4,414 research outputs found

    GridCertLib: a Single Sign-on Solution for Grid Web Applications and Portals

    Full text link
    This paper describes the design and implementation of GridCertLib, a Java library leveraging a Shibboleth-based authentication infrastructure and the SLCS online certificate signing service, to provide short-lived X.509 certificates and Grid proxies. The main use case envisioned for GridCertLib, is to provide seamless and secure access to Grid/X.509 certificates and proxies in web applications and portals: when a user logs in to the portal using Shibboleth authentication, GridCertLib can automatically obtain a Grid/X.509 certificate from the SLCS service and generate a VOMS proxy from it. We give an overview of the architecture of GridCertLib and briefly describe its programming model. Its application to some deployment scenarios is outlined, as well as a report on practical experience integrating GridCertLib into portals for Bioinformatics and Computational Chemistry applications, based on the popular P-GRADE and Django softwares.Comment: 18 pages, 1 figure; final manuscript accepted for publication by the "Journal of Grid Computing

    Linguistic Reflection in Java

    Get PDF
    Reflective systems allow their own structures to be altered from within. Here we are concerned with a style of reflection, called linguistic reflection, which is the ability of a running program to generate new program fragments and to integrate these into its own execution. In particular we describe how this kind of reflection may be provided in the compiler-based, strongly typed object-oriented programming language Java. The advantages of the programming technique include attaining high levels of genericity and accommodating system evolution. These advantages are illustrated by an example taken from persistent programming which shows how linguistic reflection allows functionality (program code) to be generated on demand (Just-In-Time) from a generic specification and integrated into the evolving running program. The technique is evaluated against alternative implementation approaches with respect to efficiency, safety and ease of use.Comment: 25 pages. Source code for examples at http://www-ppg.dcs.st-and.ac.uk/Java/ReflectionExample/ Dynamic compilation package at http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation

    MEAN vs. LAMP Stack

    Get PDF
    JavaScript has always been the scripting language for client-side programming that runs in the browser. The most crucial part in a web development project is choosing the right combinations of front-end framework, back-end server, and database environment. The main intent of this paper is to show the strength of the JavaScript-based framework, the MEAN stack (M for MongoDB, E for Express.js also termed Express, A for AngularJS or Angular and N for Node.js or Node) for building web applications. We compare the MEAN stack with the popular framework, the LAMP stack (L for Linux, A for Apache, M for MySQL and P for PHP), with respect to their components, strength, and environment configuration. We develop two similar applications built by MEAN and LAMP. We compare and analyze their respective real-time scenarios, data structure flexibilities, web performance, scalability, performance enhancements, and we perform load and data transfer tests

    AtomSim: web-deployed atomistic dynamics simulator

    Get PDF
    AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also available as a Google App Engine-hosted web-deployed interface. Examples of a quartz molecular dynamics run and a hafnium dioxide phonon calculation are presented

    A Virtual Overlay Network for Integrating Home Appliance.

    Get PDF

    SWISH: SWI-Prolog for Sharing

    Full text link
    Recently, we see a new type of interfaces for programmers based on web technology. For example, JSFiddle, IPython Notebook and R-studio. Web technology enables cloud-based solutions, embedding in tutorial web pages, atractive rendering of results, web-scale cooperative development, etc. This article describes SWISH, a web front-end for Prolog. A public website exposes SWI-Prolog using SWISH, which is used to run small Prolog programs for demonstration, experimentation and education. We connected SWISH to the ClioPatria semantic web toolkit, where it allows for collaborative development of programs and queries related to a dataset as well as performing maintenance tasks on the running server and we embedded SWISH in the Learn Prolog Now! online Prolog book.Comment: International Workshop on User-Oriented Logic Programming (IULP 2015), co-located with the 31st International Conference on Logic Programming (ICLP 2015), Proceedings of the International Workshop on User-Oriented Logic Programming (IULP 2015), Editors: Stefan Ellmauthaler and Claudia Schulz, pages 99-113, August 201

    AstroGrid-D: Grid Technology for Astronomical Science

    Full text link
    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.Comment: 14 pages, 12 figures Subjects: data analysis, image processing, robotic telescopes, simulations, grid. Accepted for publication in New Astronom
    • …
    corecore