428 research outputs found

    Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    Full text link
    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates seasonality and enables to distinguish user behavior in different time intervals. The other views the user history as sequential information and has the ability to recognize usage pattern typical to certain group of items, e.g. to automatically tell apart product types or categories that are typically purchased repetitively (collectibles, grocery goods) or once (household appliances). Experiments performed on three implicit datasets (two proprietary ones and an implicit variant of the Netflix dataset) show that by integrating context-aware information with our factorization framework into the state-of-the-art implicit recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012, Bristol, U

    Multi-dimension Tensor Factorization Collaborative Filtering Recommendation for Academic Profiles

    Get PDF
    The choice of academic itineraries and/or optional subjects to attend is not usually an easy decision since, in most cases, students lack the information, maturity, and knowledge required to make right decisions. This paper evaluates the support of Collaborative Systems for helping and guiding students in this decision-making process, considering the behavior and impact of these systems on the use of data different from the formal information the students usually use. For this purpose, the research applied the clustering based Multi-dimension Tensor Factorization approach to build a recommendation system and confirm that the increment in tensors improves the recommendation accuracy. As a result, this approach permits the user to take advantage of the contextual information to reduce the sparsity issue and increase the recommendation accuracy

    Cross domain recommender systems using matrix and tensor factorization

    Get PDF
    Today, the amount and importance of available data on the internet are growing exponentially. These digital data has become a primary source of information and the people’s life bonded to them tightly. The data comes in diverse shapes and from various resources and users utilize them in almost all their personal or social activities. However, selecting a desirable option from the huge list of available options can be really frustrating and time-consuming. Recommender systems aim to ease this process by finding the proper items which are more likely to be interested by users. Undoubtedly, there is not even one social media or online service which can continue its’ work properly without using recommender systems. On the other hand, almost all available recommendation techniques suffer from some common issues: the data sparsity, the cold-start, and the new-user problems. This thesis tackles the mentioned problems using different methods. While, most of the recommender methods rely on using single domain information, in this thesis, the main focus is on using multi-domain information to create cross-domain recommender systems. A cross-domain recommender system is not only able to handle the cold-start and new-user situations much better, but it also helps to incorporate different features exposed in diverse domains together and capture a better understanding of the users’ preferences which means producing more accurate recommendations. In this thesis, a pre-clustering stage is proposed to reduce the data sparsity as well. Various cross-domain knowledge-based recommender systems are suggested to recommend items in two popular social media, the Twitter and LinkedIn, by using different information available in both domains. The state of art techniques in this field, namely matrix factorization and tensor decomposition, are implemented to develop cross-domain recommender systems. The presented recommender systems based on the coupled nonnegative matrix factorization and PARAFAC-style tensor decomposition are evaluated using real-world datasets and it is shown that they superior to the baseline matrix factorization collaborative filtering. In addition, network analysis is performed on the extracted data from Twitter and LinkedIn

    Machine Learning Models for Context-Aware Recommender Systems

    Get PDF
    The mass adoption of the internet has resulted in the exponential growth of products and services on the world wide web. An individual consumer, faced with this data deluge, is expected to make reasonable choices saving time and money. Organizations are facing increased competition, and they are looking for innovative ways to increase revenue and customer loyalty. A business wants to target the right product or service to an individual consumer, and this drives personalized recommendation. Recommender systems, designed to provide personalized recommendations, initially focused only on the user-item interaction. However, these systems evolved to provide a context-aware recommendations. Context-aware recommender systems utilize additional context, such as genre for movie recommendation, while recommending items to users. Latent factor methods have been a popular choice for recommender systems. With the resurgence of neural networks, there has also been a trend towards applying deep learning methods to recommender systems. This study proposes a novel contextual latent factor model that is capable of utilizing the context from a dual-perspective of both users and items. The proposed model, known as the Group-Aware Latent Factor Model (GLFM), is applied to the event recommendation task. The GLFM model is extensible, and it allows other contextual attributes to be easily be incorporated into the model. While latent-factor models have been extremely popular for recommender systems, they are unable to model the complex non-linear user-item relationships. This has resulted in the interest in applying deep learning methods to recommender systems. This study also proposes another novel method based on the denoising autoencoder architecture, which is referred to as the Attentive Contextual Denoising Autoencoder (ACDA). The ACDA model augments the basic denoising autoencoder with a context-driven attention mechanism to provide personalized recommendation. The ACDA model is applied to the event and movie recommendation tasks. The effectiveness of the proposed models is demonstrated against real-world datasets from Meetup and Movielens, and the results are compared against the current state-of-the-art baseline methods

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors
    • …
    corecore