14,933 research outputs found

    HERO: Heterogeneous Embedded Research Platform for Exploring RISC-V Manycore Accelerators on FPGA

    Full text link
    Heterogeneous embedded systems on chip (HESoCs) co-integrate a standard host processor with programmable manycore accelerators (PMCAs) to combine general-purpose computing with domain-specific, efficient processing capabilities. While leading companies successfully advance their HESoC products, research lags behind due to the challenges of building a prototyping platform that unites an industry-standard host processor with an open research PMCA architecture. In this work we introduce HERO, an FPGA-based research platform that combines a PMCA composed of clusters of RISC-V cores, implemented as soft cores on an FPGA fabric, with a hard ARM Cortex-A multicore host processor. The PMCA architecture mapped on the FPGA is silicon-proven, scalable, configurable, and fully modifiable. HERO includes a complete software stack that consists of a heterogeneous cross-compilation toolchain with support for OpenMP accelerator programming, a Linux driver, and runtime libraries for both host and PMCA. HERO is designed to facilitate rapid exploration on all software and hardware layers: run-time behavior can be accurately analyzed by tracing events, and modifications can be validated through fully automated hard ware and software builds and executed tests. We demonstrate the usefulness of HERO by means of case studies from our research

    On-Chip Transparent Wire Pipelining (invited paper)

    Get PDF
    Wire pipelining has been proposed as a viable mean to break the discrepancy between decreasing gate delays and increasing wire delays in deep-submicron technologies. Far from being a straightforwardly applicable technique, this methodology requires a number of design modifications in order to insert it seamlessly in the current design flow. In this paper we briefly survey the methods presented by other researchers in the field and then we thoroughly analyze the solutions we recently proposed, ranging from system-level wire pipelining to physical design aspects

    Teaching photonic integrated circuits with Jupyter notebooks : design, simulation, fabrication

    Get PDF
    At Ghent University, we have built a course curriculum on integrated photonics, and in particular silicon photonics, based on interactive Jupyter Notebooks. This has been used in short workshops, specialization courses at PhD level, as well as the M.Sc. Photonics Engineering program at Ghent University and the Free University of Brussels. The course material teaches the concepts of on-chip waveguides, basic building blocks, circuits, the design process, fabrication and measurements. The Jupyter notebook environment provides an interface where static didactic content (text, figures, movies, formulas) is mixed with Python code that the user can modify and execute, and interactive plots and widgets to explore the effect of changes in circuits or components. The Python environment supplies a host of scientific and engineering libraries, while the photonic capabilities are based on IPKISS, a commercial design framework for photonic integrated circuits by Luceda Photonics. The IPKISS framework allows scripting of layout and simulation directly from the Jupyter notebooks, so the teaching modules contain live circuit simulation, as well as integration with electromagnetic solvers. Because this is a complete design framework, students can also use it to tape out a small chip design which is fabricated through a rapid prototyping service and then measured, allowing the students to validate the actual performance of their design against the original simulation. The scripting in Jupyter notebooks also provides a self-documenting design flow, and the use of an established design tool guarantees that the acquired skills can be transferred to larger, real-world design projects

    An Open Core System-on-chip Platform

    Get PDF
    The design cycle required to produce a System-on-Chip can be reduced by providing pre-designed built-in features and functions such as configurable I/O, power and ground grids, block RAMs, timing generators and other embedded intellectual property (IP) blocks. A basic combination of such built-in features is known as a platform. The major objective of this thesis was to design and implement one such System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS process. The integrated System-on-Chip platform, which contains approximately four million transistors, was synthesized using Synopsys - Design Compiler and placed and routed using Cadence - First Encounter, Silicon Ensemble. Design verification was done at the pre-synthesis, post-synthesis and post-layout levels using Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso to perform design rule check. A tutorial was written to enable others to create derivative designs of this platform quickly
    • 

    corecore