
On-Chip Transparent Wire Pipelining

Mario R. Casu and Luca Macchiarulo
Politecnico di Torino, Dipartimento di Elettronica
C.so Duca degli Abruzzi, 24, I-10129 Torino, Italy
mario.casu@polito.it luca.macchiarulo@polito.it

Abstract

Wire pipelining has been proposed as a viable mean to
break the discrepancy between decreasing gate delays and
increasing wire delays in deep-submicron technologies. Far
from being a straightforwardly applicable technique, this
methodology requires a number of design modifications in
order to insert it seamlessly in the current design flow. In
this paper we briefly survey the methods presented by other
researchers in the field and then we thoroughly analyze the
solutions we recently proposed, ranging from system-level
wire pipelining to physical design aspects.

1. Introduction

The increasing complexity of integrated systems has naturally
led to the idea of System-on-Chip where designers connect to-
gether complex components taken from libraries of Intellectual
Properties (IP) like in board-level design. The performance of such
systems is communication-constrained instead of computation-
constrained as in almost all previous integrated circuit designs.
The platform-design philosophy aims at a correct-by-construction
integration of IP components. The driving force is the orthogonal-
ization of concerns that is the capability of reducing the correlation
among the various issues and facing them separately so as to im-
prove the overall quality of the implementation [1]. The idea is that
of separating computation from communication in order to avoid
the performance being limited by the time required for moving
data from one place to another within the chip. Such orthogonal-
ization brings about the necessity of hiding physical/electrical de-
tails from higher-level design by making them, so to say, transpar-
ent. Technology scaling, however, play against such a scenario. In
particular, interconnection delay threatens the projected 2001 In-
ternational Technology Roadmap for Semiconductors (ITRS) [2]
evolution, because constant or slightly increasing chips’ size and
integration of more and more functional blocks cause the length of
global wires not to scale down properly. This will make it impos-
sible to respect the projected clock period and at the same time to
allow all blocks in a chip to communicate within a single clock cy-
cle. As a result, interconnect architects have been brought to bor-
row the classic pipelining technique from logic. This technique we
call wire pipelining (WP) poses a number of issues, the most im-

portant of which, we believe, is the alteration of functionality due
to the insertion in the logic netlist of new flipflops that break inter-
connect in shorter, and faster, segments.

This problem has been tackled in a number of recent works,
ranging from the system-level aspects to the more physical ones.
A survey of the literature on this topic is presented in section 2
where we review known solutions to the presented problem and
evaluate their “transparency” to the high level designers. After an
estimation of the number of pipelining elements needed to meet
the clock frequency as indicated by the ITRS roadmap in section
3, we will then concentrate in the following sections on a fam-
ily of solutions we have been working on in the past years. Finally
we make an overall summarization giving also a perspective of the
work still needed in the field.

2. A Survey on Wire Pipelining

In the following, past research in the field of wire pipelining
will be summarized.

L. Carloni et al. proposed the “latency insensitive” (LI) design
methodology [3][4][5] that allows the preservation of functional-
ity when a system which is designed to work under zero wire de-
lay constraint is modified with a certain amount of added wire la-
tency. The modified system works by means of a Latency Insen-
sitive Protocol (LIP) whose the bases are described in the next
sections. We recently demonstrated in [6] another approach to la-
tency insensitive design that does not require the routing of the
protocol signals while preserving the performance of the previous
approach. It can be shown that these approaches, while guaran-
teeing that the clock frequency constraint imposed by functional
blocks is met, lead to a throughput degradation (i.e. the number
of new data produced per clock cycle) that is solely related to the
blocks netlist and in particular to the existence of loops in the cir-
cuit graph. That means that the throughput is independent of the
data that block exchange and can be predicted upfront by a netlist
graph traversal, in other words the performance is static. This nor-
mally does not come at the cost of an overall data-rate reduction
(i.e. the product of throughput and clock frequency) with respect to
a pure slowdown of the clock frequency to fit the global wires de-
lay, but it certainly does not fully respect the throughput increase
that WP seems to promise. To overcome this limitation is neces-
sary to break the complete orthogonalization of computation and
communication and give the protocol some (minimum) knowledge
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of when the blocks are willing to transmit newly computed data.
This approach was briefly introduced in [7].

While not totally related to the WP problem, we mention the
GALS approach (Globally-Asynchronous Locally-Synchronous)
where a fully-synchronous paradigm is adopted within computa-
tional blocks and a handshake protocol is used for the intra-blocks
communication. While GALS present several advantages, among
them the fact that clock constraints are largely relaxed compared
to a fully synchronous approach, the performance may be limited
by the propagation of signal across long wires. In order to both
pipeline the wires and provide an interface to different clock do-
mains Chelcea and Nowick proposed an asynchronous FIFO ap-
proach in [8] while showing the the latency-insensitive approach
can be easily adapted to GALS systems. In this case the perfor-
mance will be substantially limited by the netlist loops like the
case of fully synchronous latency insensitive methodologies.

Another approach borders with classical retiming
[9][10][11][12]. Wire pipelining is not obtained by adding
new flipflops within the long wires but by moving already exist-
ing memory elements from logic blocks to interconnects or from
blocks’ inputs to blocks’ outputs. This technique can only be ap-
plied if logic blocks are described at least at RT level and the
logic description or the post-synthesis netlist are available. That is
of course not possible for hard-IP’s. As for soft-IP’s, while the-
oretically possible, the manual rework to account for pipelined
global wires at the RT level might severely impact the de-
sign costs. Moreover, there is no guarantee that retiming al-
lows long wires to run at an arbitrarily high clock frequency
like the real wire pipelining case. The combination of retim-
ing, where its application is allowed, and other techniques like
interconnect latency insensitive design, may lead to further im-
provements as it’s been shown in [13].

J. Cong recently proposed [14] a methodology to totally avoid
the manual rework at RTL level to include WP. The design is
mapped onto a regular distributed register (RDR) architecture that
supports wire pipelining and efficient sharing of global wires.
Since the work deals with architecture-level synthesis, the entry
point in the proposed design-flow is a C/VHDL description of the
architecture at the RT level. The methodology does not support the
integration of hard IPs without RTL description differently from
LIP’s where this is naturally accounted for.

In order to solve functionality problems deriving from WP, a
recent work proposes an algorithm working at the gate level [15].
Compared to LIP, the new method has the advantage of not requir-
ing additional protocol signals but still have one of the limitations
of retiming since a gate level netlist is required instead of a col-
lection of IP blocks. In addition, this method preserves function-
ality at the cost of a throughput reduction that may be generally
worse than in the LIP case. In fact the throughput reduction (slow-
down in the paper’s vocabulary) provoked by the flifplop addition
in netlist loops is always integer (i.e. a factor of 2 or 3 and so on)
while LIP’s allow a fractionary throughput reduction that is in gen-
eral lower for a given number of added flipflops as shown later on.

A relevant number of papers concentrated on how the tech-
niques developed for the routing and buffer insertion can be
adapted to flipflop placement for WP. In this sense they can be con-
sidered complementary to previous works that address functional-
ity alteration determined by wire pipelines. In [16] and [17] only

pin-to-pin connections are considered while [18][19] also consider
the case of multipin connections. In a recent paper, D.K. Tong and
E.F.Y. Young [20] proposed a method for register placement along
global wires, given a retiming solution. All these papers, however,
do not address floorplanning issues and how netlist connections
translate on final performance achievable from the buffer-flipflop
routing after a given placement. As far as we know, these issues
were addressed for the first time in our work [21]. We included
in a simulated-annealing floorplanning tool a cost function that
takes into account the throughput reduction due to the addition of
flipflops in the netlist loops with better results compared to stan-
dard wirelength or area goals. In two more recent works, that with
less generality only address the performance of microprocessors,
floorplan tools have been modified so as to consider the cycles per
instruction (CPI) metric as a cost function [22][23]. This perfor-
mance index is in fact affected by the latency of wires connect-
ing together the basic blocks of a superscalar microprocessor. The
first paper uses a simulation-based profiling for estimating the im-
pact of wire pipelining on CPI and then to drive a floorplanning
algorithm. The second one inserts CPI in the cost function of a
simulated-annealing based floorplan tool, after having launched a
number of offline microarchitectural simulations.

3. Estimation of WP Elements

The first part of this work aims at better analyzing the intercon-
nect delay evolution through a series of simulations based on data
reported in the ITRS, to find out how much on-chip communica-
tions will impact performance during next years. The 2001 ITRS
reports for the “near-term” years the values of projected chip di-
mension (area and number of transistors) and clock frequency; the
latter is summarized in Table 1, while area is fixed at 280 mm�

for all technologies, with integrated transistors ranging from about
190 to 770 million.
Assuming the correctness of these predictions, we started consid-
ering roadmap clock frequency as a value that in the future will
be necessary to reach; then for each of these technology nodes we
took an interconnection with variable length from 1 to 34 mm (this
last value models a corner-to-corner wire on a 280 mm� square
chip) by steps of 3 mm, and we calculated its delay using the
Marco GSRC Technology Extrapolation (GTX) System [24] with
BACPAC model [25]; some of the BACPAC’s formulas were a
bit modified to include a more accurate RLC line description and
optimal repeaters insertion, as described in [26]. For each wire,
we also made the reasonable hypothesis that we could change its
width � inside a set of integer multiples of its minimum value in
the used technology. In this way, for a given interconnection we
calculated the best achievable delay, i.e. supposing all the opti-
mizations, buffering and width sizing, could be practically real-
ized. In particular, comparing ������� with the results of these
simulations we were able to evaluate the maximum critical dis-
tance for every technology (Table 1), defined as the longest seg-
ment of wire that a signal can reach in a single clock cycle. An in-
terconnection longer than ��������� will be “critical” in any case,
because a signal will surely require more than one clock period to
propagate, thus needing to insert one or more memory elements
(ME in the table, i.e. flip-flops) along the line (one after at most
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Year Techn. ������� �����	
�� Needed MEs

[GHz] [mm] 10 mm 34 mm
2001 130 nm 1.684 17.11 0 1
2002 115 nm 2.317 12.17 0 2
2003 100 nm 3.088 8.95 1 3
2004 90 nm 3.990 7.37 1 4
2005 80 nm 5.173 5.28 1 6
2006 70 nm 5.631 4.63 2 7
2007 65 nm 6.739 4.16 2 8

Table 1. 2001 ITRS projected frequencies,
with critical lengths and memory elements
for a single wire

���������). Table 1 shows the minimum required number of them
for two wirelengths of 10 mm and 34 mm, as obtained from all our
simulations.

Other experiences showed that wire pipelining gives rise to par-
ticularly interesting power/delay tradeoffs, by allowing subopti-
mal wire buffering. After studying delay and power of a single
wire, we tried to model on-chip wirelength distribution and thus to
get a measure of how many memory elements should be inserted.
To do so, we took real IBM circuits’ data from the ISPD98 Cir-
cuit Benchmark Suite [27] and we applied the model presented in
[28] to each of these designs, supposing each of them ideally par-
titioned in 64 IP-blocks. Projections for the 65nm node are that
the number of needed FFs is in the order of 20,000, for a max-
imum area die. This overall analysis shows how important these
considerations will be in future designs.

4. Latency Insensitive Protocols

The analysis of the minimum latency of wires of a given length
and the prediction of the number of memory elements done so far
are independent on how this added flipflops modify the system
functionality. One of the methods we surveyed in section 2, makes
the new flipflops and the consequent added wire latency totally
transparent to the designer. The Latency Insensitive Design (LID)
methodology requires that the original modules connected through
pipelined wires are stallable, i.e. they can be stopped at any time
and they are guaranteed to hold their state throughout the inter-
ruption. This condition is normally satisfied if modules are syn-
chronously holding their data in internal memory elements, which
can be therefore controlled by standard clock-gating techniques.
Given the assumption, LID methodology proceeds as a 3-step pro-
cess:
- each module (a pearl) is encapsulated within a wrapper (called
shell) that performs clock-gating and handles interface signals;
- Physical Layout is performed, after which long connection that
would result in timing violation are identified;
- Critical wires are segmented by introducing the appropriate
number of relay stations which allow for some internal buffering
and handle stalling signals of the protocol.

It is worth noticing that the protocol requires the added mem-
ory elements along the wires to not be simple flifplops but in-
stead to contain at least two registers, which increase the flipflop
count of section 3. The relay station is nothing but another queue

whose size is limited to two places; the first register pipelines data
in normal operation; the auxiliary register is allowed to store an-
other data when the relay station receives a stall signal and then
must maintain the previous data in the first register. The shell may
also be provided with input queues for a limited input data stor-
age while the pearl is stalled. These wrappers have to fulfill three
tasks:
- Data Validation: each output channel has to signal whether the
datum therein present is a new one to be consumed by asserting a
valid bit;
- Back Pressure: when the pearl is stopped for some reason and
cannot accept more data because it cannot store them, the shell
has to generate a stop signal sent in the opposite direction of in-
puts;
- Clock Gating: a module waiting for new data and/or stopped by
following modules needs to keep its present state.

Such a protocol was implemented in [3] through the introduc-
tion of two new signals per channel, alongside with the follow-
ing interpretation:
- valid: accompanies a datum which is actually a new valid
packet;
- stop: propagates in the opposite direction to indicate that
what precedes has to be stopped, because the shell or relay sta-
tion is not ready to receive new data.

In the papers that first introduced the latency insensi-
tive methodology, shells and relay stations are said to have the
“compositional” property, or in other words they can be con-
nected together while guaranteeing the preservation of the pro-
tocol and its reliability. It can be shown (details omitted) that,
in order for any pair of blocks to communicate within the pro-
tocol, some queuing capability is needed at the inputs (or in the
communication channels) no matter the necessity of pipelin-
ing. We therefore introduce the concept of “half relay station”,
a relay station which contains a single pipelining register (in-
stead of two) and allows direct connection between input and out-
put. The role of this register seems to be played by the “extended
relay station” according to the vocabulary of one of the origi-
nal papers [5] placed on the wrapper’s output. We will re-interpret
the compositional property of the shells by imposing the con-
straint of adding at least one half or full relay station be-
tween two of them. This will guarantee at the same time that no
data are lost and will help to improve the performance when nec-
essary.

In some previous works ([32], [31]) we described a complete
RTL implementation of such a protocol. By way of employing
such a description we have been able to experience with the pro-
tocol at an implementation level, and experimentally validate the
properties that we will discuss in the following.

We employed a tool of formal verification in which it was pos-
sible to describe our basic blocks at the same description level
of the design, t.i. RTL. We dealt with safety and liveness prob-
lems separately. We define an RTL implementation of a LIP safe
iff any composition of blocks subject to certain constraints and
with primary inputs subject to certain assumptions, will behave in
a latency insensitive sense exactly as an equally connected system
wherein wrappers and shells are substituted by non/pipelined con-
nections. We define the implementation live iff no conditions will
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occur that will put the system in a deadlock condition, that is, a sit-
uation in which no new data is ever produced. Note that a safe sys-
tem is not necessarily deadlock-free. We proved, using the formal
verification tool SMV [29] that our implementation is always safe
and live for most common netlist topologies.

5. A priori throughput evaluation

As noticed in section 2, the performance of LIPs can be pre-
dicted upfront in a static way, based on the circuit blocks netlist
only. In this section we will try to summarize a few conclusions
we reached by proving basic timing relations dependant on over-
all circuit topology. The attention will be focused, for reasons that
will become apparent in the following, on two figures: System
Throughput and Transient Length. It turns out to be possible to de-
fine the second figure due to an interesting consequence of the pro-
tocol: after a number of clock cycles that are dependent on the sys-
tem (and can be indicated with precision) each part of it behaves
in a periodic fashion. We baptize the first part as transient,

It is natural to associate a direct, possibly cyclic graph to a sys-
tem of interconnected synchronous processes, where each vertex
represents a shell and each edge is a unidirectional channel where
data flow. There are representative topologies for such a graph
whose performance can be easily derived and that help understand-
ing the behavior of complex systems. Their discussion will make it
possible to formulate some rules that are helpful in designing opti-
mum relay station arrangements, when some flexibility is permit-
ted.

The simplest topology is represented by a tree, where for each
possible couple of vertices ��� �� there is only one path connect-
ing � to �. The throughput of each node in the graph, i.e. the num-
ber of valid data per clock cycle is 1 as for the original system.
However, each relay station is initialized with non valid outputs
that must be eliminated flowing toward the primary outputs1. Thus
the initial latency for each node before firing at full speed can be
as much as the longest path in the tree (transient duration), where
the length is defined by the sum of the weights of each traversed
edge and the number of vertices in the path.

If we allow one or more couple of vertices in a direct acyclic
graph to be connected by two or more paths we obtain what we
call the “reconvergent inputs” topology. Its behavior differs from
that of trees due to implicit loops created by the introduction of
reverse-flowing stop signals. To understand the problem, let’s con-
sider the simple example of figure 1. Three blocks are arranged as
shown, with a minimum number of relay stations.

Now, let’s follow the system’s evolution from the legal initial
condition that assigns valid values at all initial outputs of the three
shells. Such an evolution is shown in figure 1 where “n”s represent
data which are not valid, while stops are indicated by dashed ar-
rows and stopped modules by dashed blocks. It is apparent that af-
ter the initial transient, the situation becomes periodic, and the out-
put utters an invalid datum every 5 clock periods. This value can
be explained as follows: the unbalanced number of relay stations
in the two branches introduces an unequal number of relays on ev-
ery reconvergent path, thus constraining the longest one to intro-

1 The shells outputs are instead initialized with valid outputs
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Figure 1. FeedForward Topology Evolution.

duce a number of invalid data in an otherwise constant throughput.
A single invalid token gets propagated from top to bottom on the
longest branch, and then generate a stop signal that propagates on
the shortest one from the bottom up every � cycles. On the other
hand, the number of invalid data that propagate is equal to the dif-
ference of relay stations between the feedforward branches. In the
present case, � � �, while � � � � � � �. This means that the
number of valid data every 4 periods is ��� � � and the through-
put is equal to �

�
, as expected. The general formula is as follows:

� � ���

�
, where � is the total number of relay station in the

loop, plus the number of shells on the path with the highest num-
ber of relay station (the other branch’s shells don’t count due to the
combinational propagations of the stops), while � is the difference
in number of relay stations between the two branches. The general
conclusion we can draw from these examples is that, in order to ob-
tain the maximum throughput from a feedforward arrangement, it
is necessary to insert enough spare relay stations to make all con-
verging paths of the same length (length being defined on the basis
of number of relay station). We call this condition path equaliza-
tion, and note that it is completely different from the equalization
described in [4] whose aim is forcing all connected components
of the design to work at the same throughput. Even though such
equalization can be achieved manually through relay station inser-
tion, it is also possible to obtain it automatically by introducing
enough buffering capability on the branches, for example by mod-
ifying the shell structure allowing for inclusion of a FIFO.

Graphs containing loops as in figure 2 are responsible for the
worst throughput reduction in latency insensitive protocols when
relay stations have to be inserted within the cycle. In this case the
evolution from the starting state shows a behavior dictated mainly
by the features of the loop with the least ratio between shells and
relay stations. In fact, in such a loop, a maximum of � valid data
can be present at a time, out of � � � positions (where R is the
number of relay stations in the loop). This justifies the number
�

���
for the maximum throughput. This result is fundamentally

the same discussed by Carloni in [4]. For the specific case shown
in figure 2, two loops that exhibit a “stand-alone” throughput of
�

�
and �

�
respectively interact in such a way that the entire sys-

tem works at the worst throughput of �

�
, as shown in figure where

each block utters 2 valid and 3 non valid (“n”) data every 5 cy-
cles.
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Figure 2. FeedBack Topology Evolution.

The most general topology can be seen as a feed-forward com-
bination of self-interacting loops. It is possible to prove that the
slowest subtopology (either reconvergent feed-forward or feed-
back) will force the system to slow down to its speed. The protocol
itself will adapt to such a speed without any need for path equaliza-
tion, that might help in reducing the transient time and/or increase
the throughput (of the feed-forward components only). The tran-
sient length, in general, is a linear function of the number of relay
stations and shells.

6. Experimental Validation

+

Delay
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Delay

Delay
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+

+

+

++
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Figure 3. Complex System under Analysis.

To validate our protocol, together with the results exposed
in the previous sections, we used a proof-of-concept example
that comprises various combinations of feedforward and feedback
topologies. The system shown in figure 3, where computational el-
ements are connected through wires pipelined by relay stations,
was compared to the corresponding original case without shells
and relay stations. The functional blocks are simple up counters,
adders, and pure delays, whose choice allows easy identification
of functional mismatches between the implementations.

CK

CK
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reset

DOUT
D1A1

DOUT
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GCKOUT

GCKA1

VALOUT
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STOPA1

Figure 4. Snapshots of Simulations for sys-
tem of figure 3.

The snapshots reported in figure 4 show signals in channels
labeled as DOUT and D1A1, in both implementations (the la-
tency insensitive version has also the corresponding valid, stop
and gated clock signals plotted). The two simulations are identi-
cal when compared on the relevant data (as explained in section
3). Furthermore, it is clear that the throughput reduction to �

�
(one

valid every 2 clock ticks in the latency insensitive versione) justi-
fied by the short loop made of the adder generating DOUT and its
delay.

7. Static Scheduling Solution

Perhaps the most relevant property of the LIP methodology is
its straightforward applicability, the only requirement needed for
its implementation being the “stalling” capability of pearls, which
may be achieved with latched blocks and standard clock gating
techniques. However the requirements of the protocol from the
physical design side are relevant. Every communication channel
must be provided with a couple of additional signals, such as Car-
loni’s “void” and “stop”, or “valid” and “stop” in other works [31],
[32]. Such signals sum up to the total wiring requirements increas-
ing the already critical wire congestion. In addition, the insertion
of relay stations along the interconnects poses serious area con-
straints since it requires available spaces in the floorplan for plac-
ing at least two registers and a (small) finite state machine for each
added relay station [3]. The shell also should be provided with
a few logic gates for clock gating, output data validation and in-
put data back pressure that are the protocol relevant operations.
These requirements can be alleviated if a clock schedule for the
functional blocks is defined. Using a suitably adapted algorithm a
schedule can be found which is optimal in the sense that it guar-
antees the maximum throughput allowed by the structure of the
sequential system. In addition the method allows the use of sim-
ple flipflops instead of complete relay stations. There is no more
need for routing the protocol signals, thus the saving in routing re-
sources is relevant. We point out that the application of the method
is at least as general as the original LIP (as described in [3]). In
fact, due to orthogonalisation of concerns, no info can be drawn
from the IPs during their operation: Therefore void and stop sig-
nals are generated in a completely data and block-independent
fashion (they mainly depend on topology). The only reasonable
assumption on IP blocks is that they have the potentiality of react-
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ing to each and every input which has been validated by the proto-
col. Under such assumptions, as we will show, our method has the
same range of applications and performance as the classical LIP
methodology, though it saves resources.

To preserve the system functionality, we can control the syn-
chronicity by selectively controlling the elements’ clocks in such
a way they react only to valid signals. This requires an overall
clock scheduling that will activate the various units in a coordi-
nated way. The problem can be cast as a maximum time-to-ratio
problem [34].

Once and if the schedule for the correct activation of functional
modules has been found, the implementation of the latency insen-
sitive system becomes straightforward. As for the periodic sched-
ule, it is sufficient to initialize a shift register for each “pearl” at
reset with the sequence of clock enable/disable. The output of the
register is used to gate the global clock so as to produce the strobe
pulse for activating the functional module within the “shell.” The
output of the shell is sent directly to another shell or to a flip-flop,
depending on the latency of the interconnect. In figure 5, two shells
communicate with a unit latency and are activated two times ev-
ery three clock ticks (two ‘1’s loaded in their shift-registers).

D Q Pearl

Ck
1

Ck
110

Pearl

Ck
0 1

Figure 5. Conceptual scheme for scheduled
pearls.

If we compare the system in figure 5 to an analogous latency
insensitive system [3], the saving in terms of resources is poten-
tially relevant. The relay station is substituted by a simple flipflop;
the shells do not have to elaborate valid and stop signals; the rout-
ing is greatly simplified since nothing else but the signals of the
original system have to be accounted for (no valid’s and stop’s).

To complete the picture of the static scheduling methodology,
we need a way to compute a valid schedule, given the netlist. Such
schedule must guarantee a priori safety conditions which are en-
sured by explicit Latency Insensitive Protocols. As a performance
requirement, furthermore, the schedule should ensure an average
throughput equal to the maximum attainable with the given latency
constraints (interconnect-related memory elements). For these rea-
sons we looked for a systematic method to generate valid (in the
sense forementioned) schedules by analyzing the graph (lis-graph
in Carloni’s definition [4]) describing the block connectivity. An
extension of the method described by Boyer et alii in [33], can be
adapted for the issue here at stake. The details are contained in [6].
Here we summarize the basic idea: The netlist is conveniently rep-
resented as a graph and labelled accordingly; a max cost to ra-
tio problem is solved on the labelled graph (for example by us-
ing Lawvere’s method [34]). The solution, if it exists, gives a valid

scheduling for the netlist. As a by-product, we obtain the maxi-
mum throughput of the system.

As in the original protocol, feedforward reconvergent fanouts
can be “cured” by adding appropriate number of FFs. The same
problem of reconvergent fanouts is possible inside loops. In this
case, though, its solution might turn to be more complicated. In
fact, contrary to the feedforward case, it is not possible in general
to add flip flops on the faster branch in order to equalize paths,
because this might adversely affect the performance on the loop
where branches are added. The deep reason of it is that differ-
ences in schedules are not necessarily integer numbers (from the
above discussion it should be clear that schedules are inherently
pseudo-periodic rather than periodic), while insertion of a flip flop
always introduces a fixed integer delay. It is possible that the de-
lay between branches does not adversely affect synchronization
(thanks to clock gating in specific time), or that the delays are in-
tegers (so that pure flip flops or FIFOs are sufficient) but in the
most general case a device which is capable of a perfect resyn-
chronization is needed. A periodic schedule (synchronized with
the general schedule of the system though different in general) in-
troduces selectively a delay only when needed, by choosing the
latched branch of the mux’s input.

8. Physical Design Issues

The LIPs work at system level because they guarantee func-
tionality whatever the topology of blocks and delay elements used
to pipeline interconnects. As we have seen however, the addi-
tion of memory elements comes at the cost of reducing through-
put, mainly because of the presence of feedback topologies in the
blocks netlist. It is then clear that a suited physical design strat-
egy aiming at reducing the throughput reduction consequence of
the flipflop addition is highly desirable. We propose a through-
put driven floorplanning where throughput enters in the cost func-
tion of a simulated annealing based tool.

It is important to make an observation: The algorithm that uses
Lawvere’s method (or an equivalent one as that described in [21])
is sufficiently efficient to allow a performance evaluation, but still
way too slow to be included in a loop of an iterative method of op-
timization as one needed in floorplanning. We therefore looked for
an heuristic which could approximate the exact throughput cost.

A function that could be easily integrated in a simulated an-
nealing context can be computed as follows:
1. Before entering the annealing iteration, we statically evaluate a
weight for each pin to pin net: The inverse of the shortest loop the
net belongs to.
2. At each iteration we consider each pin to pin connection and,
based on the current position of the blocks and the relative posi-
tions of the pins we evaluate the Manhattan distance between the
pins.
3. The distance is divided by the maximum length admissible be-
tween clocked elements, and the integer part of the result is taken.
4. This last number is multiplied by the weight computed in the
first point.
5. All such values are summed.

The loop computation is performed through a simple breadth
first search starting from the destination of the edge in question.

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



Besides, being outside the loop, it represents a small fraction of
CPU time. Our experiments showed a pretty high correlation be-
tween this cost and the exact throughput (see [21] for more de-
tails).

In order to test our optimization technique and gather some
statistics on the features of this problem, we implemented the al-
gorithms described in previous sections integrating it in an exist-
ing publicly available simulated annealing floorplanner based on
the sequence pair representation: PARQUET (see [30]).

The complete results we gathered on a series of bench-
marks are reported in the original paper [21]. Here we would like
to point out a series of conclusions:
- Throughput optimization really achieves better results in terms
of throughput. The gain w.r.t. wirelength minimization is in av-
erage 11%, while the gain w.r.t. area is 25% again in aver-
age over all the experiments. If we consider only the gain in the
case of the longest critical length, though, the two gains are 24%
and 64% respectively, thus suggesting the existence of a thresh-
old length about which the gain becomes substantial.
- Wirelength and throughput minimization are goals which are not
so correlated as it might be thought.
- Different benchmarks behave differently as long as through-
put is concerned, and their difficulty is not a simple measure of
other features, let alone their complexity (number of blocks, num-
ber of nets).
- The task is in and by itself inherently difficult: there is no
chance of getting an acceptable throughput with area optimiza-
tion, while also wirelength minimization can lead to highly
suboptimal results. - Even if it depends on the benchmark con-
sidered, there is a value for critical dimension such that below
it, no matter what kind of cost function, the throughput can-
not be optimized, while above that threshold the three meth-
ods differ.

9. Case Study: MPEG

In order to show the effectiveness of our approach we decided
to resort to a benchmark that have been already used in the con-
text of Latency Insensitive Protocols [4]. The schematic in figure
6 represents the functional blocks of a Mpeg2 encoder. The small
blocks along interconnects represent pipeline flipflops. Their po-
sition and number is obtained after a physical design step which
produces the floorplan reported in figure 7. In figure 6 the critical
loop of the entire system is highlighted with a dashed line. This
throughput is 4/6=2/3 because the functional modules along the
loop are 4 and there are 2 flipflops (4/(4+2)). As a consequence the
scheduling period is 3 clock cycles and there will be two “valid”
cycles and one “stop” cycle. Every “shell” will be provided with a
3 bits long shift register. Some additional delays had to be inserted
in various points to equalize reconvergent paths as explained in
section 4.2. For instance, a flipflop has been added to the connec-
tion between Frame Memory and Motion Compensation blocks.

After obtaining the netlist of figure 6 we applied an implemen-
tation of the scheduler described in section 4 in order to identify
valid schedules and path unbalance.
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The simulation (not reported) shows that 2 new data are pro-
duced every 3 clock ticks. The first waveform is the output of
Frame Memory and the following are in the same order as the
blocks in the loop. The progression of the “stalled” functional
module is evident and it is represented by a stretching of the last
valid data. We also verified that the fundamental constraints as of
section 4 on system safety (no data loss) were satisfied.

10. Conclusions and Future Work

The fact of wire pipelining is likely to hamper the evolu-
tion of high-speed designs from the near future on (following
the projected trend discussed in section 3): An appropriate de-
sign methodology will relieve designers from its nitty-gritty de-
tails. The solution outlined here is but one of the possible in the
spectrum summarized in section 2. Careful comparison will be
needed to assess which one is the best compromise between intru-
siveness in the design flow, performance, area and power penalty.
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Our vision is that some elements of insight about the design func-
tionality will be the key to break in certain limitations of commu-
nication intensive designs.
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