
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

5-2016

MEAN vs. LAMP Stack
Arpana Karanjit
St. Cloud State University, kaar1301@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Karanjit, Arpana, "MEAN vs. LAMP Stack" (2016). Culminating Projects in Computer Science and Information Technology. 11.
https://repository.stcloudstate.edu/csit_etds/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/232792316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/11?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

MEAN vs. LAMP Stack

by

Arpana Karanjit

A Starred Paper

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Masters of Science in Computer Science

Starred Paper Committee:

Jie Hu Meichsner, Chairperson

Andrew A. Anda

Dennis Guster

Acknowledgement

I would like to express my sincere gratitude to my advisor Professor Jie Hu Meichsner for

the continuous support, motivation, enthusiasm, and immense knowledge that she provided for

my Starred Paper. Her guidance helped me in all the time of research and writing of this Starred

Paper. I could not have imagined having a better advisor and mentor for my research.

Besides my advisor, I would like to thank the rest of my thesis committee members:

Professor Andrew A. Anda and Professor Dennis Guster for their encouragement, insightful

comments, and suggestions.

Last but not the least; I would like to thank my family: my parents and my husband for

their continuous support and guidance to always do the best.

i

Abstract

JavaScript has always been the scripting language for client-side programming that runs in

the browser. The most crucial part in a web development project is choosing the right

combinations of front-end framework, back-end server, and database environment. The main

intent of this paper is to show the strength of the JavaScript-based framework, the MEAN stack

(M for MongoDB, E for Express.js also termed Express, A for AngularJS or Angular and N for

Node.js or Node) for building web applications. We compare the MEAN stack with the popular

framework, the LAMP stack (L for Linux, A for Apache, M for MySQL and P for PHP), with

respect to their components, strength, and environment configuration. We develop two similar

applications built by MEAN and LAMP. We compare and analyze their respective real-time

scenarios, data structure flexibilities, web performance, scalability, performance enhancements,

and we perform load and data transfer tests.

ii

Table of Contents

Page

List of Tables .. v

List of Figures .. vi

Chapter 1 Primers ... 1

1. Introduction .. 1

1.1. MEAN Stack... 1

1.1.1. MongoDB .. 3

1.1.1.1. Features of MongoDB .. 4

1.1.1.2. MongoDB in MEAN Stack.. 4

1.1.1.3. MongoDB shell .. 6

1.1.2. Express... 7

1.1.2.1. Features of Express .. 8

1.1.3. AngularJS .. 10

1.1.3.1. Advantages of AngularJS .. 11

1.1.3.2. Features of AngularJS .. 11

1.1.4. Node... 14

1.1.4.1. Why Node? .. 15

1.1.4.2. NPM and Node packages ... 16

iii

Page

1.1.4.3. Node Modules .. 17

Socket.io.. 18

1.2. LAMP Stack ... 21

1.2.2. Apache web server ... 22

1.2.3. MySQL Database System .. 22

1.2.4. PHP Scripting Language .. 24

1.3. Architectures .. 25

1.3.1. MEAN Architecture .. 26

1.3.2. LAMP Architecture .. 27

Chapter 2 MEAN vs. LAMP .. 28

Chapter 3 Application Development Environment Setup .. 35

3.1. MEAN Stack Application Development .. 35

3.2. LAMP Stack Application Development ... 44

Chapter 4 Case Study .. 48

4.1. Tests and Results .. 51

4.1.1. Real-Time Web Test for Chat System ... 51

4.1.2. Extensibility ... 54

4.1.3. Performance and Load Testing .. 57

Chapter 5 Limitations and future enhancement .. 61

Chapter 6 Conclusion .. 63

References ... 66

Appendix ... 68

iv

Page

Source Code: ... 68

Chat System with MEAN: ... 68

Chat System with LAMP:.. 72

Address Book System with MEAN: .. 82

Address Book Systemwith LAMP: ... 86

v

List of Tables

Page

Table 1 Conceptual Overview .. 10

Table 2 Table schema of AddressList before update in LAMP stack .. 54

Table 3 Table schema of updated AddressList in LAMP stack.. 55

Table 4 Table schema of AddressDetail in LAMP stack .. 56

Table 5 Response time in MEAN and LAMP .. 58

Table 6 Data transferred in MEAN and LAMP with different concurrency 60

vi

List of Figures

Page

Figure 1 Sample of MongoDB document ... 5

Figure 2 Screenshot of Mongo shell ... 6

Figure 3 JavaScript program in Mongo shell .. 7

Figure 4 Defining middleware .. 8

Figure 5 Error handling as Text Format ... 9

Figure 6 Error handling as HTTP response status ... 9

Figure 7 Error handling as JSON Format ... 9

Figure 8 Sample code of two-way data binding ... 12

Figure 9 Two-way Data Binding .. 12

Figure 10 Scope instance .. 13

Figure 11 View-model or scope .. 14

Figure 12 Example to load various Node modules ... 18

Figure 13 Socket.io start and connection .. 20

Figure 14 Socket.io in client ... 20

Figure 15 Architecture of MEAN ... 26

Figure 16 LAMP Architecture .. 27

Figure 17 Multi-threading server .. 30

Figure 18 Node.js server ... 31

Figure 19 Including Express in MEAN Application .. 37

vii

Page

Figure 20 Testing server running at port 3000 .. 37

Figure 21 Server running at port 3000 .. 37

Figure 22 Template declaration .. 38

Figure 23 AngularJS setup .. 39

Figure 24 Route Management ... 40

Figure 25 Client code for Route Management .. 40

Figure 26 Insert query in MongoDB ... 42

Figure 27 To display data of Collection with find() ... 43

Figure 28 To display data of Collection with find().pretty() .. 43

Figure 29 To check phpinfo () .. 45

Figure 30 PHP Module information displayed in http://localhost/test.php 46

Figure 31 Screenshot of Chat System in LAMP ... 49

Figure 32 Screenshot of Chat System in MEAN .. 49

Figure 33 Screenshot of Address Book System in LAMP stack .. 50

Figure 34 Screenshot of Address Book System in MEAN stack.. 51

Figure 35 Client request to get real-time update in LAMP stack ... 53

Figure 36 GET method to load old messages in MEAN stack ... 53

Figure 37 POST method to send message in MEAN stack .. 53

Figure 38 Schema of collection before update in MEAN stack ... 55

Figure 39 Schema of MEAN Stack after update .. 56

Figure 40 Response Time Graph with concurrency and 10000 Requests 58

Figure 41 Data Transferred Graph .. 60

1

Chapter 1 Primers

1. Introduction

The increasing demand for performance and scalability in web technologies has motivated

the development of many new technologies. Use of appropriate combinations of technologies in

applications is the most crucial component of application development. In web application

development, to achieve the highest benefits, one needs to focus on the right choice of

technologies to be used in client-side, server-side, and database.

Our main objective is to show the strength of the JavaScript framework MEAN for

developing web applications. Initially, we focus on basic components of both the MEAN stack

and the LAMP stack i.e. introduction to individual components of each stack and their working

architecture. In Chapter 2, we motivate why one should use the MEAN stack, and we present

criteria including real-time application development, data structure flexibility, scalability, and

data transformation, for choosing MEAN over LAMP. In Chapter 4, we describe the benefits of

the MEAN stack versus the LAMP stack by comparing different metrics (response time, data

transfer, and scalability) of two sample applications: a chat system and an address book system.

We then focus on limitations and future enhancements of the MEAN stack, followed by our

conclusion.

1.1. MEAN Stack

 “MEAN stack pulls together some of the ‘best of breed’ modern web technologies into a

very powerful and flexible stack [3].” MongoDB is a NoSQL database system, Express is a web

server framework for Node, AngularJS is a client-side scripting, and Node is a server platform.

http://nosql-database.org/

2

These building blocks are developed by different teams and involve a substantial community of

developers with proper documentation of each component.

The main strength of the MEAN stack lies in its centralization of JavaScript as the main

programming language [1]. Each component of the MEAN stack is written in JavaScript, even

the database stores data in JavaScript Object Notation (JSON) format which is the only script

that JavaScript entirely understands [1]. So, JavaScript is not only used as client-side scripting

language but also is used throughout the application i.e. in client-side, server-side and database

[3]. Use of JavaScript as the main programming language both in client-side and server-side

makes MEAN stack more powerful. It is beneficial to use the same language on the front-end

and the back-end, as it makes the programming easier and reduces time consumed while building

the application.

Using all JavaScript allows us to achieve following functionalities [4]:

1. Use JavaScript on the server-side (Node and Express).

2. Use JavaScript on the client-side (Angular).

3. Store JSON objects in MongoDB.

4. Use JSON objects to transfer data easily from database to server and to client.

In addition to providing a JavaScript based server platform, the MEAN stack provides the

capability for the database to interpret JavaScript for data interchange (i.e. JSON). A single

language across an entire stack increases productivity. Client-side developers who work in

Angular can easily understand most of the code on the server-side. Server-side code turns out to

3

be more coherent to front-end developers and vice versa. This makes application development

more straightforward and has appeared to decrease the development time.

The MEAN stack benefits from the qualities of Node, including non-blocking I/O, real-

time application development, and server-side scripting. Applications which take the advantages

of MEAN stack are chat system, real-time web applications like Facebook and Twitter which

display instant status update without page refresh.

1.1.1. MongoDB

MongoDB [5] is a powerful, adaptable, and scalable NoSQL document store model. In

MongoDB, data is stored in the database in a JSON format named BJSON, which stands for

Binary JSON, rather than rows and columns like in relational database. MongoDB has a capacity

to scale with various features that relational database provides like secondary indexes, sorting,

and queries [6]. “It provides high performance, high availability, and automatic scaling [4].”

Since MongoDB is scalable, it is easy to implement and gives back-end storage for high

traffic websites such as Facebook and Twitter where applications need to store huge comments

and posts [6].

There are six major concepts of the MongoDB [5]:

1. Zero or more databases can be created within MongoDB instance.

2. A database can have zero or more collections, where a collection is similar to a table of

a RDBMS (Relational Database Management System).

3. A collection can have zero or more documents, where documents are similar to rows of

tables.

http://bjson.org/
https://en.wikipedia.org/wiki/Relational_database_management_system

4

4. Documents can have one or more fields, where documents are similar to columns of

tables.

5. Indexes of MongoDB work as a counterpart of RDBMS.

6. Cursors are used to point the result set of data.

1.1.1.1. Features of MongoDB [5]

MongoDB provides many of the database functionalities that relational databases do. Apart

from inserting, selecting, updating and deleting data, the following are some additional features

of MongoDB:

 Indexing: MongoDB supports generic secondary indexes, permitting a variety of fast

queries, and gives unique, compound, and full-text indexing capabilities as well.

 Aggregation: MongoDB supports an “aggregation pipeline” that permits us to build

complex aggregations from simple pieces and allows the database to streamline it.

 Special collection types: MongoDB supports time-to-live accumulations for data that

ought to terminate at a certain time, such as sessions. It supports fixed-size collections,

which are useful for holding recent data, such as logs.

 File storage: MongoDB supports an easy-to-use protocol for storing large files and file

metadata.

1.1.1.2. MongoDB in MEAN Stack

In MEAN stack, MongoDB is the data store for applications. The node server supports a

variety of databases so the MongoDB can be replaced by any other database. Reasons why the

MongoDB fits well in the MEAN stack are listed below [4]:

5

 Document orientation: MongoDB is document-oriented and stores data in the JSON

format which is very similar to what is dealt in server-side and client-side scripts. It

doesn’t require the need to transfer data from rows to objects and vice versa. For

example, to create a document consisting of contact information and a contact address,

it’s not necessary to create two separate documents for basic information and address

details. Instead, they can be bundled together inside the same object under a different

key-value pair as shown in Figure 1.

Figure 1 Sample of MongoDB document

 High performance: MongoDB is known for its high performance and is capable of

dealing with the heavy traffic of users in an application. Corresponding to the current

use of an application, the back-end needs to be configured to handle heavy loads. The

MongoDB is highly capable of achieving this.

 High availability [7]: A replica set of the MongoDB maintains the same data set and

provides redundancy and high availability keeping high performance intact.

 High scalability [8]: MongoDB provides high scalability in performance by

considering its various key dimensions like hardware, application pattern, schema

design, and indexing [5]. MongoDB was intended to scale. Its document-oriented

model makes it simpler for it to part up information over various servers. MongoDB

6

consequently deals with adjusting information and loads over a group, redistributing

documents naturally and directing user request to appropriate machines. At the point

when a group requires more limits, new machines can be included and MongoDB will

make sense of how the current information ought to be spread to them.

 No SQL injection [9]: Database security is one of the most critical aspects of

information security. Access to an enterprise database grants an attacker control over

critical data. Back-end security is the most critical part that all application developers

need to focus on. With SQL injection, hackers can get control over critical data via

malicious queries. So, developers need to focus on SQL injection while using any back-

end database. In MongoDB, the data stored are JSON objects and are manipulated via

JSON queries not SQL strings. So, MongoDB is not susceptible to SQL injection.

1.1.1.3. MongoDB shell

MongoDB accompanies a JavaScript shell that permits interaction with a MongoDB

instance from the command line. With the shell, various queries can be performed on the data

including creating new documents, inserting new objects, finding data, and updating.

To run the Mongo shell, run mongo command and it will display version of Mongo shell,

and will be connected to test database as shown in Figure 2.

Figure 2 Screenshot of Mongo shell

7

The shell can be taken as JavaScript interpreter and is capable of running JavaScript

programs as illustrated in Figure 3 showing that Mongo shell is capable of running factorial

function calculating the result of factorial(4).

Figure 3 JavaScript program in Mongo shell

1.1.2. Express

Express is a lightweight framework based on Node. It sorts out web applications on the

server-side. Express is defined as "an insignificant and adaptable Node web application

structure” [4].

Express utilizes the Node HTTP module and connects components which are termed

middleware. Middleware is a pattern which permits code reuse inside the applications and even

imparts it to others as NPM modules. The key meaning of middleware is a capacity with three

parameters: request (or req), response (or res), and next [10].

Figure 4 lists the sample code that shows us how to define middleware.

8

Figure 4 Defining middleware [10]

Express is easy to configure, implement, control and provides several key components to

handle web requests. Express helps in building web applications and simple HTTP servers [4].

Since Express handles every server part and hides most of the inner working of Node, developers

don’t need to pay attention to additional server technology. Developers are allowed to pick

whichever libraries they require for a specific task which furnishes them with adaptability and

high customization. Some corporations which are using Express are MySpace, LinkedIn,

Segment.io and Klout [4]. In MEAN, Express works as a medium to transfer requests from client

to database and sends back responses from database to client.

1.1.2.1. Features of Express

Express is a light-weight framework for Node; it has features such as server setup, route

management, session, cookie management, cache management, and error handling.

Features of Express are explained in detail below:

 Server Setup: Express helps server to listen incoming requests and return responses.

Express defines directory structures where a developer can set folders to set static files

in a non-blocking way.

 Route management: Express makes it simple to define routes or URL management

which is attached directly to the Node script on the server.

9

 Error handling: Error handling is used across the whole application, and Express

provides an in-built support for handling various errors such as Error 401, 404, and 500.

In Express, error responses can be sent in multiple formats as shown in Figure 5, Figure

6, and Figure 7.

Figure 5 Error handling as Text Format

Figure 6 Error handling as HTTP response status

Figure 7 Error handling as JSON Format

 Easy integration: Express can be implemented simply on the reverse proxy server, e.g.

Ngnix, which allows integrating it into the existing secured system.

 Cookies: Express provides simple cookie management.

 Session and cache management: Express also enables session management and cache

management [4].

http://nginx.org/en/

10

1.1.3. AngularJS

AngularJS is a client-side JavaScript MVC system maintained by Google. It provides all

the functionality to handle client information in the browser, control information on the client-

side, and handle how components are shown in the browser view [11].

Table 1 explains a brief overview of AngularJS.

Table 1 Conceptual Overview [3]

S.No. Concept Description

1. Template Simply HTML codes

2. Directives Extended HTML with custom attributes and elements

3. Model
Medium with which users interacts and which are shown in the

views.

4. View
It is the DOM(Document Object Model), which is viewed from

the browser

5. Controller Business logic behind views

6. Scope Glue between a controller and a view.

7. Filters Formats the value of an expression when displayed to the user.

8. Data Binding Sync between model and view

9. Module
Creating separate sections with controller, service, factory, filters

and directive in order to organize app as its functionality

11

1.1.3.1. Advantages of AngularJS

Templating and two-way data binding are the major strengths of AngularJS which makes

the framework easy to use and understand. Advantages of AngularJS are:

 Data binding: AngularJS has a very clean method for binding data to HTML elements,

using its powerful scope mechanism.

 Extensibility: The AngularJS architecture allows us to easily extend almost every

aspect of the language to provide custom implementations.

 Clean: AngularJS makes developers to force on writing clean, logical code.

 Reusable code: The combination of extensibility and clean code makes it very easy to

write reusable code in AngularJS. The language often forces on doing so when creating

custom services.

 Support: Google is investing a lot into its AngularJS project, which gives it an

advantage over similar initiatives that have failed.

 Compatibility: AngularJS is based on JavaScript and has a close relationship with

jQuery. This makes it easier to begin integrating AngularJS into development

environment and reuse pieces of an existing code within the structure of the AngularJS

framework [4].

1.1.3.2. Features of AngularJS

Two-way data binding and the MVC pattern is the main feature of AngularJS as described

below:

12

 Two-way Data binding: AngularJS supports two-way data binding which means any

change in its template updates the model without a refresh. Similarly, AngularJS is

smart enough to track any change in model without updating template or DOM. This is

illustrated in Figure 9.

Figure 8 Sample code of two-way data binding

In the code shown in Figure 8, any value typed in the text box will make a change in

<h1> tag and will display the name instantly without any event call or button click.

AngularJS is distinctive in light of the fact that any perspective changes activated by a

client are quickly reflected in the model, and any adjustments in the model are

efficiently updated to a format.

Figure 9 Two-way Data Binding [4]

 MVC pattern of AngularJS

o Model: AngularJS models are regular JavaScript objects which are not extensions

of any base class or construct objects. In AngularJS, either regular JavaScript

classes or objects can be used as the model.

13

o View: It is just a DOM which is viewed from the browser. “Each time it encounters

a directive, AngularJS executes its logic to turn directives into dynamic parts of the

screen.” [11]

o Controller: Controllers are standard JavaScript capacities. Controllers don't need to

develop any structure for any classes nor call a specific AngularJS APIs to

effectively perform their job. One of the major features of AngularJS Controller is

to initialize a scope object.

Scope: A scope object or view-model acts as glue between view and controller as

shown in Figure 11. By allotting properties to scope instances, new values can be

made accessible to the layout for rendering. Front-end logic can be exposed by

defining function on a scope instance. Figure 10 illustrates the example code for

defining scope in the controller.

Figure 10 Scope instance

Then use it in a template as shown in the following code:

<h1> Hello, {{getName()}}! </h1>

14

Figure 11 View-model or scope [11]

 Dependency Injection: An AngularJS application is a collection of several different

modules that all come together to build an application. A dependency in the code

occurs when one object depends on another. Dependency injection is a method by

which an object can be given the dependencies that it requires to run. [4]

1.1.4. Node

Node [16] is a development framework originally developed in 2009 by Ryan Dahl, which

is built on Google’s V8 JavaScript engine. “Node is a platform built on Chrome's JavaScript

runtime for easily building fast and scalable network applications. Node uses an event-driven and

non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-

time applications that run across distributed devices.” [17]

Node is a server-side scripting language which can be used on server-side, client-side, and

can even be a web server. Before Node came into existence, JavaScript was simply used for user

interaction as a client-side script. In order to communicate with server, it required the support

from other server-side scripting language like PHP/Perl. Node can act independently on its own

on the server-side. Node even helps to reduce development time and resources and also tightens

the interaction between the web server and the script because web server, client-side code, and

server-side code all can be in the same language. The web server can run on a Node platform as a

Node module.

https://en.wikipedia.org/wiki/V8_%28JavaScript_engine%29

15

In the MEAN stack, Node acts as server-side platform which is similar to the Apache

system running with a server scripting language for creating applications [4].

1.1.4.1. Why Node?

There are many reasons for developers to use Node. They are listed as below [12]:

 JavaScript end-to-end: Node allows writing code both in client-side and server-side in

JavaScript. It is difficult to decide whether to use application logic in client-side or

server-side. With Node, JavaScript written in client-side can be easily used and

adjusted in server code and vice versa. Additionally, both client developer and server

developer can use the same common language which they will understand.

 Event-driven scalability: Node uses a single thread to handle multiple requests. Node

processes multiple requests in same thread using its event model, unlike Apache which

creates a new thread to handle any request. This makes Node web server more scalable

compared to Apache which follows multithreading mechanism to respond to multiple

requests.

 Extensibility: Node has many users and extremely dynamic community. Individuals

are giving new modules to amplify Node usefulness constantly. Additionally, it is

extremely easy to introduce and incorporate new modules in Node; where individual

can extend a Node task to incorporate new functionality.

 Fast implementation: Node can be installed and setups easily in few minutes and have

a working web server. Many manual and documentation are available in the Internet.

16

1.1.4.2. NPM and Node packages

One of the advantages of Node is its built-in tool, Node Package Manager (NPM). NPM

comes packaged with Node and helps to pull in various bundles of modules required in the

application [4]. NPM resolves the dependencies and version conflict in various modules. The

main purpose of NPM is to ease the use and installation of modules which are publicly available,

reusable components via an online repository. NPM acts as an infrastructure in Node to manage

packages. Various packages that are available via NPM can be found on its official website.

To check if NPM is already installed or not, use:

npm –v

If NPM is already installed, then it should display the version of NPM installed.

To install any module via NPM use:

npm install <module_name>

Installed packages are stored inside node_modules. All the details of packages like

version, dependencies, and other details can be found in the package.json file which are

auto updated after each npm install.

The following are some of the packages which can be easily installed via NPM:

 Express: A light weight framework for Node. Express can be installed by using this

command:

npm install express

https://npmjs.org/
http://expressjs.com/

17

 Mongoose: Package to interact with MongoDB. Mongoose can be installed by using

this command:

npm install mongoose

 MongoJS: Module to interact with MongoDB. MongoJS can be installed by using this

command:

npm install mongojs

 GruntJS: Package that helps to automate various tasks. GruntJS can be installed by

using this command:

npm install gruntjs

 PassportJS: Package for the verification of various social administrations. PassportJS

can be installed using this command:

npm install passportjs

 Socket.io: Package for building real-time web socket applications. Socket.io can be

installed by using this command:

npm install socket.io

1.1.4.3. Node Modules

Node modules are add-ons for Node for adding extra features as needed in application

development. Node modules are easily located and imported via NPM. Node modules can be

either core modules, local modules, or third party modules. Core module comes with the default

https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/mongojs
http://gruntjs.com/
http://passportjs.org/docs
http://socket.io/docs/

18

installation of Node and is loaded when Node server starts. Third party modules are incorporated

via NPM command.

To load any module, one needs to use ‘require’ function as follows:

var module = require ('module_name');

Figure 12 shows an example to load Node modules in the application:

Figure 12 Example to load various Node modules

Some of the third party Node modules used in the application are Express, Socket.io, Mongoose

and MongoJS. Details of Socket.io are explained as follows. An implementation and test result

of Socket.io is given in Chapter 4.

Socket.io

On the web application, in order to get real-time update, a user needs to perform some

event-based actions such as button click, link click, or the whole-browser refresh. But in some

applications like Twitter and Facebook, users will receive live post or tweets without performing

any action, which is possible due to the implementation of real-time technology [12]. There are

many mechanisms to achieve this, one of which is by using Socket.io [19]. Socket.io is a Node

library for building real-time web applications such as Chat System, getting live feeds, and

19

polling. Its main aim is to make an application to get live updates without a need to refresh the

browser.

Socket.io can be installed in Node application by issuing this command:

npm install socket.io

Socket.io is event-driven and has components for both a server-side and a client-side and

these components are used to communicate on both sides. Socket.io has two kinds of messages:

 System message: Sent by server to the client, especially when the user connects or

disconnects.

 User message: Sent by client to server.

Socket.io on server

In order to setup Socket.io in server part, one needs to include Socket.io by including:

var socketio = require('socket.io');

To get started with the Socket.io function, emit() is used to send data to Socket.io client

and .on (<connection string>) to listen for the incoming data as shown in Figure 13.

20

Figure 13 Socket.io start and connection

Socket.io on client

In order to setup Socket.io on the client the following steps are recommended:

 Create a Socket.io object.

 Use Socket.io object to send message to server and get response from the server as

shown in Figure 14.

Figure 14 Socket.io in client

21

1.2. LAMP Stack

LAMP is a web development platform comprising of efficient sets of open-source

software; Linux as operating system, Apache as web server, MySQL as database system, and

PHP/Perl as back-end scripting language. Each element in LAMP allows for seamless and

smooth integration with each other which makes LAMP one of the powerful platforms for web

application development. LAMP is one of the very old stacks preferred by many organizations.

LAMP provides full control over server and remote access which helps to perform administrative

operations via a Linux server from anywhere [13].

In the following sections, we discuss the details on the acronyms of LAMP stack.

1.2.1. Linux Operating System

Linux [20] is the operating system that runs the applications and computer operators to

access the devices on the computer to perform the assigned task. It is specifically noted for its

speed, insignificant hardware requirements, security, and remote administration. Linux is a fully

featured operating system that is free to use. Another significant point of Linux is its ability to

keep running with or without a Graphical User Interface (GUI), contingent upon user needs.

Linux was started by a student named Linux Torvalds from Helsinki, Finland where he was

working with Minix(a UNIX framework). Torvalds decided to develop an operating system

which would surpass the Minix standards. He started his advancement in 1991, and his first

public release was version 0.02. Improvement of Linux proceeds even now with updates released

as significant changes are made to improved new version release [13].

https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/Unix

22

1.2.2. Apache web server

Apache [21] is an open-source web server developed by Apache Software Foundation

(ASF). Apache work well with Linux operating system and allows virtual hosting which can run

multiple websites on a single server. Also available for Windows OS, the Apache server suffers

from decreases in performance due to Microsoft’s memory managements, as well as architectural

differences, so it is preferred with Linux environment.

1.2.2.1. Features of Apache server [13]

Features of Apache server are listed below:

1. Enhanced logging.

2. Bandwidth throttling.

3. Directory access protection.

4. Common Gateway support.

5. Secure sockets layer (SSL) support.

6. Built-in models.

1.2.3. MySQL Database System

MySQL is a relational database management system (RDBMs) invented by IBM researcher

Edgar Frank Codd in 1970. RDBMs allows users to represent advanced relationships between

data and compute their relationships with the speed, so users can go from design to

implementation easily, and can develop web applications to access terabytes of data and serve

thousands of web users per second [14].

https://en.wikipedia.org/wiki/Apache_Software_Foundation

23

MySQL is a powerful and robust database manager that enables to store and retrieve data with a

scripting language such as PHP. Different types of data such as Boolean operator, text, integers,

images, binary digits, ENUM or enumeration, binary large objects (BLOBs) and date can be

stored. Database is one of the major components for building dynamic applications. The term

“dynamic site” is derived from being able to utilize a single page of code to display different

information based on a user’s interaction. This would be virtually impossible without the use of a

database and a scripting language such as PHP to manipulate the data. MySQL is packed full of

features for tasks such as data replication, table locking, query limiting, user accounts, multiple

databases, persistent connections, and as of MySQL 5, stored procedures, triggers, and views

[13].

1.2.3.1. Features of MySQL [22]

Following are the features of MySQL:

1. It is a database management system which helps in computing and managing large

amount of data.

2. MySQL Databases are relational where data are stored in organized tables rather than

one big file or storeroom.

3. It is open-source software where anyone is able to use, download and modify.

4. MySQL is fast, robust, scalable, reliable, and easy to use. It can run in any platform;

desktop, laptop or any other application or web server.

24

5. MySQL server works in both client and server system that comprises of a multi-

threaded SQL server and backings distinctive back-end, client programs and libraries

and an extensive variety of APIs.

6. It provides a privilege and password system.

1.2.4. PHP Scripting Language

PHP [23] also termed PHP: Hypertext Preprocessor is a server-side scripting language or

programming language for building dynamic and interactive website or web applications, which

means it runs on a web server. A PHP script is processed by the PHP engine each time it runs.

PHP was originally created by Rasmus Lerdorf in 1994; the PHP reference implementation is

now produced by The PHP Group.

PHP can be embedded into HTML and enhance an application dynamically. A term

dynamic means whenever a page is viewed, its content is loaded as per request. These requests

can send either from GET Request via URL link, POST Request via Form submission. In

contrast to this is Static Web page, which remains same each time it is displayed. PHP helps to

build very user-friendly websites embedded with HTML and CSS. Developers can simply learn

the code, apply the logic, and then create a dynamic website that can interact with users on many

levels.

The process of running a PHP script on a web server is as follows:

1. A user sends the request via GET/POST/REQUEST method by clicking any link, URL

address or form submission from web browser.

25

2. The web server recognizes that the request sent via PHP script and instructs the PHP

engine to process and run the script.

3. PHP processes the request and response is sent back to the web browser which is

visible to the user in the form of HTML page on their web browser [14].

There are three fundamental regions where PHP scripts are utilized.

 Server-side scripting: To enable server-side scripting, it needs Common Gateway

Interface (CGI or server module), a web server and a web program. After the PHP

installation, the user can run a web server. PHP program output will be viewed from

web browser and PHP code will be viewed and written using any editors including

Notepad++, Dreamweaver, and Sublime.

 Command line scripting: PHP script can run without server and browsers as well. This

kind of utilization is perfect for scripts routinely executed utilizing Cron (on UNIX or

Linux) or Task Scheduler (on Windows). These scripts can likewise be utilized for basic

content preparing undertakings.

 Writing desktop applications: PHP is most likely not the absolute best language to

make a desktop applications with graphical client interfaces, yet one might want to

utilize some cutting-edge PHP highlights in a client-side applications one can likewise

utilize PHP-GTK to compose such projects. It helps to compose cross-stage applications

along these lines. PHP-GTK is an expansion to PHP.

1.3. Architectures

This section covers the working procedure of MEAN stack and LAMP stack.

https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://en.wikipedia.org/wiki/PHP-GTK

26

1.3.1. MEAN Architecture

Most web applications are implicit, a three-level architecture planning that comprises of

three essential layers: data, logic, and view. In web applications, the application structure, for the

most part, separates the database, server, and client. While in cutting edge web improvement, it

is broken into database, server logic, client logic, and client UI (User Interface).

In the MVC architecture, the logic, data, and presentation are isolated into three sorts of

objects, each taking care of its own tasks. The view handles the visual part, dealing with client

interaction. The controller responds to system and client requests, making the model and view to

change appropriately. The model handles information manipulation, responding to demands for

data or changing its state as indicated by the controller's directions [1].

Figure 15 Architecture of MEAN [1]

Figure 15 shows the typical application architecture of a MEAN Stack. AngularJS, being a

client side MVC, communicates to the Node server via Express. For any backend data request,

Node send request via MongoDB native driver or Mongoose. The response from the server is

27

transferred to the client via Express. In this way, there is a transfer of request and response back

and forth between the client and the server.

1.3.2. LAMP Architecture

LAMP is singularly focused on web applications. The architecture is very straightforward,

as illustrated in Figure 16. Linux forwards HTTP connections to Apache, which serves static

content directly from the Linux kernel [30]. Dynamic pages are forwarded by Apache to PHP,

which runs the PHP code to design the page. Database queries are sent to MySQL through PHP.

Administration is commonly handled through phpMyAdmin, and every major enterprise

management system can manage Apache and Linux.

Figure 16 LAMP Architecture [30]

https://en.wikipedia.org/wiki/PhpMyAdmin

28

Chapter 2 MEAN vs. LAMP

The MEAN stack gains popularity due to the features of its components: Node, MongoDB,

AngularJS, and Express. However, the MEAN stack should not be used for those applications

which involve CPU intensive tasks. The LAMP stack is the preferred choice for such CPU

intensive applications. But for simple Single Page Application (SPA), which requires high user

interaction, display and need high scalability, the MEAN stack is a best fit. This chapter sheds

light on the comparisons between the MEAN stack and the LAMP stack and describes some

reasons for choosing the MEAN stack over the LAMP stack.

Some of the reasons for choosing MEAN over LAMP are discussed below:

 Simplified Server Layer: The LAMP stack needs various Apache configurations to

setup server layer. One needs to have knowledge of various Apache configurations.

LAMP stack requires different configuration files such as http configuration,

and php.ini and need to setup its configuration as per the needs of the application.

The MEAN stack simplifies the server layer through the use of Node which provides

the better environment for running the server. Node handles every task from app route

requests to rewriting URLs or construct mapping with the use of just JavaScript code.

Node avoids the need to have a configuration file for each task. Since Node provides

everything in one layer, it simplifies server layer by reducing the chain of bugs created

via interaction between multiple layers for the Apache server. LAMP needs a separate

https://en.wikipedia.org/wiki/Single-page_application

29

web server for it to be hosted on, whereas in MEAN stack, it can be built locally using

Node’s built-in web server.

 Isomorphic code: JavaScript is the only language used in MEAN stack from server-

side scripting for Node and Express to client-side scripting using AngularJS. Even for

back-end, MongoDB uses JSON format to store documents. Queries can be written in

JSON format in Node server and will be sent via Express.js to front-end AngularJS.

This eliminates the need of different experts for front-end development, back-end

development, and server management. JavaScript is the only language used across the

MEAN stack unlike the LAMP stack which needs separate JavaScript experts for front-

end development, PHP/Perl experts for back-end development, and server experts for

server setup.

 Scalability: An application is scalable if it can expand as usage grows and also if it can

perform better with post expansion. Scalability determines how far the application can

run to meet the future requirements and expansion. In the LAMP stack, the Apache

server handles each request via a multithreaded approach. A new thread is created

whenever a connection is requested, to handle the request. An application might have to

handle multiple requests so multiple thread is created. Depending on the server

configuration, each application can process some limited number of requests. Apache

will use one thread per request. If there is a situation where number of requests exceeds

the server configuration, then a user may experience a connection timeout unless the

ongoing processes are completed and freed up.

In case of MEAN, Node utilizes an event-driven approach. Node is asynchronous and

single threaded so events are executed freely. In MEAN, instead of waiting for the

30

event to happen, the program will pass an event to the event handler queue and

continue with the main program stream. Once the event is ready, the program will be

back to it with a callback function, execute the code, and then return to the main flow of

the program.

 Non-blocking architecture: One feature that makes Node more powerful is its non-

blocking architecture. In the application, blocking means that when one line of code is

executing, then the rest of it is locked waiting for that current code to be finished. On

the other hand, in a non-blocking architecture, Node executes each line of code and

then via callback mechanism, it returns when the event actually happens. In LAMP, this

issue of blocking is solved via multiple threads of execution whereas in MEAN, Node

handles using non-blocking event loop in a single thread.

Figure 17 and Figure 18 show the detail processing in a multiple threaded server and

the Node server.

Figure 17 Multi-threading server [15]

31

Figure 18 Node.js server [15]

 Development time: In MEAN, JavaScript is used in each component of the stack, so

code is transparent. Transparency in code reduces the effort and the development time.

Front-end developers will be able to understand back-end program and vice versa. In

short, there is no need to seek different expertise for various components in MEAN,

which is not the case in LAMP.

 Data Transformation: JSON, which is a data interchange format, makes a subset of

the JavaScript language and does not have any additional feature that JavaScript

already has [18]. In MEAN, AngularJS, MongoDB, Express, and Node interpret, in

JSON format, for sending and receiving requests and responses between clients and

servers. MEAN uses the same JSON format for information globally, which makes it

easier and reduces time for formatting as it goes through each layer. The data streams

perfectly among every layer without reformatting and editing. In case of the LAMP

stack, MySQL has its own format for query results, and PHP has a code to import

32

MySQL data that helps in PHP processing, whereas in client manipulation there is a

need to write extra code for it to be displayed in the browsers [4].

 High Traffic: Since MongoDB is scalable, it is easy to implement and has the

capability to give great back-end storage for high traffic websites such as Facebook and

Twitter where application needs to store voluminous comments and posts. MongoDB

provides high scalability in performance by considering its various key dimensions

including hardware, application pattern, schema design and indexing. MongoDB comes

furnished with automatic sharing and full cluster support. MongoDB provides failover

support and automatic replication. Its document-oriented model makes it simpler for it

to partition information over various servers. MongoDB consequently deals with

adjusting information and loads over a group, redistributing documents naturally, and

directing user request to the right machines. At the point when a group requires more

resources, new machines can be included, and MongoDB will allocate to them.

 Extensibility: The MEAN stack provides flexibility in changing the structure of the

database. In any module, to add a new feature can be easily achieved via MongoDB

documents. If it was in the case of LAMP, it needs a new table or new field in a table

which can make huge change in application structure in coding and architecture.

 Performance: A number of benchmarks show that Node offers better performance due

to its event-driven architecture. Many organizations including Wal-Mart, PayPal, Uber,

and Yahoo, implement Node servers due to its better performance compared to other

native server technologies, and it reduces the high mobile traffic. Inclusion of a Node

server helps to reduce the response time drastically.

33

 Real-time application development: Many applications, such as news feed, weather

update, game score live update, and share market, might need to populate data in real-

time. In LAMP, these can be fulfilled by using Ajax functionality using third party

libraries such as jQuery, Backbone JS and knockoutJS. Although it is possible to get a

real-time feed, there will be continuous requests sent to the server from the client. In

case of the MEAN stack, these real-time updates can be retrieved using, the Node

Module named Socket.io (See in Chapter 4, 4.1.1.). Many organizations are taking the

benefits of real-time application by integrating Node into many of their operations.

 SQL or Query Injection: In any web application, SQL injection is a serious security

issue which could damage the whole application database via user interaction such as

user input POST, or GET URL. SQL Injection is a technique of affecting or hacking the

system by malicious users which can inject SQL commands in the queries and could

damage the system database [29]. In the LAMP stack, injected SQL query can alter

SQL statement which can even delete any table or the whole database.

For example:

SELECT * FROM <Table name> WHERE <id> = <Value>

<Value> can be parameter passed from user input or GET URL. If the user tries to

pass malicious parameters, then it may delete the table or drop database as shown

below:

SELECT * FROM <Table name> WHERE <id> = 1; DROP TABLE

<Table name>

Developer must apply various functionality and logic to prevent the system from SQL

injection. In the MEAN stack, client requests are assembled in the MongoDB queries,

https://en.wikipedia.org/wiki/Ajax_%28programming%29
http://backbonejs.org/
http://knockoutjs.com/documentation/introduction.html

34

which are built in a BJSON object. The queries are not built in a string format so

conventional SQL injection attack is not a problem and queries built in BJON format

provides an injection free process [17]. Basically, in BJSON format we pass key-value

in the query as shown in example below:

BSON query = BSON (“name" << <Value>);

The query will have a value such as (name: "Adam"). If the user tried to pass various

malicious character such as commas, colons, or brackets then the query would not

match any document. And the malicious users won't be able to hack the system and

make any alter or drop operation in the database.

35

Chapter 3 Application Development Environment Setup

The MEAN stack and LAMP stack are two different web application development

environments containing distinct components in their architecture (See in Chapter 1). These

components comprise the building blocks of both MEAN and LAMP stack architecture. And

these components need to be setup prior to the initiation of application development using either

of the stacks (MEAN and LAMP). In this chapter, we focus on application development by

setting up the environment and configuring the installation and integration of those individual

components for the MEAN and LAMP stack.

3.1. MEAN Stack Application Development

In MEAN, Node is used for the back-end server on which the entire application runs.

Express acts as back-end framework for Node that provides a robust set of features for

applications. Angular functions as front-end framework for application act as the interface for

users. MongoDB is the database where the application data are stored. Node, Express, Angular

and MongoDB, build the MEAN stack and together they can be used to build powerful

application using only JavaScript on both the back-end and the front-end.

3.1.1. Environment Setup

MEAN can be installed in any platform: Linux, Windows and Mac OS X. Initially, all the

components need to be installed, i.e. Node, MongoDB, AngularJS, and Express of the stack. The

36

installation of each component of MEAN is quite simple. The remaining steps are listed in a

chronological order:

1. In order to setup a Node server, a folder needs to be created for the application where all

the application files will be stored and created. This can be accomplished by issuing

following DOS command:

mkdir <application_folder>

2. In the application folder, create a JavaScript file with any name like app.js or

server.js. Then, open any terminal or command prompt and navigate to the

application folder issuing following command:

cd <application_folder>

3. Install the necessary packages using NPM command. To install Express use the following

command:

npm install express

This will download and install Express framework in the application by creating

node_modules sub-directory in the root directory of the current application.

Include Express in the Node Server using require command so that the APIs of

Express module can be used. This is accomplished by adding 2 lines of code in

server.js file as shown in Figure 19.

37

Figure 19 Including Express in MEAN Application

4. To test if server is running correctly in a defined port, include the portion of the code as

shown in Figure 20.

Figure 20 Testing server running at port 3000

5. From the command prompt, type the command shown in Figure 21 to start the server:

Figure 21 Server running at port 3000

A successful setup of a Node server can be verified by observing the print outs in the

console after issuing the server start command. For instance, in our case, the message

“Server running on port 300” in the console verified a successful setup of the

server in the application.

6. After that from browser, navigate to http://localhost:3000, where the message

sent from the server file should be displayed.

7. If there are any code changes in server.js file, then a server refresh is required. Type

Ctrl + C to stop the running server, then start it again by issuing this command:

node server.js

38

3.1.2. Client Template Setup

A simple HTML page can be used for the layout of the template. First, an Express

command need to be set to direct the template file that contains the layout of the application with

HTML, JavaScript, images and Cascading Style Sheet (CSS) files.

To connect the server to HTML template file, write the following code shown in Figure 22.

Figure 22 Template declaration

In this application, all the template files are stored under public folder for which a new

directory named public is created in the root folder. Inside public, the template file

index.html is created where basic HTML code for the view is coded.

 AngularJS Setup: In the template file, AngularJS is included by linking this script just

after the closing <body> tag.

<script src = "angular.min.js"></script>

Add ng-app to the HTML tag to let the application know about the inclusion of the

Angular module to make it ready to use all the features of Angular in the application.

The Angular controller can be added by adding ng-controller then adding the

script link for that controller JS file. AngularJS controller files are also added inside the

public folder.

39

In the AngularJS controller, code needs to be added to connect to the Angular module

as shown in Figure 23.

Figure 23 AngularJS setup

From the browser’s developer tool, console messages can be viewed to verify if the

controller is properly connected. From this controller, the $scope variable is used to

communicate with view. Since AngularJS is a two-way binding, this scope acts as glue

between view and model.

3.1.3. Route Management

In any application there might be multiple routes implying that the server should know

which page to direct to when requests come from the client. And, this is managed by the request

functionality of Express.

In server files, we add a section of code as shown in Figure 24.

40

Figure 24 Route Management

If the server displays a console message in the command prompt as shown in Figure 24, then

a console message indicates that it has received the request from the client, which can be viewed

in the terminal by issuing the command:

node server.js

In the controller, we add the section of code shown in Figure 25.

Figure 25 Client code for Route Management

Figure 25 shows post, get, delete and put request that helps in route management.

41

3.1.4. MongoDB Setup

MongoDB runs by issuing following command in the command prompt:

mongod

After running mongod in the command prompt, at the bottom, the display of the text

“listen waiting for connection on port 27017” indicates that MongoDB is

working correctly.

In order to perform queries from the command prompt, open another command prompt

then run the following command:

mongo

After running mongo in command prompt, it will display following information:

a. Version of MongoDB.

b. Connecting to: test.

It implies that the database is connecting and is using a default database named test.

Some of the basic queries that can be used in MongoDB are listed below:

To show all databases use this command:

show dbs

To create or use the database, use this command:

42

use <database_name>

MongoDB will respond with switched to DB <database_name>

To insert object in collection, query is passed as shown in Figure 26.

Figure 26 Insert query in MongoDB

Note that insertion can be done in a new collection, and we don’t need to create a

collection, because MongoDB will create it itself.

To view object of collection use this command:

db.<collection_name>.find()

db.<collection_name>.find().pretty()

We observed that, _id: ObjectID()is created by itself. It is a unique key added by

the MongoDB to identify each object uniquely. In the second command, .pretty()helps to

view the object in indented format as shown in Figure 27 and Figure 28.

43

Figure 27 To display data of Collection with find()

Figure 28 To display data of Collection with find().pretty()

To use MongoDB in the stack, different packages can be used like MongoJS, or Mongoose,

which can respectively be installed using command given below:

npm install mongojs

44

npm install mongoose

These commands will install the packages into node_modules folder.

In order to include MongoJS module in the server use require function as shown below:

var mongojs = require('mongojs');

var db = mongojs('db_name', ['collection_name']);

So, at first it includes MongoJS module and then it will ask to provide MongoDB database

and collection name.

3.2. LAMP Stack Application Development

In this section, we focus on the environment setup and application development using the

LAMP stack.

3.2.1. Environment Setup

A virtual environment Linux platform (Ubuntu) was setup in a virtual machine using VMware.

3.2.2. Apache Setup

Apache server was installed in Ubuntu by issuing following command in terminal:

sudo apt-get install Apache2

Proper installation of Apache was confirmed by issuing one of following URLs in the browser:

http://localhost

http://www.vmware.com/

45

or

http://127.0.0.1

3.2.3. PHP Setup

To setup PHP in Apache server, the following command was used:

sudo apt-get install php5 libApache2-mod-php5

After the installation of PHP, the Apache server was restarted using:

sudo /etc/init.d/Apache2 restart

Installation of PHP was checked by creating the test.php file in the root of Apache

server as shown in Figure 29 then fetching it in the browser by entering this URL:

http://localhost/test.php. The display of PHP Module information as shown in

Figure 30 confirmed its correct installation in Apache server.

Figure 29 To check phpinfo ()

46

Figure 30 PHP Module information displayed in http://localhost/test.php

3.2.4. MySQL Connection

 To install the MySQL server in Ubuntu, the following command was used:

sudo apt-get install mysql-server

In the installation procedure, we need to configure username and password. The default

username, i.e. root and default password, i.e. blank, was used.

 To check whether MySQL was installed correctly, type following command:

mysql

 To list existing databases, use this command:

show databases;

47

By default, MySQL have two databases: information_schema and test.

 To have privilege of super user, we need to assign username and password using this

command:

mysql –u root -p

48

Chapter 4 Case Study

Depending upon the application requirements, we can choose either the MEAN stack or the

LAMP stack for application development. We focus on the fact that the MEAN stack is preferred

over LAMP stack (See Chapter 2). In order to test and analyze the pros and cons of the MEAN

and LAMP stacks, two sample applications, Chat System and Address Book System, were

developed using both stacks followed by some benchmarking tests. Some of the criteria such as

real-time application development, performance, database flexibility, and data transformation are

demonstrated in this chapter. The Chat System demonstrates a real-time application development

scenario. The Address Book System is used to examine the performance, data transformation,

and database flexibility of the sample application. The performance of the application was

measured with the help of two benchmarking tools: Apache Bench and Siege.

The two applications are both built in LAMP stack and MEAN stack.

Chat System

Chat System is an application that allows two or more users to communicate in real-time

using a web interface. A similar Chat System was developed that allows multiple users to

transfer and receive messages among each other in real-time via a web interface. In the

developed Chat System shown in Figure 31 and Figure 32, a user is supposed to initiate or join

the chat by entering a username. The chat messages and username of the Chat users were saved

in the database for both the MEAN and LAMP stacks. The main motive to develop this system

was to see how the Socket.io module of Node in the MEAN stack was able to replicate the

https://en.wikipedia.org/wiki/ApacheBench
https://en.wikipedia.org/wiki/Siege_%28software%29

49

instant messaging in real-time, where as in LAMP Stack real-time communication is curtailed

due to the frequent transfer of messages between users and server.

Figure 31 Screenshot of Chat System in LAMP

Figure 32 Screenshot of Chat System in MEAN

50

Address Book System

Another application we developed for this paper is a simple CRUD (Create, Read, Update,

and Delete) application having address, latitude and longitude data as in Figure 33 and Figure 34.

Part of the reason for this application development was to see how easy or difficult it was to

create a simple create, read, update and delete functionality in both the stacks. The main aim was

to illustrate the data transfer rate in both the LAMP stack and the MEAN stack, database

flexibility, and scalability. For the testing purpose, around 16K address records were inserted in

both the stack applications.

Figure 33 Screenshot of Address Book System in LAMP stack

51

Figure 34 Screenshot of Address Book System in MEAN stack

4.1. Tests and Results

This section shows some of the criteria discussed in Chapter 2 to compare the test results

between the MEAN and LAMP stacks.

4.1.1. Real-Time Web Test for Chat System

The Chat System needs to get real-time messages without the aid of user actions like a

button click or a page refresh. In MEAN stack, we used Socket.io which is a Node module to get

real-time message updates and in LAMP stack we used AJAX which needs to send request to

server in regular interval to get the updated message. The number of requests sent from client to

server i.e. web performance can be observed via add-ons or pre-existing features in browser’s

developer tool.

52

Web performance

In most of the modern browsers like Firefox and Chrome, web performance can be

measured either by using browser’s developer tool or by installing add-on tools like

Firebug (for Firefox) which helps to measure the performance of any web application

[26]. Firebug is an extension for the Mozilla Firefox browser that allows debugging and

inspecting HTML, DOM, and JavaScript, and for detecting performance of any web

applications. From the Net tab of Firebug, we can retrieve information such as the number

of requests with total size, cache, IP addresses, status, the type of each request, and the total

timeline for each process.

For the Chat System built in the LAMP stack, in order to get real-time client-server

interaction, a client needs to send a request to the server in a set of time intervals which can

be viewed from the Net Tab using Firebug plugin in Firefox browser as shown in Figure

35. The Net Tab lists the URL of the request, status of the HTTP request, domain, remote

IP address, size of request, and the timeline to complete that request. In order to get the live

messages, the client needs to send request to the server in a regular time interval. We see

consecutive number of POST methods with action as list and ping so that we get real-

time messages.

53

Figure 35 Client request to get real-time update in LAMP stack

Whereas in the case of the Chat System built in the MEAN stack, only two requests are

sent, one for getting the old messages, and the other for posting message as shown in

Figure 36 and Figure 37. The MEAN stack uses Socket.io, therefore the server is able to

listen to the changes in the client to retrieve the live messages, as soon as the user sends the

chat messages it will be automatically updated in the message list.

Figure 36 GET method to load old messages in MEAN stack

Figure 37 POST method to send message in MEAN stack

Using the Socket.io module of the MEAN stack (See Chapter 1), we can get real-time

updates without refreshing the page or without any event trigger.

54

4.1.2. Extensibility

Initially, the Address Book System stored an address, latitude and longitude. In order to

check the scalability and data structure flexibility, additional information including city, zip

code, and state were added. In the case of the LAMP stack, the addition of information is only

possible by a change in data structure. For that reason, additional tables were created to store

additional data and also to check how JOIN queries act in process execution. But in MEAN,

there is no need to change the database data structure to store additional data. In the LAMP

stack, after updated requirements, two tables; one for storing the city, state, and zip code

(AddressDetail) and the other for storing latitude and longitude (LatLongDetail) were

added. The main table (AddressList) was joined with AddressDetail.

The database structures of AddressDetail before update in the LAMP and MEAN

stacks are shown in Table 2 and Figure 38.

Table 2 Table schema of AddressList before update in LAMP stack

55

Figure 38 Schema of collection before update in MEAN stack

In the LAMP stack, for the new updated requirements, AddressList needs to add a

foreign key to store addressDetailID and a new table addressDetail is needed as

shown in Table 3 and Table 4.

Table 3 Table schema of updated AddressList in LAMP stack

56

Table 4 Table schema of AddressDetail in LAMP stack

For the MEAN stack, the database schema doesn’t need to be changed to fulfill the new

requirement. In the same collection, nested JSON fields can be passed to represent the newly

added data as shown in Figure 39.

Figure 39 Schema of MEAN Stack after update

57

4.1.3. Performance and Load Testing

In any application development, performance and load balance are essential. For

calculating the performance and load testing on the server, benchmarking tools such as Siege and

Apache Bench were used. For testing the performance of both stacks, experiments were

conducted using Apache Bench and Siege as described in the next section.

4.1.3.1. Response time test using Apache Bench

Apache Bench is a command line platform. In Windows OS, Apache Bench comes with

default Apache server installation. And in Ubuntu, Apache Bench can be installed using

following commands in the terminal:

sudo apt-get install apache2-utils

For this test, we used Apache Bench tool to test the response time of Address Book System

developed in the MEAN stack running in the Node server and the LAMP stack running in

Apache server with various levels of concurrency and numbers of requests. Concurrency is the

measure of how many simultaneous user sessions are active on a web application at a given time.

With an increase in concurrency, we can test how many concurrent user sessions a web

application can support in terms of response time to perform any task.

This is a sample command for benchmarking a server running locally on port 8080 with

5,000 total requests and 1,000 concurrent requests:

ab -n 5000 -c 1000 http://localhost:8080/

58

The MEAN stack running in Node server executed faster as indicated by the lower

response time of MEAN compared to LAMP running in the Apache server. Several tests were

performed with increases in concurrency and the number of request as shown in Table 5. The

tests were performed for MEAN and LAMP with the concurrency set to 10, 50, and 100, and the

number of request as 500, 1000, 5000, and 10000. Even with the increase in concurrency and

number of requests, the response times seem to be lower in the MEAN stack than it was for

LAMP stack as shown in Figure 40 which indicates that response time of the MEAN stack is

almost 100 times faster than that of the LAMP stack.

Table 5 Response time in MEAN and LAMP

Figure 40 Response Time Graph with concurrency and 10000 Requests

59

4.1.3.2. Data transfer test using Siege

For testing loads in both applications built in the MEAN and LAMP stacks, the Siege

benchmarking tool was used. Siege is an HTTP benchmarking and load testing tool. The

installation procedures for Siege in Windows and Linux are:

For installing Siege in Windows following two steps need to be performed. First, download

the latest Siege zipped file. And then extract it to use it from the command line.

For installing Siege in Linux, following command needs to be issued from the terminal:

sudo apt-get install siege

Below given is a sample command for benchmarking a server running locally on port 8080

with 1,000 concurrent requests:

siege -c 1000 http://localhost:8080/

The test performed by Siege provides elapsed time, the amount of data transferred,

response time, throughput, and transaction rate. These data were collected from Siege by passing

the concurrency value and the URL of the application as the input. For illustrating the data

transfer rate in Address Book System, Siege was used to measure the amount of data transferred

in the MEAN and LAMP stack applications. The data transferred is the sum of the data

transferred which includes the header information as well as the content. The result of the Siege

test for data transferred for both the LAMP and MEAN stacks is shown in Table 6. The

comparison graph of showing data transformation between the MEAN and LAMP stacks is

shown in Figure 41. We see the difference in data transferred in both stacks. The MEAN stack is

60

only one of many language applications where only JSON is used to transfer data from client to

server and vice versa. A MEAN application takes less data compared to a LAMP stack. In the

LAMP stack, there is a need to convert data from JSON to PHP and vice versa to exchange data

between client and server. Also, there is a need to convert data from PHP to SQL to send data

between server and back-end database.

Table 6 Data transferred in MEAN and LAMP with different concurrency

Figure 41 Data Transferred Graph

61

Chapter 5 Limitations and future enhancement

In this paper, we focused on the introduction to the MEAN and LAMP stacks followed by

the situations where MEAN stack excels relative to the LAMP stack and where the MEAN stack

is therefore preferred over LAMP stack. We didn’t mention those situations where the MEAN

stack should not be used. An analysis of the shortcomings of the MEAN stack would provide us

with a better understanding of MEAN and its applicability. Though, this paper demonstrated how

the MEAN stack is good for real-time application development, and how it is scalable to cope

with the requirement changes by two sample applications, there are limitations to our case study.

For example, our case study doesn’t show how MEAN reacts with CPU intensive applications.

Therefore, this paper could benefit by introducing a case study that deals with CPU intensive

tasks.

Following are some of the cases where the MEAN stack would not work efficiently and in

those situations, the LAMP stack might be a best fit [28].

Maintaining relational data and transactions:

The MEAN stack uses MongoDB for data storage which is good for data flexibility and

scalability. But, MongoDB is not good in applications that need to maintain relational data and

transactions. Scenarios which needs to maintain relational data and transactions are the

application that needs to store a deposit into a bank account, entering the purchase details in the

ecommerce application, or application that keeps the track of loans. For maintaining relational

data and transactions, the LAMP stack best fits. It would be a good test to see how MEAN

62

performs with relational databases because not all the circumstances suffice with NoSQL

databases like MongoDB. A comparison of the LAMP stack with the MEAN stack using

relational databases should show how relatively stable and reliable MEAN is, when it is

integrated with non-NoSQL databases. We can perform various test cases between applications,

built in the LAMP stack and MEAN stack but using MySQL instead of MongoDB.

Access and storage pattern:

MongoDB is a NoSQL document-oriented database where the JSON format is used to store

documents. Using the property of JSON, we can flexibly derive documents using MongoDB

queries. MongoDB is not designed to use joins; we need to store documents in nested JSON

format. Although this makes the retrieval of record fast since no joins are used, it can be difficult

to perform partial updates on nested or aggregated entities. A test can be made by comparing the

application which needs partial updates built in the LAMP and MEAN stacks.

Concurrency model:

In the MEAN stack, Node uses a single-threaded event loop via JavaScript's callback

functionality. And these JavaScript callbacks are queued for execution. In case of LAMP stack, it

uses multi-threaded approach for performing tasks. We may have different scenarios where a

thread or actor model makes sense. So, we can develop those applications which needs multiple

threads and see the difference using the LAMP stack and the MEAN stack.

63

Chapter 6 Conclusion

We introduced and discussed two kinds of stack technologies for developing web

applications: the MEAN stack and the LAMP stack. The MEAN stack is a software bundle

combining MongoDB as the NoSQL database, Express as a light-weight framework of Node for

the server-side scripting, Angular as client-side MVC platform for client-side scripting, and

Node as the server built with JavaScript code. The LAMP stack is the combination of Linux as

the operating system, Apache as the web server, PHP/Perl for server-side scripting and MySQL

as the database system. In the MEAN stack, JavaScript is the only programming language both

for client-side and server-side. In the LAMP stack, a different scripting language is used

respectively for client-side scripting and server-side scripting.

The increasing popularity of using JavaScript as both a client-side and server-side scripting

language and for database connectivity has made MEAN one of the leading web application

frameworks. In MEAN, we use JavaScript for client-side scripting, server-side scripting,

database queries, and as a server. With MEAN, we don’t need to decide on the combination of

technology to be used for front-end to back-end scripting and database connectivity. MEAN is

the blend of JavaScript components which presents itself as a complete programming language.

The MEAN stack is built exclusively in JavaScript, so it is one language to manage client-side,

server-side, and database. All the components used in the MEAN stack are completely open-

source and are currently supported by corporate developers such as MongoDB and Google.

MEAN is very easy to get started as the both front-end and back-end are built using one

language. All the components in MEAN are relatively light-weight. With MEAN, front-end

64

developers are able to understand the back-end code and back-end developers are able to

understand front-end code. Even database queries in MEAN are more like JavaScript code.

Since, MEAN exclusively uses JavaScript from client-side to server-side as well as for databases

storing data in JSON format; it might reduce application development times and be faster.

The MEAN stack is flexible and scalable. The MongoDB does not force developers to

finalize the data structure schema, which can be agile. Data structure schema can be changed as

per business requirements without much impact at any stage of a software development lifecycle.

Angular is good for single page application development and is responsive. Node is scalable and

is good in handling asynchronous calls and managing lots of concurrent tasks in a single thread.

Node creates an environment for applications requiring high-level IO tasks such as for web

servers to serve multiple connections and requests with limited memory.

We compared the MEAN stack with another popular stack, the LAMP stack, which has

been applied successfully for decades. In this paper, we focused on the strength of the MEAN

stack with two applications (Chat System and Address Book System), built to demonstrate the

benefits of the MEAN stack over the LAMP stack.

In Chat System, both the LAMP and MEAN stacks displayed real-time messages without

any button clicks or page refreshes. In the LAMP stack, continuous requests were sent to the

server for getting the updated message where as in the MEAN stack live messages were

displayed without any requests from client to server.

Address Book System demonstrated performance in context including data transformation,

response time, and database flexibility of the sample application. The performance of the

application was measured with the help of benchmarking tools. The data transformation rate was

65

beneficially lower in the MEAN stack compared to the LAMP stack. In the MEAN stack, the

same JSON formats are used to transfer data from AngularJS to Node and from Node to

MongoDB, so there is no need for extra conversion. In the LAMP stack, the frontend JSON

format needs to be changed to a PHP format and a PHP format to a MySQL query in order to

transfer data back and forth from client to server and vice versa.

66

References

[1] Holmes, S. (2013). Getting MEAN with Mongo, Express, Angular and Node.

Manning Publication.

[2] Davis, S. (2014). Mastering MEAN introducing the MEAN Stack IBM.

[3] AngularJS Official Document, Superheroic JavaScript MVW Framework (2010).

Retrieved from http://www.webcitation.org/6enl2KElY

[4] Sevilleja, C., & Lloyd, H. (2015). MEAN Machine, A beginner’s practice guide to the

Javascript stack. Leanpub.

[5] Chodorow, K. & Dirolf, M. (2010). MongoDB, The Definitive Guide. O’reilly

Publishing.

[6] Segun, K. (2010). The Little MongoDB Book.

[7] MongoDB Documentation Release 3.0.2, (April 2015), Retrieved from

http://www.webcitation.org/6enlUBi3K

[8] Performance Best Practices for MondoDB: A MongoDB White Paper. Dec, 2015

[9] Imperva Web Application Attack Report, (July, 2013), retrieved from

http://www.webcitation.org/6enldqBHW

[10] Mardan, A. (2014). Express.JS Guide. Lean Publishing.

[11] Kozlowski, P., & Bacon, P.D. (2013). Mastering Web Application Development with

AngularJS. PACKT publication.

[12] Rai, R. (2014). Socket.IO Real-time Web Application Development. PACKT

Publishing

[13] Rosebroc, E., &Filson, E. (2004). Setting up LAMP: Getting Linux, Apache, MySQL

and PHP Working Together. Sybex Inc.

[14] Doyle, M. (2010). Beginning PHP 5.3. Wiley Publishing.

[15] Mejia, A. (2014). MEAN Stack Tutorial MongoDB, ExpressJS AngularJS NodeJS

[16] Node.js Official Website. (2009). Node.js v5.1.0 Documentation, [Online], Available:

https://node.js.org

http://www.webcitation.org/6enl2KElY
http://www.webcitation.org/6enlUBi3K
http://www.webcitation.org/6enldqBHW
https://node.js.org/

67

[17] MongoDB official link. (2016). Retrieved from

http://www.webcitation.org/6fIDfFpZY

[18] Smith, B. (2015). Beginning JSON. Apress Publication

[19] Kurniawan, A. (2014). Node.js Succinctly. Syncfusion Inc.

[20] What is Linux: An overview of the Linux Operating System. (2009). Retrieved from

http://www.webcitation.org/6enlps2je

[21] The Apache Software Foundation. Apache, HTTP Server. (1997 - 2015) Retrieved

from http://www.webcitation.org/6enlzEFLb

[22] MySQL 5.7 Reference Manual. (2016). Retrieved from

http://www.webcitation.org/6enm8ySfc

[23] PHP Manual. (2001 - 2016). Retrieved from http://www.webcitation.org/6enmH7Onx

[24] Ortiz, A. (2013, March). Server-side Web Development with JavaScript and Node.js.

Retrieved from http://www.webcitation.org/6enmqb5TO

[25] Sample CSV Data. Retrieved from http://www.webcitation.org/6enmtdF54

[26] Gube, J. (2008). 15 Helpful In-Browser Web Development Tools. Retrieved from

http://www.webcitation.org/6evWElbaH

[27] Joe. D. (2013). Siege-windows. Available: https://code.google.com/archive/p/siege-

windows/

[28] Clayton, R. (2014). Mean’s great, but then you grow up. Retrieved from

http://www.webcitation.org/6gOmx39S8

[29] W3Schools. (n.d.). SQL Injection. [Online], Available:

http://www.w3schools.com/sql/sql_injection.asp

[30] Informediate. (n.d). LAMP (Software Architecture) Retrieved from

http://www.webcitation.org/6gTOX2LIV

http://www.webcitation.org/6fIDfFpZY
http://www.webcitation.org/6enlps2je
http://www.webcitation.org/6enlzEFLb
http://www.webcitation.org/6enm8ySfc
http://www.webcitation.org/6enmH7Onx
http://www.webcitation.org/6enmqb5TO
http://www.webcitation.org/6enmtdF54
http://www.webcitation.org/6evWElbaH
https://code.google.com/archive/p/siege-windows/
https://code.google.com/archive/p/siege-windows/
http://www.webcitation.org/6gOmx39S8
http://www.w3schools.com/sql/sql_injection.asp
http://www.webcitation.org/6gTOX2LIV

68

Appendix

Source Code:

Chat System with MEAN:

index.html
1. <!DOCTYPE html>
2. <html>

3. <head>
4. <title>MEAN Chat Application:

5. </title>
6. </head>

7. <head>
8. <meta name="viewport" content="width=device-width, initial-scale=1.0">

9. <body ng-app="myApp">
10. <divclass="container" ng-controller='ChatCtrl'>

11. <div>
12. <h4class="hidden-xs">MEAN Chat Application:

13. </h4>
14. <hr/>

15. <divclass="box box-warning direct-chat direct-chat-warning">
16. <divclass="box-body">

17. <divclass="direct-chat-messages">
18. <divclass="direct-chat-msg" ng-

repeat='text in messages | filter :filterText'>

19. <divclass="direct-chat-info clearfix">

20. <spanclass="direct-chat-name">{{ text.username }}
21.

22. </div>
23. <imgclass="direct-chat-

img"src="http://upload.wikimedia.org/wikipedia/en/e/ee/Unknown-

person.gif"alt="">

24. <divclass="direct-chat-text right">
25. {{ text.message }}

26.
27. </div>

28. </div>
29. </div>

30. </div>
31. <divclass="box-footer">

32. <divclass="clearfix">
33. <form>

34. <divclass="input-group">
35. <labelclass="radio">Enter your username

36. </label>
37. <inputclass="form-control" ng-

model="userName" autofocus="autofocus">

38. </div>

39. </form>
40. </div>

41. <form ng-submit="sendMessage()">
42. <divclass="input-group">

69

43. <inputtype="text" placeholder="Type message..." autofocus=
"autofocus"class="form-control" ng-model="message" ng-enter="sendMessage()">

44. <spanclass="input-group-btn">
45. <buttontype="submit"class="btnbtn-warning btn-

flat">Send

46. </button>
47.

48. </div>
49. </form>

50. </div>
51. </div>

52. </div>
53. </div>

54. <scripttype='text/javascript'src='/socket.io/socket.io.js'>
55. </script>

56. <scripttype="text/javascript"src ="client.js">
57. </script>

58. </body>

59. </html>

client.js
1. var app = angular.module('myApp', []);

2. app.directive('ngEnter', function() {
3. returnfunction(scope, element, attrs) {

4. element.bind("keypress", function(event) {
5. if (event.which === 13) {

6. scope.$apply(function() {
7. scope.$eval(attrs.ngEnter);

8. });
9. event.preventDefault();

10. }
11. });

12. };
13. });

14. app.factory('MessageCreator', ['$http', function($http) {
15. return {

16. postMessage: function(message, callback) {
17. $http.post('/message', message)

18. .success(function(data, status) {
19. callback(data, false);

20. }).
21. error(function(data, status) {
22. callback(data, true);

23. });

24. }
25. }

26. }])
27. app.controller('ChatCtrl', ['$scope', 'MessageCreator', function($scope, Message

Creator) {

28. var date = new Date();

29. $scope.userName = '';
30. $scope.message = '';

31. $scope.dateTime = date;
32. $scope.filterText = '';

33. $scope.messages = [];
34. var socket = io.connect();

35. //recieve new messages from chat
36. socket.on('receiveMessage', function(data) {

37. $scope.messages.unshift(data);
38. $scope.$apply();

70

39. });

40. //load previous messages from chat
41. socket.on('pastMessages', function(data) {

42. $scope.messages = data.reverse();
43. $scope.$apply();

44. });
45. //send a message to the server

46. $scope.sendMessage = function() {
47. if ($scope.userName == '') {

48. window.alert('Choose a username');
49. return;

50. }
51. if (!$scope.message == '') {

52. varchatMessage = {
53. 'username': $scope.userName,

54. 'message': $scope.message,
55. 'dateTime': $scope.dateTime

56. };
57. MessageCreator.postMessage(chatMessage, function(result, error) {
58. if (error) {

59. window.alert('Error saving to DB');
60. return;

61. }

62. $scope.message = '';
63. });

64. }
65. };

66. }]);

app.js
1. var express = require('express');
2. var http = require('http');

3. var path = require('path');
4. var mongoose = require('mongoose');

5. varsocketio = require('socket.io');
6. var app = express();

7.
8. //Connect to local MongoDB

9. var db = mongoose.connection;
10. db.on('error', console.error);

11. mongoose.connect('MongoDB://localhost/GDG');
12.

13. //MongoDB Schemas
14. varchatMessage = newmongoose.Schema({

15. username: String,
16. message: String,

17. dateTime: Date
18. });

19. var Message = mongoose.model('Message', chatMessage);
20. app.set('port', process.env.PORT || 3000); // all environments
21. app.use(express.static(path.join(__dirname, 'public')));

22. app.use(express.favicon());

23. app.use(express.logger('dev'));
24. app.use(express.json());

25. app.use(express.urlencoded());
26. app.use(express.methodOverride());

27. app.use(app.router);
28. if ('development' == app.get('env')) { // development only

29. app.use(express.errorHandler());

71

30. }

31. app.post('/message', function(req, res) {
32. var date = new Date();

33. var message = new Message({

34. username: req.body.username,

35. message: req.body.message,
36. dateTime: date

37. });
38. message.save(function(err, saved) {
39. if (err) {

40. res.send(400);
41. return console.log('error saving to db');

42. }

43. res.send(saved);
44. io.sockets.emit('receiveMessage', saved);

45. console.log('message: ' + date);
46. })

47. });
48.

49. app.get('/message', function(req, res) {
50. Message.find(function(err, allMessages) {
51. if (err) {
52. return res.send(err);

53. };
54. res.send(allMessages);

55. })
56. });

57. app.get('*', function(req, res) {
58. res.sendfile('./public/index.html');

59. });
60. var server = http.createServer(app).listen(app.get('port'), function() {

61. console.log('Express server listening on port ' + app.get('port'));
62. });

63. //Start Socket.io
64. vario = socketio.listen(server);

65. io.set('log level', 1);
66. //Socket on connect

67. io.sockets.on('connection', function(socket) {
68. console.log('client connected');

69. Message.find(function(err, allMessages) {
70. if (err) {

71. returnconsole.error(err)
72. };

73. socket.emit('pastMessages', allMessages);
74. })

75. });

72

Chat System with LAMP:

index.php

1. <?php

2. require_once'Controller.php';
3. $chatApp=newController();?>

4. <!doctype html>
5. <html ng-app="ChatApp">

6. <head>
7. <title>LAMP Chat Application:

8. </title>
9. </head>

10. <scriptsrc="Controller.js">
11. </script>

12. <body ng-controller="ChatAppCtrl">
13. <divclass="container">

14. <h4class="hidden-xs">LAMP Chat Application:
15. </h4>

16. <hr/>
17. <divclass="box box-warning warning">

18. <divclass="box-body">
19. <divclass="messages">

20. <divclass="msg" ng-repeat="message in messages" ng-
if="historyFromId< message.id" ng-class="{'right':!message.me}">

21. <divclass="chat-info clearfix">
22. <spanclass="chat-name" ng-class="{'pull-left':message.me, 'pull-

right':!message.me}">{{ message.username }}

23.
24. <spanclass="chat-timestamp " ng-class="{'pull-

left':!message.me, 'pull-right':message.me}">{{ message.date }}

25.
26. </div>

27. <imgclass="chat-img"src="Unknown-person.gif"alt="">
28. <divclass="chat-text right">

29. {{ message.message }}
30.

31. </div>
32. </div>

33. </div>
34. <divclass="box-footer">

35. <divclass="clearfix">
36. <form>

37. <divclass="input-group">
38. <labelclass="radio">Enter your username

39. </label>
40. <inputclass="form-control" ng-

model="me.username" autofocus="autofocus" ng-blur="WriteCookie()">

41. </div>

42. </form>
43. </div>

44. <form ng-submit="saveMessage()">
45. <divclass="input-group">

46. <inputtype="text" placeholder="Type message..." autofocus="a
utofocus"class="form-control" ng-model="me.message" ng-enter="saveMessage()">

47. <spanclass="input-group-btn">
48. <buttontype="submit"class="btnbtn-warning btn-

flat">Send

49. </button>

73

50.

51. </div>
52. </form>

53. </div>
54. </div>

55. </div>
56. </div>

57. </body>

58. </html>

controller.php

1. <?php
2. require_once 'SPA_Common.php';

3. require_once 'Model.php';
4.
5. class Controller extends SPA_Common\Controller

6. {
7. protected $_model;

8.
9. public function __construct()

10. {
11. $this->setModel('SPA_Chat\Model');

12. parent::__construct();

13. }
14.
15. public function listAction()

16. {
17. $this->setHeader(array(

18. 'Content-Type' => 'application/json'

19.));
20. $messages = $this->getModel()->getMessages();

21. foreach ($messages as &$message) {
22. $message->me = $this->getServer('REMOTE_ADDR') === $message->ip;

23. }
24. returnjson_encode($messages);

25. }
26.
27. public function saveAction()

28. {
29. $username = $this->getPost('username');
30. $message = $this->getPost('message');

31. $ip = $this->getServer('REMOTE_ADDR');
32. $this->setCookie('username', $username, 9999 * 9999);

33. $result = array(
34. 'success' => false

35.);
36. if ($username && $message) {

37. $cleanUsername = preg_replace('/^' . ADMIN_USERNAME_PREFIX . '/', ''
, $username);

38. $result = array(
39. 'success' => $this->getModel()-

>addMessage($cleanUsername, $message, $ip)

40.);

41. }
42. if ($this->_isAdmin($username)) {

43. $this->_parseAdminCommand($message);

44. }
45. $this->setHeader(array(

46. 'Content-Type' => 'application/json'

47.));

74

48. returnjson_encode($result);

49. }
50. private function _isAdmin($username)

51. {
52. returnpreg_match('/^' . ADMIN_USERNAME_PREFIX . '/', $username);

53. }
54. private function _parseAdminCommand($message)

55. {
56. if ($message == '/clear') {

57. $this->getModel()->removeMessages();

58. returntrue;

59. }
60. if ($message == '/online') {

61. $online = $this->getModel()->getOnline(false);

62. $ipArr = array();

63. foreach ($online as $item) {
64. $ipArr[] = $item->ip;

65. }
66. $message = 'Online: ' . implode(", ", $ipArr);
67. $this->getModel()->addMessage('Admin', $message, '0.0.0.0');

68. returntrue;

69. }
70. }

71.
72. private function _getMyUniqueHash()

73. {
74. $unique = $this->getServer('REMOTE_ADDR');

75. $unique .= $this->getServer('HTTP_USER_AGENT');
76. $unique .= $this->getServer('HTTP_ACCEPT_LANGUAGE');

77. return md5($unique);

78. }

79.
80. public function pingAction()

81. {
82. $ip = $this->getServer('REMOTE_ADDR');

83. $hash = $this->_getMyUniqueHash();
84. $this->getModel()->updateOnline($hash, $ip);

85. $this->getModel()->clearOffline();
86. $this->getModel()->removeOldMessages();

87. $onlines = $this->getModel()->getOnline();
88. $this->setHeader(array(

89. 'Content-Type' => 'application/json'
90.));

91. returnjson_encode($onlines);
92. }

93. }
94. ?>

95.

controller.js

1. varChatApp = angular.module('ChatApp', ['ngCookies']);

2. ChatApp.directive('ngEnter', function() {
3. returnfunction(scope, element, attrs) {

4. element.bind("keydownkeypress", function(event) {
5. if (event.which === 13) {

6. scope.$apply(function() {
7. scope.$eval(attrs.ngEnter);

8. });

75

9. event.preventDefault();

10. }
11. });

12. };
13. });

14. ChatApp.controller('ChatAppCtrl', ['$scope', '$http', '$cookies', '$cookieStore'
,

15. function($scope, $http, $cookies, $cookieStore) {
16. $scope.urlListMessages = '?action=list';

17. $scope.urlSaveMessage = '?action=save';
18. $scope.urlListOnlines = '?action=ping';

19. $scope.pidMessages = null;
20. $scope.pidPingServer = null;

21. $scope.me = [];
22. $scope.messages = [];

23. $scope.online = null;
24. $scope.lastMessageId = null;

25. $scope.historyFromId = null;
26. $scope.WriteCookie = function() {

27. $cookies.username = $scope.me.username;
28. };

29. $scope.me = {
30. username: $cookies.username,

31. message: null
32. };

33. $scope.saveMessage = function(form, callback) {
34. var data = $.param($scope.me);
35. if (!($scope.me.username && $scope.me.username.trim())) {
36. return $scope.openModal();

37. }
38. if (!($scope.me.message && $scope.me.message.trim() &&

39. $scope.me.username && $scope.me.username.trim())) {
40. return;

41. }
42. $scope.me.message = '';
43. return $http({

44. method: 'POST',

45. url: $scope.urlSaveMessage,
46. data: data,

47. headers: {
48. 'Content-Type': 'application/x-www-form-urlencoded'

49. }
50. }).success(function(data) {
51. $scope.listMessages(true);

52. });

53. };
54. $scope.replaceShortcodes = function(message) {

55. varmsg = '';
56. msg = message.toString().replace(/(\[img])(.*)(\[\/img])/, "<imgsrc=

'$2' />");

57. msg = msg.toString().replace(/(\[url])(.*)(\[\/url])/, "<a href='$2'

>$2");

58. returnmsg;

59. };
60. $scope.getLastMessage = function() {
61. return $scope.messages[$scope.messages.length - 1];

62. };

63. $scope.listMessages = function(wasListingForMySubmission) {
64. return $http.post($scope.urlListMessages, {}).success(function(data)

 {

65. $scope.messages = [];

76

66. angular.forEach(data, function(message) {

67. message.message = $scope.replaceShortcodes(message.message);

68. $scope.messages.push(message);
69. });

70. varlastMessage = $scope.getLastMessage();
71. varlastMessageId = lastMessage && lastMessage.id;
72. if ($scope.lastMessageId !== lastMessageId) {

73. $scope.onNewMessage(wasListingForMySubmission);

74. }
75. $scope.lastMessageId = lastMessageId;

76. });
77. };

78. $scope.onNewMessage = function(wasListingForMySubmission) {
79. $scope.scrollDown();

80. };
81. $scope.pingServer = function(msgItem) {
82. return $http.post($scope.urlListOnlines, {}).success(function(data)

{

83. $scope.online = data;
84. });

85. };
86. $scope.init = function() {

87. $scope.listMessages();
88. $scope.pidMessages = window.setInterval($scope.listMessages, 3000);

89. $scope.pidPingServer = window.setInterval($scope.pingServer, 8000);

90. };

91. $scope.scrollDown = function() {
92. varpidScroll;

93. pidScroll = window.setInterval(function() {
94. $('.direct-chat-

messages').scrollTop(window.Number.MAX_SAFE_INTEGER * 0.001);

95. window.clearInterval(pidScroll);

96. }, 100);
97. };

98. $scope.init();
99. }

100.]);

Model.php

1. <?php

2. namespaceSPA_Chat;
3. require_once 'SPA_Common.php';

4. useSPA_Common;
5. class Model extends SPA_Common\Model

6. {
7. public function getMessages($limit = CHAT_HISTORY, $reverse = true)

8. {
9. $response = $this->db->query("(SELECT * FROM messages

10. ORDER BY `date` DESC LIMIT {$limit}) ORDER BY `date` ASC");
11. return $response->getResults();

12. }
13. public function addMessage($username, $message, $ip)

14. {
15. $username = addslashes($username);

77

16. $message = addslashes($message);
17. return (bool) $this->db->query("INSERT INTO messages

18. VALUES (NULL, '{$username}', '{$message}', '{$ip}', NOW())");

19. }
20. public function removeMessages()

21. {
22. return (bool) $this->db->query("TRUNCATE TABLE messages");

23. }
24. public function removeOldMessages($limit = CHAT_HISTORY)

25. {
26. returnfalse;
27. return (bool) $this->db->query("DELETE FROM messages

28. WHERE id NOT IN (SELECT id FROM messages

29. ORDER BY date DESC LIMIT {$limit})");
30. }
31. public function getOnline($count = true, $timeRange = CHAT_ONLINE_RANGE)

32. {
33. if ($count) {
34. $response = $this->db-

>query("SELECT count(*) as total FROM online");

35. return $response->getOne();

36. }
37. return $this->db->query("SELECT ip FROM online")->getResults();

38. }
39.
40. public function updateOnline($hash, $ip)

41. {
42. return (bool) $this->db->query("REPLACE INTO online

43. VALUES ('{$hash}', '{$ip}', NOW())")->order(mysql_error());

44. }
45. public function clearOffline($timeRange = CHAT_ONLINE_RANGE)

46. {
47. return (bool) $this->db->query("DELETE FROM online

48. WHERE last_update<= (NOW() - INTERVAL {$timeRange} MINUTE)");
49. }
50. public function __destruct()

51. {
52. if ($this->db) {
53. $this->db->disconnect();

54. }
55. }

56. }
57. ?>

SPA_Common.php

1. <?php
2. namespaceSPA_Common;

3. define('DB_USERNAME', 'root');
4. define('DB_PASSWORD', '');

5. define('DB_HOST', 'localhost');
6. define('DB_NAME', 'chatsystem');

7. define('CHAT_HISTORY', '150');
8. define('CHAT_ONLINE_RANGE', '1');

9. define('ADMIN_USERNAME_PREFIX', 'adm123_');
10. class SPA_MySQL_Database

11. {

78

12. private $_dbLink, $_queryResponse;

13. public $lastResult;
14. public function __construct()

15. {
16. $this->_connect();

17. }
18. private function _connect()

19. {
20. $this->_dbLink = mysql_connect(DB_HOST, DB_USERNAME, DB_PASSWORD);

21. mysql_select_db(DB_NAME, $this->_dbLink);

22. }
23. public function query($query)

24. {
25. $this->_queryResponse = mysql_query($query, $this->_dbLink);
26. if ($this->_queryResponse) {

27. return $this;

28. }

29. }
30. public function getResults()

31. {
32. $this->lastResult = array();

33. if ($this->_queryResponse && !is_bool($this->_queryResponse)) {
34. while ($response = mysql_fetch_object($this->_queryResponse)) {

35. $this->lastResult[] = $response;

36. }
37. mysql_free_result($this->_queryResponse);

38. }
39. return $this->lastResult;

40. }
41. public function getOne()

42. {
43. $this->lastResult = null;
44. if ($this->_queryResponse && !is_bool($this->_queryResponse)) {

45. $this->lastResult = mysql_fetch_object($this->_queryResponse);
46. mysql_free_result($this->_queryResponse);

47. }
48. return $this->lastResult;

49. }
50. public function disconnect()

51. {
52. returnmysql_close($this->_dbLink);

53. }
54. }
55. abstract class Model

56. {
57. public $db;
58. public function __construct()

59. {
60. $this->db = newSPA_MySQL_Database;

61. }
62. }
63. abstract class Controller

64. {
65. private $_request, $_response, $_query, $_post, $_server, $_cookies;
66. protected $_currentAction, $_defaultModel;

67. const ACTION_POSTFIX = 'Action';
68. const ACTION_DEFAULT = 'indexAction';

69. public function __construct()

70. {
71. $this->_request =& $_REQUEST;
72. $this->_query =& $_GET;

79

73. $this->_post =& $_POST;

74. $this->_server =& $_SERVER;
75. $this->_cookies =& $_COOKIE;

76. $this->init();

77. }
78. public function init()

79. {
80. $this->dispatchActions();
81. $this->render();

82. }
83. public function dispatchActions()

84. {
85. $action = $this->getQuery('action');

86. if ($action && $action .= self::ACTION_POSTFIX) {
87. if (method_exists($this, $action)) {

88. $this->setResponse(call_user_func(array(
89. $this,

90. $action
91.), array()));
92. } else {
93. $this->setHeader("HTTP/1.0 404 Not Found");

94. }
95. } else {

96. $this->setResponse(call_user_func(array(
97. $this,

98. self::ACTION_DEFAULT
99.), array()));

100. }

101. return $this->_response;

102. }

103. public function render()

104. {

105. if ($this->_response) {

106. if (is_scalar($this->_response)) {

107. echo $this->_response;

108. } else {

109. throw new \Exception('Response content must be type scala

r');

110. }

111. exit;

112. }

113. }

114. public function indexAction()

115. {

116. returnnull;

117. }

118. public function setResponse($content)

119. {

120. $this->_response = $content;

121. }

122. public function setHeader($params)

123. {

124. if (!headers_sent()) {

125. if (is_scalar($params)) {

126. header($params);

127. } else {

128. foreach ($params as $key => $value) {

129. header(sprintf('%s: %s', $key, $value));

130. }

131. }

132. }

80

133. return $this;

134. }

135. public function setModel($namespace)

136. {

137. $this->_defaultModel = $namespace;

138. return $this;

139. }

140. public function setSession($key, $value)

141. {

142. $_SESSION[$key] = $value;

143. return $this;

144. }

145. public function setCookie($key, $value, $seconds = 3600)

146. {

147. $this->_cookies[$key] = $value;

148. if (!headers_sent()) {

149. setcookie($key, $value, time() + $seconds);

150. return $this;

151. }

152. }

153. public function getRequest($param = null, $default = null)

154. {

155. if ($param) {

156. return isset($this->_request[$param]) ? $this-

>_request[$param] : $default;

157. }

158. return $this->_request;

159. }

160. public function getQuery($param = null, $default = null)

161. {

162. if ($param) {

163. return isset($this->_query[$param]) ? $this-

>_query[$param] : $default;

164. }

165. return $this->_query;

166. }

167. public function getPost($param = null, $default = null)

168. {

169. if ($param) {

170. return isset($this->_post[$param]) ? $this-

>_post[$param] : $default;

171. }

172. return $this->_post;

173. }

174. public function getServer($param = null, $default = null)

175. {

176. if ($param) {

177. return isset($this->_server[$param]) ? $this-

>_server[$param] : $default;

178. }

179. return $this->_server;

180. }

181. public function getSession($param = null, $default = null)

182. {

183. if ($param) {

184. returnisset($this->_session[$param]) ? $this-

>_session[$param] : $default;

185. }

186. return $this->_session;

187. }

188. public function getCookie($param = null, $default = null)

81

189. {

190. if ($param) {

191. return isset($this->_cookies[$param]) ? $this-

>_cookies[$param] : $default;

192. }

193. return $this->_cookies;

194. }

195. public function getModel()

196. {

197. if ($this->_defaultModel && class_exists($this-

>_defaultModel)) {

198. return new $this->_defaultModel;

199. }

200. }

201. public function sanitize($string, $quotes = ENT_QUOTES, $charset = 'u

tf-8')

202. {

203. return htmlentities($string, $quotes, $charset);

204. }

205. }

206. ?>

207.

82

Address Book System with MEAN:

index.html

1. <html ng-app="myApp">
2. <head>

3. <title>Contact List App
4. </title>

5. </head>
6. <body>

7. <divclass="container" ng-controller="AppCtrl">
8. <h1>Contact List App

9. </h1>
10. <tableclass="table">

11. <thead>
12. <tr>

13. <th>Name
14. </th>

15. <th>Email
16. </th>

17. <th>Number
18. </th>

19. <th>Action
20. </th>

21. <th>
22. </th>

23. </tr>
24. </thead>

25. <tbody>
26. <tr>

27. <td>
28. <inputclass="form-control" ng-model="contact.name">

29. </td>
30. <td>

31. <inputclass="form-control" ng-model="contact.email">
32. </td>

33. <td>
34. <inputclass="form-control" ng-model="contact.number">

35. </td>
36. <td>

37. <buttonclass="btnbtn-primary" ng-
click="addContact()">Add Contact

38. </button>
39. </td>

40. <td>
41. <buttonclass="btnbtn-info" ng-click="update()">Update

42. </button>
43. <buttonclass="btnbtn-info" ng-click="deselect()">Clear

44. </button>
45. </td>

46. </tr>
47. <tr ng-repeat="contact in contactlist">

48. <td>{{contact.name}}
49. </td>

50. <td>{{contact.email}}
51. </td>

52. <td>{{contact.number}}
53. </td>

54. <td>

83

55. <buttonclass="btnbtn-danger" ng-

click="remove(contact._id)">Remove

56. </button>

57. </td>
58. <td>

59. <buttonclass="btnbtn-warning" ng-click="edit(contact._id)">Edit
60. </button>

61. </td>
62. </tr>

63. </tbody>
64. </table>

65. </div>
66. <scriptsrc="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.12/angular.m

in.js">

67. </script>

68. <scriptsrc="controllers/controller.js">
69. </script>

70. </body>
71. </html>

controller.js

1. var myApp = angular.module('myApp', []);
2. myApp.controller('AppCtrl', ['$scope', '$http', function($scope, $http) {

3. console.log("Hello World from controller");
4. var refresh = function() {

5. $http.get('/contactlist').success(function(response) {
6. console.log("I got the data I requested");

7. $scope.contactlist = response;
8. $scope.contact = "";

9. });
10. };

11. refresh();
12. $scope.addContact = function() {

13. console.log($scope.contact);
14. $http.post('/contactlist', $scope.contact).success(function(response) {

15. console.log(response);

16. refresh();
17. });

18. };
19. $scope.remove = function(id) {

20. console.log(id);
21. $http.delete('/contactlist/' + id).success(function(response) {

22. refresh();
23. });

24. };
25. $scope.edit = function(id) {

26. console.log(id);
27. $http.get('/contactlist/' + id).success(function(response) {

28. $scope.contact = response;
29. });

30. };
31. $scope.update = function() {

32. console.log($scope.contact._id);
33. $http.put('/contactlist/' + $scope.contact._id, $scope.contact).success(

function(response) {

34. refresh();

35. })

84

36. };

37. $scope.deselect = function() {
38. $scope.contact = "";

39. }
40. }]);

server.js

1. var express = require('express');

2. var app = express();
3. var mongojs = require('mongojs');

4. var db = mongojs('contactlist', ['contactlist']);
5.

6. varbodyParser = require('body-parser');
7. app.use(express.static(__dirname + '/public'));

8. app.use(bodyParser.json());
9.

10. app.get('/contactlist', function(req, res) {
11. console.log('I received a GET request');

12. db.contactlist.find(function(err, docs) {
13. console.log(docs);

14. res.json(docs);
15. });

16. });
17.

18. app.post('/contactlist', function(req, res) {
19. console.log(req.body);

20. db.contactlist.insert(req.body, function(err, doc) {
21. res.json(doc);

22. });
23. });

24.
25. app.delete('/contactlist/:id', function(req, res) {

26. var id = req.params.id;
27. console.log(id);

28. db.contactlist.remove({
29. _id: mongojs.ObjectId(id)

30. }, function(err, doc) {
31. res.json(doc);

32. });
33. });

34.
35. app.get('/contactlist/:id', function(req, res) {

36. var id = req.params.id;
37. console.log(id);

38. db.contactlist.findOne({
39. _id: mongojs.ObjectId(id)

40. }, function(err, doc) {
41. res.json(doc);

42. });
43. });

44.
45. app.put('/contactlist/:id', function(req, res) {

46. var id = req.params.id;
47. console.log(req.body.name);

48. db.contactlist.findAndModify({
49. query: {

50. _id: mongojs.ObjectId(id)

85

51. },

52. update: {
53. $set: {

54. name: req.body.name,
55. email: req.body.email,

56. number: req.body.number
57. }

58. },
59. new: true

60. }, function(err, doc) {
61. res.json(doc);

62. });
63. });

64.
65. app.listen(3000);

66. console.log("Server running on port 3000");

86

Address Book System with LAMP:

index.php

1. <?php

2. include_once 'dbconfig.php';
3. ?>

4. <!DOCTYPE html PUBLIC "-
//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

5. <htmlxmlns="http://www.w3.org/1999/xhtml">

6. <head>
7. <!-- Latest compiled and minified CSS -->

8. <linkrel="stylesheet"href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/
css/bootstrap.min.css">

9. <!-- Optional theme -->
10. <linkrel="stylesheet"href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.

1/css/bootstrap-theme.min.css">

11. <title>Address Book by LAMP Stack

12. </title>
13. <scripttype="text/javascript">

14. functionedt_id(id)
15. {
16. if(confirm('Sure to edit ?'))

17. {

18. window.location.href='server.php?edit_id='+id;
19. }

20. }
21. functiondelete_id(id)

22. {
23. if(confirm('Sure to Delete ?'))

24. {
25. window.location.href='server.php?delete_id='+id;

26. }
27. }

28. </script>
29. </head>

30. <body>
31. <divclass="container">

32. <h1>Address Book List ByLAMP Stack
33. </h1>

34. <tableclass="table">
35. <thead>

36. <tr>
37. <th>Address

38. </th>
39. <th>Latitude

40. </th>
41. <th>Longitude

42. </th>
43. <th>Action

44. </th>
45. <th>

46. </th>
47. </tr>

48. </thead>
49. <tbody>

50. <formmethod="post"action="server.php">
51. <tr>

52. <td>

87

53. <inputclass="form-

control"name="address" placeholder="Address"value="<?php

54.

 echoisset($fetched_row['address']) ? $fetched_row['address'] : '';

55.

 ?>" required>

56. </td>

57. <td>
58. <inputclass="form-

control"name="latitude" placeholder="Latitude"value="<?php

59.

 echoisset($fetched_row['latitude']) ? $fetched_row['latitude'] : ''

;

60.
 ?>" required>

61. </td>
62. <td>

63. <inputclass="form-
control"name="longitude" placeholder="Longitude"value="<?php

64.
 echoisset($fetched_row['longitude']) ? $fetched_row['longitude']

: '';

65.

 ?>" required>

66. </td>

67. <td>
68. <buttontype="submit"name="btn-save"class="btnbtn-

primary">Add Address

69. </button>

70. </td>
71. <td>
72. <buttontype="submit"name="btn-update"class="btnbtn-

info">Update

73. </button>
74. <buttontype="submit"name="btn-cancel"class="btnbtn-

info">Clear

75. </button>

76. </td>
77. </tr>

78. </form>
79. <?php

80. $sql_query = "SELECT
81. addresslists.address,

82. latlong.latitude,
83. latlong.longitude

84. FROM addresslists
85. INNER JOIN latlong ON latlong.latitude = addresslists.latitude

86. AND latlong.latitude = addresslists.latitude
87. ;";

88. $result_set = mysql_query($sql_query);
89. $row = mysql_fetch_row($result_set);
90. while ($row = mysql_fetch_row($result_set)) {

91. ?>

92. <tr>
93. <td>

94. <?php
95. echo $row[0];

96. ?>
97. </td>

98. <td>
99. <?php

88

100. echo $row[1];

101. ?>

102. </td>

103. <td>

104. <?php

105. echo $row[2];

106. ?>

107. </td>

108. <td>

109. <ahref="javascript:delete_id('<?php

110. echo $row[3];

111. ?>')">

112. <buttonclass="btn btn-danger">Remove

113. </button>

114.

115. </td>

116. <td>

117. <ahref="javascript:edt_id('<?php

118. echo $row[3];

119. ?>')">

120. <buttonclass="btn btn-warning">Edit

121. </button>

122.

123. </td>

124. </tr>

125. <?php

126. }

127. ?>

128. </tbody>

129. </table>

130. </div>

131. </body>

132. </html>

133.

server.php

1. <?php
2. include_once 'dbconfig.php';

3. // delete condition
4. if (isset($_GET['delete_id'])) {

5. $sql_query = "DELETE FROM addresslists WHERE id=" . $_GET['delete_id'];
6. mysql_query($sql_query);

7. header("Location: $_SERVER[PHP_SELF]");
8. }

9. // delete condition
10.
11. if (isset($_POST['btn-save'])) {

12. // variables for input data

13. $address = $_POST['address'];
14. $latitude = $_POST['latitude'];

15. $longitude = $_POST['longitude'];
16. // variables for input data

17.
18. // sql query for inserting data into database

19. $sql_query = "INSERT INTO addresslists(address,latitude,longitude) VALUES('$
address','$latitude','$longitude')";

20. // sql query for inserting data into database
21.

22. // sql query execution function

89

23. if (mysql_query($sql_query)) {

24. ?>
25. <scripttype="text/javascript">

26. alert('Data Are Inserted Successfully ');
27. window.location.href='index.php';

28. </script>
29. <?php
30. } else {

31. ?>

32. <scripttype="text/javascript">
33. alert('error occured while inserting your data');

34. </script>
35. <?php

36. }
37. // sql query execution function

38. }
39. if (isset($_GET['edit_id'])) {

40. $sql_query = "SELECT * FROM addresslists WHERE id=" . $_GET['edit_id'];
41. $result_set = mysql_query($sql_query);

42. $fetched_row = mysql_fetch_array($result_set);
43. }
44. if (isset($_POST['btn-update'])) {

45. // variables for input data

46. $address = $_POST['address'];
47. $latitude = $_POST['latitude'];

48. $longitude = $_POST['longitude'];
49. // variables for input data

50.
51. // sql query for update data into database

52. $sql_query = "UPDATE addresslists SET address='$address',latitude='$latitude
',longitude='$longitude' WHERE id=" . $_GET['edit_id'];

53. // sql query for update data into database
54.

55. // sql query execution function
56. if (mysql_query($sql_query)) {

57. ?>
58. <scripttype="text/javascript">

59. alert('Data Are Updated Successfully');
60. window.location.href='index.php';

61. </script>
62. <?php
63. } else {

64. ?>

65. <scripttype="text/javascript">
66. alert('error occured while updating data');

67. </script>
68. <?php

69. }
70. // sql query execution function

71. }
72. if (isset($_POST['btn-cancel'])) {

73. header("Location: index.php");
74. }

75. ?>

76.

90

dbConfig.php

1. <?php

2. $host = "localhost";
3. $user = "root";

4. $password = "";
5. $datbase = "addressbook";

6. mysql_connect($host, $user, $password);
7. mysql_select_db($datbase);

8. ?>

	St. Cloud State University
	theRepository at St. Cloud State
	5-2016

	MEAN vs. LAMP Stack
	Arpana Karanjit
	Recommended Citation

	tmp.1460606646.pdf.eFRRv

