. 3, pp. 195–203, 2011.

[173] J. Bi, Sensory Discrimination Tests and Measurements: Sensometrics in

Sensory Evaluation. Chichester: John Wiley & Sons, 2nd ed., 2015.

[174] M. L. Harwood, G. R. Ziegler, and J. E. Hayes, “Rejection thresholds in

chocolate milk: Evidence for segmentation,” Food Quality and Preference,

vol. 26, no. 1, pp. 128–133, 2012.
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[230] S. Corrente, S. Greco, M. Kadziński, and R. S lowiński, “Robust ordinal

regression in preference learning and ranking,” Machine Learning, vol. 93,

no. 2-3, pp. 381–422, 2013.

[231] W. Chu and S. S. Keerthi, “New approaches to support vector ordinal

regression,” in ICML ’05: Proceedings of the 22nd International Conference

on Machine Learning, pp. 145–152, 2005.

[232] R. P. Singh, “Scientific principles of shelf life evaluation,” in Shelf Life

Evaluation of Foods (C. M. D. Man and A. A. Jones, eds.), ch. 1, pp. 3–26,

Boston: Springer, 1994.

[233] M. L. Hernández-Macedo, C. J. Contreras-Castillo, S. M. Tsai, S. H. Da

Cruz, C. I. G. L. Sarantopoulos, M. Padula, and C. T. S. Dias, “Gases and

volatile compounds associated with micro-organisms in blown pack spoilage

of Brazilian vacuum-packed beef,” Letters in Applied Microbiology, vol. 55,

no. 6, pp. 467–475, 2012.

[234] M. Kosowska, M. A. Majcher, and T. Fortuna, “Volatile compounds in meat

and meat products,” Food Science and Technology, vol. 37, no. 1, pp. 1–7,

2017.

[235] A. Watanabe, Y. Ueda, M. Higuchi, and N. Shiba, “Analysis of volatile

compounds in beef fat by dynamic-headspace solid-phase microextraction

combined with gas chromatographymass spectrometry,” Journal of Food

Science, vol. 73, no. 5, pp. C420–C425, 2008.

[236] E. Levina, P. Bickel, and B. Ca, “The Earth Mover’s distance is the Mallows

distance: some insights from statistics,” Proceedings Eighth IEEE Interna-

tional Conference on Computer Vision, vol. 2, pp. 251–256, 2001.

[237] A. D’hoore, Examination of Microbial Spoilage Processes in Chicken Breast

Fillets under Modified Atmosphere Packaging (MAP). Master thesis, Ghent

University, 2016.

[238] L. Kuuliala, Y. Al Hage, A.-G. Ioannidis, M. Sader, F.-M. Kerckhof, M. Van-

derroost, N. Boon, B. De Baets, B. De Meulenaer, P. Ragaert, and F. De-

vlieghere, “Microbiological, chemical and sensory spoilage analysis of raw

Atlantic cod (Gadus morhua) stored under modified atmospheres,” Food

Microbiology, vol. 70, pp. 232–244, 2017.

[239] N. Qualities, “Evaluation of shelf life of superchilled cod (Gadus morhua)

fillets and the influence of temperature fluctuations during storage on micro-

bial and chemical quality indicators,” Journal of Food Science, vol. 71, no. 2,

pp. S97–S109, 2006.

[240] E. Reynisson, H. L. Lauzon, H. Magnússon, R. Jónsdóttir, G. Ólafsdóttir,
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A Appendix

A.1. Sensory evaluation for chicken breasts

Labelling

H4

List of labels a0 a5 a7 a8 a9 a11 a13 a15

z1 F F SP F SP SP SP SP

z2 F F S SP S S SP SP

z3 S F S S F F SP SP

z4 F S F F S F S SP

z5 S F SP F F S S SP

z6 F SP F F S S S SP

z7 S F F S F SP SP SP

z8 F F F F F F SP SP

z9 F SP S F S F SP SP

z10 S F F S F S S S

z11 F S F S S S SP SP

z12 F S F F F S SP SP

z13 F F F S S F SP S

z14 F S F F F F SP SP

z15 F F F F S S SP SP

z16 S F SP S S S SP SP

z17 F F F F S S S S

z18 F F SP F SP S S SP

z19 F S SP S F S SP SP

z20 F F F F F S SP SP

z21 S SP SP F F F S SP

z22 F F F S F F SP SP

z23 F SP F S F S F SP

z24 F F S SP S F SP SP

z25 F F S F F S SP SP

z26 F F F S S S SP SP

z27 S SP SP F F S S F

z28 S S S F F SP S SP

z29 F F S F F F SP SP

z30 F F F F F F S SP

z31 SP F S F F S SP SP

z32 F F SP F F F SP S

z33 F F F S S S S S

Table A.1: Labels assigned to chicken samples by panellists in storage experiment H4
described in Table 4.2.
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a
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a
1
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a
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a
0

Table A.2: Rankings of chicken samples expressed by the panellists in each group
(represented by the corresponding superindex) and for every session (1 and 2) in storage
experiments L4 and H4 described in Table 4.3.
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Ranking L8 H8

≺1 a5 ≺ a6 ≺ a0 ≺ a2 ≺ a4 a6 ≺ a5 ≺ a0 ≺ a2 ≺ a4

≺2 a5 ≺ a6 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a2 ≺ a4 ≺ a0

≺3 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a0 ≺ a5 ≺ a4 ≺ a2

≺4 a6 ≺ a2 ≺ a5 ≺ a4 ≺ a0 a5 ≺ a6 ≺ a0 ≺ a4 ≺ a2

≺5 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0

≺6 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a4 ≺ a5 ≺ a6 ≺ a0 ≺ a2

≺7 a6 ≺ a5 ≺ a4 ≺ a2 ≺ a0 a4 ≺ a0 ≺ a6 ≺ a5 ≺ a2

≺8 a2 ≺ a5 ≺ a6 ≺ a4 ≺ a0 a5 ≺ a6 ≺ a0 ≺ a2 ≺ a4

≺9 a5 ≺ a6 ≺ a0 ≺ a4 ≺ a2 a6 ≺ a5 ≺ a0 ≺ a2 ≺ a4

≺10 a6 ≺ a5 ≺ a0 ≺ a4 ≺ a2 a6 ≺ a5 ≺ a2 ≺ a0 ≺ a4

≺11 a2 ≺ a5 ≺ a4 ≺ a6 ≺ a0 a6 ≺ a2 ≺ a4 ≺ a5 ≺ a0

≺12 a5 ≺ a6 ≺ a4 ≺ a2 ≺ a0 a6 ≺ a4 ≺ a5 ≺ a2 ≺ a0

≺13 a5 ≺ a6 ≺ a0 ≺ a4 ≺ a2 a5 ≺ a4 ≺ a6 ≺ a2 ≺ a0

≺14 a6 ≺ a5 ≺ a0 ≺ a2 ≺ a4 a6 ≺ a0 ≺ a2 ≺ a4 ≺ a5

Table A.3: Rankings of chicken samples expressed by all the 14 panellists in storage
experiments L8 and H8 described in Table 4.3.
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A.2. Sensory evaluation for Atlantic cod

Labelling

Company A

L4 L8 H4

List of labels a0 a4 a8 a13 a0 a3 a5 a7 a0 a4 a8 a13

z1 VF SP S M F F M S VF F S SP

z2 VF SP S SP M SP M SP VF F M SP

z3 F M S SP VF SP SP SP VF S S M

z4 VF S F M VF M S M VF S M M

z5 VF S F M VF SP SP SP VF S SP M

z6 F S M M VF F SP S VF S SP SP

z7 F M S S VF M F SP VF S SP SP

z8 VF F SP M VF S M S VF M F S

z9 F VF M SP F SP S SP

z10 VF F S S S F M SP

Table A.4: Labels assigned by panellists to cod samples from company A in storage
experiments L4, L8 and H4 described in Table 4.5.
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Company A Company B

Experiment Samples SP M S F VF SP M S F VF

H4

a0 8
10

1
10

1
10 0 0 6

10
3
10 0 1

10 0

a4 0 3
10

5
10

1
10

1
10

1
10

6
10

2
10

1
10 0

a8 0 1
10

3
10

3
10

3
10

1
10

1
10

2
10

2
10

4
10

a13 0 0 1
10

3
10

6
10 0 1

10
2
10

3
10

4
10

H8

a0 8
12

3
12

1
12 0 0 8

10
2
10 0 0 0

a3 0 3
12

2
12

4
12

3
12 0 5

10
3
10

2
10 0

a5 0 1
12

2
12

4
12

5
12 0 0 7

10
3
10 0

a7 1
12 0 13

12
5
12

3
12 0 2

10 0 3
10

5
10

A4

a0 2
10

3
10

4
10

1
10 0 4

10
5
10

1
10 0 0

a1 5
10

4
10 0 1

10 0 5
10

2
10

1
10

2
10 0

a2 1
10

3
10

3
10

3
10 0 0 1

10
3
10

5
10

1
10

a3 0 0 4
10

5
10

1
10 0 1

10
1
10

2
10

6
10

L4

a0 5
8

2
8 0 0 1

8

a4 0 1
8

3
8

2
8

2
8

a8 0 2
8

3
8

2
8

1
8

a13 0 0 2
8

5
8

1
8

L8

a0 7
10

2
10 0 1

10 0

a3 1
10

3
10

1
10

2
10

3
10

a5 0 1
10

2
10

4
10

3
10

a7 0 0 4
10

1
10

5
10

Table A.5: Relative frequency of assigned labels to cod samples in each storage experi-
ment described in Table 4.5.
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Ranking

Session 1

Ranking L4 H4 H8

≺1 a13 ≺ a4 ≺ a8 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

≺2 a13 ≺ a8 ≺ a0 ≺ a4 a8 ≺ a6 ≺ a13 ≺ a4 a5 ≺ a7 ≺ a0 ≺ a3

≺3 a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a4 ≺ a6 a5 ≺ a7 ≺ a3 ≺ a0

≺4 a8 ≺ a13 ≺ a4 ≺ a0 a6 ≺ a13 ≺ a8 ≺ a4 a5 ≺ a7 ≺ a3 ≺ a0

≺5 a13 ≺ a8 ≺ a0 ≺ a4 a8 ≺ a13 ≺ a6 ≺ a4 a5 ≺ a3 ≺ a7 ≺ a0

≺6 a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

≺7 a13 ≺ a8 ≺ a4 ≺ a0 a8 ≺ a13 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

≺8 a13 ≺ a8 ≺ a0 ≺ a4 a13 ≺ a8 ≺ a6 ≺ a4 a7 ≺ a5 ≺ a3 ≺ a0

≺9 a13 ≺ a8 ≺ a0 ≺ a4

≺10 a13 ≺ a8 ≺ a4 ≺ a0

Session 2

Ranking L4 H4 H8

≺1 a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a6 ≺ a7 ≺ a8 a5 ≺ a6 ≺ a4 ≺ a3

≺2 a8 ≺ a6 ≺ a5 ≺ a7 a8 ≺ a11 ≺ a7 ≺ a6 a5 ≺ a6 ≺ a3 ≺ a4

≺3 a8 ≺ a5 ≺ a7 ≺ a6 a11 ≺ a6 ≺ a8 ≺ a7 a5 ≺ a6 ≺ a3 ≺ a4

≺4 a5 ≺ a8 ≺ a6 ≺ a7 a11 ≺ a7 ≺ a8 ≺ a6 a4 ≺ a5 ≺ a6 ≺ a3

≺5 a8 ≺ a7 ≺ a6 ≺ a5 a7 ≺ a11 ≺ a8 ≺ a6 a6 ≺ a5 ≺ a3 ≺ a4

≺6 a8 ≺ a5 ≺ a7 ≺ a6 a11 ≺ a8 ≺ a6 ≺ a7 a5 ≺ a3 ≺ a6 ≺ a4

≺7 a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a7 ≺ a8 ≺ a6 a5 ≺ a6 ≺ a4 ≺ a3

≺8 a8 ≺ a7 ≺ a6 ≺ a5 a11 ≺ a8 ≺ a7 ≺ a6 a5 ≺ a4 ≺ a6 ≺ a3

≺9 a11 ≺ a8 ≺ a7 ≺ a6

Ranking L8 A4

≺1 a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a0 ≺ a1 ≺ a2

≺2 a0 ≺ a3 ≺ a5 ≺ a7 a3 ≺ a2 ≺ a0 ≺ a1

≺3 a7 ≺ a3 ≺ a5 ≺ a0 a0 ≺ a1 ≺ a3 ≺ a2

≺4 a5 ≺ a0 ≺ a3 ≺ a7 a3 ≺ a2 ≺ a0 ≺ a1

≺5 a5 ≺ a7 ≺ a3 ≺ a0 a3 ≺ a2 ≺ a0 ≺ a1

≺6 a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a1 ≺ a2 ≺ a0

≺7 a5 ≺ a7 ≺ a3 ≺ a0 a3 ≺ a0 ≺ a2 ≺ a1

≺8 a7 ≺ a5 ≺ a3 ≺ a0 a3 ≺ a2 ≺ a1 ≺ a0

≺9 a7 ≺ a5 ≺ a3 ≺ a0

Table A.6: Rankings of cod samples expressed by the panellists in each storage experi-
ment described in Table 4.6.
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A.3. Sensory evaluation for Atlantic brown

shrimp

Labelling

Session 1

L4 H4

List of labels a0 a3 a5 a10 a0 a3 a7 a12

z1 M F F S F F M SP

z2 F S F M F F SP SP

z3 F S M SP VF F SP M

z4 S F VF M S F M SP

z5 VF F S SP M S SP SP

z6 VF VF S M F F SP SP

z7 F VF VF SP M F SP SP

z8 VF VF S SP VF M SP SP

z9 F VF S SP F VF SP SP

z10 VF F S M

Session 1

L4 H4

List of labels a0 a3 a5 a10 a0 a3 a5 a7

z1 VF S F SP F F SP SP

z2 VF S S SP S F SP SP

z3 M S F SP VF S M M

z4 F F F S VF F SP M

z5 F S VF M S F M M

z6 F M S SP VF F S M

z7 F F F SP VF F SP M

z8 VF VF VF SP M S M SP

z9 S F M SP VF VF S F

z10 F F S SP S F SP SP

Table A.7: Labels assigned by panellists to shrimp samples in each storage experiment
described in Table 4.8.
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Ranking

Session 1

Ranking L4 H4

≺1 a10 ≺ a5 ≺ a3 ≺ a0 a12 ≺ a3 ≺ a7 ≺ a0

≺2 a10 ≺ a5 ≺ a0 ≺ a3 a12 ≺ a7 ≺ a3 ≺ a0

≺3 a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a12 ≺ a0 ≺ a3

≺4 a10 ≺ a5 ≺ a0 ≺ a3 a12 ≺ a3 ≺ a7 ≺ a0

≺5 a10 ≺ a3 ≺ a5 ≺ a0 a7 ≺ a12 ≺ a3 ≺ a0

≺6 a10 ≺ a3 ≺ a5 ≺ a0 a7 ≺ a12 ≺ a3 ≺ a0

≺7 a10 ≺ a5 ≺ a0 ≺ a3 a12 ≺ a7 ≺ a3 ≺ a0

≺8 a10 ≺ a0 ≺ a5 ≺ a3 a12 ≺ a7 ≺ a3 ≺ a0

≺9 a10 ≺ a3 ≺ a0 ≺ a5 a12 ≺ a7 ≺ a3 ≺ a0

Session 2

Ranking L4 H4

≺1 a10 ≺ a5 ≺ a3 ≺ a0 a5 ≺ a7 ≺ a0 ≺ a3

≺2 a10 ≺ a5 ≺ a3 ≺ a0 a7 ≺ a5 ≺ a3 ≺ a0

≺3 a10 ≺ a5 ≺ a0 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a0

≺4 a10 ≺ a5 ≺ a0 ≺ a3 a7 ≺ a0 ≺ a5 ≺ a3

≺5 a10 ≺ a0 ≺ a3 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a0

≺6 a10 ≺ a5 ≺ a3 ≺ a0 a5 ≺ a7 ≺ a3 ≺ a0

≺7 a10 ≺ a3 ≺ a0 ≺ a5 a5 ≺ a7 ≺ a0 ≺ a3

≺8 a10 ≺ a0 ≺ a3 ≺ a5 a5 ≺ a7 ≺ a3 ≺ a0

≺9 a10 ≺ a0 ≺ a3 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a0

≺10 a10 ≺ a3 ≺ a5 ≺ a0 a7 ≺ a0 ≺ a5 ≺ a3

Table A.8: Rankings of shrimp samples expressed by the panellists in each experiment
described in Table 4.9.
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A.4. Sensory evaluation for Atlantic salmon

Labelling

Session 1

H4 AN4 ANH4

List of labels a1 a5 a7 a11 a1 a5 a9 a11 a1 a5 a9 a11

z1 VF F S SP VF S M SP VF M SP S

z2 VF F VF F VF F M SP F SP M SP

z3 F M S SP VF F VF S S S SP SP

z4 VF F M SP VF M S SP VF M M SP

z5 VF S M SP VF F M SP VF F SP S

z6 F VF M SP F M M SP M M SP SP

z7 VF VF M SP F M S SP VF F SP S

z8 F S M SP VF S M SP F VF M SP

z9 F S M SP F M SP SP

z10 F SP S SP

z11 F M F SP

z12 M SP S SP

Session 1

A4 L4 M4

List of labels a1 a5 a9 a13 a1 a5 a9 a11 a1 a5 a9 a11

z1 F S SP M VF VF S M VF VF SP SP

z2 VF F S M S M SP SP VF F SP SP

z3 VF S SP M F VF S M F M M S

z4 S SP SP SP VF F S M F S M S

z5 VF S M M S SP F M F F M M

z6 F S M M F VF S M F F S S

z7 VF S M SP F S S M VF VF SP M

z8 VF F SP S F M M SP F VF SP M

z9 S M SP SP M S M SP

z10 F SP SP S

z11 VF S SP M

Table A.9: Labels assigned by panellists to salmon samples in each storage experiment
described in Table 4.11.
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Session 2

List of H4 AN4 ANH4 A4

labels a1 a3 a5 a7 a3 a7 a9 a11 a1 a3 a5 a7 a1 a3 a5 a7

z1 S F S M VF SP M SP F F S M VF F S SP

z2 VF F F S S M M SP F VF M M SP F SP SP

z3 VF VF S S VF M F SP M VF S SP F S M SP

z4 VF VF VF M VF M SP SP F F F SP VF F S M

z5 VF S F M VF S S M S F F M VF F M SP

z6 VF F S M F M SP SP VF VF M SP

z7 F VF F M VF M M SP F S S SP

z8 VF F S S F M S M F F M SP

z9 VF M M M VF VF M SP

z10 F SP M S VF VF F SP

z11 S SP S SP

z12 VF M S S

Session 3

List of H4 AN4 ANH4 A4

labels a1 a5 a9 a11 a1 a5 a9 a11 a1 a5 a9 a11 a1 a5 a9 a11

z1 VF VF M M VF S M M VF F M S F M SP SP

z2 VF F SP M F SP M SP VF VF VF M VF F S M

z3 F F M M VF F M S VF F SP SP VF VF S M

z4 F VF S M S M S VF VF F S S VF M SP SP

z5 S VF F SP S SP F M M S SP SP F SP S SP

z6 VF VF S S F F M SP VF S M M S F M M

z7 VF VF SP M VF F M SP VF F S SP VF F M F

z8 F VF M F VF F SP SP VF F S F VF VF M F

z9 F F M M VF S M SP

Session 4

List of H4 AN4 ANH4 A4

labels a3 a5 a7 a9 a1 a3 a5 a7 a1 a3 a5 a7 a1 a3 a5 a7

z1 S F F S F VF M SP VF VF VF VF F F SP SP

z2 S F M SP F S SP M F F F F F VF M SP

z3 F S S S VF VF S S VF F F VF F VF S SP

z4 M F VF M VF VF SP SP S F F VF VF VF VF SP

z5 VF VF F M F F S SP S VF F M S F F SP

z6 M F M F F VF M S M F M S F VF VF S

z7 M S F M VF VF S F VF VF VF VF F F M M

z8 F F S S VF VF S F VF VF F F S F S M

z9 VF VF VF F VF F SP M VF VF F S F F S SP

z10 F F F F

Table A.9: (Continued) Labels assigned by panellists to salmon samples in each storage
experiment described in Table 4.11.
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Ranking

Session 1

Ranking H4 AN4 ANH4

≺1 a9 ≺ a11 ≺ a5 ≺ a1 a9 ≺ a5 ≺ a1 ≺ a13 a9 ≺ a11 ≺ a5 ≺ a1

≺2 a11 ≺ a9 ≺ a1 ≺ a5 a13 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺3 a11 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a13 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺4 a11 ≺ a9 ≺ a1 ≺ a5 a13 ≺ a9 ≺ a1 ≺ a5 a11 ≺ a5 ≺ a1 ≺ a9

≺5 a9 ≺ a11 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5

≺6 a11 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a5 ≺ a13 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺7 a11 ≺ a9 ≺ a5 ≺ a1 a13 ≺ a9 ≺ a5 ≺ a1 a9 ≺ a11 ≺ a1 ≺ a5

≺8 a9 ≺ a11 ≺ a1 ≺ a5 a9 ≺ a13 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺9 a9 ≺ a11 ≺ a1 ≺ a5 a13 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5

≺10 a9 ≺ a13 ≺ a5 ≺ a1

≺11 a9 ≺ a13 ≺ a5 ≺ a1

≺12 a13 ≺ a5 ≺ a9 ≺ a1

Session 1

Ranking A4 L4 M4

≺1 a11 ≺ a5 ≺ a9 ≺ a1 a7 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5

≺2 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺3 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a7 ≺ a1 ≺ a5 a11 ≺ a9 ≺ a1 ≺ a5

≺4 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a5 ≺ a1 ≺ a7 a9 ≺ a11 ≺ a5 ≺ a1

≺5 a11 ≺ a9 ≺ a5 ≺ a1 a7 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺6 a9 ≺ a5 ≺ a11 ≺ a1 a11 ≺ a7 ≺ a1 ≺ a5 a9 ≺ a1 ≺ a11 ≺ a5

≺7 a11 ≺ a9 ≺ a5 ≺ a1 a5 ≺ a7 ≺ a1 ≺ a11 a11 ≺ a9 ≺ a5 ≺ a1

≺8 a11 ≺ a9 ≺ a1 ≺ a5 a7 ≺ a11 ≺ a1 ≺ a5 a11 ≺ a9 ≺ a5 ≺ a1

≺9 a9 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a1 ≺ a7 ≺ a5

≺10 a9 ≺ a11 ≺ a5 ≺ a1

Table A.10: Rankings of salmon samples expressed by the panellists in each experiment
described in Table 4.12.
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Session 2

Ranking H4 AN4 ANH4 A4

≺1 a7 ≺ a5 ≺ a3 ≺ a1 a11 ≺ a9 ≺ a7 ≺ a3 a7 ≺ a3 ≺ a1 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1

≺2 a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3 a3 ≺ a5 ≺ a1 ≺ a7 a7 ≺ a5 ≺ a3 ≺ a1

≺3 a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3 a7 ≺ a1 ≺ a3 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1

≺4 a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a9 ≺ a7 ≺ a3 a7 ≺ a3 ≺ a1 ≺ a5 a7 ≺ a3 ≺ a5 ≺ a1

≺5 a7 ≺ a5 ≺ a1 ≺ a3 a11 ≺ a7 ≺ a9 ≺ a3 a1 ≺ a5 ≺ a3 ≺ a7 a7 ≺ a5 ≺ a1 ≺ a3

≺6 a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a9 ≺ a11 ≺ a3 a7 ≺ a3 ≺ a1 ≺ a5

≺7 a7 ≺ a3 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a7 ≺ a3 a7 ≺ a3 ≺ a1 ≺ a5

≺8 a7 ≺ a3 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a7 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3

≺9 a11 ≺ a7 ≺ a9 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

≺10 a9 ≺ a7 ≺ a11 ≺ a3

≺11 a11 ≺ a7 ≺ a9 ≺ a3

≺12 a11 ≺ a9 ≺ a7 ≺ a3

Session 3

Ranking H4 AN4 ANH4 A4

≺1 a9 ≺ a11 ≺ a5 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5

≺2 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a5 ≺ a9 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a5 ≺ a1

≺3 a9 ≺ a11 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5 a1 ≺ a11 ≺ a9 ≺ a5 a9 ≺ a11 ≺ a5 ≺ a1

≺4 a5 ≺ a9 ≺ a11 ≺ a1 a1 ≺ a5 ≺ a9 ≺ a11 a5 ≺ a1 ≺ a9 ≺ a11 a11 ≺ a9 ≺ a5 ≺ a1

≺5 a11 ≺ a9 ≺ a1 ≺ a5 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a5 ≺ a1 ≺ a9 a9 ≺ a5 ≺ a11 ≺ a1

≺6 a1 ≺ a11 ≺ a9 ≺ a5 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a5 ≺ a9 ≺ a1 a9 ≺ a11 ≺ a5 ≺ a1

≺7 a11 ≺ a1 ≺ a5 ≺ a9 a9 ≺ a11 ≺ a1 ≺ a5 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a9 ≺ a1 ≺ a5

≺8 a11 ≺ a9 ≺ a5 ≺ a1 a11 ≺ a5 ≺ a1 ≺ a9 a5 ≺ a9 ≺ a11 ≺ a1

≺9 a5 ≺ a9 ≺ a11 ≺ a1 a9 ≺ a5 ≺ a11 ≺ a1

Session 4

Ranking H4 AN4 ANH4 A4

≺1 a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a3 ≺ a5 ≺ a1 a7 ≺ a5 ≺ a1 ≺ a3

≺2 a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a3 ≺ a5 ≺ a1 a7 ≺ a5 ≺ a3 ≺ a1

≺3 a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a1 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1

≺4 a9 ≺ a3 ≺ a5 ≺ a7 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a5 ≺ a1 ≺ a3 a7 ≺ a3 ≺ a5 ≺ a1

≺5 a7 ≺ a9 ≺ a5 ≺ a3 a7 ≺ a3 ≺ a5 ≺ a1 a1 ≺ a3 ≺ a7 ≺ a5 a7 ≺ a5 ≺ a1 ≺ a3

≺6 a9 ≺ a7 ≺ a5 ≺ a3 a7 ≺ a1 ≺ a5 ≺ a3 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a3 ≺ a5 ≺ a1

≺7 a9 ≺ a7 ≺ a3 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a1 ≺ a5 ≺ a3 a3 ≺ a5 ≺ a7 ≺ a1

≺8 a9 ≺ a7 ≺ a3 ≺ a5 a7 ≺ a1 ≺ a5 ≺ a3 a7 ≺ a1 ≺ a3 ≺ a5 a5 ≺ a7 ≺ a1 ≺ a3

≺9 a9 ≺ a7 ≺ a3 ≺ a5 a7 ≺ a5 ≺ a3 ≺ a1 a7 ≺ a5 ≺ a3 ≺ a1

≺10 a9 ≺ a5 ≺ a7 ≺ a3

Table A.10: (Continued) Rankings of salmon samples expressed by the panellists in
each experiment described in Table 4.12.
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Scoring

Group 1 Group 2

Tuesday Thursday

Vector of scores A1 B2 C3 D4 A2 B3 C4 D5

s1 4 4 3 2 5 4 5 3

s2 5 4 3 4 4 4 4 4

s3 5 4 3 3 4 4 4 2

s4 3 3 1 2 4 4 3 2

s5 5 4 3 4 5 4 3 2

s6 5 5 5 4 5 3 4 2

s7 4 4 3 4 5 4 4 2

s8 3 4 2 4 5 5 3 2

s9 5 5 5 4 4 5 3 1

Group 3 Group 4 Group 5

Monday Wednesday Friday

Vector of scores A3 B4 C5 D6 A4 B5 C6 D7 A5 B6 C7 D8

s1 5 5 3 2 5 5 2 3 5 4 5 4

s2 3 2 5 5 4 2 1 1 5 5 2 1

s3 4 5 4 5 5 1 5 2 2 3 2 1

s4 1 3 4 4 2 2 2 1 4 3 2 2

s5 5 4 2 3 3 4 2 2 4 2 3 1

s6 5 5 1 4 3 2 4 2 4 5 2 3

s7 4 5 3 4 5 5 3 2 3 3 4 2

s8 5 4 2 4 5 4 2 3 4 3 2 2

s9 3 4 4 1 2 3 2 3 3 3 2 5

s10 4 4 2 3 4 3 2 1 4 5 2 2

Table A.11: Vectors of scores assigned to groups of samples of salmon fillets (A, B, C,
D) by the trained panellists on each day of the week in the order shown in Table 4.14.
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Ranking with ties

Group 1 Group 2 Group 3

Ranking Tuesday Thursday Monday

-1 B2 ≺ D4 ≺ A1 ∼ C3 D5 ≺ B3 ≺ A2 ≺ C4 C5 ≺ D6 ≺ A3 ≺ B4

-2 A1 ∼ C3 ≺ D4 ∼ B2 D5 ≺ A2 ≺ C4 ≺ B3 C5 ≺ D6 ∼ A3 ∼ B4

-3 D4 ≺ A1 ∼ C3 ≺ B2 D5 ≺ B3 ≺ C4 ≺ A2 C5 ≺ A3 ≺ D6 ≺ B4

-4 D4 ≺ B2 ≺ C3 ≺ A1 B3 ≺ D5 ≺ C4 ∼ A2 C5 ≺ A3 ≺ D6 ≺ B4

-5 C3 ≺ D4 ≺ A1 ∼ B2 D5 ≺ A2 ≺ B3 ≺ C4 A3 ≺ D6 ≺ B4 ≺ C5

-6 D4 ≺ C3 ≺ B2 ≺ A1 A2 ≺ D5 ≺ C4 ≺ B3 B4 ≺ A3 ≺ D6 ≺ C5

-7 C3 ≺ D4 ≺ B2 ≺ A1 D5 ≺ A2 ≺ C4 ≺ B3 C5 ≺ D6 ∼ A3 ≺ B4

-8 A1 ≺ C3 ≺ D4 ≺ B2 D5 ≺ B3 ≺ A2 ≺ C4 C5 ≺ A3 ≺ D6 ≺ B4

-9 C3 ∼ D4 ≺ B2 ≺ A1 A2 ≺ B3 ∼ C4 ≺ D5 C5 ≺ A3 ≺ B4 ≺ D6

-10 C3 ≺ B2 ≺ D4 ≺ A1 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ A3 ≺ D6 ≺ B4

-11 D4 ≺ A1 ≺ C3 ≺ B2 D5 ≺ C4 ≺ B3 ≺ A2 B4 ≺ D6 ≺ A3 ≺ C5

-12 C3 ≺ A1 ∼ B2 ∼ D4 D5 ≺ A2 ≺ C4 ≺ B3 D6 ≺ C5 ≺ A3 ∼ B4

-13 D4 ≺ C3 ∼ A1 ≺ B2 D5 ≺ B3 ≺ C4 ∼ A2 C5 ≺ B4 ≺ A3 ≺ D6

-14 C3 ≺ A1 ≺ D4 ≺ B2 D5 ≺ C4 ≺ A2 ≺ B3 C5 ≺ D6 ∼ A3 ≺ B4

-15 C3 ≺ D4 ≺ A1 ≺ B2 B3 ≺ C4 ≺ A2 ≺ D5 C5 ≺ D6 ≺ A3 ≺ B4

-16 C3 ≺ D4 ≺ B2 ≺ A1 C4 ≺ A2 ≺ D5 ≺ B3 B4 ≺ A3 ≺ D6 ≺ C5

-17 C3 ≺ A1 ≺ D4 ≺ B2 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ D6 ≺ A3 ≺ B4

-18 D4 ≺ C3 ≺ B2 ≺ A1 D5 ≺ A2 ≺ B3 ≺ C4 D6 ≺ C5 ≺ A3 ∼ B4

-19 C3 ≺ D4 ≺ A1 ∼ B2 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ D6 ≺ B4 ≺ A3

-20 A1 ∼ C3 ∼ B2 ≺ D4 D5 ≺ B3 ∼ A2 ≺ C4 C5 ≺ B4 ≺ D6 ≺ A3

-21 D4 ≺ A1 ≺ C3 ≺ B2 D5 ≺ C4 ∼ B3 ≺ A2 C5 ≺ A3 ≺ D6 ≺ B4

-22 D4 ≺ B2 ≺ C3 ≺ A1 D5 ≺ C4 ≺ B3 ≺ A2 C5 ≺ A3 ∼ B4 ≺ D6

-23 C3 ≺ B2 ∼ D4 ≺ A1 D5 ≺ C4 ≺ A2 ∼ B3 D6 ≺ C5 ≺ A3 ∼ B4

-24 D4 ≺ A1 ≺ B2 ≺ C3 D5 ≺ C4 ≺ A2 ≺ B3 C5 ≺ D6 ≺ B4 ≺ A3

-25 D4 ≺ A1 ∼ B2 ∼ C3 C5 ≺ D6 ≺ B4 ≺ A3

-26 C3 ≺ D4 ≺ B2 ≺ A1 C5 ≺ D6 ≺ A3 ≺ B4

-27 C3 ≺ D4 ≺ A1 ≺ B2 C5 ≺ D6 ≺ B4 ≺ A3

-28

Table A.12: Rankings with ties of samples of salmon fillets (A, B, C, D) expressed by
the untrained panellists on each day of the week in the order shown in Table 4.14.
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Group 4 Group 5

Ranking Wednesday Friday

-1 B5 ∼ D7 ≺ C6 ∼ A4 C7 ≺ D8 ≺ A5 ≺ B6

-2 D7 ≺ C6 ≺ B5 ≺ A4 B6 ≺ C7 ≺ D8 ≺ A5

-3 D7 ≺ B5 ≺ C6 ∼ A4 C7 ≺ B6 ≺ A5 ∼ D8

-4 A4 ≺ D7 ≺ C6 ≺ B5 C7 ≺ A5 ≺ D8 ≺ B6

-5 A4 ∼ D7 ≺ C6 ≺ B5 C7 ≺ D8 ≺ A5 ≺ B6

-6 D7 ≺ C6 ∼ A4 ∼ B5 C7 ∼ D8 ≺ A5 ≺ B6

-7 D7 ∼ C6 ≺ A4 ∼ B5 C7 ≺ D8 ≺ B6 ≺ A5

-8 D7 ≺ A4 ∼ C6 ≺ B5 C7 ≺ D8 ≺ A5 ≺ B6

-9 A4 ≺ C6 ∼ B5 ≺ D7 C7 ≺ D8 ≺ B6 ∼ A5

-10 B5 ≺ D7 ≺ A4 ≺ C6 C7 ≺ D8 ∼ A5 ≺ B6

-11 D7 ≺ B5 ≺ C6 ≺ A4 D8 ≺ C7 ≺ A5 ≺ B6

-12 D7 ≺ A4 ≺ C6 ∼ B5 C7 ≺ A5 ≺ D8 ≺ B6

-13 B5 ∼ D7 ∼ C6 ≺ A4 D8 ≺ C7 ≺ A5 ∼ B6

-14 B5 ≺ D7 ≺ A4 ≺ C6 C7 ≺ D8 ≺ B6 ≺ A5

-15 B5 ≺ A4 ≺ D7 ≺ C6 C7 ≺ A5 ∼ D8 ≺ B6

-16 D7 ≺ C6 ≺ A4 ∼ B5 C7 ≺ D8 ≺ B6 ≺ A5

-17 D7 ≺ C6 ∼ B5 ≺ A4 D8 ≺ C7 ≺ A5 ≺ B6

-18 D7 ≺ C6 ∼ B5 ≺ A4 D8 ≺ C7 ≺ A5 ∼ B6

-19 B5 ≺ D7 ≺ C6 ≺ A4 D8 ≺ C7 ≺ B6 ≺ A5

-20 D7 ≺ C6 ≺ B5 ≺ A4 D8 ≺ C7 ≺ B6 ∼ A5

-21 A4 ∼ D7 ≺ C6 ∼ B5 D8 ≺ A5 ≺ C7 ≺ B6

-22 A4 ∼ B5 ≺ C6 ≺ D7 D8 ≺ C7 ≺ A5 ≺ B6

-23 D7 ≺ C6 ≺ B5 ≺ A4 D8 ≺ C7 ≺ A5 ≺ B6

-24 D7 ≺ A4 ≺ B5 ≺ C6

-25 D7 ≺ B5 ≺ C6 ≺ A4

-26 A4 ≺ D7 ≺ C6 ≺ B5

-27 D7 ≺ B5 ≺ C6 ≺ A4

-28 D7 ≺ B5 ≺ C6 ≺ A4

Table A.12: (Continued) Rankings with ties of samples of salmon fillets (A, B, C, D)
expressed by the untrained panellists on each day of the week in the order shown in
Table 4.14.
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B.1. Quantification of VOCs in chicken breasts

VOC Precursor m/z b(%) k Product ion

Acids

Acetic acid NO+ 90 100 9.0 E-10 NO+·CH3COOH*

NO+ 108 9.0 E-10 NO+·CH3COOH·H2O

Hexanoic acid NO+ 146 90 2.5 E-9 C6H12O2·NO+*

Alcohols

1-Octen-3-ol H3O+ 111 100 3.1 E-9 C8H+
15*

1-Pentanol O+
2 42 35 2.8 E-9 C3H+

6 *

2,3-Butanediol NO+ 89 100 2.3 E-9 C4H9O+
2 *

NO+ 107 2.3 E-9 C4H9O+
2 ·H2O

2-Propanol NO+ 59 100 2.4 E-9 C3H7O+*

3-Methyl-1-butanol O+
2 59 85 2.1 E-9 C3H7O+*

Ethanol H3O+ 47 100 2.7 E-9 C2H7O+*

H3O+ 65 2.7 E-9 C2H7O+·H2O

H3O+ 93 2.7 E-9 (C2H6O+)2·H+

Aldehydes

Hexanal H3O+ 101 50 3.7 E-9 C6H13O+*

H3O+ 119 3.7 E-9 C6H13O+·H2O

H3O+ 137 3.7 E-9 C6H13O+·2H2O

Nonanal NO+ 141 100 2.7 E-9 C8H17O+*

Octanal H3O+ 129 85 3.8 E-9 C8H17O+

NO+ 127 100 3.0 E-9 C8H15O+*

Pentanal NO+ 85 100 3.2 E-9 C5H9O+*

Ketones

1-Penten-3-one NO+ 114 100 2.5 E-9 C5H8O.NO+*

2,3-Butanedione NO+ 86 65 1.3 E-9 C4H6O+
2 *

Acetoin NO+ 118 100 2.5 E-9 C4H8O2·NO+*

Acetone H3O+ 59 100 3.9 E-9 C3H7O+*

H3O+ 77 3.9 E-9 (CH3)2CO.H+·H2O

Butanone NO+ 102 100 2.8 E-9 NO+·C4H8O*

Sulfur compounds

Dimethyl disulfide H3O+ 95 100 2.6 E-9 (CH3)2S2·H+*

Dimethyl sulfide H3O+ 63 100 2.5 E-9 (CH3)2S·H+*

Dimethyl trisulfide H3O+ 127 100 2.8 E-9 C2H6S3H+*

Hydrogen sulfide H3O+ 35 100 1.6 E-9 H3S+*

H3O+ 53 1.6 E-9 H3S+·H2O

Esters

Ethyl acetate H3O+ 89 100 2.9 E-9 CH3COOC2H5·H+*

Amines

Ammonia H3O+ 18 100 2.6 E-9 NH+4*

H3O+ 36 2.6 E-9 NH+
4 ·H2O

Table B.1: Volatile organic compounds (VOCs) quantified in packaged chicken samples
with SIFT-MS: product ions, mass to charge ratios (m/z), branching ratios (b) and
reaction rate coefficients (k). Product ions denoted with * were selected for quantifying
the respective VOC.
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H4: 30/70 (CO2, O2) 4 ◦C

VOC 0 5 7 8 9 11 13 15

1-octen-3-ol 36.58 32.05 37.91 33.25 43.51 35.82 35.88 27.99

1-pentanol 363.75 327.60 340.59 321.18 368.28 321.97 415.04 328.20

1-penten-3-one 667.55 675.47 652.26 629.36 662.75 655.54 665.80 467.13

2,3-butanediol 56.46 59.16 75.90 46.02 101.45 78.32 74.02 80.96

2,3-butanedione 988.49 859.11 898.61 681.28 959.44 728.42 1055.32 942.19

2-propanol 24.85 25.91 29.68 19.38 39.15 26.68 26.50 52.10

3-methyl-1-butanol 443.22 544.18 626.23 444.83 797.01 565.21 583.24 635.10

Acetic acid 5.46 12.37 11.48 10.37 13.29 11.03 7.31 11.63

Acetoin 39.54 94.60 74.68 60.41 100.99 68.94 69.82 89.23

Acetone 6.50 10.96 17.43 12.35 14.18 15.07 188.67 282.88

Ammonia 730.77 789.53 941.83 638.41 1298.34 994.21 923.62 1046.57

Butanone 23.39 29.33 35.87 26.47 44.88 33.81 39.60 40.92

Dimethyl disulfide 44.36 41.26 38.21 37.39 68.09 48.31 54.41 64.13

Dimethyl sulfide 5.41 12.35 14.41 10.45 15.64 13.07 10.69 11.00

Dimethyl trisulfide 191.59 61.44 68.26 358.25 85.44 139.33 132.13 275.88

Ethanol 417.47 419.71 340.30 377.25 383.88 384.18 393.39 255.97

Ethyl acetate 13.16 17.10 16.67 18.36 15.45 12.58 91.52 135.11

Hexanal 619.29 628.42 668.39 808.22 730.18 734.92 1246.35 1326.51

Hexanoic acid 16.37 30.22 19.69 30.75 19.74 15.60 16.14 20.99

Hydrogen sulfide 2.82 6.75 5.45 5.55 5.44 4.70 4.05 4.17

Nonanal 547.33 569.59 438.85 535.17 526.54 544.37 547.87 355.45

Octanal 1417.06 1506.58 1308.88 1324.56 1409.15 1434.23 1428.80 994.07

Pentanal 119.47 184.40 170.51 147.44 180.61 177.80 328.59 469.12

Table B.2: Measured concentrations (µg/m3) of VOCs detected with SIFT-MS on each
day in the headspace of chicken samples used for labelling tests.
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Table B.3: Measured concentrations (µg/m3) of VOCs detected with SIFT-MS on each
day in the headspace of chicken samples used for ranking tests.
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Table B.3: (Continued) Measured concentrations (µg/m3) of VOCs detected with
SIFT-MS on each day in the headspace of chicken samples used for ranking tests.
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Appendix

B.2. Quantification of VOCs in Atlantic cod

VOC Precursor m/z b(%) k Product ion

Acids

Acetic acid H3O+ 61 100 2.6 E -09 CH3COOH2+*

NO+ 90 100 9.0 E -10 NO+·CH3COOH

O+
2 60 50 2.3 E -09 CH3COOH+

Alcohols

Ethanol H3O+ 47 100 2.7 E -09 C2H7O+*

H3O+ 65 2.7 E -09 C2H7O+·H2O

H3O+ 83 2.7 E -09 C2H7O+·(H2O)2
2,3-butanediol NO+ 89 100 2.3 E -09 C4H9O+

2 *

3-methyl-1-butanol H3O+ 71 100 2.8 E -09 C5H11+*

NO+ 87 85 2.3 E -09 C5H11O+

Isobutyl alcohol NO+ 73 95 2.4 E -09 C4H9O+*

O+
2 33 50 2.5 E -09 CH5O+

Aldehydes

2-methylpropanal O+
2 72 70 3.0 E -09 C4H8O+*

3-methylbutanal NO+ 85 100 2.4 E -09 C5H9O+*

Ketones

Acetone H3O+ 59 100 3.9 E -09 C3H7O+*

NO+ 88 100 1.2 E -09 NO+·C3H6O

Acetoin O+
2 88 20 2.5 E -09 C4H8O+

2 *

2-pentanone NO+ 116 100 3.1 E -09 NO+·C5H10O+*

Sulfur compounds

Hydrogen sulfide H3O+ 35 100 1.6 E -09 H3S+*

O+
2 34 100 1.4 E -09 H2S+

Methyl mercaptan H3O+ 49 100 1.8 E -09 CH4S·H+*

Dimethyl sulfide H3O+ 63 100 2.5 E -09 (CH3)2S·H+*

NO+ 62 100 2.2 E -09 (CH3)2S+

Dimethyl disulfide H3O+ 95 100 2.6 E -09 (CH3)2S2·H+*

NO+ 94 100 2.4 E -09 (CH3)2S2+

O+
2 94 80 2.3 E -09 (CH3)2S2+

Dimethyl trisulfide H3O+ 127 100 2.8 E -09 C2H6S3H+*

NO+ 126 1.9 E -09 C2H6S3+

Esters

Ethyl acetate NO+ 118 90 2.1 E -09 NO+·CH3COOC2H5*

Ethyl propanoate H3O+ 103 95 2.9 E -09 C2H5COOC2H5·H+*

NO+ 132 60 2.5 E -09 NO+·C2H5COOC2H5

Amines

Ammonia H3O+ 18 100 2.6 E -09 NH4+*

O+
2 17 100 2.4 E -09 NH3+

Dimethylamine H3O+ 46 100 2.1 E -09 (CH3)2N·H+*

Trimethylamine H3O+ 60 90 2.0 E -09 (CH3)3N·H+

NO+ 59 100 1.6 E -09 (CH3)3N+*

Table B.4: Volatile organic compounds (VOCs) quantified in packaged cod samples
with SIFT-MS: product ions, mass to charge ratios (m/z), branching ratios (b) and
reaction rate coefficients (k). Product ions denoted with * were selected for quantifying
the respective VOC.
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Table B.5: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of cod samples used for labelling tests.
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Table B.5: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-MS
on each day in the headspace of cod samples used for labelling tests.
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Table B.5: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-MS
on each day in the headspace of cod samples used for labelling tests.
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Table B.6: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of cod samples used for ranking tests.
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Table B.6: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-MS
on each day in the headspace of cod samples used for ranking tests.
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Table B.6: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-MS
on each day in the headspace of cod samples used for ranking tests.
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B.3. Quantification of VOCs in Atlantic brown

shrimp

VOC Precursor m/z b(%) k Product ion

Acids

Acetic acid NO+ 90 100 9.0 E-10 NO+·CH3COOH*

NO+ 108 9.0 E-10 NO+·CH3COOH·H2O

Alcohols

2,3-butanediol H3O+ 91 100 3.0 E-09 C4H10O+
2 ·H+*

NO+ 89 100 2.3 E-09 C4H9O+
2

2-propanol H3O+ 43 80 2.7 E-09 C3H+
7 *

3-methyl-1-butanol H3O+ 71 100 2.8 E-09 C5H+
11*

NO+ 87 85 2.3 E-09 C5H11O+

Ethanol H3O+ 47 100 2.7 E-09 C2H7O+*

H3O+ 65 C2H7O+·H2O

H3O+ 83 C2H7O+·(H2O)2
Isobutyl alcohol H3O+ 57 100 2.7 E-09 C4H+

9 *

NO+ 73 95 2.4 E-09 C4H9O+

O+
2 33 50 2.5 E-09 CH5O+

Ketones

Acetone H3O+ 59 100 3.9 E-09 C3H7O+*

NO+ 88 100 1.2 E-09 NO+·C3H6O

Acetoin O+
2 88 20 2.5 E-09 C4H8O+

2 *

Butanone NO+ 102 100 2.8 E-09 NO+·C4H8O*

2-pentanone H3O+ 87 100 3.9 E-09 C5H11O+*

H3O+ 105 3.9 E-09 C5H11O+·H2O

NO+ 116 100 3.1 E-09 NO+·C5H10O+

Sulfur compounds

Hydrogen sulfide H3O+ 35 100 1.6 E-09 H3S+*

H3O+ 53 1.6 E-09 H3S+·H2O

O+
2 34 100 1.4 E-09 H2S+

Carbon disulfide O+
2 76 100 7.0 E-10 CS2+*

Dimethyl sulfide NO+ 62 100 2.2 E-09 (CH3)2S+*

Dimethyl disulfide H3O+ 95 100 2.6 E-09 (CH3)2S2·H+*

NO+ 94 100 2.4 E-09 (CH3)2S2+

Methyl mercaptan H3O+ 49 100 1.8 E-09 CH4S·H+*

H3O+ 67 1.8 E-09 CH4S·H+·H2O

Esters

Ethyl acetate NO+ 118 90 2.1 E-09 NO+·CH3COOC2H5*

O+
2 31 20 2.4 E-09 CH3O+

Amines

Ammonia H3O+ 18 100 2.6 E-09 NH+
4 *

H3O+ 36 2.6 E-09 NH+
4 ·H2O

O+
2 17 100 2.4 E-09 NH+

3

Dimethylamine H3O+ 46 100 2.1 E-09 (CH3)2N·H+*

Trimethylamine H3O+ 58 10 2.0 E-09 C3H8N+*

H3O+ 60 90 2.0 E-09 (CH3)3N·H+

Others

Ethylene oxide NO+ 74 100 1.0 E-10 C2H4O·NO+*

Table B.7: Volatile organic compounds (VOCs) quantified in packaged shrimp samples
with SIFT-MS: mass to charge ratios (m/z), branching ratios (b), reaction rate coefficients
(k) and product ions. Product ions denoted with * were selected for quantifying the
respective VOC.
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Session 1

L4: 30/0/70 (CO2/O2/N2) 4 ◦C H4: 50/0/50 (CO2/O2/N2) 4 ◦C

VOC 0 3 5 10 0 3 7 12

2,3-butanediol 2.65 2.34 2.44 2.73 4.33 4.59 37.51 34.83

2-pentanone 0.95 1.17 1.19 0.82 1.13 1.12 1.34 2.42

2-propanol 10.52 8.63 11.51 7.73 11.36 12.40 13.89 16.60

3-methyl-1-butanol 0.75 0.66 1.00 0.49 1.39 1.03 1.60 2.34

Acetic acid 11.99 9.08 6.36 7.29 17.95 19.99 75.33 51.60

Acetoin 18.48 3.93 3.16 4.56 12.11 5.50 12.98 31.41

Acetone 22.30 19.25 16.36 18.80 35.32 40.58 47.28 150.84

Ammonia 5.81 3.77 5.98 4.42 6.27 8.13 58.39 34.14

Butanone 155.55 93.34 137.82 48.47 226.43 199.70 168.54 151.97

Carbon disulfide 34.34 62.34 122.93 51.24 39.87 142.00 202.63 202.55

Dimethyl amine 0.91 1.14 1.82 2.50 1.28 1.37 6.98 5.05

Dimethyl disulfide 0.57 0.52 0.76 1.13 0.47 0.81 7.54 11.18

Dimethyl sulfide 3.38 2.44 7.49 39.92 9.09 11.16 150.14 212.95

Ethanol 994.07 728.73 1222.02 2737.57 1129.69 1306.72 16208.06 22266.88

Ethyl acetate 37.95 40.63 247.18 384.06 53.81 100.14 1778.90 948.07

Ethylene oxide 110.49 50.18 154.43 102.71 262.56 173.73 932.76 710.50

Hydrogen sulfide 449.10 341.63 348.01 56.98 303.01 517.89 963.57 1818.83

Isobutyl alcohol 5.63 2.60 3.70 11.49 10.37 4.04 19.73 27.80

Methyl mercaptan 35.52 50.54 91.22 50.69 14.42 34.90 145.82 266.79

Trimethyl amine 55.30 7.22 20.14 130.91 14.15 100.08 1405.43 522.92

Session 2

L4: 30/0/70 (CO2/O2/N2) 4 ◦C H4: 50/0/50 (CO2/O2/N2) 4 ◦C

VOC 0 3 5 10 0 3 7 12

2,3-butanediol 3.05 2.38 2.19 3.89 5.03 4.73 17.80 23.68

2-pentanone 1.38 1.28 1.02 1.20 1.43 1.62 1.44 1.38

2-propanol 11.02 9.43 9.62 8.36 17.24 11.64 14.30 14.04

3-methyl-1-butanol 1.13 1.00 0.85 0.87 0.93 0.92 1.81 1.90

Acetic acid 12.49 10.36 5.12 7.94 18.12 25.38 38.90 31.82

Acetoin 17.13 2.66 2.48 5.66 16.51 6.00 8.08 8.69

Acetone 19.25 16.81 18.19 25.32 42.19 38.45 65.30 47.60

Ammonia 6.11 4.21 5.68 4.68 7.21 11.07 10.35 32.66

Butanone 149.56 106.80 144.13 59.86 243.50 169.99 187.97 199.23

Carbon disulfide 30.61 55.98 113.27 52.49 36.71 117.25 178.67 214.73

Dimethyl amine 0.77 0.93 1.44 2.62 1.29 1.73 6.65 9.09

Dimethyl disulfide 0.57 0.39 0.38 2.20 0.61 0.62 3.15 2.80

Dimethyl sulfide 3.25 2.91 5.28 58.86 7.97 12.74 105.95 113.04

Ethanol 1090.07 729.80 851.40 3982.19 1995.45 1086.39 6710.63 9136.69

Ethyl acetate 35.03 31.72 73.93 358.54 41.46 129.84 1810.73 2560.65

Ethylene oxide 131.58 83.33 107.21 107.97 231.48 191.64 799.89 1063.97

Hydrogen sulfide 439.92 454.60 675.78 941.84 288.73 356.26 108.36 592.03

Isobutyl alcohol 6.31 2.10 3.08 7.97 13.19 5.40 7.88 8.42

Methyl mercaptan 35.29 64.70 86.98 86.71 17.79 31.62 88.39 107.96

Trimethyl amine 52.16 5.02 10.11 125.94 22.50 211.87 604.96 514.63

Table B.8: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of shrimp samples used for labelling tests.
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Session 1

L4: 30/0/70 (CO2/O2/N2) 4 ◦C H4: 50/0/50 (CO2/O2/N2) 4 ◦C

VOC 0 3 5 10 0 3 7 12

2,3-butanediol 2.65 2.34 2.44 2.73 4.33 4.59 37.51 34.83

2-pentanone 0.95 1.17 1.19 0.82 1.13 1.12 1.34 2.42

2-propanol 10.52 8.63 11.51 7.73 11.36 12.40 13.89 16.60

3-methyl-1-butanol 0.75 0.66 1.00 0.49 1.39 1.03 1.60 2.34

Acetic acid 11.99 9.08 6.36 7.29 17.95 19.99 75.33 51.60

Acetoin 18.48 3.93 3.16 4.56 12.11 5.50 12.98 31.41

Acetone 22.30 19.25 16.36 18.80 35.32 40.58 47.28 150.84

Ammonia 5.81 3.77 5.98 4.42 6.27 8.13 58.39 34.14

Butanone 155.55 93.34 137.82 48.47 226.43 199.70 168.54 151.97

Carbon disulfide 34.34 62.34 122.93 51.24 39.87 142.00 202.63 202.55

Dimethyl amine 0.91 1.14 1.82 2.50 1.28 1.37 6.98 5.05

Dimethyl disulfide 0.57 0.52 0.76 1.13 0.47 0.81 7.54 11.18

Dimethyl sulfide 3.38 2.44 7.49 39.92 9.09 11.16 150.14 212.95

Ethanol 994.07 728.73 1222.02 2737.57 1129.69 1306.72 16208.06 22266.88

Ethyl acetate 37.95 40.63 247.18 384.06 53.81 100.14 1778.90 948.07

Ethylene oxide 110.49 50.18 154.43 102.71 262.56 173.73 932.76 710.50

Hydrogen sulfide 449.10 341.63 348.01 56.98 303.01 517.89 963.57 1818.83

Isobutyl alcohol 5.63 2.60 3.70 11.49 10.37 4.04 19.73 27.80

Methyl mercaptan 35.52 50.54 91.22 50.69 14.42 34.90 145.82 266.79

Trimethyl amine 55.30 7.22 20.14 130.91 14.15 100.08 1405.43 522.92

Session 2

L4: 30/0/70 (CO2/O2/N2) 4 ◦C H4: 50/0/50 (CO2/O2/N2) 4 ◦C

VOC 0 3 5 10 0 3 5 7

2,3-butanediol 3.05 2.38 2.19 3.89 5.03 4.73 17.80 23.68

2-pentanone 1.38 1.28 1.02 1.20 1.43 1.62 1.44 1.38

2-propanol 11.02 9.43 9.62 8.36 17.24 11.64 14.30 14.04

3-methyl-1-butanol 1.13 1.00 0.85 0.87 0.93 0.92 1.81 1.90

Acetic acid 12.49 10.36 5.12 7.94 18.12 25.38 38.90 31.82

Acetoin 17.13 2.66 2.48 5.66 16.51 6.00 8.08 8.69

Acetone 19.25 16.81 18.19 25.32 42.19 38.45 65.30 47.60

Ammonia 6.11 4.21 5.68 4.68 7.21 11.07 10.35 32.66

Butanone 149.56 106.80 144.13 59.86 243.50 169.99 187.97 199.23

Carbon disulfide 30.61 55.98 113.27 52.49 36.71 117.25 178.67 214.73

Dimethyl amine 0.77 0.93 1.44 2.62 1.29 1.73 6.65 9.09

Dimethyl disulfide 0.57 0.39 0.38 2.20 0.61 0.62 3.15 2.80

Dimethyl sulfide 3.25 2.91 5.28 58.86 7.97 12.74 105.95 113.04

Ethanol 1090.07 729.80 851.40 3982.19 1995.45 1086.39 6710.63 9136.69

Ethyl acetate 35.03 31.72 73.93 358.54 41.46 129.84 1810.73 2560.65

Ethylene oxide 131.58 83.33 107.21 107.97 231.48 191.64 799.89 1063.97

Hydrogen sulfide 439.92 454.60 675.78 941.84 288.73 356.26 108.36 592.03

Isobutyl alcohol 6.31 2.10 3.08 7.97 13.19 5.40 7.88 8.42

Methyl mercaptan 35.29 64.70 86.98 86.71 17.79 31.62 88.39 107.96

Trimethyl amine 52.16 5.02 10.11 125.94 22.50 211.87 604.96 514.63

Table B.9: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of shrimp samples used for ranking tests.
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B.4. Quantification of VOCs in Atlantic salmon

VOC Precursor m/z b(%) k Product ion

Acids

Acetic acid NO+ 90 100 9.0 E-10 NO+·CH3COOH*

NO+ 108 9.0 E-10 NO+·CH3COOH·H2O

3-methylbutanoic acid NO+ 132 70 2.5 E-09 C5H10O2·NO+*

Alcohols

2,3-butanediol NO+ 89 100 2.3 E-09 C4H9O+
2 *

NO+ 107 2.3 E-09 C4H9O+
2 ·H2O

Ethanol NO+ 45 100 1.2 E-09 C2H5O+*

NO+ 63 1.2 E-09 C2H5O+·H2O

NO+ 81 1.2 E-09 C2H5O+·2(H2O)2
3-methyl-1-butanol H3O+ 71 100 3.0 E-09 C5H+

11*

NO+ 87 85 2.3 E-09 C5H11O+

Isobutyl alcohol NO+ 73 95 2.4 E-09 C4H9O+*

O+
2 33 50 2.5 E-09 CH5O+

Aldehydes

3-methylbutanal NO+ 85 100 2.4 E-09 C5H9O+*

Aromatic Hydrocarbons

Ethyl benzene NO+ 106 100 2.0 E-09 C8H+
10*

Propyl benzene NO+ 120 100 2.0 E-09 C9H+
12*

Styrene NO+ 104 100 1.7 E-09 C8H+
8 *

Ketones

Acetone NO+ 88 100 1.2 E-09 NO+·C3 H6O*

Acetoin NO+ 118 100 2.5 E-09 C4 H8O2·NO+*

2,3-butanedione NO+ 65 65 1.3 E-09 C4 H6O+
2 *

Butanone NO+ 102 100 2.8 E-09 NO+·C4H8O*

Sulfur compounds

Carbon disulfide O+
2 76 100 7.0 E-10 CS+

2 *

Dimethyl sulfide H3O+ 63 100 2.5 E-09 (CH3)2S+*

NO+ 62 100 2.2 E-09 (CH3)2S+

O+
2 47 25 2.2 E-09 CH3S+

O+
2 62 60 2.2 E-09 (CH3)2S+

Dimethyl disulfide H3O+ 95 100 2.6 E-09 (CH3)2S2·H+

NO+ 94 100 2.4 E-09 (CH3)2S+
2 *

Dimethyl trisulfide H3O+ 127 100 2.8 E-09 C2H6S3H+

H3O+ 145 2.8 E-09 C2H6S3H+·H2O

NO+ 126 100 1.9 E-09 C2H6S+
3 *

Hydrogen sulfide H3O+ 35 100 1.6 E-09 H3S+*

H3O+ 53 1.6 E-09 H3S+·H2O

Methyl mercaptan H3O+ 49 100 1.8 E-09 CH4S·H+*

H3O+ 67 1.8 E-09 CH4S·H+·H2O

Esters

Ethyl acetate H3O+ 89 100 2.9 E-09 CH3COOC2H5·H+*

H3O+ 107 2.9 E-09 CH3COOC2H5·H+·H2O

O+
2 31 20 2.4 E-09 CH3O+

O+
2 61 40 2.4 E-09 C2H5O+

2

Amines

Ammonia H3O+ 18 100 2.6 E-09 NH+
4

H3O+ 36 2.6 E-09 NH+
4 ·H2O

O+
2 17 100 2.6 E-09 NH+

3 *

Dimethyl amine H3O+ 46 100 2.1 E-09 (CH3)2N·H+*

Piperidine H3O+ 86 90 3.4 E-09 C5H12N+*

Trimethyl amine NO+ 59 100 1.6 E-09 (CH3)3N+*

Table B.10: Volatile organic compounds (VOCs) quantified in packaged salmon samples
with SIFT-MS: product ions, mass to charge ratios (m/z), branching ratios (b) and
reaction rate coefficients (k). Product ions denoted with * were selected for quantifying
the respective VOC.
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Table B.11: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of salmon samples used for ranking tests.
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Table B.11: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for ranking tests.
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Table B.11: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for ranking tests.
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Table B.11: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for ranking tests.
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Table B.11: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for ranking tests.
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Table B.11: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for ranking tests.
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Table B.12: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of salmon samples used for labelling tests.
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Table B.12: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for labelling tests.
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Table B.12: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for labelling tests.
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Table B.12: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for labelling tests.
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Table B.12: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for labelling tests.
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Table B.13: (Continued) Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used for labelling tests.
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Table B.14: Measured concentrations (ppb) of VOCs detected with SIFT-MS on each
day in the headspace of salmon samples used in experiment AN4* (scoring and ranking
with ties).
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Table B.14: (Continued)Measured concentrations (ppb) of VOCs detected with SIFT-
MS on each day in the headspace of salmon samples used in experiment AN4* (scoring
and ranking with ties).
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Baets B., De Meulenaer B., Ragaert P. and Devlieghere F. (2019) “Character-

izing the spoilage of raw Atlantic salmon (Salmo salar) stored under modified

atmospheres by multivariate statistics and augmented ordinal regression,”

International Journal of Food Microbiology, 303, 46-57.

310
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