
A Systematic Literature Review of Software Visualization Evaluation

L. Merinoa, M. Ghafaria, C. Anslowb, O. Nierstrasza

aSoftware Composition Group, University of Bern, Switzerland
bSchool of Engineering and Computer Science, Victoria University of Wellington, New Zealand

Abstract

Context: Software visualizations can help developers to analyze multiple aspects of complex software systems, but their effec-
tiveness is often uncertain due to the lack of evaluation guidelines.

Objective: We identify common problems in the evaluation of software visualizations with the goal of formulating guidelines
to improve future evaluations.

Method: We review the complete literature body of 387 full papers published in the SOFTVIS/VISSOFT conferences, and
study 181 of those from which we could extract evaluation strategies, data collection methods, and other aspects of the evaluation.

Results: Of the proposed software visualization approaches, 62% lack a strong evaluation. We argue that an effective software
visualization should not only boost time and correctness but also recollection, usability, engagement, and other emotions.

Conclusion: We call on researchers proposing new software visualizations to provide evidence of their effectiveness by con-
ducting thorough (i) case studies for approaches that must be studied in situ, and when variables can be controlled, (ii) experiments
with randomly selected participants of the target audience and real-world open source software systems to promote reproducibility
and replicability. We present guidelines to increase the evidence of the effectiveness of software visualization approaches, thus
improving their adoption rate.

Published in: Journal of Systems and Software, https://doi.org/10.1016/j.jss.2018.06.027

Keywords: software visualisation, evaluation, literature review

1. Introduction

Software visualizations are useful for analyzing multiple
aspects of complex software systems. Software visualization
tools have been proposed to help analysts make sense of multi-
variate data [25], to support programmers in comprehending the
architecture of systems [31], to help researchers analyze version
control repositories [9], and to aid developers of software prod-
uct lines [16]. However, most developers are still unaware of
which existing visualization approaches are suitable to adopt
for their needs. We conjecture that the low adoption of software
visualization results from their unproved effectiveness and lack
of evaluations. Indeed, researchers adopt varying strategies to
evaluate software visualization approaches, and therefore the
quality of the evidence of their effectiveness varies. We believe
that a characterization of the evaluation of software visualiza-
tion approaches will (i) assist researchers in the field to improve
the quality of evaluations, and (ii) increase the adoption of vi-
sualization among developers.

We consider previous research to be an important step to
characterizing the evidence of the effectiveness of software vi-
sualization approaches. However, we reflect that previous re-
search has failed to define what is an effective software visu-
alization, and consequently comparing the effectiveness of vi-
sualization approaches is not possible. Moreover, we believe
that some studies have used a loose definition of “case studies”
and include many usage scenarios of visualization instead that

present little evidence of the effectiveness of an approach. In
our investigation we perform a subtler analysis of the character-
istics of evaluations to elucidate these concerns. Consequently,
we formulated the following research questions:

RQ1.) What are the characteristics of evaluations that validate
the effectiveness of software visualization approaches?

RQ2.) How appropriate are the evaluations that are conducted
to validate the effectiveness of software visualization?

We believe that answering these questions will assist re-
searchers in the software visualization field to improve the qual-
ity of evaluations by identifying evaluation strategies and meth-
ods and their common pitfalls. In particular, we reviewed 181
full papers of the 387 papers published in SOFTVIS/VISSOFT.
We identified evaluation strategies such as surveys, case studies,
and experiments, as well as characteristics such as tasks, par-
ticipants, and systems used in evaluations. We found that 62%
(i.e., 113) of the proposed software visualization approaches ei-
ther do not include any evaluation, or include a weak evaluation
(i.e., anecdotal evidence, usage scenarios). Almost all of them
(i.e., 110) introduce a new software visualization approach. The
remaining three discuss an existing approach but without pro-
viding a stronger evaluation. We also found that 29% of the
studies (i.e., 53) conducted experiments in which 30% (i.e., 16)
corresponded to visualizations that target the novice developer

Preprint submitted to The Journal of Systems and Software June 21, 2018

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
2
6
9
3
6

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/212392623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jss.2018.06.027

audience, and included appropriate participants. The remaining
70% proposed visualizations for developers with various lev-
els of experience. However, amongst them only 30% included
experienced developers, and the remaining 70% (i.e., 37) in-
cluded in experiments only students and academics of a conve-
nience sample who are vulnerable to selection bias and hence
hinder generalization. We found that 7% (i.e., 12) of the studies
conducted a case study that involved (i) professional develop-
ers from industry, and (ii) real-world software systems. Finally,
3% (i.e., 4) of studies conducted a survey. Even though we are
not aware of a similar quantitative report of the state of the art
in information visualization, a review of the practice of evalua-
tion [12] found similar issues.

We believe that for software visualization approaches to be
adopted by developers, visualizations not only must prove their
effectiveness via evaluations, but evaluations should also in-
clude participants of the target audience, and be based on real-
world software systems. Finally, we recommend researchers in
the field to conduct surveys that can help them to identify what
are the frequent and complex problems that affect developers.

This paper makes the following contributions:

1. A study of the characteristics of evaluations performed in
the literature of software visualization.

2. Guidelines for researchers in the visualization field who
need to evaluate software visualization approaches.

3. A publicly available data set including the information of
the studies and classifications.1

The remainder of the paper is structured as follows: Sec-
tion 2 presents related work. Section 3 describes the main
concepts that are addressed in the characterization. Section 4
describes the methodology that we followed to collect and se-
lect relevant studies proposed in the software visualization field.
Section 5 presents our results by classifying evaluations based
on adopted strategies, methods and their characteristics. Sec-
tion 6 discusses our research questions and threats to validity of
our findings, and Section 7 concludes and presents future work.

2. Related Work

A few studies have attempted to characterize the evaluation
of software visualization approaches via a literature review. For
instance, Schots and Werner [35] reviewed 36 papers published
between 1993 and 2012 and proposed an extended taxonomy
that includes evidence of the applicability of a software visu-
alization as a dimension [34]. They found that papers lacked
a clear description of information related to the evidence on
the use of visualization. Seriai et al. [38] analyzed 87 papers
published between 2000 and 2012. They found that most vi-
sualizations are evaluated via case studies (i.e., 78.16%), and
only a few researchers conducted experiments (i.e., 16.09%).
They observed that even though the proportion of publications

1http://scg.unibe.ch/research/softvis-eval

that include an evaluation is fairly constant over time, they lack
rigor. Mattila et al. [19] included 83 papers published between
2010 and 2015 in their analysis. They also found that only
a few researchers conducted experiments (i.e., 13.25%), some
performed case studies (i.e., 22.89%), and the rest used other
evaluation methods. In our investigation we cover a much larger
body of literature (i.e., 181 full papers) that spans up to 2017.
We not only characterize the state-of-the-art in software visual-
ization evaluation, but we also propose guidance to researchers
in the field by detecting common pitfalls, and by elaborating
on guidelines to conduct evaluation of software visualization
approaches.

Other studies have opted to evaluate software visualization
tools and have reported guidelines. For example, Storey et
al. [41] evaluated 12 software visualization tools, and proposed
an evaluation framework based on intent, information, presen-
tation, interaction, and effectiveness. Sensalire et al. [36, 37]
evaluated 20 software visualization tools proposed for main-
tenance based via experiments, and elaborated various lessons
learned. They identified a number of dimensions that are criti-
cal for organizing an evaluation, and then analyzing the results.
Müller et al. [27] proposed a structured approach for conduct-
ing controlled experiments in envisioned 3D software visual-
ization tools. Instead of concentrating on rather limited number
of tools, we chose a meta analysis by analyzing the reports of
the evaluation of proposed visualization tools. In this way we
could analyze the state-of-the-art in the practice of software vi-
sualization evaluation, and consequently elaborate guidelines
for defining what is an effective software visualization.

A few reviews of the software visualization literature that
focus on various domains have tangentially analyzed the eval-
uation aspect. Lopez-Herrejon et al. [16] analyzed evaluation
strategies used in visualizations proposed for software product
line engineering, and they found that most approaches used case
studies. They also found that only a few performed experi-
ments, and a few others did not explicitly describe an evalu-
ation. Shahin et al. [39] discussed the evaluation of visualiza-
tion approaches proposed to support software architecture, and
classified the evidence of the evaluation using a 5-step scale [1].
The analysis of the results showed that almost half of the eval-
uations represent toy examples or demonstrations. The other
half correspond to industrial case studies, and a very few others
described experiments and anecdotal evidence of tool adoption.
Novais et al. [30] investigated the evaluations of approaches
that proposed visualization to analyze software evolution. In
most of the analyzed studies evaluation consisted in usage ex-
amples that were demonstrated by the authors of the study. In
a few of them, the demonstration was carried out by external
users. Evaluation strategies based on experiments were found
to be extremely rare. In almost 20% of the studies they did not
find an explicit evaluation. Since the main focus of these men-
tioned studies is not on evaluation (as opposed to ours), they
only characterize the evaluation of the analyzed studies, and of-
fer little advice for researchers who need to perform their own
evaluations of software visualizations.

Similar efforts have been made in the information visualiza-
tion field. Amar and Stasko [2] proposed a task-based frame-

2

http://scg.unibe.ch/research/softvis-eval

work for the evaluation of information visualizations. Forsell [8]
proposed a guide to scientific evaluation of information visual-
ization that focuses on quantitative experimental research. The
guide contains recommendations for (a) designing, (b) conduct-
ing, (c) analyzing results, and (d) reporting on experiments.
Lam et al. [15] proposed seven scenarios for empirical stud-
ies in information visualization. Isenberg et al. [12] reviewed
581 papers to analyze the practice of evaluating visualization.
Some of the pitfalls they found are that in some evaluations
(i) participants do not belong to the target audience, (ii) goals
are not explicit, (iii) the strategy and analysis method is not ap-
propriate, and (iv) the level of rigor is low. Elmqvist and Yi [6]
proposed patterns for visualization evaluation that present solu-
tions to common problems encountered when evaluating a visu-
alization system. We observed that advice given in the context
of information visualization can also be applied to software vi-
sualization evaluation; however, we also observed that there are
particularities in software visualization that require a tailored
analysis, which is an objective of our investigation.

3. Background

The strategies that researchers adopt to evaluate the effec-
tiveness of a software visualization approach can be classified
into two main categories:

i) Theoretical principles from information visualization that
provide researchers support to justify a chosen visual en-
coding [28]. For instance, the effectiveness of perceptual
channels depends on the data type (i.e., categorical, or-
dered, or quantitative) [17].

ii) Empirical evidence gathered from the evaluation of a tech-
nique, method or tool. Amongst them we find a) ex-
ploratory evaluations that involve high-level real-world tasks,
for which identifying the aspects of the tool that boosted
the effectiveness is complex; and b) explanatory evalua-
tions in which high-level tasks are dissected into low-level
(but less realistic) tasks that can be measured in isolation
to identify the cause of an increase in the effectiveness of
an approach [44].

Amongst the strategies used in empirical evaluations we find
(a) surveys [45] that allow researchers to collect data from de-
velopers who are the users of a system, and hence analyze the
collected data to generalize conclusions; (b) experiments [40]
that provide researchers with a high level of control to manip-
ulate some variables while controlling others (i.e., controlled
experiments) with randomly assigned subjects (when it is not
possible to ensure randomness the strategy is called “quasi-
experiment”); and (c) case studies [33] that help researchers to
investigate a phenomenon in its real-life context (i.e., the case),
hence giving researchers a lower level of control than an exper-
iment but enabling a deeper analysis.

Several methods exist for collecting data in each evaluation
strategy. The two most common methods [7] are (i) question-
naires in which the researcher provides instructions to partici-
pants to answer a set of questions that can range from loosely

structured (e.g., exploratory survey) to closed and fully struc-
tured (e.g., to collect data of the background of participants in
an experiment), and (ii) interviews in which a researcher can
ask a group of subjects a set of closed questions in a fixed or-
der (i.e., fully structured), a mix of open and closed questions
(i.e., semi-structured), and open-ended questions (i.e., unstruc-
tured). Less frequent methods for collecting data are observa-
tional ones such as (iii) think-aloud in which researchers ask
participants to verbalize their thoughts while performing the
evaluation. Besides, recent experiments have collected data us-
ing (iv) video recording to capture the behavior of participants
during the evaluation; (v) sketch drawing to evaluate recollec-
tion; and (vi) eye tracking to measure the browsing behavior of
eye’s movement.

Finally, there are several statistical tests that are usually
used to analyze quantitative data collected from an experiment.
For discrete or categorical data, tests such as Chi-square and
Cohen’s kappa are suitable. For questions that analyze the re-
lationships of independent variables, regression analysis can be
applied. For correlation analysis of dependent variables one has
to first analyze if the parametric assumptions holds. That is, if
the data is (i) collected from independent and unbiased sam-
ples, (ii) normally distributed (Shapiro-Wilk test is suggested
and proven more powerful than Kolmogorov-Smirnov [32]), and
(iii) present equal variances (e.g., Levene’s test, Mauchly’s test).
Parametric data can be analyzed with Pearson’s r, while non-
parametric with Spearman’s Rank Correlation. For the analy-
sis of differences of parametric data collected from two groups
Student’s unpaired t-test, Paired t-test, and Hotelling’s T-square
are appropriate. For the non-parametric case Mann-Whitney U
and Wilcoxon Rank sum test are suitable. In the case of analysis
that involves more than two groups of parametric data ANOVA
is a frequent choice, which is usually followed by a post-hoc
test such as Tukey HSD. When data is non-parametric Kruskal-
Wallis test and Friedman test are suitable as well.

4. Methodology

We applied the Systematic Literature Review approach, a
rigorous and auditable research methodology for Evidence-Based
Software Engineering. We followed Keele’s comprehensive guide-
lines [14], which make it less likely that the results of the lit-
erature survey will be biased. The method offers a means for
evaluating and interpreting relevant research to a topic of inter-
est by evidence, which is robust and transferable. We defined
a review protocol to ensure rigor and reproducibility, in which
we determine (i) research questions, (ii) data sources and search
strategy, (iii) inclusion and exclusion criteria, (iv) quality as-
sessment, (v) data extraction, and (vi) selected studies.

4.1. Data sources and search strategy
Systematic literature reviews often define as their data source

digital libraries such as ACM DL2 or IEEE Xplore.3 To find

2http://dl.acm.org/
3http://ieeexplore.ieee.org

3

http://dl.acm.org/
http://ieeexplore.ieee.org

suitable primary studies for analysis, they define a search strat-
egy that typically is based on keywords. Instead, we decided
to adopt as data source the complete set of papers published
by the SOFTVIS and VISSOFT conferences. We believe the
sixteen editions and hundreds of papers dedicated especially to
software visualization offer a sound body of literature used in
previous studies [26]. We based our decision on (i) the good
B classification that they obtain in the CORE ranking4 (which
considers citation rates, paper submission and acceptance rates
among other indicators), (ii) related work that concluded that
results from the analysis of software visualization evaluation in
papers published by other venues do not differ from those pub-
lished by SOFTVIS/VISSOFT [19, 38]. Although we observe
that publications in better ranked venues might require stronger
evaluations, we believe that analyzing a collection of studies
that have been accepted for publication according to fairly sim-
ilar criteria will support a more objective comparison, and will
provide a suitable baseline for future investigations.

4.2. Inclusion and exclusion criteria
We reviewed the proceedings and programs of the venues

to include full papers and exclude other types of papers that
due to limited space are unlikely to contain enough detail. In
particular, from the 387 papers we excluded 178 papers that
corresponded to: (i) 61 poster. (ii) 52 new ideas and emerging
results (NIER), (iii) 44 tool demo (TD), (iv) 8 keynote, (v) 8
position, and (vi) 5 challenge papers,

4.3. Quality assessment
We then assessed the quality of the remaining 209 papers.

We classified the studies according to the categories proposed
by Munzner [28], in which a visualization paper can be classi-
fied into one of five categories:

a) Evaluations describe how a visualization is used to deal with
tasks in a problem domain. Evaluations are often conducted
via user studies in laboratory settings in which participants
solve a set of tasks while variables are measured.

b) Design studies show how existing visualization techniques
can be usefully combined to deal with a particular problem
domain. Typically, design studies are evaluated through case
studies and usage scenarios.

c) Systems elaborate on the architectural design choices of a
proposed visualization tool and the lessons learned from ob-
serving its use.

d) Techniques focus on novel algorithms that improve the ef-
fectiveness of visualization.Techniques are often evaluated
using benchmarks that measure performance.

e) Models include Commentary papers in which an expert in
the field advocate a position and argue to support it; For-
malism papers present new models, definitions or terminol-
ogy to describe techniques; and Taxonomy papers propose
categories that help researchers to analyze the structure of a
domain.

4http://portal.core.edu.au/conf-ranks/

For each paper, we first read the abstract, second the conclusion,
and finally, in the cases where we still were not sure of their
main contribution, we read the rest of the paper. Although some
papers might exhibit characteristics of more than one type, we
classified them by focusing on their primary contribution.

We observed that model papers in which the main contribu-
tion is a commentary, a formalism or a taxonomy, usually do
not describe explicit evaluations. Consequently, we excluded
twenty-eight papers that we classified in those categories: (i) six
commentary, (ii) seven taxonomy, and (iii) fifteen formalism
papers.

Figure 1a provides an overview of the selection process.
Figure 1b summarizes the 387 collected papers and highlights
the 181 included in the study. Figure 1c shows the outcome
of our classification. We observe that the two venues have
a slightly different focus. SOFTVIS papers focus mostly on
design studies, while VISSOFT papers focus mainly on tech-
niques. A frequent critique of visualization papers is a lack of
evaluation. Indeed, papers in which the main contribution is an
evaluation are unusual (i.e., 10%). The chart also shows that
the two main paper types in visualization are design study and
technique.

The collection of 181 full papers includes studies from six
to eleven pages in length. Initially, we were reluctant to include
six-page papers, but we observed that in two editions of the con-
ferences all full papers were of that length. Consequently, we
analyzed the distribution of research strategies used to evaluate
software visualization approaches by paper length. We did not
find any particular trend, and so decided to include them.

4.4. Data extraction

To accelerate the process of finding and extracting the data
from the studies, we collected keywords that authors commonly
use to describe evaluations iteratively. That is, we started the
process by searching for the following keywords in each pa-
per: “evaluation”, “survey”, “experiment”, “case study”, and
“user study”. When we did not find these keywords, we man-
ually inspected the paper and looked for other new representa-
tive keywords to expand our set. During the manual inspection
when we did not find an explicit evaluation we labeled the pa-
pers accordingly. In the end, we collected the following set of
keywords:

{evaluation, survey, [case|user] stud[y|ies], [application |

usage | analysis] example[s], use case[s], application
scenario[s], [controlled | user] experiment, demonstration,

user scenario[s], example of use, usage scenario[s],
example scenario[s], demonstrative result[s]}

We investigated whether evaluations that involve users are
conducted with end users from the expected target audience
(i.e., representative sample) to ensure the generality of results.
Therefore, in studies that used this type of evaluation, we ex-
tracted who conducted the evaluation, and what subject sys-
tems were involved. We extracted these data by scanning the
evaluation section of papers. In particular, we extracted (i) data

4

http://portal.core.edu.au/conf-ranks/

SOFTVIS [N=148]
VISSOFT [N=239]

Inclusion Criteria

N = 387

Keynote [N=8]
Challenge [N=5]

NIER [N=52]
TD [N=44]

Position [N=8]
Poster [N=61]

Exclusion Criteria

N = 209

Commentary [N=6]
Taxonomy [N=7]

Formalism [N=15]

Quality Assessment

N = 181

(a) Stages of the search process and number of selected studies in each
stage.

12

20

20

20

23

41

28

33

13

34

14

32

25

31

22

19

10
19

4
12

16
12
12

16
7

18
9
9
10
11

7
9

VISSOFT'02
SOFTVIS'03
VISSOFT'03
SOFTVIS'05
VISSOFT'05
SOFTVIS'06
VISSOFT'07
SOFTVIS'08
VISSOFT'09
SOFTVIS'10
VISSOFT'11
VISSOFT'13
VISSOFT'14
VISSOFT'15
VISSOFT'16
VISSOFT'17

0 10 20 30 40 50

Included Total

(b) The 181 included papers from the collection of 387 papers published
in SOFTVIS/VISSOFT venues.

65

56

41

19

37

19

13

8

28

37

28

11

0

10

20

30

40

50

60

70

Design Study Technique System Evaluation

VISSOFT SOFTVIS Total

(c) Classification of the 181 SOFTVIS/VISSOFT full papers by type.

Figure 1: The 181 SOFTVIS/VISSOFT full papers included.

0

10

20

30

40

50

60

70

80

Design Study Evaluation System Technique

Theoretical No Explicit Evaluation Survey
Anecdotal Case Study Experiment
Usage Scenarios

Figure 2: The distribution of the 181 included papers categorized by paper types
and research strategy used to evaluate software visualization approaches.

collection methods (e.g., think-aloud, interview, questionnaire);
(ii) number of participants and their background, (iii) tasks,
(iv) subject system, (v) dependent variables, and (vi) statistical
tests.

4.5. Selected studies

We included in our study the 181 papers listed in Tables 1
and 2. The papers are identified by venue and evaluation strat-
egy.

5. Results

We report the characteristics of the extracted data and the
categories used to classify them for quantitative analysis. Fig-
ure 2 shows the distribution of the studies categorized by paper
type [28] and research strategy used to evaluate visualizations.
Table 3 presents our classification of the evaluation strategy
adopted by papers into one of three main categories: (i) theoret-
ical, (ii) no explicit evaluation, and (iii) empirical. For evalua-
tions that used an empirical strategy, we classified them into one
of five categories: (i) anecdotal evidence, (ii) usage scenarios,
(iii) survey, (iv) case study, and (v) experiment.

We report on characteristics of experiments such as data
collection methods, type of analysis, visual tasks, dependent
variables, statistical tests, and scope. The complete classifica-
tion of the 181 included studies is displayed in Tables 4, 5, 6, 7, 8,
and 9.

5.1. Data Collection Methods

In Table 4 we list the various methods that researchers used
to collect data from experiments. The most frequent were ques-
tionnaires, which are normally used to collect data of the back-
ground of participants at the beginning of experiments and fi-
nal observations at the end. Questionnaires are found across
all types of evaluation strategies (i.e., survey, experiment, case
study). Interviews are fairly frequent and found mostly in case
studies. We also found traditional observational methods (e.g.,
think-aloud), but also fairly new methods (e.g., eye tracking).

5

Table 1: The papers included in the study [S1-S107].
Id and Reference Venue Evaluation

[S1] Aesthetics of class diagrams, Eichelberger, H. V’02 Theorical
[S2] Specifying algorithm visualizations in terms of dat..., Francik, J. V’02 Usage Scenario
[S3] View definitions for language-independent multipl..., Sajaniemi, J. V’02 Usage Scenario
[S4] The CONCEPT project - applying source code analysis to..., Rilling, J. et al. V’02 -
[S5] UML collaboration diagram syntax: an empir..., Purchase, H.C. et al. V’02 Experiment
[S6] Runtime visualisation of object oriented soft..., Smith, M.P. et al. V’02 Usage Scenario
[S7] Reification of program points for visual execution , Diehl, S. et al. V’02 -
[S8] Metrics-based 3D visualization of large obj..., Lewerentz, C. et al. V’02 Usage Scenario
[S9] Analogical representations of programs, Ploix, D. V’02 Usage Scenario
[S10] Revision Towers, Taylor, C.M.B. et al. V’02 Usage Scenario
[S11] Self-Organizing Maps Applied in Visualising ..., Brittle, J. et al. V’03 Experiment
[S12] KScope: A Modularized Tool for 3D Visualizati..., Davis, T.A. et al. V’03 Theorical
[S13] Visualization to Support Version Control Software..., Wu, X. et al. V’03 Experiment
[S14] Techniques for Reducing the Complexity o..., Hamou-Lhadj, A. et al. V’03 Usage Scenario
[S15] A topology-shape-metrics approach for the automa..., Eiglsperger, M. et al. S’03 -
[S16] A new approach for visualizing UML class diagrams, Gutwenger, C. et al. S’03 -
[S17] Visualizing model mappings in UML, Hausmann, J.H. et al. S’03 -
[S18] Visualizing software for telecommunication services..., Gansner, E.R. et al. S’03 -
[S19] Graph visualization for the analysis of the structure an..., Zhou, C. et al. S’03 -
[S20] Interactive locality optimization on NUMA architectures, Mu, T. et al. S’03 -
[S21] End-user software visualizations for fault ..., Ruthruff, J. et al. S’03 Experiment
[S22] Interactive visual debugging with UML, Jacobs, T. et al. S’03 Usage Scenario
[S23] Designing effective program visualization too..., Tudoreanu, M.E. S’03 Experiment
[S24] Dancing hamsters and marble statue..., Huebscher-Younger, T. et al. S’03 Experiment
[S25] Algorithm visualization in CS education: com..., Grissom, S. et al. S’03 Experiment
[S26] A system for graph-based visualization of t..., Collberg, C. et al. S’03 Usage Scenario
[S27] Visualization of program-execution data for dep..., Orso, A. et al. S’03 Usage Scenario
[S28] Visualizing Java in action, Reiss, S.P. S’03 Usage Scenario
[S29] Plugging-in visualization: experiences integrating a ..., Lintern, R. et al. S’03 -
[S30] EVolve: an open extensible software visualizatio..., Wang, Q. et al. S’03 Usage Scenario
[S31] 3D representations for software visualization..., Marcus, A. et al. S’03 Usage Scenario
[S32] Growing squares: animated visualization of ..., Elmqvist, N. et al. S’03 Experiment
[S33] Program animation based on the roles of va..., Sajaniemi, J. et al. S’03 Experiment
[S34] Visualizing Feature Interaction in 3-D, Greevy, O. et al. V’05 Usage Scenario
[S35] Identifying Structural Features of Java Prog..., Smith, M.P. et al. V’05 Usage Scenario
[S36] Support for Static Concept Location with sv3D, Xie, X. et al. V’05 Usage Scenario
[S37] Interactive Exploration of Semantic Clusters, Lungu, M. et al. V’05 Usage Scenario
[S38] Exploring Relations within Software Systems ..., Balzer, M. et al. V’05 Usage Scenario
[S39] The Dominance Tree in Visualizing Software Dep..., Falke, R. et al. V’05 Usage Scenario
[S40] User Perspectives on a Visual Aid to Program Com..., Cox, A. et al. V’05 Experiment
[S41] Interactive Visual Mechanisms for Exploring So..., Telea, A. et al. V’05 Usage Scenario
[S42] Fractal Figures: Visualizing Development Ef..., D’Ambros, M. et al. V’05 Usage Scenario
[S43] White Coats: Web-Visualization of Evolving S..., Mesnage, C. et al. V’05 Usage Scenario
[S44] Multi-level Method Understanding Using Microprints , Ducasse, S. et al. V’05 -
[S45] Visual Realism for the Visualization of Softwa..., Holten, D. et al. V’05 Usage Scenario
[S46] Visual Exploration of Combined Architectural and Met..., Termeer, M. et al. V’05 -
[S47] Evaluating UML Class Diagram Layout base..., Andriyevska, O. et al. V’05 Experiment
[S48] Interactive Exploration of UML Sequence Diagra..., Sharp, R. et al. V’05 Usage Scenario
[S49] SAB - The Software Architecture Browser, Erben, N. et al. V’05 -
[S50] Towards understanding programs through wear-b..., DeLine, R. et al. S’05 Experiment
[S51] Online-configuration of software visualizations with Vi..., Panas, T. et al. S’05 -
[S52] Visualization of mobile object environments..., Frishman, Y. et al. S’05 Case Study
[S53] Visualizing structural properties of irregular par..., Blochinger, W. et al. S’05 -
[S54] Jove: java as it happens, Reiss, S.P. et al. S’05 -
[S55] Methodology and architecture of JIVE, Gestwicki, P. et al. S’05 Anecdotal
[S56] Visual specification and analysis of use cas..., Kholkar, D. et al. S’05 Case Study
[S57] Visualizing multiple evolution metrics, Pinzger, M. et al. S’05 Usage Scenario
[S58] The war room command console: shared visual..., O’Reilly, C. et al. S’05 Case Study
[S59] CVSscan: visualization of code evolution, Voinea, L. et al. S’05 Case Study
[S60] Visual data mining in software archives, Burch, M. et al. S’05 Usage Scenario
[S61] Algorithm visualization using concept keyboa..., Baloian, N. et al. S’05 Experiment
[S62] Mondrian: an agile information visualization f..., Meyer, M. et al. S’06 Usage Scenario
[S63] Multiscale and multivariate visualizations of ..., Voinea, L. et al. S’06 Usage Scenario
[S64] Visualization of areas of interest in softwar..., Byelas, H. et al. S’06 Case Study
[S65] Visual exploration of function call graphs for feature..., Bohnet, J. et al. S’06 -
[S66] Using social agents to visualize software..., Alspaugh, T.A. et al. S’06 Experiment
[S67] Transparency, holophrasting, and automatic layout appl..., Gauvin, S. et al. S’06 -
[S68] A data-driven graphical toolkit for softwa..., Demetrescu, C. et al. S’06 Usage Scenario
[S69] Visualizing live software systems in 3D, Greevy, O. et al. S’06 Usage Scenario
[S70] Execution patterns for visualizing web servic..., de Pauw, W. et al. S’06 Anecdotal
[S71] Experimental evaluation of animated-verifying o..., Jain, J. et al. S’06 Experiment
[S72] Narrative algorithm visualization, Blumenkrants, M. et al. S’06 Experiment
[S73] The Clack graphical router: visualizing net..., Wendlandt, D. et al. S’06 Anecdotal
[S74] A Visualization for Software Project Awaren..., Ripley, R.M. et al. V’07 Usage Scenario
[S75] YARN: Animating Software Evolution, Hindle, A. et al. V’07 Usage Scenario
[S76] DiffArchViz: A Tool to Visualize Correspondence ..., Sawant, A.P. V’07 Usage Scenario
[S77] A Bug’s Life" Visualizing a Bug Database""A..., D’Ambros, M. et al. V’07 Usage Scenario
[S78] Task-specific source code dependency investig..., Holmes, R. et al. V’07 Experiment
[S79] Visualizing Software Systems as Cities, Wettel, R. et al. V’07 -
[S80] Onion Graphs for Focus+Context Views of UML Cl..., Kagdi, H. et al. V’07 Usage Scenario
[S81] CocoViz: Towards Cognitive Software Visuali..., Boccuzzo, S. et al. V’07 Usage Scenario
[S82] Distributable Features View: Visualizing the..., Cosma, D.C. et al. V’07 Usage Scenario
[S83] Trace Visualization Using Hierarchical Edge B..., Holten, D. et al. V’07 Usage Scenario
[S84] Visualization of Dynamic Program Aspects, Deelen, P. et al. V’07 Usage Scenario
[S85] Visualizing Dynamic Memory Allocations, Moreta, S. et al. V’07 Usage Scenario
[S86] Applying visualisation techniques in software..., Nestor, D. et al. S’08 Usage Scenario
[S87] Stacked-widget visualization of scheduling-..., Bernardin, T. et al. S’08 Usage Scenario
[S88] Visually localizing design problems with dish..., Wettel, R. et al. S’08 Usage Scenario
[S89] Visualizing inter-dependencies between scenarios, Harel, D. et al. S’08 -
[S90] Software visualization for end-user pr..., Subrahmaniyan, N. et al. S’08 Case Study
[S91] Streamsight: a visualization tool for large-s..., de Pauw, W. et al. S’08 Anecdotal
[S92] Improving an interactive visualization of transition ..., Ploeger, B. et al. S’08 -
[S93] Automatic layout of UML use case diagrams, Eichelberger, H. S’08 -
[S94] Gef3D: a framework for two-, two-and-a-h..., von Pilgrim, J. et al. S’08 Usage Scenario
[S95] A catalogue of lightweight visualizations to ..., Parnin, C. et al. S’08 Usage Scenario
[S96] An interactive reverse engineering environment..., Telea, A. et al. S’08 Experiment
[S97] Representing unit test data for large scale ..., Cottam, J.A. et al. S’08 Anecdotal
[S98] HDPV: interactive, faithful, in-vivo run..., Sundararaman, J. et al. S’08 Usage Scenario
[S99] Analyzing the reliability of communication be..., Zeckzer, D. et al. S’08 Usage Scenario
[S100] Visualization of exception handling constructs..., Shah, H. et al. S’08 Experiment
[S101] Assessing the benefits of synchronization-adorn..., Xie, S. et al. S’08 Experiment
[S102] Extraction and visualization of call dependen..., Telea, A. et al. V’09 Usage Scenario
[S103] Visualizing the Java heap to detect memory proble..., Reiss, S.P. V’09 Anecdotal
[S104] Case study: Visual analytics in software prod..., Telea, A. et al. V’09 Usage Scenario
[S105] Visualizing massively pruned execution trace..., Bohnet, J. et al. V’09 Case Study
[S106] Evaluation of software visualization tool..., Sensalire, M. et al. V’09 Experiment
[S107] The effect of layout on the comprehension of..., Sharif, B. et al. V’09 Experiment

Table 2: The papers included in the study [S108-S181].
Id and Reference Venue Evaluation

[S108] Beyond pretty pictures: Examining the benef..., Yunrim Park et al. V’09 Experiment
[S109] Representing development history in s..., Steinbrueckner, F. et al. S’10 Usage Scenario
[S110] Visual comparison of software architectures, Beck, F. et al. S’10 Usage Scenario
[S111] An automatic layout algorithm for BPEL processes, Albrecht, B. et al. S’10 -
[S112] Off-screen visualization techniques for clas..., Frisch, M. et al. S’10 Experiment
[S113] Jype - a program visualization and programm..., Helminen, J. et al. S’10 Survey
[S114] Zinsight: a visual and analytic environment..., de Pauw, W. et al. S’10 Case Study
[S115] Understanding complex multithreaded softwa..., Truemper, J. et al. S’10 Case Study
[S116] Visualizing windows system traces, Wu, Y. et al. S’10 Usage Scenario
[S117] Embedding spatial software visualization in th..., Kuhn, A. et al. S’10 Experiment
[S118] Towards anomaly comprehension: using structural..., Lin, S. et al. S’10 Experiment
[S119] Dependence cluster visualization, Islam, S.S. et al. S’10 Usage Scenario
[S120] Exploring the inventor’s paradox: applying jig..., Ruan, H. et al. S’10 Usage Scenario
[S121] Trevis: a context tree visualization & anal..., Adamoli, A. et al. S’10 Usage Scenario
[S122] Heapviz: interactive heap visualizati..., Aftandilian, E.E. et al. S’10 Usage Scenario
[S123] AllocRay: memory allocation visualizati..., Robertson, G.G. et al. S’10 Experiment
[S124] Software evolution storylines, Ogawa, M. et al. S’10 -
[S125] User evaluation of polymetric views using a ..., Anslow, C. et al. S’10 Experiment
[S126] An interactive ambient visualization fo..., Murphy-Hill, E. et al. S’10 Experiment
[S127] Follow that sketch: Lifecycles of diagrams an..., Walny, J. et al. V’11 Experiment
[S128] Visual support for porting large code base..., Broeksema, B. et al. V’11 Usage Scenario
[S129] A visual analysis and design tool for planning..., Beck, M. et al. V’11 Case Study
[S130] Visually exploring multi-dimensional code coup..., Beck, F. et al. V’11 Usage Scenario
[S131] Constellation visualization: Augmenting progra..., Deng, F. et al. V’11 Experiment
[S132] 3D Hierarchical Edge bundles to visualize relations ..., Caserta, P. et al. V’11 -
[S133] Abstract visualization of runtime m..., Choudhury, A.N.M.I. et al. V’11 Usage Scenario
[S134] Telling stories about GNOME with Complicity, Neu, S. et al. V’11 Usage Scenario
[S135] E-Quality: A graph based object oriented so..., Erdemir, U. et al. V’11 Experiment
[S136] Automatic categorization and visualization o..., Reiss, S.P. et al. V’13 Usage Scenario
[S137] Using HTML5 visualizations in software faul..., Gouveia, C. et al. V’13 Experiment
[S138] Visualizing jobs with shared resources in di..., de Pauw, W. et al. V’13 Usage Scenario
[S139] SYNCTRACE: Visual thread-interplay analysis, Karran, B. et al. V’13 Usage Scenario
[S140] Finding structures in multi-type code c..., Abuthawabeh, A. et al. V’13 Experiment
[S141] SourceVis: Collaborative software visualizat..., Anslow, C. et al. V’13 Experiment
[S142] Visualizing software dynamicities with heat..., Benomar, O. et al. V’13 Usage Scenario
[S143] Performance evolution blueprint: Underst..., Sandoval, J.P. et al. V’13 Usage Scenario
[S144] An empirical study assessing the effect of s..., Sharif, B. et al. V’13 Experiment
[S145] Visualizing Developer Interactions, Minelli, R. et al. V’14 Usage Scenario
[S146] AniMatrix: A Matrix-Based Visualization of ..., Rufiange, S. et al. V’14 Usage Scenario
[S147] Visualizing the Evolution of Systems and The..., Kula, R.G. et al. V’14 Usage Scenario
[S148] ChronoTwigger: A Visual Analytics Tool for Unde..., Ens, B. et al. V’14 Experiment
[S149] Lightweight Structured Visualization of Asse..., Toprak, S. et al. V’14 Experiment
[S150] How Developers Visualize Compiler Messages: A..., Barik, T. et al. V’14 Experiment
[S151] Feature Relations Graphs: A Visualisation ..., Martinez, J. et al. V’14 Case Study
[S152] Search Space Pruning Constraints Visualizati..., Haugen, B. et al. V’14 Usage Scenario
[S153] Integrating Anomaly Diagnosis Techniques int..., Kulesz, D. et al. V’14 Experiment
[S154] Combining Tiled and Textual Views of Code, Homer, M. et al. V’14 Experiment
[S155] Visualizing Work Processes in Software Engine..., Burch, M. et al. V’15 Usage Scenario
[S156] Blended, Not Stirred: Multi-concern Visua..., Dal Sasso, T. et al. V’15 Usage Scenario
[S157] CodeSurveyor: Mapping Large-Scale Software to..., Hawes, N. et al. V’15 Experiment
[S158] Revealing Runtime Features and Constituent..., Palepu, V.K. et al. V’15 Usage Scenario
[S159] A Visual Support for Decomposing Complex Featu..., Urli, S. et al. V’15 Usage Scenario
[S160] Visualising Software as a Particle System, Scarle, S. et al. V’15 Usage Scenario
[S161] Interactive Tag Cloud Visualization of Sof..., Greene, G.J. et al. V’15 Usage Scenario
[S162] Hierarchical Software Landscape Visualizati..., Fittkau, F. et al. V’15 Experiment
[S163] Vestige: A Visualization Framework for Eng..., Schneider, T. et al. V’15 Usage Scenario
[S164] Visual Analytics of Software Structure and Met..., Khan, T. et al. V’15 Experiment
[S165] Stable Voronoi-Based Visualizations for Sof..., Van Hees, R. et al. V’15 Usage Scenario
[S166] Visualizing the Evolution of Working Sets, Minelli, R. et al. V’16 Experiment
[S167] Walls, Pillars and Beams: A 3D Decompositio..., Tymchuk, Y. et al. V’16 Case Study
[S168] CuboidMatrix: Exploring Dynamic Structura..., Schneider, T. et al. V’16 Experiment
[S169] A Tool for Visualizing Patterns of Spread..., Middleton, J. et al. V’16 Experiment
[S170] Jsvee & Kelmu: Creating and Tailoring Program Ani..., Sirkiae, T. V’16 Usage Scenario
[S171] Visualizing Project Evolution through Abstr..., Feist, M.D. et al. V’16 Usage Scenario
[S172] Merge-Tree: Visualizing the Integration of Com..., Wilde, E. et al. V’16 Usage Scenario
[S173] A Scalable Visualization for Dynamic Data in ..., Burch, M. et al. V’17 Experiment
[S174] An Empirical Study on the Readability of R..., Hollmann, N. et al. V’17 Experiment
[S175] Concept-Driven Generation of Intuitive Explana..., Reza, M. et al. V’17 Usage Scenario
[S176] Visual Exploration of Memory Traces and Call ..., Gralka, P. et al. V’17 Usage Scenario
[S177] Code Park: A New 3D Code Visualization Tool..., Khaloo, P. et al. V’17 Experiment
[S178] Using High-Rising Cities to Visualize Perform..., Ogami, K. et al. V’17 Usage Scenario
[S179] iTraceVis: Visualizing Eye Movement Data With..., Clark, B. et al. V’17 Experiment
[S180] On the Impact of the Medium in the Effective..., Merino, L. et al. V’17 Experiment
[S181] Method Execution Reports: Generating Text and ..., Beck, F. et al. V’17 Experiment

5.2. Evaluation Strategies

In twenty-four (i.e., 13%) studies we did not find an explicit
evaluation that presents evidence for supporting the claim of
effectiveness of software visualization approaches. These stud-
ies indicate that the evaluation of the proposed visualization is
planned as future work. In the remaining studies, we found
that several strategies were used to evaluate software visualiza-
tion approaches. We observed that only two studies (i.e., 1%)
used theoretical references to support the claim of the effec-
tiveness of software visualizations. One technique paper [S1]
that proposes aesthetic criteria for class diagrams, considered
their proposed criteria effective since it was derived from the
UML specification, and one design study paper [S12] evalu-
ated the visualization based on previously proposed criteria for
visualizing software in virtual reality [47]. Both studies planned

6

Table 3: Research strategies used to evaluate software visualization approaches.

Category Strategy Reference #

Theoretical S1, S12 2
No Explicit
Evaluation S4, S7, S15, S16, S17, S18, S19, S20, S29, S44, S46, S49, S51, S53, S54, S65, S67, S79,

S89, S92, S93, S111, S124, S132
24

Empirical

Survey S13, S71, S100, S113 4
Anecdotal
Evidence S55, S70, S73, S91, S97, S103 6

Case Study S52, S56, S58, S59, S64, S90, S105, S114, S115, S129, S151, S167 12
Experiment S5, S11, S13, S21, S23, S24, S25, S32, S33, S40, S47, S50, S61, S66, S71, S72, S78, S96,

S100, S101, S106, S107, S108, S112, S117, S118, S123, S125, S126, S127, S131, S135,
S137, S140, S141, S144, S148, S149, S150, S153, S154, S157, S162, S164, S166, S168,
S169, S173, S174, S177, S179, S180, S181

53

Example S57, S60, S62, S63, S68, S69, S74, S75, S76, S77, S80, S81, S82, S83, S84, S85, S86, S87,
S88, S94, S95, S98, S99, S102, S104, S109, S110, S116, S119, S120, S121, S122, S128,
S130, S133, S134, S136, S138, S139, S142, S143, S145, S146, S147, S152, S155, S156,
S158, S159, S160, S161, S163, S165, S170, S171, S172, S175, S176, S178

83

Table 4: Data collection methods used to evaluate software visualization approaches.

Method Reference #

Questionnaire S11, S13, S25, S32, S40, S47, S50, S61, S66, S72, S90, S100, S106, S107, S108, S112, S125, S126,
S127, S135, S137, S140, S141, S144, S149, S150, S153, S154, S157, S162, S164, S168, S173, S177,
S179, S180, S181

37

Think-Aloud S40, S50, S100, S112, S117, S118, S123, S125, S126, S135, S141, S148, S150, S169, S173, S179,
S180

17

Interview S33, S71, S78, S90, S100, S106, S123, S127, S153, S174, S177, S180 12
Video Recording S33, S50, S117, S125, S127, S140, S141, S144, S180 9
Sketch Drawing S117, S127, S180 3
Others Eye Tracking (S144), Log Analysis (S166), Feelings Cards (S180) 3

as future work to conduct an experimental evaluation. The re-
maining 155 studies (i.e., 86%) adopted an empirical strategy to
evaluate software visualization approaches. Amongst them, we
found that multiple strategies were used. We investigated the
evidence of the effectiveness of visualization approaches pro-
vided by those strategies.

Figure 3 shows the relation between the data collection meth-
ods used in evaluation strategiesWe observe that most case stud-
ies do not describe the methods used to collect data; however,
we presume they are observational ones, such as one [S90]
that reported to have conducted interviews. The few surveys in
the analysis collected data using interviews and questionnaires.
One survey [S113] did not describe the method to collect data.
Experiments use multiple methods to collect data. They mainly
use questionnaires, interviews, and the think-aloud protocol.
Recent experiments have used video recording, and other meth-
ods such as sketch drawing, eye tracking, log analysis, and emo-
tion cards.

5.2.1. Anecdotal Evidence
We found six studies (i.e., 3%) that support the claim of

effectiveness of visualizations on anecdotal evidence of tool

adoption. Two papers [S55,S73] proposed a visualization to
support the student audience and reported that tools were suc-
cessfully used in software engineering courses. The remaining
four studies [S70,S91,S97,S103] that focused on the developer
audience reported that visualizations were used intensively and
obtained positive feedback.

5.2.2. Usage Scenarios
Eighty-three studies (i.e., 46%) evaluated software visual-

izations via usage scenarios. In this type of evaluation, authors
posed envisioned scenarios and elaborated on how the visual-
ization was expected to be used. Usually, they selected an open-
source software system as the subject of the visualization. The
most popular systems that we found were written in (i) Java,
such as ArgoUML (4×), Ant (4×), JHotDraw (3×), Java SDK
(2×), and Weka (2×); (ii) C++, such as Mozilla (7×), VTK (2×),
and GNOME (2×); and, (iii) Smalltalk Pharo (4×). We found
that several names were used among the studies to describe this
strategy. We observed that sixty-seven studies (i.e., 37%) la-
beled evaluations as case studies, while twenty-six (i.e., 14%)
presented them as use cases. In the rest of the cases, authors
used titles such as: “application examples”, “usage examples”,

7

Figure 3: Sankey diagram showing the data collection methods (right) em-
ployed in evaluation strategies (left) adopted in empirical evaluations.

“application scenarios”, “analysis example”, “example of use”,
“usage scenarios”, “application scenarios”, and “usage exam-
ple”.

5.2.3. Survey
Only four studies (i.e., 2%) performed a survey, which is

consistent with the findings of related work [19, 38]. Three
of them [S13,S71,S100] surveyed developers to identify com-
plex problems and collect requirements to design a proposed vi-
sualization approach: one focused on supporting development
teams who use version control systems [S13], another asked
former students of a course what they considered the most dif-
ficult subject in the lecture [S71], and another was concerned
with understanding exception-handling constructs [S100]. In
one study [S113] students who used a visualization approach
were surveyed to collect anecdotal evidence of its usefulness.
Two surveys [S71,S113] were conducted for visualization ap-
proaches that target the student audience in a software engi-
neering course, while the remaining two [S13,S100] target the
developer audience.

We found that surveys are used to identify frequent and
complex problems that affect developers; such problems are
then interpreted as requirements for a new visualization ap-
proach. We conjecture whether the low number of surveys has
an effect on the disconnect between the proposed software visu-
alization approaches and the needs of developers that we found
in the past [23].

5.2.4. Case Study
We classified twelve papers (i.e., 7%) in the case study cat-

egory. Usually, case studies are conducted to evaluate visual-
ization approaches that target professional developers working
on real-world projects in an industrial setting. The case of the
study describes the context of the project in which difficulties
arise, and shows how a visualization approach provides devel-
opers support for tackling them. We observed that in three stud-
ies [S56,S90,S114] some or all authors of the study come from
industry, while in the rest there seems to be a strong relation of
authors with industrial companies. In all of them, the evaluation
involved professional developers.

5.2.5. Experiment
Fifty-three studies (i.e., 29%) evaluated software visualiza-

tion via experiments. Although the level of detail varies, we
identified a number of characteristics such as (i) data collec-
tion methods; (ii) type of analysis; (iii) participants; (iv) tasks;
(v) dependent variables; and (vi) statistical tests. In the follow-
ing we describe the results of the extracted data.

i) Participants. We observed a high variance in the number of
participants in experiments (shown in Figure 4). The high-
est number of participants is found in a study [S25] that
included 157 students. The minimum number corresponds
to a study [S100] that involved three participants (graduate
students with experience in industry). The median was 13
participants. A similar analysis of participants in the eval-
uation of information visualization approaches [12] shows
similar results. Most evaluations of information visualiza-
tion approaches involve 1–5 participants (excluding eval-
uations that do not report on the number of participants).
The second most popular group includes 11–20 partici-
pants, and the group that includes 6–10 is the third most
popular. Overall the median is 9 participants. Although
many evaluations in software visualization included a num-
ber of participants in that ranges, the most popular ones
are 6–10 and 11–20, followed by 21–30. One reason that
might explain the difference could be that in our analy-
sis we only included full papers that might present more
thorough evaluations including a higher number of partici-
pants.
We noticed that experiments to evaluate software visual-
ization approaches for teaching software engineering (e.g.,
algorithms and data structures) include a high number of
participants since they usually involve a whole course and
sometimes several of them. This type of experiment typi-
cally evaluates the effect of introducing visualization tools
as a means for helping students to learn the subject of the

8

8

12 12
10

5

1

4
2

0
2
4
6
8
10
12
14

1-5 6-10 11-20 21-30 31-40 41-50 51-100 >100

Figure 4: Histogram of the number of participants reported in evaluation.

Table 5: Type of analysis adopted in experiments.

Type of
Analysis

References #

Quantitative S21, S23, S24, S25, S71, S78, S101,
S107, S137, S150, S154, S164, S174

13

Qualitative S11, S13, S33, S61, S66, S96, S100,
S106, S112, S117, S123, S127,
S135, S140, S141, S148, S149,
S153, S157, S166, S169, S181

22

Quantitative /

Qualitative S5, S32, S40, S47, S50, S72, S108,
S118, S125, S126, S131, S144,
S162, S168, S173, S177, S179, S180

18

course. All of them found that visualizations do help stu-
dents. However, they do not provide insights into whether
the particular visualization technique tested in the experi-
ment is the most suitable one. All experiments include par-
ticipants selected from a convenience sample. Normally,
they are students and academics at various levels with little
experience working in industry.

ii) Type of Analysis. Table 5 presents our classification of the
type of analysis adopted in experiments. We categorized
the type of analysis into one of two categories: quantita-
tive and qualitative. We found thirteen studies that adopted
a quantitative analysis, while twenty-two used a qualita-
tive one. In eighteen studies there was both a quantitative
and qualitative analysis. Common examples of quantita-
tive analyses in experiments include the measure of quan-
titative variables such as time and correctness
Typically, experiments were described as being formative
or exploratory, and adopted a qualitative analysis of results
(i.e., 75%). Several experiments also used a quantitative
analysis to report evidence that supports the effectiveness
of software visualization approaches. Although reporting
on early results of preliminary evaluations has contributed
important knowledge to the software visualization field, we
believe that for software visualization approaches to be-
come an actionable choice for developers, they have to
present sound evidence of their effectiveness via surveys,
controlled experiments, and case studies.

iii) Dependent Variables. Table 7 lists the dependent variables
that were measured in experiments. We adopted the clas-
sification proposed by Lam et al. [15] and classified the

dependent variables based on two of the proposed scenar-
ios for evaluation of the understanding of visualizations:
user performance and user experience. We found 35 (i.e.,
66%) studies that evaluated user performance, 8 (i.e., 15%)
evaluated user experience, and 10 (i.e., 19%) that evaluated
variables of both. To evaluate performance most experi-
ments defined as dependent variables correctness and time,
some others specified that the experiment aimed at evalu-
ating effectiveness without presenting details, and a few
described multiple variables such as recollection, visual ef-
fort, scalability, and efficiency. To evaluate user experience
researchers asked participants their perception of various
variables such as usability, engagement, understandability,
and emotions.

iv) Statistical Tests. Table 8 summarizes the statistical tests
used in experiments for the quantitative analysis of data.
We observed that the choice of the test is governed primar-
ily by the number of dependent variables, their treatment
and the type of the collected data (i.e., categorical, ordinal,
interval). For instance, a questionnaire that uses a 5-step
Likert scale to ask participants how suitable they find par-
ticular characteristics of a software visualization approach
for a certain task would be ordinal. In that case, there
would be one dependent variable, with five levels of ordinal
data, for which the Kruskal-Wallis test would be a suitable
match. Also, ANOVA is a common choice to test hypothe-
ses. However, we observed that in some cases researchers
found that parametric assumptions do not hold. Although
there are alternative tests for non-parametric data, we ob-
serve that for data that do not follow a normal distribution,
they can perform an Aligned Rank Transform [43] [S177].

v) Task. In table 9 the column Task summarizes exemplary
tasks that we extracted from the design of each experiment.
In almost half of the experiments (i.e., 26) we found ex-
plicit tasks that we identify with a check mark X. The
remaining tasks that we list correspond to rationales that
we inferred from analyzing the goals of experiments.
We observed that in several studies participants were asked
to use a visualization to lookup some aspects of the system.
Although in some cases a database query might be a more
effective tool than a visualization, we observed that these
tasks are often used as a stepping stone towards complex
tasks, in which developers certainly benefit from visualiz-
ing the context. For instance, participants used a visualiza-
tion to answer questions where they had to:

a) count elements such as “how many packages are in
the Java API?” [S125], “what is the number of pack-
ages?” [S164], “determine the total number of pack-
ages this system has” [S180], “how many methods does
the largest class have (in terms of LOC)?” [S144], and

b) find outliers such as “find the process with the longest
duration.” [S32], “who are the top three most active
code contributors?” [S108], “what are the two largest
classes?” [S141], “name three applications that have
a high fan-in” [S162], “find the three classes with the
highest NOA” [S180].

9

We also observe that most studies build on these answers
and ask participants to complete tasks that require them
to explore. We believe that visualizations inherently excel
in such tasks in contrast to text-based approaches. For in-
stance, participants used visualizations to answer questions
that involve:

a) Feature location such as “which method contains the
logic to increase the speed?” [S50], “locate the feature
that implements the logic: users are reminded that their
accounts will be deleted if they do not log in after a
certain number of months” [S117],

b) Change impact analysis such as “which classes of the
package dependency will be directly affected by this
change?” [S108], “analyze the impact of adding items
to a playlist” [S78],

c) Analyze the rationale of an artifact such as “find the
purpose of the given application” [S117], “what is the
purpose of the application” [S162], and

d) Pattern detection such as “can you identify some inter-
actions that are identical, along time, between groups
of classes?” [S168], “find the most symmetric subtree
in the tree” [S169], “locate the best candidate for the
god class smell” [S180].

Moreover, we classify these tasks according to the taxon-
omy proposed by Munzner [29]. In it, she proposed that
the task that motivates a visualization be classified using
the following dimensions:

a) Analyze. The goal of a visualization can be to consume,
that is, to discover new knowledge, present already dis-
covered knowledge, and enjoy it; or it can be to cre-
ate new material, which could be to annotate elements
in the visualization, record visualization elements, and
derive data elements from the existing ones.

b) Search. All analyses require users to search. How-
ever, the type of search can differ depending on whether
the target of the search and the location of that target
are known. When both the target and its location are
known, it is called lookup. When the target is known
but not its location, it is called locate. When the tar-
get is unknown but its location is known, it is called
browse. Finally, when both target and its location are
unknown, it is called explore.

c) Query. Once the searched targets are found, users query
them. In tasks that involve a single target, the type of
query is referred to as to identify. In tasks that involve
two targets, it is referred to as to compare. Finally, in
tasks that involve more than two targets, it is referred as
to summarize.

We classify all tasks collected from the studies into the dis-
covery category. The results of the classification in the re-
maining two dimensions is presented in Table 6. We ob-
served that most of the tasks were designed to explore and
summarize, that is, participants have to summarize many
targets that they neither know, nor for which they know the
location in the visualization. Almost half of the twenty-

Table 6: Classification of tasks used in experiments according to Munzner [29]

Query
Search

Identify Compare Summarize

Lookup — S5, S125 S108
Locate S123,

S131,
S137,
S153,
S177,
S180

S168 S21, S71,
S100, S112,
S126, S149,
S179

Explore S11,
S173

S72 S13, S23,
S24, S25, S32,
S33, S40, S50,
S61, S78, S96,
S106, S117,
S118, S127,
S135, S140,
S144, S148,
S150, S154,
S157, S162,
S166, S169,
S174, S181

Browse S66,
S101

S47 S107, S141,
S164

seven tasks in this category were explicitly described in the
studies, while for the other half we only found a rationale.
Tasks in this category tackle:

a) Comprehension [S23], [S24], [S25], [S32], [S33], [S40],
[S61], [S96], [S106], [S148], [S154], [S174];

b) Change impact analysis [S50], [S78], [S118];
c) Debugging [S144], [S150], [S181];
d) Code Structure [S140], [S157];
e) Project Management [S166], [S169];
f) Rationale [S13], [S117], [S127], [S162]; and
g) Refactoring [S135].

We found seven other studies with tasks in which partic-
ipants were asked to summarize targets but in which the
targets were known, and therefore we classified them in
the locate category. Studies in this category involve tasks
that deal with:

a) Comprehension [126];
b) Debugging [S21], [S71];
c) Dependencies [100], [149];
d) Code structure [112]; and
e) Project Management [S179].

Only five studies involved tasks that asked participants to
compare two targets. All of these tasks related to compre-
hension. Finally, the tasks of ten studies involved iden-
tifying a single target. These tasks deal with:

a) Comprehension [S11], [S101], [S173], [S180];
b) Change impact analysis [S177]; and
c) Debugging [S66], [S123], [S131], [S137], [S153].

10

6. Discussion

We now revisit our research questions. Firstly, we discuss
the main characteristics that we found amongst the analyzed
evaluations. Secondly, we discuss whether the conducted eval-
uations are appropriate considering their scope. Finally, we dis-
cuss the threats to the validity of our investigation.

RQ1.) What are the characteristics of evaluations that validate
the effectiveness of software visualization approaches?

Beyond traditional data collection methods. The methods
used to collect data during the evaluation have to facilitate the
subsequent analysis. Consequently, in a formative experiment
researchers interview participants to freely explore aspects of
complex phenomena. In a case study researchers can inter-
view developers in their work environment, which can help
researchers to formulate hypotheses that can be tested in ex-
periments. Questionnaires can be used in surveys for explo-
ration, reaching a higher number of participants who can pro-
vide researchers feedback of past experiences. We observed
that several studies record sessions with participants. After-
wards, these records are used to dissect a user’s performance
(e.g., correctness of answers and their completion time) and ex-
perience (e.g., level of engagement of participants with a tool).
We observed that few non-traditional methods are used: (i) eye
tracking to capture how participants see the elements in visual-
izations; (ii) log analysis to investigate how participants navi-
gate visualizations; and (iii) emotion cards to help participants
to report their feelings in a measurable fashion. Finally, we
believe that the capabilities of recent devices used to display vi-
sualizations [21] (e.g., mobile phones, tablets, head-mounted
displays [22]) can complement the standard computer screen,
and provide researchers with useful data for investigating both
user performance and user experience.

Thorough reports of anecdotal evidence and usage scenar-
ios. Tool adoption can be considered the strongest evidence of
the usability of an application [1]. However, we observe a lack
of rigor amongst studies that reported anecdotal evidence. Nor-
mally, these studies report that tools were used, but often they
do not specify the context, for instance, whether the tools are
freely adopted or enforced as a requirement in a software en-
gineering teaching course. Moreover, they describe subjective
feedback from users using expressions such as “the tool was
used with much success” [S55], “feedback was positive” [S97]
We propose that also reporting objective evidence, for instance
number of downloads, would help them in making a stronger
case to support the effectiveness of visualizations.

We also observed that one third of studies employed usage
scenarios to demonstrate the effectiveness of the software visu-
alization approaches. Typically they describe how the approach
can answer questions about a software system. Normally, us-
age scenarios are carried out by the researchers themselves. Al-
though researchers in the software visualization field are fre-
quently both experts in software visualization and also expe-
rienced software developers, we believe they are affected by

construction bias to perform the evaluation. Usage scenarios
can help researchers to illustrate the applicability of a visual-
ization approach. In fact, use cases that drive usage scenarios
can reveal insights into the applicability of an visualization ap-
proach in an early stage [10]. Nonetheless, we believe they
must involve external developers of the target audience who
can produce a less biased evaluation, though related work [11]
found that software engineering students can be used instead of
professional software developers under certain conditions. We
found multiple subject systems in usage scenarios, of which
the most popular are open source. We reflect that open source
software systems provide researchers an important resource for
evaluating their proposed visualization approaches. They allow
researchers to replicate evaluations in systems of various char-
acteristics (e.g., size, complexity, architecture, language, do-
main). They also ease the reproducibility of studies. However,
we think that defining a set of software systems to be used in
benchmarks would facilitate comparison across software visu-
alization evaluation [18, 21].

The value of visualizations beyond time and correctness. We
believe that it is necessary to identify the requirements of de-
velopers and evaluate whether the functionality offered by a
visualization tool is appropriate to the problem. Indeed, past
research has found a large gap between the desired aspects and
the features of current software visualization tools [3]. A later
study [36] analyzed desirable features of software visualization
tools for corrective maintenance. A subsequent study [13] an-
alyzed the requirements of visualization tools for reverse engi-
neering. We observed, however, little adoption of the proposed
requirements. Usability is amongst them the most adopted one.
Scalability was adopted only in one study [S32]. Others such as
interoperability, customizability, adoptability, integration, and
query support were not found amongst the variables measured
in experiments (see Table 7). We observed that even though
none of the studies proposed that users of software visualiza-
tions should find answers quickly (i.e., time) and accurately
(i.e., correctness), there are many evaluations that only consid-
ered these two variables.

We observed that evaluations in most studies aimed at prov-
ing the effectiveness of software visualization approaches. How-
ever, some studies do not specify how the effectiveness of the
visualization is defined. Since something effective has “the power
of acting upon the thing designated”,5 we reflect that effective
visualization should fulfill its designated requirements. Then
we ask what are the requirements of software visualization? We
extract requirements from the dependent variables analyzed in
experiments. We observed that the two main categories are user
performance and user experience. Indeed, practitioners who
adopt a visualization approach expect to find not only correct
answers to software concerns, they expect that the visualiza-
tion approach is also efficient (i.e., uses a minimal amount of
resources), and helps them to find answers in a short amount
of time [42]. However, they also aim at obtaining a good ex-

5“effective, adj. and n.” OED Online. Oxford University Press, June 2017.
Accessed October 27, 2017.

11

Table 7: A summary of the dependent variables found in experiments.

Dependent Variable References #

User
Performance

Not Explicit S96, S108 2
Time S5, S11, S32, S40, S71, S107, S125, S137, S144, S162, S164, S173, S174, S177,

S180
15

Correctness S5, S11, S13, S21, S24, S25, S32, S33, S40, S47, S71, S72, S78, S101, S106, S107,
S108, S118, S123, S125, S126, S137, S144, S150, S162, S164, S168, S173, S179,
S180

29

Effectiveness S13, S21, S50, S66, S72, S78, S100, S101, S112, S127, S131, S141, S148, S157,
S162, S164, S166

17

Completion S50,S164 2
Recollection S150,S180 2
Others Visual Effort (S144), Scalability (S32), Efficiency (S32) 3

User
Experience

Not Explicit S96, S126, S49 3
Usability S11, S13, S32, S40, S61, S117, S137, S140, S49, S153, S164, S169, S177, S181 14
Engagement S154, S177 2
Understandability S118, S181 2
Feeling Enjoyment (S32), Intuitive (S137), Satisfaction (S164), Confidence (S107, S126) 5
Others Acceptability (S164), Learnability (S164), Difficulty (S180) 3

Table 8: Statistical tests used to analyze data from experiments.

Id. Test Reference #

T1 ANOVA S25, S32, S40, S107, S144,
S164, S174, S177, S180

9

T2 Pearson S25, S40, S50, S107, S108,
S150

6

T3 Cohen S107, S150 2
T4 Wilcoxon S101, S107, S126, S150, S164 5
T5 Student T S5, S72, S101, S137, S162 5
T6 Shapiro-

Wilk
S107, S162, S177, S180 4

T7 Kruskal-
Wallis

S25, S108, S180 3

T8 Mann-
Whitney

S25, S107, S168 3

T9 Descriptive
Statistics
and Charts

S24, S78, S118, S125, S131,
S141, S154, S173, S179

9

T10 Levene S162, S180 2
T11-
T18

Tukey (S180), Mauchly (S174),
Greenhouse-Geisser (S174),
Friedman (S21), Hotelling
(S71), Kolmogorov-Smirnov
(S72), Spearman (S25), Regres-
sion Analysis (S24)

8

perience in terms of (i) engagement when the target audience is
composed of students of a software engineering course; (ii) rec-
ollection when the audience involves developers understanding
legacy code [5]; and (iii) positive emotions in general.

We believe that effective software visualization approaches
must combine various complementary variables, which depend

on the objective of the visualization. That is, variables used
to explicitly define effectiveness relate to the domain problem
and the tasks required by a particular target audience. We think
that a deeper understanding of the mapping between users’ de-
sired variables to usage scenarios of visualization can bring in-
sights for defining quality metrics [4] in the software visualiza-
tion field.

The case in case studies. We classified twelve papers into the
case study category. In these papers, we identified a case that is
neither hypothetical nor a toy example, but a concrete context
that involves a real world system in which developers adopted
a visualization approach to support answering complex ques-
tions. In only one paper [S90] did we find a thorough evalua-
tion that describes the use of various research methods to col-
lect data such as questionnaires and interviews. In contrast, in
others we found less detail and no explicit description of the
methods employed to collect data. In particular, in three pa-
pers [S52,S114,S151] a reference was given to a paper that con-
tains more details. We observed that in studies in which authors
come from industry [S56,S90,S114] there are many details pro-
vided as part of the evaluation. In all of them, (i) users who
evaluated the proposed visualization approach were senior de-
velopers from industry, and (ii) the evaluation adopted a quali-
tative analysis. Case studies are often accused of lack of rigor
since biased views of participants can influence the direction
of the findings and conclusions [46]. Moreover, since they fo-
cus on a small number of subjects, they provide little basis for
generalization.

In summary, we reflect on the need for conducting more
case studies that can deliver insights into the benefits of soft-
ware visualization approaches, and highlight the compulsion of
identifying a concrete real-world case.

12

The scope of experiments in software visualization. Table 9
summarizes our extension to the framework proposed by Wohlin
et al. [45] to include key characteristics of software visualiza-
tions. We believe that the extended framework can serve as
a starting point for researchers who are planning to evaluate a
software visualization approach. Each row in the table can be
read as follows:

“Analyze [Object of study] executing in a [Environment] to
support the [Task] using a [Technique] displayed on a
[Medium] for the purpose of [Purpose] with respect to

[Quality Focus] from the point of view of [Perspective] in
the context of [Context].”

We used the framework to describe the scope of a recent
experiment of 3D visualization in immersive augmented real-
ity [20].

RQ2.) How appropriate are the evaluations that are conducted
to validate the effectiveness of software visualization?

Explicit goal of evaluations. We observed that studies often do
not explicitly specify the goal of the evaluation. They formulate
sentences such as “To evaluate our visualization, we conducted
interviews ...” [S100]. We investigate what aspects of the vi-
sualization are evaluated. We reflect that a clear and explicit
formulation of the goal of the evaluation would help develop-
ers to assess if the evaluation provides them enough evidence
that support the claimed benefits of a proposed visualization
approach. Although in most studies we infer that the goal is
to evaluate the effectiveness of a visualization, in only a few
studies is there a definition of effectiveness. For instance, one
study [S131] defines effectiveness of a visualization in terms
of the number of statements that need to be read before identi-
fying the location of an error; however, we believe this defini-
tion suits better the definition of efficiency. Indeed, practitioners
will benefit from effective and efficient software visualization.
Nonetheless, we believe the game-changing attribute of a vi-
sualization resides in the user experience, for which multiple
variables should be included in evaluations (e.g., usability, en-
gagement, emotions).

Experiments’ tasks must be in-line with evaluations’ goal.
Software visualizations are proposed to support developers in
tasks dealing with multiple development concerns. A problem
thus arises for developers willing to adopt a visualization but
who need to match a suitable visualization approach to their
particular task at hand [24]. We investigate how suitable a vi-
sualization approach is for the tasks used in evaluations. We
reflect that proving a software visualization approach to be ef-
fective for tasks for which there exist other more appropriate
tools (but not included in the evaluation) can lead to misleading
conclusions. Since many evaluations included in our analysis
do not state an explicit goal, and some of the remaining ones
refer to rather generic terms (e.g., effectiveness, usability) with-
out providing a definition, understanding whether the tasks used

in experiments are in-line with the goals of evaluations is still
uncertain.

Beyond usage scenarios. Related work concluded that describ-
ing a case study is the most common strategy used to evaluate
software visualization approaches. Indeed, we found many pa-
pers that contain a section entitled case study; however, we ob-
served that most of them correspond to usage scenarios used
to demonstrate how the proposed visualization approach is ex-
pected to be useful. In all of them, the authors (who usually are
also developers) select a subject system and show how visual-
izations support a number of use cases. For example, one study
[S158] describes the presence of independent judges, but with-
out providing much detail about them. In the past, such a self-
evaluation, known as an assertion [48], has been used in many
studies, and is not considered an accepted research method for
evaluation [44]. Instead, we prefer to refer to them as usage sce-
narios (as they are called in many studies). This name has also
been adopted in the information visualization community [12],
and therefore its adoption in software visualization will ease
comparison across the two communities. Nonetheless, usage
scenarios do not represent solid evidence of the benefits of pro-
posed software visualization, and should be used only as a start-
ing point to adjust requirements, and improve an approach.

Surveys to collect software visualization requirements. We
observed that surveys are adequate to identifying requirements
for software visualizations. Through a survey, the problems that
arise in the development tasks carried out by a target audience
that involve a particular data set can be collected as assessed
as potential candidates for visualization. Then, researchers can
propose an approach that defines the use of a visualization tech-
nique displayed in a medium. We observed that a main threat
in software visualization is the disconnect between the develop-
ment concerns that are the focus of visualization, and the most
complex and frequent problems that arise during real-life de-
velopment.

Report on thorough experiments. Although formative eval-
uations can be useful at an early stage, evidence of the user
performance and user experience of a software visualization
approach should be collected via thorough experiments (when
variables included in the evaluation can be controlled). Exper-
iments should include participants of a random sample of the
target audience and real-world software systems. Experiments
should aim at reproducibility, for which open source software
projects are suitable. Moreover, open source projects boost
replicability of evaluations across systems of various charac-
teristics. The tasks used in experiments should be realistic, and
as already discussed, consistent with the goal of the evaluation,
otherwise conclusions can be misleading. Finally, we observed
that standardizing evaluations via benchmarks would promote
their comparison.

In summary, we observed that the main obstacles that pre-
vent researchers from doing more appropriate evaluations are
(i) the lack of a ready-to-use evaluation infrastructure, e.g., vi-
sualization tools to compare with; (ii) the lack of benchmarks

13

Table
9:T

he
evaluation

scope
ofexperim

entsin
softw

are
visualizations(left-to-right):reference,objectofstudy,task

(check
m

ark
X

identifiestasksthatw
ere

found
explicitin

evaluations),environm
ent,visualization

technique,m
edium

(i.e.,standard
com

puterscreens
SC

S,im
m

ersive
3D

environm
ents

I3D
,and

m
ultitouch

tables
M

T
T

),purpose,quality
focus,perspective,context,statisticaltest(acronym

s
show

n
in

Table
8).

R
ef.

O
bjectofStudy

Task
E

nv.
Technique

M
ed.

Purpose
Q

uality
Focus

Pers.
C

ontext
StatisticalTest

S5
U

M
L

diagram
notation

Identify
ifan

U
M

L
diagram

correspond
to

a
specification

–
U

M
L

SC
S

To
evaluate

w
hethera

specification
m

atches
a

diagram
C

orrectness,Tim
e

A
ll

35
C

S
students

T
5

S11
G

enisom
Search

forinform
ation

held
w

ithin
the

self-organizing
m

ap.
–

C
ity

SC
S

To
characterize

the
capability

ofusers
to

extractinform
ation

from
a

visual
C

orrectness,Tim
e,U

sability
A

ll
114

C
S

students
–

S13
X

ia
W

hy
a

particularfile
changed

–
N

ode-link
SC

S
To

testthe
initialrequirem

ents
E

ffectiveness,U
sability

A
ll

5
C

S
students

–
S21

Spreadsheets
L

ocalization
offaulty

cells
–

A
ug.source

code
SC

S
To

gain
insights

on
faulty

cells
in

spreadsheets
E

ffectiveness,R
obustness

N
ovice

87
C

S
students

T
14

S23
R

educing
C

ognitive
E

ffort
Tasks

related
to

distributed
com

putations
–

N
ode-link;Iconic

SC
S

To
evaluate

cognitive
econom

y
C

orrectness
N

ovice
20

C
S

students
(5

fem
ale)

–
S24

D
ancingH

am
sters;M

arbleSt.
Tasks

related
to

algorithm
analysis

–
A

nim
.N

ode-link
SC

S
To

evaluate
the

im
pactofvisualization

in
learning

C
orrectness

N
ovice

12
C

S
students;43

C
S

students
T

18
S25

A
lgorithm

visualization
Tasks

related
to

the
sorting

algorithm
s

–
A

ug.source
code

SC
S

To
evaluate

the
im

pactofvisualization
in

learning
C

orrectness
N

ovice
157

C
S

students
T

1,T
7,T

8,T
17

S32
G

row
ingSquares

Is
process

x
causally

related
tim

e
to

process
y?

X
–

N
ode-link;H

asse
SC

S
To

evaluate
the

im
pactofa

technique
C

orrectness,E
ffi

ciency,T.,...
A

ll
12

participants
(4

fem
ale)

T
1

S33
PlanA

ni
Tasks

related
to

sorting
algorithm

s
V

arious
A

ug.source
code

SC
S

To
gain

insights
on

supporting
teaching

program
m

ing
in

C
S

C
orrectness

N
ovice

91
C

S
students

–
S40

Variable
dependency

C
om

plete
an

unfinished
function

–
U

M
L

SC
S

To
evaluate

the
im

pactofofintra-proceduralvariable
dependencies

C
orrectness,Tim

e,U
sefulness

A
ll

38
C

S
students

(3
fem

ale)
T

1,T
2

S47
U

M
L

class
diagram

layout
M

atch
the

role
ofa

particularclass
–

U
M

L
SC

S
To

evaluate
the

im
pactofstereotype-based

architecturalU
M

L
layout

C
orrectness

A
ll

20
C

S
students

–
S50

W
ear-based

filtering
C

hange
the

program
to

obtain
an

expected
behavior

X
–

U
M

L
SC

S
To

evaluate
the

im
pactofusing

w
ear-based

filtering
C

om
pletion

A
ll

7
m

ale
developers

T
2

S61
A

lgorithm
visualization

Tasks
related

to
algorithm

analysis
–

N
ode-link

SC
S

To
evaluate

the
im

pactofusing
conceptkeyboards

Interactivity,U
sefulness

N
ovice

17
C

S
students;18

C
S

students
–

S66
Socialagents

W
hatfaults

did
you

find,and
w

hen
did

you
find

each
one?

–
Iconic

SC
S

To
evaluate

the
im

pactofthe
tool

E
ffectiveness

N
ovice

22
C

S
students

–
S71

jG
rasp

Find
and

correctallthe
non-syntacticalerrors

V
arious

A
ug.source

code
SC

S
To

gain
insights

on
supporting

teaching
program

m
ing

in
C

S
C

orrectness,Tim
e

N
ovice

-
T

15
S72

A
lgorithm

visualization
W

hatis
the

m
ain

difference
betw

een
Prim

and
D

ijkstra
algorithm

s?
X

–
N

ode-link
SC

S
To

evaluate
the

im
pactofthe

narrative
visualization

approach
C

orrectness
N

ovice
34

C
S

students
T

5,T
16

S78
G

illigan
A

nalyze
the

im
pactofchanging

a
program

.
X

–
A

ug.source
code

SC
S

To
evaluate

the
im

pactofa
tool

C
orrectness

A
ll

6
participants

T
9

S96
SolidFX

Tasks
related

to
reverse-engineering

open-source
code

W
indow

s
H

E
B

;Pixel
SC

S
To

gain
insights

on
architecture,m

etrics
and

dependencies
Perform

ance,U
serE

xperience
A

ll
8

participants
(ind.&

acad.)
–

S100
E

nhance
Find

dependencies
betw

een
structuralelem

ents
–

N
ode-link

SC
S

To
gain

insights
on

how
devs.understand

exception-handling
constructs

E
ffectiveness

N
ovice

3
C

S
students

–
S101

saU
M

L
Selectthe

candidate
thatbestdescribes

the
depicted

behavior
–

U
M

L
SC

S
To

evaluate
the

benefits
ofsynchronization-adorned

sequence
diagram

s
C

orrectness
N

ovice
24

C
S

students
T

4,T
5

S106
V

arious
Tasks

related
to

program
com

prehension
and

m
aintenance

–
V

arious
SC

S
To

evaluate
the

im
pactofa

tool
C

orrectness
A

ll
90

participants
(ind.&

acad.
–

S107
U

M
L

C
lass

diagram
Identify

classes
to

be
changed

to
add

a
requirem

ent
–

U
M

L
SC

S
To

evaluate
the

im
pactofthe

layout
C

onfidence,C
orrectness,Tim

e
A

ll
45

C
S

students
T

1-T
4,T

6
S108

V
ersion

Tree
vs

A
ugur

W
hich

classes
w

illbe
directly

affected
by

this
change?

X
–

N
ode-link

SC
S

To
gain

insights
on

the
benefits

ofvis.foropen
source

new
com

ers
C

orrectness
N

ovice
27

C
S

students
(9

fem
ales)

T
2,T

7
S112

U
M

L
C

lass
diagram

C
ountabstractclasses

to
see

ifproxies
are

distinguished
–

U
M

L
SC

S
To

testthe
initialrequirem

ents
E

ffectiveness
A

ll
8

C
S

stud.&
staff

(2
fem

ale)
–

S117
C

odeM
ap

Find
the

purpose
ofthe

given
application

X
–

Island
SC

S
To

gain
insighton

how
devs.interactw

ith
vis.thatare

em
bedded

in
the

ID
E

U
sability

A
ll

7
participants

(ind.&
acad.)

–
S118

ProfV
is

H
ow

the
program

can
be

m
odified

to
im

prove
its

perform
ance

X
Java

N
ode-link

SC
S

To
analyze

execution
traces

ofJava
program

s
C

orrectness,U
nderstanding

A
ll

4
participants

T
9

S123
A

llocR
ay

Find
the

location
ofa

m
em

ory
leak

–
Pixel

SC
S

To
evaluate

a
visualization

ofallocation
patterns

and
m

em
ory

problem
s

C
orrectness

A
ll

4
developers

–
S125

System
H

otspotsV
iew

H
ow

m
uch

biggeris
the

C
om

ponentclass
than

the
W

indow
class?

X
–

Polym
etric

view
s

SC
S

To
evaluate

visualization
rendered

on
a

w
alldisplay

C
orrectness,Tim

e
A

ll
11

par.(3
fem

.ind.&
acad.)

T
9

S126
StenchB

lossom
Identify

code
sm

ells
E

clipse
A

ug.source
code

SC
S

To
gain

insights
on

supporting
softw

are
quality

based
on

code
sm

ells
C

onfidence,C
orrectness

A
ll

12
participants

(ind.&
acad.

T
4

S127
Softw

are
dev.lifecycle

A
nalyze

the
context,and

roles
ofinvolved

people
in

projects
–

N
ode-link

SC
S

To
gain

insights
on

how
devs.draw

sketches
and

diagram
s

ofsoft.lifecycle
E

ffectiveness
A

ll
8

par.(C
S

stud.&
resear.)

–
S131

C
onstellation

Identify
the

location
in

the
code

ofa
fault

–
N

ode-link
SC

S
To

evaluate
a

technique
forsoftw

are
understanding

and
pattern

recognition
E

ffectiveness
A

ll
30

C
S

students
T

9
S135

E
-Q

uality
Selectthe

m
ostsignificantrefactoring

candidates
ofa

program
–

N
ode-link;Iconic

SC
S

To
gain

insights
on

visualization
ofdesign

flaw
s

and
refact.opportunities

Intuitiveness
A

ll
16

developers
–

S137
G

zoltar
Identify

the
location

in
the

code
ofa

fault
Java;E

cli.
Icicle;Treem

ap
SC

S
To

gain
insights

on
faultlocalization

fordebugging
Java

progs.
C

orrectness,Intuit.,Tim
e,...

A
ll

40
C

S
students

T
5

S140
PN

LV
;IM

M
V

W
hatinteresting

visualstructures
do

you
find

in
the

vis.?
X

–
N

ode-link
SC

S
To

gain
insights

on
visualization

forunderstanding
an

unknow
n

system
U

sefulness
A

ll
8

participants
(ind.&

acad.)
–

S141
SourceV

is
H

ow
m

any
interfaces

does
this

class
depend

on?
X

–
Polym

etric
view

s
M

M
T

To
gain

insights
on

vis.on
m

ultitouch
tab.forco-located

collab.in
unders

E
ffectiveness

A
ll

6
par.(C

S
stud.&

resear.)
T

9
S144

SeeIT
3D

Identify
w

hy
the

program
produce

a
poorprintquality

X
E

clipse
C

ity
SC

S
To

gain
insights

on
visualization

forarchitecture
ofJava

system
s

C
orr.,Tim

e,V
isualE

ffort
A

ll
97

C
S

students
T

1,T
18

S148
C

hronoTw
igger

Investigate
the

softw
are

w
hile

thinking
outloud

–
N

ode-link
I3D

To
evaluate

visualization
ofthe

developm
entprocess

and
testing

E
ffectiveness

A
ll

3
developers

(1
fem

ale)
–

S149
regV

IS
Track

ofthe
O

verallC
ontrolFlow

X
W

indow
s

V
isuallanguage

SC
S

To
gain

insights
on

supporting
assem

blercontrol-flow
ofregularexpr.

U
sability

A
ll

10
par.(C

S
stud.&

resear.)
–

S150
C

om
piler

M
essages

Identify
the

cause
ofan

errorby
analyzing

highlighted
elem

ents
X

–
A

ug.source
code

SC
S

To
evaluate

a
technique

to
aid

devs.on
com

prehending
errorm

essages
C

orrectness,R
ecollection

N
ovice

28
C

S
students

T
2-T

4
S153

SIFE
I

Find
a

failure
and

specify
a

testscenario
foritX

E
xcel

V
isuallanguage

SC
S

To
testspreadsheets

form
ulas

U
sability,U

sefulness
A

ll
9

participants
(ind.&

acad.)
–

S154
TiledG

race
D

escribe
the

behaviorofa
program

X
W

eb
V

isuallanguage
SC

S
To

gain
insights

on
supporting

program
m

ing
in

the
G

race
language

E
ngagem

ent,U
sefulness

N
ovice

33
C

S
students

T
9

S157
C

odeSurveyor
R

ank
the

code
m

aps
thatbestrepresentthe

codebase
X

–
Island

SC
S

To
evaluate

the
supportofcode

m
aps

in
learning

and
navigating

system
s

E
ffectiveness

A
ll

5
developers

(1
fem

ale)
–

S162
E

xplorV
iz

W
hatis

the
purpose

ofthe
W

W
W

PR
IN

T
application

in
youropinion?

X
W

eb
C

ity
I3D

To
evaluate

an
architecture

based
on

m
etric

analysis
C

orrectness,Tim
e

A
ll

25
C

S
students

T
5,T

6,T
10

S164
V

IM
E

T
R

IK
W

hatis
the

num
berofcom

pilation
units

in
the

Tom
catsystem

?
X

–
C

ity;M
atrix

SC
S

To
evaluate

m
etrics

and
vis.ofa

softw
are

system
according

to
requirem

ents
C

orrectness,Intuit.,Tim
e,...

A
ll

21
C

S
students

T
1,T

4,T
9

S166
W

orking
Sets

A
nalyze

the
developeractivity

on
entities

ofthe
w

orking
sets

–
N

ode-link
SC

S
To

gain
insights

on
visualization

ofthe
evolution

ofw
orking

sets
E

ffectiveness
A

ll
14

developers
–

S168
C

uboidM
atrix

Identify
identicalinteractions,along

tim
e,betw

een
classes?

X
–

Space-tim
e

cube
SC

S
To

evaluate
the

im
pactofthe

toolin
softw

are
com

prehension
C

orrectness
A

ll
8

par.(C
S

stud.&
resear.)

T
8

S169
Perquim

ans
W

hich
sheets

contained
the

m
ostdangerous

form
ula

practice
X

–
N

ode-link
SC

S
To

gain
insights

ofvis.tool’s
supportofexploration,and

quantification
A

pplicability
A

ll
4

C
S

students
–

S173
Indented

H
ierarchy

Find
the

m
ostsym

m
etric

subtree
in

the
tree.

X
–

Pixel
SC

S
To

evaluate
the

im
pactofa

technique
com

pared
w

ith
node-link

diagram
s

C
orrectness,R

eadability,Tim
e

A
ll

18
vis.experts

(3
fem

ale)
T

9
S174

R
egex

textualvs
graphical

Is
A

B
C

in
the

language
defined

by
a

regularexpression?
X

–
A

ug.source
code

SC
S

To
testthe

im
pactofa

graphicalnotation
on

the
readability

ofa
regex

C
orrectness,R

eadability,Tim
e

N
ovice

22
par.(C

S
stud.and

staff)
T

1,T
12,T

13
S177

C
ode

Park
Identify

w
here

in
the

code
add

the
logic

to
supporta

feature
X

–
C

ity
I3D

To
evaluate

the
im

pactofthe
toolon

usability
and

engagem
ent

E
ase-to-use,E

ngagem
ent,Tim

e
N

ovice
28

C
S

students
(6

fem
ale)

T
1,T

6
S179

iTraceV
is

W
here

did
the

dev.notlook
atw

ith
respectto

the
sam

e
m

ethod?
X

E
clipse

H
eatm

ap
SC

S
To

gain
insights

on
analyzing

eye
m

ovem
entdata

ofcode
reading

C
orrectness

A
ll

10
C

S
students

T
9

S180
C

ityV
R

L
ocate

the
bestcandidate

forthe
god

class
sm

ellX
Pharo;U

.
C

ity
SC

S
To

gain
insights

on
visualization

forarchitecture
based

on
m

etrics
in

O
O

P
C

orrectness,R
ecollection,T.,...

A
ll

21
participants

T
1,T

6,T
7,T

10,T
11

S181
M

ethodE
xecutionR

eports
Tasks

related
to

execution
reportforprofiling

and
debugging

X
Java

C
harts

SC
S

To
gain

insights
on

supporting
sum

m
arization

ofm
ethods

execution
U

nderstandability,U
sefulness

A
ll

11
participants

(ind.&
acad.

–

14

http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://www.jgrasp.org/
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
http://ftaiani.ouvaton.org/7-software/profvis.html
https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
http://www.gzoltar.com
https://github.com/davidmr/seeit3d
http://www.sts.tu-harburg.de/projects/regvis/regvis.html
https://github.com/kuleszdl/SIFEI
http://homepages.ecs.vuw.ac.nz/~mwh/
https://www.explorviz.net
https://github.com/SERESLab/iTrace-Archive
http://scg.unibe.ch/research/cityvr
https://github.com/fabian-beck/Method-Execution-Reports

that ease comparison across tools, e.g., quality metrics; (iii) the
tradeoff between the effort of conducting comprehensive eval-
uations and little added value to paper acceptance; and (iv) the
difficulties to involve industrial partners willing to share re-
sources, e.g., include participants of the target audience.

6.1. Threats to Validity

Construct validity. Our research questions may not provide
complete coverage of software visualization evaluation. We
mitigated this threat by including questions that focus on the
two main aspects that we found in related work: (1) characteri-
zation of the state-of-the-art, and (2) appropriateness of adopted
evaluations.

Internal validity. We included papers from only two venues,
and may have missed papers published in other venues that re-
quire more thorough evaluations. We mitigated this threat by
identifying relevant software visualization papers that ensure
an unbiased paper selection process. Therefore, we selected
papers from the most frequently cited venue dedicated to soft-
ware visualization: SOFTVIS/VISSOFT. We argue that even
if we would have included papers from other venues the trend
of the results would be similar. Indeed, related work did not
find important differences when comparing software visualiza-
tion evaluation in papers published in SOFTVIS/VISSOFT to
papers published in other venues [19, 38]. Moreover, our re-
sults are in line with the conclusions of related work that have
included papers from multiple venues [16, 30, 39]. We also
mitigated the paper selection bias by selecting peer-reviewed
full papers. We assessed the quality of these papers by exclud-
ing model papers (i.e., commentary, formalism, taxonomy) that
are less likely to include an evaluation. However, since soft-
ware visualization papers do not specify their types, we may
have missed some. We mitigated this threat by defining a cross-
checking procedure and criteria for paper type classification.

External validity. We selected software visualization papers
published between 2002 to 2017 in SOFTVIS/VISSOFT. The
excluded papers from other venues or published before 2002
may affect the generalizability of our results.

Conclusion validity. Bias in the data collection procedure
could obstruct reproducibility of our study. We mitigated this
threat by establishing a protocol to extract the data of each pa-
per equally, and by maintaining a spreadsheet to keep records,
normalize terms, and identify anomalies.

7. Conclusion

We reviewed 181 full papers of the 387 that were published
to date in the SOFTVIS/VISSOFT conferences. We extracted
evaluation strategies, data collection methods and other vari-
ous aspects of evaluations. We found that 62% (i.e., 113) of
the proposed software visualization approaches do not include
a strong evaluation. We identified several pitfalls that must
be avoided in the future of software visualization: (i) evalu-
ations with fuzzy goals (or without explicit goals), for which
the results are hard to interpret; (ii) evaluations that pursue ef-
fectiveness without defining it, or that limit the assessment to

time, correctness (user performance) and usability (user expe-
rience) while disregarding many other variables that can con-
tribute to effectiveness (e.g., recollection, engagement, emo-
tions); (iii) experiment tasks that are inconsistent with the stated
goal of the evaluation; (iv) lack of surveys to collect require-
ments that explain the disconnect between the problem domains
on which software visualization have focused and the domains
that get the most attention from practitioners; and (v) lack of
rigor when designing, conducting, and reporting on evaluation.

We call researchers in the field to collect evidence of the
effectiveness of software visualization approaches by means of
(1) case studies (when there is a case that must be studied in
situ), and (2) experiments (when variables can be controlled)
including participants of a random sample of the target audi-
ence and real-world open source software systems that promote
reproducibility and replicability.

We believe that our study will help (a) researchers to re-
flect on the design of appropriate evaluations for software vi-
sualization, and (b) developers to be aware of the evidence that
supports the claims of benefit of the proposed software visu-
alization approaches. We plan in the future to encapsulate the
characterization and insights from this study in a software vi-
sualization ontology that will allow developers to find suitable
visualizations for development concerns as well as researchers
to reflect on the domain.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018). Merino has been partially funded by CONI-
CYT BCH/Doctorado Extranjero 72140330.

References

[1] Alves, V., Niu, N., Alves, C., Valença, G., 2010. Requirements engineer-
ing for software product lines: A systematic literature review. Information
and Software Technology 52 (8), 806–820.

[2] Amar, R., Stasko, J., 2004. A knowledge task-based framework for de-
sign and evaluation of information visualizations. In: Proc. of INFOVIS.
IEEE, pp. 143–150.

[3] Bassil, S., Keller, R., 2001. Software visualization tools: survey and anal-
ysis. In: Proc. of IWPC. pp. 7 –17.

[4] Bertini, E., Tatu, A., Keim, D., 2011. Quality metrics in high-dimensional
data visualization: An overview and systematization. Transactions on Vi-
sualization and Computer Graphics 17 (12), 2203–2212.

[5] Bloom, B. S., et al., 1956. Taxonomy of educational objectives. vol. 1:
Cognitive domain. New York: McKay, 20–24.

[6] Elmqvist, N., Yi, J. S., 2015. Patterns for visualization evaluation. Proc.
of INFOVIS 14 (3), 250–269.

[7] Fink, A., 2003. The survey handbook. Vol. 1. Sage.
[8] Forsell, C., 2010. A guide to scientific evaluation in information visual-

ization. In: Proc. of IV. IEEE, pp. 162–169.
[9] Greene, G. J., Esterhuizen, M., Fischer, B., 2017. Visualizing and explor-

ing software version control repositories using interactive tag clouds over
formal concept lattices. Information and Software Technology 87, 223–
241.

[10] Hornbæk, K., Høegh, R. T., Pedersen, M. B., Stage, J., 2007. Use case
evaluation (UCE): A method for early usability evaluation in software
development. In: Proc. of IFIP. Springer, pp. 578–591.

15

[11] Höst, M., Regnell, B., Wohlin, C., 2000. Using students as subjects —
a comparative study of students and professionals in lead-time impact
assessment. Empirical Software Engineering 5, 201–214.

[12] Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T., 2013. A
systematic review on the practice of evaluating visualization. Transactions
on Visualization and Computer Graphics 19 (12), 2818–2827.

[13] Kienle, H. M., Müller, H. A., 2010. The tools perspective on software
reverse engineering: requirements, construction, and evaluation. In: Ad-
vances in Computers. Vol. 79. Elsevier, pp. 189–290.

[14] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin,
D. C., Emam, K. E., Rosenberg, J., 2002. Preliminary guidelines for em-
pirical research in software engineering. IEEE Trans. Softw. Eng. 22 (8),
721–734.

[15] Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S., 2012. Em-
pirical studies in information visualization: Seven scenarios. Transactions
on Visualization and Computer Graphics 18 (9), 1520–1536.

[16] Lopez-Herrejon, R. E., Illescas, S., Egyed, A., 2018. A systematic map-
ping study of information visualization for software product line engi-
neering. Journal of Software: Evolution and Process 30 (2).

[17] Mackinlay, J., 1986. Automating the design of graphical presentations of
relational information. Transactions On Graphics 5 (2), 110–141.

[18] Maletic, J. I., Marcus, A., 2003. CFB: A call for benchmarks-for software
visualization. In: Proc. of VISSOFT. Citeseer, pp. 113–116.

[19] Mattila, A.-L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., Väätäjä,
H., 2016. Software visualization today: systematic literature review. In:
Proc. of International Academic Mindtrek Conference. ACM, pp. 262–
271.

[20] Merino, L., Bergel, A., Nierstrasz, O., 2018. Overcoming issues of 3D
software visualization through immersive augmented reality. In: Proc. of
VISSOFT. IEEE, p. in review.

[21] Merino, L., Fuchs, J., Blumenschein, M., Anslow, C., Ghafari, M., Nier-
strasz, O., Behrisch, M., Keim, D., 2017. On the impact of the medium
in the effectiveness of 3D software visualization. In: Proc. of VISSOFT.
IEEE, pp. 11–21.
URL http://scg.unibe.ch/archive/papers/Meri17b.pdf

[22] Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O., 2017. CityVR:
Gameful software visualization. In: Proc. of ICSME. IEEE, pp. 633–637.
URL http://scg.unibe.ch/archive/papers/Meri17c.pdf

[23] Merino, L., Ghafari, M., Nierstrasz, O., 2016. Towards actionable visual-
isation in software development. In: Proc. of VISSOFT. IEEE.
URL http://scg.unibe.ch/archive/papers/Meri16a.pdf

[24] Merino, L., Ghafari, M., Nierstrasz, O., Bergel, A., Kubelka, J., 2016.
MetaVis: Exploring actionable visualization. In: Proc. of VISSOFT.
IEEE.
URL http://scg.unibe.ch/archive/papers/Meri16c.pdf

[25] Merino, L., Lungu, M., Nierstrasz, O., 2015. Explora: A visualisation tool
for metric analysis of software corpora. In: Proc. of VISSOFT. IEEE, pp.
195–199.
URL http://scg.unibe.ch/archive/papers/Meri15b.pdf

[26] Merino, L., Seliner, D., Ghafari, M., Nierstrasz, O., 2016. Community-
Explorer: A framework for visualizing collaboration networks. In: Proc.
of IWST. pp. 2:1–2:9.
URL http://scg.unibe.ch/archive/papers/Meri16b.pdf

[27] Müller, R., Kovacs, P., Schilbach, J., Eisenecker, U. W., Zeckzer, D.,
Scheuermann, G., 2014. A structured approach for conducting a series
of controlled experiments in software visualization. In: Proc. of IVAPP.
IEEE, pp. 204–209.

[28] Munzner, T., 2008. Process and pitfalls in writing information visualiza-
tion research papers. In: Information visualization. Springer, pp. 134–
153.

[29] Munzner, T., 2014. Visualization analysis and design. CRC press.
[30] Novais, R. L., Torres, A., Mendes, T. S., Mendonça, M., Zazworka, N.,

2013. Software evolution visualization: A systematic mapping study. In-
formation and Software Technology 55 (11), 1860–1883.

[31] Panas, T., Epperly, T., Quinlan, D., Sæbjørnsen, A., Vuduc, R., 2016.
Comprehending software architecture using a unified single-view visual-
ization. In: Antonakos, J. L. (Ed.), Data Structure and Software Engineer-
ing: Challenges and Improvements. CRC Press, Ch. 2, pp. "22–41".

[32] Razali, N. M., Wah, Y. B., et al., 2011. Power comparisons of shapiro-
wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal
of Statistical Modeling and Analytics 2 (1), 21–33.

[33] Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
14 (2), 131.

[34] Schots, M., Vasconcelos, R., Werner, C., 2014. A quasi-systematic review
on software visualization approaches for software reuse. Technical report.

[35] Schots, M., Werner, C., 2014. Using a task-oriented framework to charac-
terize visualization approaches. In: Proc. of VISSOFT. IEEE, pp. 70–74.

[36] Sensalire, M., Ogao, P., Telea, A., 2008. Classifying desirable features
of software visualization tools for corrective maintenance. In: Proc. of
SOFTVIS. ACM, pp. 87–90.

[37] Sensalire, M., Ogao, P., Telea, A., 2009. Evaluation of software visual-
ization tools: Lessons learned. In: Proc. of VISSOFT. IEEE, pp. 19–26.

[38] Seriai, A., Benomar, O., Cerat, B., Sahraoui, H., Sep. 2014. Validation
of software visualization tools: A systematic mapping study. In: Proc. of
VISSOFT. pp. 60–69.

[39] Shahin, M., Liang, P., Babar, M. A., 2014. A systematic review of soft-
ware architecture visualization techniques. Journal of Systems and Soft-
ware 94, 161–185.

[40] Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Kara-
hasanovic, A., Liborg, N.-K., Rekdal, A. C., 2005. A survey of controlled
experiments in software engineering. Transactions on Software Engineer-
ing 31 (9), 733–753.

[41] Storey, M.-A. D., Čubranić, D., German, D. M., 2005. On the use
of visualization to support awareness of human activities in software
development: a survey and a framework. In: Proc. of SOFTVIS. ACM
Press, pp. 193–202.
URL http://portal.acm.org/citation.cfm?id=1056018.
1056045

[42] Van Wijk, J. J., 2006. Views on visualization. Transactions on Visualiza-
tion and Computer Graphics 12 (4), 421–432.

[43] Wobbrock, J. O., Findlater, L., Gergle, D., Higgins, J. J., 2011. The
aligned rank transform for nonparametric factorial analyses using only
anova procedures. In: Proc. of SIGCHI. ACM, pp. 143–146.

[44] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén,
A., 2000. Experimentation in Software Engineering. Kluwer Academic
Publishers.

[45] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén,
A., 2012. Experimentation in software engineering. Springer Science &
Business Media.

[46] Yin, R. K., 2013. Case study research: Design and methods. Sage publi-
cations.

[47] Young, P., Munro, M., 1998. Visualising software in virtual reality. In:
Proc. of IWPC. IEEE, pp. 19–26.

[48] Zelkowitz, M. V., Wallace, D. R., 1998. Experimental models for validat-
ing technology. Computer 31 (5), 23–31.

16

http://scg.unibe.ch/archive/papers/Meri17b.pdf
http://scg.unibe.ch/archive/papers/Meri17c.pdf
http://scg.unibe.ch/archive/papers/Meri16a.pdf
http://scg.unibe.ch/archive/papers/Meri16c.pdf
http://scg.unibe.ch/archive/papers/Meri15b.pdf
http://scg.unibe.ch/archive/papers/Meri16b.pdf
http://portal.acm.org/citation.cfm?id=1056018.1056045
http://portal.acm.org/citation.cfm?id=1056018.1056045

