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Abstract

Today, the amount and importance of available data on the internet are growing expo-

nentially. These digital data has become a primary source of information and the peoples

life bonded to them tightly. The data comes in diverse shapes and from various resources

and users utilize them in almost all their personal or social activities. However, selecting a

desirable option from the huge list of available options can be really frustrating and time-

consuming. Recommender systems aim to ease this process by finding the proper items which

are more likely to be interested by users. Undoubtedly, there is not even one social media or

online service which can continue its work properly without using recommender systems. On

the other hand, almost all available recommendation techniques suffer from some common

issues: the data sparsity, the cold-start, and the new-user problems.

This thesis tackles the mentioned problems using different methods. While, most of the

recommender methods rely on using single domain information, in this thesis, the main focus

is on using multi-domain information to create cross-domain recommender systems. A cross-

domain recommender system is not only able to handle the cold-start and new-user situations

much better, but it also helps to incorporate different features exposed in diverse domains

together and capture a better understanding of the users preferences which means producing

more accurate recommendations.

In this thesis, a pre-clustering stage is proposed to reduce the data sparsity as well. Vari-

ous cross-domain knowledge-based recommender systems are suggested to recommend items

in two popular social media, the Twitter and LinkedIn, by using different information avail-

able in both domains. The state of art techniques in this field, namely matrix factorization

and tensor decomposition, are implemented to develop cross-domain recommender systems.

The presented recommender systems based on the coupled nonnegative matrix factorization

and PARAFAC-style tensor decomposition are evaluated using real-world datasets and it

is shown that they superior to the baseline matrix factorization collaborative filtering. In

addition, network analysis is performed on the extracted data from Twitter and LinkedIn.
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1

INTRODUCTION

1.1 Motivation

With the extension of internet access during the last years, the number of online services and

social media websites, as well as the number of their active users, have increased exponentially.

The available data are not restricted anymore to those provided by broadcast websites and

other service providers, but now, users create and share most of the online digital contents.

People utilize diverse resources in the World Wide Web for either their personal activities,

such as finding a movie to watch, searching for interesting books to read, or music to listen,

following news trend, finding a place for dine, and so on, or other activities with the social

aspects, like expanding their professional network, being in contact with their friends, even

being familiar with new people and finding a partner. More importantly, people introduce

themselves and share their opinions about diverse subjects in many different ways; by creating

profiles on different social media, sharing an image, using a hashtag, writing articles on their

personal blogs, or by leaving reviews for different products or services. In addition, users are

not the only parties who use these data. Exploiting the diverse data and capturing the useful

insights have become a necessary skill for businesses to keep themselves productive in this

modern, fast pace, and competitive marketplace. Almost it is impossible to find a successful

company or service provider which have not considered its users’ data as a valuable asset.

Although, this huge amount of data can be utilized to satisfy diverse users’ taste, how-

ever, finding the right product or service which is suitable for a particular user can be an

overwhelmingly hard process. It is when the recommender systems come into play. Rec-

ommender systems are programs that aim to predict those items which are more likely to

be suitable for a unique user. Users use the recommender systems to find their favorable
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options within the large list of available options and online service providers utilize them to

keep their users engaged. That is why the examples of recommender systems can be found

in almost any online service provider website, from search engines to social media.

Recommender systems mainly rely on using the data, exposed by users in the past,

to recommend new interesting items. Based on their implementation, they try to capture

the similarities between the users, or the items, or both, in order to understand the users’

preferences. However, almost all of the available recommendation techniques face into some

important obstacles. The first one is the sparse nature of available data on the internet or

even a specific domain. A traditional instance is an online retailer website where only a low

percentage of the cells in the user-item matrix are filled and others are unknown. Another

problem is when the recommender system does not have a sufficient amount of information

about a user (or users) to understand the explicit preferences and the latent relations. In

this case, the recommender system cannot produce useful and accurate recommendations.

It is called the cold-start problem. The new-user problem is a special case of the cold-start

problem when the user is totally new to the system or does not have any previous rating

history.

Users share different types of information in diverse domains. According to this fact,

recently many studies have tried to integrate that information in order to address the men-

tioned issues. The sparsity of data can be reduced by sharing the knowledge from one domain

to another or by merging different features from diverse domains. Another promising point

is that the data integration can potentially increase the accuracy of recommender systems in

the cold-start situation. If a user is new to a domain, a cross-domain recommender system

can use other previously shared information related to this user or subject to create a precise

recommendation for that particular user in the new domain. Although, using the cross-

domain recommender system can substantially answer many of the traditional techniques’

problem, however, this field is relatively new.

This thesis focuses on developing cross-domain recommender systems to tackle the data

sparsity, the cold-start problem, the new-user problem, and also to increase the accuracy of

the final recommended items. To investigate the effectiveness of this idea, different algorithms

are designed and implemented, including knowledge-based collaborative, content-based, hy-
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brid mix, and hybrid recommender systems, a coupled nonnegative matrix factorization-

based, and a tensor decomposition-based recommender system. In addition, the performances

of these cross-domain recommender systems are evaluated using real datasets, extracted from

two popular social media.

1.2 Structure of Document

As explained in the previous section, in this thesis we propose a number of cross-domain rec-

ommender systems, comprising four different knowledge-based algorithms, a novel coupled

matrix factorization model, and a multilinear tensor decomposition model, which result to

more accurate recommendations in the target domain. The needed preliminaries to under-

stand these models as well as detailed information about the modeling, implementation, and

evaluation processes are organized in the next chapters as follow:

• Chapter 2: Problem Statement In this chapter the main goals of the thesis are

presented. In addition, the implemented techniques and final findings of this research

study are briefly explained.

• Chapter 3: Background and Related Works A comprehensive study about the

recommender systems, their classification, and their various techniques are conducted

in this chapter. Also, the required mathematical preliminaries of the matrix and tensor

factorizations are presented here. In addition, it covers many recently published studies

about the application of these techniques in the recommender systems field.

• Chapter 4: Research Methodologies and Implementations It includes detailed

explanations about the proposed recommender systems. It is divided into four sections.

In its first section, the characteristics of the extracted real-world dataset and its diverse

domains are explained. The second section introduces four different knowledge-based

cross-domain recommender systems. The coupled matrix factorization-based model

is presented in the third section. And the final section comprises the detail of the

suggested tensor decomposition-based recommender system.
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• Chapter 5: Results and Discussion This chapter starts with the network analysis

of the different domains in our dataset. It then covers the results of all the proposed

recommendation models and the related discussions.

• Chapter 6: Conclusion and Future Directions The main research questions are

reviewed in this chapter and all the significant findings of the thesis are explained again.

In addition, the possible future directions for further studies are noted at the last part

of this chapter.
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2

PROBLEM STATEMENT

During the last years, there has been an increasing popularization of social media services.

Nowadays, there is at least on specific-application social media for any particular purpose:

from sharing images and videos to create a job-related network. All the available social media

and all new start-ups in this area try to invent innovative solutions to attract new users and

keep the current users engaged. At the core of all these techniques and solutions, there

are recommender systems. They try to create a convenient experience for users by helping

them to find their desired products, information, and services. These recommender systems

usually use the provided data in a unique domain to make recommendations for that specific

domain. However, recently researchers have found that using cross-domain recommender

systems, which consider available data in multiple domains (Figure 2.1), can increase the

accuracy of the recommended items and also reduces some serious problem such as the data

sparsity and the cold-start. With this hypothesis in mind, we state the following specific

research goals.

Figure 2.1: Cross-domain recommender system
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• 1. Review the importance of recommender systems, their classification,

and the reasons users tend to utilize them. As we are going to produce novel

algorithms and propose recommendation models using them, it is necessary to have

a solid understanding of the recommender systems’ foundations. In order to improve

the current state of the art methods on recommender systems, we need to have a good

perspective about the available various techniques in this field, how they work, and

how they help users.

• 2. Review the cross-domain recommendation concept. Since using the cross-

domain recommender systems is relatively new in comparison to the traditional tech-

niques, there are not still comprehensive definitions of different domains and knowledge-

flow between them. We should fill this gap by summarizing the most important defini-

tions of diverse domains and information integration methods, before trying to develop

new cross-domain recommender systems.

• 3. Using a pre-clustering stage to reduce the inherent sparse nature of

the data in various domains. One of the common issues of recommender systems

is their inability to work well with the sparse data. On the other hand, one of the

characteristics of social media data is their sparsity. In order to reduce the negative

impact of this conflict, we will propose a pre-clustering step which can properly classify

the categorical data in order to reduce the percentage of sparsity in the dataset.

• 4. Develop various knowledge-based cross-domain recommendation models

that exploit the users’ information in the source domain, or both the source

and target domains, in order to suggest items in the target domain. The

conducted studies in the two first questions would help us to understand the type of

data we need for this research study. We shall extract this data from diverse social media

which represent different features of identical users. Then, we will try to develop some

cross-domain recommender systems which rely on the integration of various available

data.

• 5. Review the matrix factorization and tensor decomposition techniques
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and their applications on recommender systems. These techniques are literally

the state of art on cross-domain recommender system which attracts the researchers’

attention in the last few years. We shall start with their required preliminaries and

then summarize their recent application in developing recommender systems.

• 6. Develop novel coupled matrix factorization-based and tensor decomposition-

based cross-domain recommender systems. While traditional single-domain rec-

ommender systems consider user preferences in on domain, the coupled matrix factor-

ization are able to take different information into account in order to understand the

various features of users’ preferences. In addition, the tensor decomposition method

can be applied to uncover the implicit relationships between users, different items, and

there features.

• 7. Analyze the performance of the proposed cross-domain recommender

systems. According to the nature of the recommender systems’ job, that is suggesting

a list of items which is more likely to be liked by the users, we will evaluate the effective-

ness of the proposed recommender systems in term of their precision. The accuracies of

these models are compared to each other as well as the baseline collaborative filtering

recommender system.

Following the mentioned goals, in this thesis, we utilize different techniques in order to

develop and analyze the following cross-domain recommendation methods:

• A knowledge-based collaborative filtering,

• A knowledge-based content-based,

• A knowledge-based hybrid mix,

• A knowledge-based hybrid feature combination,

• A coupled nonnegative matrix factorization-based,

• A tensor decomposition-based.
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3

BACKGROUND AND RELATED WORKS

3.1 Recommendation Systems

Due to the exponential growth of available data on the internet and social media as well as

the number of active users, recommender systems have become a must-have part for almost

all online service providers. Recommender systems provide a convenient experience for the

users by suggesting them desired favorable products or services, such as a place to visit or

dine, a book or a scientific paper to read, a movie to watch, an education program to attend

and so on. Otherwise, without recommender systems, finding a proper option among the

huge set of available options is a frustrating and time-consuming process and make users

leave that social media. In this section, we will review the fundamental of recommender

systems and their various recommending techniques. As the focus of this research study is

on developing cross-domain recommender systems, then we will also review the multi-domains

recommending approach as well.

3.1.1 Introduction to recommender systems

Recommender systems are programs that aim to provide proper suggestions for products

or services that are most likely of interest of particular individuals or businesses [1]. Those

products or services are generally called items and the individuals or businesses searching for

desirable items are called users [2].

There are some cases that the necessity of recommender systems is more tangible. First

and maybe the most important case is when we are dealing with an information overload

system [3]. In informal language, the term of information overload simply means having or
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Figure 3.1: Relationship between the amount of available information and the user
performance in term of the quality of decisions

receiving lots of information which is hard to understand as a whole. Within the research and

scientific community, this term conveys a similar meaning and is applied to various fields such

as cognitive overload, communication overload, and knowledge overload systems [4]. Many

studies have shown that the performance of users varies with the amount of information they

are exposed to. As a general rule, the quality of decisions and choices of users increases with

increasing the amount of available information up to a certain point. However, after this

threshold, further information cause a sharp drop in the performance of users [5]. Figure 3.1

shows a schematic illustration of this concept.

For example, today, the amount of available information on the internet is growing expo-

nentially. This explosive rise in the accessible data may cause confusion for users and leads

to frustrating experience since the overwhelming number of various choices makes finding

the items of interest too difficult and even impossible. Recommender systems can effectively

tackle this problem by helping users avoid confusion and frustration caused by searching a

desirable option in a large list of available options. One common example of an information

overload system is social media websites where millions or billions of users, forming online

societies, are able to produce and share information and make new connections. As the

magnitude of the information of these social media is vast, users usually are not able to find

data and social connections they are looking for without the help of recommender systems.

For instance, Facebook recommends new connections based on mutual friends, people who
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are tagged in the same photo, or people of the group a user has been joined. Without these

suggestions, even finding a friend by searching between all Facebook users seems to be tough.

Another case which properly represents the importance of recommender systems is when a

user does not have enough experience or qualification to evaluate all items in order to select

an item which works best for him or her. The shopping experience on an online retailer

website is a good example of this specific case [6].

Recommender systems are used to produce suggestions for different items in various do-

mains. Recommending movies and TV serials [7], music [8], books [9], places [10], services

[11] and foods [12] are only some examples of recommendation systems’ use cases. Bobadilla

et al. [1] enumerate many other instances which recommender systems play a crucial role to

create a pleasant experience for the users and improve the performance of different service

providers. Also, Lu et al. [13] provide a comprehensive overview of recommender systems’

applications in their study. In general, without recommender systems, the users of all so-

cial sites suffer from information overload. Therefore, recommender systems are important

parts of all highly-rated internet sites and social applications such as Twitter 1, LinkedIn 2,

Facebook 3, Netflix 4, Spotify 5, Last.fm 6, YouTube 7, and Amazon 8. These social media

are implementing different techniques to create more effective suggestions to gain benefits

by increasing the users’ satisfaction, increasing users’ loyalty, increasing users’ engagement,

capturing more human-related data, improving their understanding of what user wants, and

finally, increasing the number of sold products or services.

On the other hand, based on the study of Herlocker et al. [14], the usefulness of rec-

ommender systems to facilitate many tasks motivates users to utilize these tools. Here,

some important usages of recommender systems for users are covered. Users contribute with

recommender systems mainly for:

• Finding good items: Obviously, users are using recommender systems to find favorable

1An online news and social networking service, https://twitter.com/
2An online social media with professional networking focus, https://www.linkedin.com/
3An online social media and social networking service, https://www.facebook.com
4An online streaming of a library of films and television programs, https://www.netflix.com
5an online music streaming platform, https://www.spotify.com
6An online music service, https://www.last.fm
7A video sharing website, https://www.youtube.com
8An online e-commerce marketplace, www.amazon.com
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items among all alternative items. Especially, when the number of related items is very

large or the user does not have enough expertise to distinguish items based on his or

her requirements.

• Expressing themselves: There are some users who are more interested in contribute

with ratings and reviews and express their opinions rather than buying a commodity

or service. Recommender systems can raise the level of satisfaction of these users and

also increase their fidelity.

• Helping other users: Many users believe that their contribution in the recommender

systems’ information profits all the community. Therefore, this can motivate them to

engage with the recommender system. For example, with an online shopping site, a

user who has already purchased and used an item is aware that her or his entered review

and rating is useful to other users; this contribution does not have any benefit for the

user, but, he or she tends to share information in order to improve the recommender

system efficiency and help other users.

• Influencing other users: There are some users who utilize recommender systems in order

to make it bias toward some particular items and influence other users into selecting

those products or services.

As mentioned so far, recommender systems are essential parts of nowadays social media

and they are implemented to provide a list of suggested items to users. However, since

the context where recommender systems can be utilized is highly diverse, for instance, the

criteria for recommending a movie and the criteria for recommending a scientific paper are

entirely different; therefore, depending on the context, researchers introduced different types

of recommender systems. The main difference of recommender systems is characterized by

the filtering algorithm. The most common classification divides recommender systems into

the content-based, collaborative, demographic, and hybrid algorithms [15]. This classification

is shown in Figure 3.2. The mentioned filtering approached are explained in the following

section.
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Figure 3.2: Recommender systems classification

3.1.2 Recommender systems techniques

According to the wide usage of recommender systems and the growing number of researches

in this area, many diverse recommendation techniques have been suggested. The various

recommendation approaches can be categorized based on various criteria, for example, from

the algorithmic point of view, different available techniques can be classified into memory-

based and model-based methods. Memory-based approaches mainly use some heuristics to

compare items and calculate the relevance of the items for a particular user. These methods

usually work with the original rating matrix of users-items or use another rating generated

before the referral process. Therefore, a memory-based method can be implemented easily

because it has a simple logic and follows a particular goal only. On the other hand, it

is less flexible in comparison to a model-based approach. In contrast to the memory-based

techniques, model-based methods use more complicated algorithms, such as different machine

learning tools, to build a prediction model from available data. They use recommender system

information to produce a predictor model that generates items suggestion for a particular

user. Popular memory-based and model-based methods are mentioned in the Figure 3.3.

There are other possible classifications and as mentioned before the most widely used

classification divides all the proposed techniques into the four categories (Figure 3.2):

1. Content-based recommender systems: analyze the properties of items and suggest a

group of items to a particular user which are most similar to the past selected items

by that user.

2. Collaborative filtering-based recommender systems: investigate the rating similarities

between users and suggest a group of items to a user which are already selected by
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Figure 3.3: Classification of recommender systems from algorithmic point of view

most similar users to that unique user.

3. Demographic recommender systems: rely on this hypothesis that users with the same

personal characteristics, such as gender, age, nationality, level of education, etc., have

the same taste of items.

4. Hybrid recommender systems: are combinations of other recommender systems and

usually are seen as a combination of collaborative with demographic method [16] or as

a combination of collaborative with content-based approach [17, 18].

A content-based recommender system tries to understand the commonalities among the

items a user has rated in past, then suggest the items that share the same features [19].

The schematic process of a content-based recommender system is displayed in Figure . How-

ever, since these types of recommender systems relay on keywords that describe the content,

they are most efficient for text-based content where keywords can be parsed dynamically.

Otherwise, it can be highly inefficient to associate those keywords manually.

In order to understand the commonalities among the items, many content-based tech-

niques rely on the popular Vector Space Model (VSM). In VSM we assume each item is

a vector of its features ~ti = (w1, w2, ..., wn) ∈ IRn, So the i-th item has n various features

and the value of wj, 0 < j < n + 1, reflects the impact of the j-th feature of the i-th item.

Also, another commonly used approach to create vectors of items is the TF-IDF method [20].

When the items vectors are created, the profile of a particular user is defined by aggregating

13



Figure 3.4: A simple representation of content-based recommender system

the models of those items he or she liked before. Finally, the utility of item i for user m

can be described by using a similarity measure, such as Cosine or Pearson correlation. The

popular Cosine similarity is defined as:

cos(~um,~ti) =
< ~um,~ti >

‖~um‖ · ‖~ti‖
(3.1)

where, ~um indicates the profile of the user m.

Collaborative filtering-based recommender systems are based on the heuristic that users,

who are similar, make choices which are similar (Figure 3.5). Therefore, these methods

recommend items for a particular user based on the items previously rated highly by other

similar users [21]. The similar users are found based on their histories of rating the same items

that the user has seen and rated in the past; by correlating these past rating. One advantage

of collaborative filtering is that it just uses rating patterns, so no content information is

needed. Different learning methods can be used to create a collaborative filtering-based

model, such as k-nearest neighbor (KNN)[22, 23], neural network (NN) [24], singular vector

decomposition (SVD) [25], genetic algorithm [26], and latent semantic indexing (LSI) [27]

approaches.

Although content-based and collaborative filtering recommender systems have their own

advantages and use cases, however, both suffer from a problem known as the cold-start
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Figure 3.5: A simple representation of collaborative filtering recommender system

problem. Cold-start happens because users have to rate (or buy, view, etc depending on the

context) a sufficient number of items before a recommender system can really understand

users’ preferences and generate reliable recommendations.

Hybrid recommenders seek to tackle the aforementioned issues about content-based and

collaborative recommender systems and increase the effectiveness of the predictor model by

combining both methods in different ways, such as:

• Mixed: produced recommendation from content-based and collaborative recommender

systems are combined together and the top frequent items are suggested as the final

recommendations.

• Feature combination: has some features of the content-based method and some features

of the collaborative approach. The output of one of these recommender systems is used

as an additional feature for another one.

• Switching: based on predefined conditions or context the system chooses among content-

based or collaborative methods and applies the selected one.

It should be noted that even though hybrid recommender systems proved to be more

accurate in many cases, they do not fully address the cold-start problem. In their study,
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Table 3.1: Comparison between different recommender systems’ techniques

Recommender systems
techniques

Main feature Main drawback(s)

Content based

Suggests new items which are most

similar to the past selected items by

a particular user

Incapable to find items’ quality

based on the users’ pereference

Collaborative filtering

Recommends new items which are

already selected by most similar

users to an unique user

Suffers from cold-start problem

and possible incorrect users’

rating

Demographic
Classifies the users based on their

personal characteristics

Suffers from cold-start problem

and incorrect personal

categorization

Hybrid

combines other recommender systems,

especially content-based and

collaborative

An unwise combination of

recommender systems can

reduce the accuracy

Urmela et al. [28] compare various recommender systems techniques and also mention the

most import drawback of each approaches. Here, we summarize their findings is Table 3.1.

Many present problems of most of the recommender systems come from the sparsity of

data in one domain and also inability or weakness of different algorithms to handle the cold-

start or new user situation. One possible solution that in this study is considered is using

data integration between two or more various domains in order to develop cross-domain

recommender system. It not only can reduce the sensitivity of the model to the cold-start

problem, but also, it can increase the accuracy of the designed model by decreasing the

sparsity of data. This matter is discussed in the next section.

3.1.3 Cross-domain recommender systems

Recommender systems have been used successfully in almost all social media to suggest de-

sirable items to the users. Each social media website tries its best to develop more efficient

algorithms in order to create more accurate recommender systems that accept the data pro-
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vided by the users of that particular domain and return a list of suggested items. Likewise,

most of the conducted research studies have focused on the single domain recommender sys-

tems which use a single domain’s information to predict those items that are most likely to

be interested of the users of that domain. On the other hand, there is another case, that

a recommender system uses information of two or even more different domains to recom-

mend items on one of those. This distinctive approach, which relies on multi-domain data

integration to suggest more precise recommendations, is called cross-domain recommender

system.

Researchers may consider different definitions for two distinct domains. Generally, we

can consider four levels to describe the difference between two separate domains. Based on

this classification, two domains may be considered as two distinct domains if they comprise

one of the following cases:

1. Value level: same system, same type, same attributes, different values. Considering

items in a unique system having the same type and same set of attributes, but, various

values. For instance, two books in the same system can be considered to be in two

distinct domains if they have different genres. Cao et al. [29] suppose various book

categories as different domains in their study.

2. Attribute level: same system, same type, different attributes. Assuming items in a

particular system which have the same type and maybe share some common attributes

but they have some different attributes as well. For example, books and magazines

have the identical type and many similar attributes, but they still have some specific

attributes which cannot find in another one. An actual example is the Winoto and Tang

research study [30] which movies and TV shows are considered as separate domains.

3. Type level: same system, different types. Happens when the items in a specific system

have various types. For instance, Shapira et al. [31] assume movies and music in two

distinct domains.

4. System level: different systems. Items which belong to two separate systems, such
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Figure 3.6: Various ways to define distinct domains

as books on Amazon and books on Book-A-Million9 can be considered as different

domains. For example, in the Pan and Yang research [32] movies information extracted

from MovieLens10, MoviePilot11, and Netflix are considered in different domains based

on their source.

Above classification is displayed in the Figure 3.6 as well. Multi-domains approaches

utilize various information exposed into separate domains by the same users or by different

users to pursue some main goals. The most important one maybe is addressing the cold-start

problem. Shapira et al. [31] tackle this problem by using data from two domains which have

9A bookstore chain in the United States, www.booksamillion.com
10A web-based recommender system for movies, https://movielens.org
11An online magazine covering the film industry, https://moviepilot.com
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a type-level difference. One special case of the cold-start problem is the new-user problem. It

means when a user joins to the community or just starts using the recommender system, this

cannot provide accurate personalized suggestions because it does not know anything about

the user’s preferences. Hu et al [33] extract books, movies, and music domains’ information

and address the new-user issue in their proposed recommender system. Finally, one common

goal of using multi-domain recommender systems is improving the accuracy of the predictor

model [29, 34, 35].

In addition, the information flow between two distinct domains can have different shapes.

Here we classify them into two major categories and later we will try each of those to create

cross-domain recommender systems:

• Knowledge aggregation where the information from two domains is aggregated to each

other and then is used to suggest items or create a predictor model. One possible

manner is merging different features in two domains together.

• Knowledge transmission where the source domain is connected to the target domain

using a common explicit feature or implicit latent feature, and the transferred knowledge

from the source domain is used to produce recommendation is the target one.

3.2 Matrix Factorization

Many recommender systems implement matrix factorization technique to characterize users

and items and extract latent factors of the rating matrix. The aim of this section is covering

the preliminaries of related algebra and reviewing matrix and coupled matrix factorization

techniques and their applications in the recommender systems.

3.2.1 Preliminaries of matrix algebra

As our convention, matrices are shown with uppercase letters and vectors are denoted by

lowercase letters. Matrix A is a m × n table with m rows and n columns which contains

scalars. In this study, we assume that all cells include only real scalars, so we can say that

the set of m × n real matrices is indicated by IRm×n. The element in the i-th row and j-th
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column of matrix A is denoted by Aij. If a matrix have same number of rows and column, it

is called a square matrix. A diagonal matrix D is a square matrix which all elements except

elements on its main diagonal is equal to zero, so for any element Aij in the matrix D if i 6= j

then Aij = 0. Identity matrix In is a n × n diagonal matrix where its diagonal elements

are equal to 1. A column vector is a matrix with only one column. Similarly, a row vector

can be defined as a matrix of only one row. the rank of matrix A ∈ IRm×n, denoted by

rank(A), is the maximum number of its linearly independent columns (rows) vectors. Matrix

A is called rank-1 matrix if it is factorizable as an outer product of column vectors u and

v, A = u⊗ v. In this case, we can say rank(A) = 1.

Ho, in his study [36], present a comprehensive overview on matrix and vector linear

algebra. Here, we shortly mention some of the main matrix manipulations which are good

to know to have a better understanding of the matrix/tensor factorization techniques which

are discussed in the following sections.

• Matrix product - A = B.C = BC, where Aij = ΣkBik.Ckj

• Transpose of matrix - [Aij]
T = Aji

• Inner product of vectors - if u, v ∈ IRn then:

〈u, v〉 = Σiuivi = uTv (3.2)

• Matrix vectorization - Lets A ∈ IRm×n, then:

vec(A) =


A:1

...

A:n

 ∈ IRmn (3.3)

• Inner product of matrices - 〈A,B〉 = vec(A)Tvec(B) = ΣijAijBij

• Inverse of matrix - B is inverse of A, denoted by B = A−1, if AB = BA = I

20



• Kronecker product - Assume matrix A ∈ IRm×n, then Kronecker of A and B is:

A⊗B =


A11B A12B · · · A1nB

...
...

. . .
...

Am1B Am2B · · · AmnB

 (3.4)

• Outer product of vectors - Lets u ∈ IRn and v ∈ IRm be two vectors. Then, their

outer product is a matrix W , where Wij = uivj and W ∈ IRn×m. Outer product is an

special case of Kronecker product.

• Hadamard product - A = B ◦ C, where Aij = BijCij. Hadamard product is an

elementwise product and A,B,C ∈ IRm×n.

• Eigenvectors - λ ∈ IR is an eigenvalue and nonzero vector x ∈ IRn in an eigenvector

of matrix A ∈ IRn×n if Ax = λx. σ(A) is the set of all eigenvalues of matrix A:

σ(A) = {xi|Axi = λix} (3.5)

and the spectral radius of matrix A is defined as follow:

ρ(A) = max{|λ| |λ ∈ σ(A)} (3.6)

• Rank-R decomposition of matrix - the minimal number of rank-1 matrices whose

their linear combinations results the matrix A, is called the rabk-R decomposition of

the matrix A:

A = ΣR
r=1βr(u

(r) ⊗ v(r)) (3.7)

where, βr is a scalar coefficient and R represents the rank-R decomposition of matrix

A.
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• Norms of a vector (or a matrix) - Norms are used to measure the magnitude of

a vector or a matrix. A most common norm is the Frobenius norm:

‖ x ‖F =
√
〈x, x〉 (3.8)

where, x can be either a vector or a matrix.

• Nonnegative matrix - matrices which all their elements are equal to or greater than

zero are called nonnegative matrices.

3.2.2 Matrix and coupled matrix factorization techniques

Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) [37] factorizes the real matrix A ∈ IRm×n into three

matrices U ∈ IRm×m, Σ ∈ IRm×n, and V ∈ IRn×n (Figure 3.7). The U and V are orthogonal

matrices which are called left and right singular matrices and contain the left singular values

and right singular values respectively. In fact, U is formed of singular vectors of AAT and

V is formed of singular vectors of ATA. Matrix Σ is a diagonal matrix which its diagonal

elements represent the singular values of A. Therefore, based on the SVD:

A = U ΣV T (3.9)

Figure 3.7: Singular Value Decomposition (SVD)
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One another important point is that the best low-rank approximation of the matrix A,

with respect to the Frobenius norm, is accomplished by truncating its SVD. Eckart and

Young [38] proved that the best K-low-rank estimation of the matrix A can be desribed as

follow:

A = U ΣK V
T (3.10)

where, ΣK is created by keeping only K largest singular values of matrix Σ and replacing

others by zeros.

We can use the U , V , and Σ matrices to reconstruct the original matrix A. The problem

here is finding those three matrices such that the difference between A and Á = U ΣV T be

as smaller as possible. The most used measure is the Frobenius norm:

F (A,UΣV T ) =
1

2
‖ A− UΣV T ‖2F (3.11)

Nonnegative Matrix Factorization (NMF)

Although the Nonnegative Matrix Factorization (NMF) first is introduced by Paatero and

Tapper [39] , but it seems that the most popular research work in this field is the Lee and

Seung study [40] .

Given an nonnegative matrix A ∈ IRm×n, where Aij ≥ 0, and a rank r, where r <

min(m,n), the NMF factorizes matrix A into two separate nonnegative matrices U ∈ IRm×r

and V ∈ IRn×r (Figure 3.8). Therefore, we have:

A = U V T (3.12)

Again here we can reconstruct the original matrix A using U and V :

Á = UV T (3.13)
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Figure 3.8: Nonnegative Matrix Factorization (NMF)

Using the Frobenius norm to calculate the difference between A and Á [36], we have:

F (A,UV T ) =
1

2
‖ A− UV T ‖2F =

1

2
Σm

i=1Σ
n
j=1 (Aij − [UV T ]ij)

2 (3.14)

min
U∈IRm×r,V ∈IRn×r

1

2
‖ A− UV T ‖2F (3.15)

Coupled matrix factorizations

SVD and NMF are two popular matrix factorization techniques and both have had many

successful implementations in the recommender system field [41, 42, 15] and also in other

areas. If we want to factorize two matrices which have one mode in common, in order to

incorporate different features of these matrices together, we can implement a modified version

of SVD or NMF.

The coupled matrix factorization technique, which we are considering in this study, applies

same factorization approach on two matrices simultaneously. Assume nonnegative matrices

A ∈ IRm×n and B ∈ IRm×q which have identical features on their first modes, then the SVD of

A and B are UAΣAV
T
A and UBΣBV

T
B . However, to factorize them at a same time we consider

U = UA = UB. Then, the coupled SVD corresponding to Equation 3.11 is:

F (A,B, UΣAV
T
A , UΣBV

T
B ) =

1

2

(
‖ A− UΣAV

T
A ‖2F‖ + ‖ B − UΣBV

T
B ‖2F

)
(3.16)
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In addition, the NMF of matrices A and B are UAV
T
A and UBV

T
B respectively. Again, lets

U = UA = UB, then, as shown in Figure 3.9 schematically, the coupled NMF corresponding

to Equation 3.14 is as follow:

F (A,B, UV T
A , UV

T
B ) =

1

2

(
‖ A− UV T

A ‖2F + ‖ B − UV T
B ‖2F

)
(3.17)

Figure 3.9: Coupled NMF

3.2.3 Matrix and coupled matrix factorization applications in rec-

ommender systems

By applying the matrix factorization techniques, such as SVD and NMF, on the user-item

rating matrix, these techniques form some low-rank matrices (Figures 3.7 and 3.8) whose

their production will approximate the rating matrix. This feature of matrix factorization

approaches has a close affinity with this assumption that a small number of latent features

affects the rating patterns [41].

Paterek [43] combine different collaborative filtering predicting algorithms, such as regu-

larized SVD, post-processing SVD with KNN and K-means, in order to produce more accu-
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rate models. Using the non-negative matrix factorization, Hernando et al. [44] convert the

rating (user,item) table to two matrices whose their components lie between 0 and 1. They

show that this method convey more understandable probabilistic meaning than classic matrix

factorization. In addition, By comparing the accuracy of the predictions and recommenda-

tions of the proposed method and classic matrix factorization, the authors indicate that

this method produce more accurate results. In another popular research study, Koren et al.

[41] develop a matrix factorization-based recommender system and also investigate various

learning methods to solving the factorization problem, such as Stochastic Gradient Descent

(SGD) and Alternating Least Squares (ALS). They show that matrix factorization models are

superior to traditional KNN-based techniques and produce more precise recommendations.

Ma et al. [45] take into account both information of users in the social network and rating

matrix and implement a probabilistic matrix factorization. Their suggested method shows

high accurate recommendation even for sparse data. In order to deal with the high amount

of available data, Yu at all. [46] propose a nonparametric SVD matrix factorization which

allows the latent factors to be data-driven. Also, they suggest new learning models which

allow their nonparametric matrix factorization technique to be highly efficient on large-scale

data. More recently, Guo et al [47] show that not only explicit patterns of user-item rating

are important but also the implicit influence of rating matrix can play an important role.

The authors suggest an SVD-based technique as a collaborative filtering recommender system

which takes into account the explicit influence of trust (trust values), the implicit influence

of trust (who trust whom), and the user-item rating. The implicit effect of trust is added to

the rating matrix as an extra feature. And the explicit impact of trust is used to constrain

that user latent factor should be matched with their social trust relationships. In this way,

the latent factors of a particular user can be predicted from trust information, even only a

few rating are available for that user.

One of the first implementations of coupled matrix factorization is the published study of

Long et al [48]. In this study, they propose a model to clustering relational data, which come

from different domains, using a coupled matrix factorization. Later, Singh and Gordon [49]

conduct a similar study. They evaluate their proposed method by using separate matrices of

user-movie, movie-genre, and movie-actor. Based on the highly accurate results, the authors
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conclude that combining information from multiple domains and using the coupled matrix

factorization leads to better predictions. In another study, Acar et al. [50] consider two

different metabolomic matrices of X ∈ IRI×J and Y ∈ IRI×K which have the first mode in

common. They perform a coupled matrix factorization to recommend potential biomarkers

for apple intake. Their suggested method is finding the matrices A ∈ IRI∈R, B ∈ IRJ∈R, and

C ∈ IRK∈R that minimize the following equation:

F (A,B,C) = ‖ X − ABT ‖2F + ‖ Y − ACT ‖2F (3.18)

More recently, Wang et al. [51] implement a coupled matrix factorization method to

predict the response time in logistic services. For the service-response matrix R ∈ IRN∈M

and its corresponding weight matrix W from the first domain, the order feature matrix

X ∈ IRN×S from the second domain, and finally the driver feature matrix Y ∈ IRM×T from

the third domain, their method is finding the matrices U , V , G, and H in order to minimize

the following equation:

F (R,W,X, Y, U, V,G,H) =
1

2
‖ W ◦(R−UV T ) ‖2F +

λ1
2
‖ X−UGT ‖2F +

λ2
2
‖ Y −V HT ‖2F

(3.19)

3.3 Tensor Decomposition

Recently, many researchers have utilized the tensor-based representation of data in order to

represent the multi-modal relationships between various features [52] within a single domain

or multi-domains. In addition, the tensor decomposition techniques have been used in many

studies to capture latent factors of different features and develop predictor and recommender

systems. In this section, we will start by a review of multilinear algebra, then we will mention

popular tensor decomposition techniques and their applications in the field of recommender

systems.
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3.3.1 Preliminaries of tensor algebra

A tensor is a multidimensional array. Sometimes it is described as a higher-order considera-

tion of vectors and matrices. For example, a 3-way tensor, a cubic of data, can be considered

as a list of 2D matrices. More formally, a tensor is a multilinear mapping over a set of vector

spaces. for the real tensor A ∈ IRI1×I2×···×IM , the M is the order of tensor. A tensor with

the order of M also known as M -way tensor. The dimension of tensor A in its I-th order

is the number of distinct features on that order.

The followings are some fundamental definitions which are necessary to understand the

math behind the tensor decomposition techniques [53]:

• Rank-1 tensor - If A ∈ IRI1×···×IM is an M -way tensor and there are vectors

u1, u2, · · · , uM such that A = u1 ⊗ u2 ⊗ · · · ⊗ uM , then tensor A is rank-1 tensor.

• mode-m vectors - the mode-m vectors of the Mth-order tensor A ∈ IRI1×···×IM is

calculated by varying index Im while keeping the other indices constant.

• Mode-m unfolding - Lets A ∈ IRI1×···×IM , then element (i1 × i2 × · · · × iN) of

tensor A is mapped to element (im, j) of the m-mode unfolding, also known as m-mode

matrixizing, of A, which is identified by A[m] ∈ IRI1···Im−1Im+1···IM , with:

j = 1 +

N∑
k=1,k 6=m

(ik − 1)

k−1∏
n=1
n6=m

In

 (3.20)

• Mode-m rank - the mode-m rank of the M -way tensor A[m] ∈ IRI1···Im−1Im+1···IM is

defined as:

RAm = rankm(A) = rank(A[m]) (3.21)

• Mode-m product - consider tensor A ∈ IRI1×···×IM and matrix B ∈ IRJm×Im , then the

mode-m product of them, denoted by A×mB, is tensor C ∈ IRI1×···×Im−1×Jm×Im+1×···×IM
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• Khatri-Rao product - the Khatri-Rao product of matrices A ∈ IRI×J and B ∈

IRK×J , which is denoted by A�B, is calculated as:

A�B =
[
(a(1) ⊗ b(1)) · · · (a(l) ⊗ b(l)) · · · (a(L) ⊗ b(L))

]
(3.22)

where, [A�B]ik,j = aijbkj and A�B ∈ IRIK×J and a⊗ b represents the outer product

of a and b.

3.3.2 Tensor decomposition techniques

Allegedly, the idea of representing data through a multi-way model came from Cattell’s study

[54]. However, the topic became more popular after Tucker’s great studies on multi-way factor

analysis [55, 56, 57]. More recently, many researches have used tensor decompositions in the

wide range of fields such as numerical analysis [58], graph analysis [59], neuroscience [60],

image analysis and computer vision [61], social network analysis [62] and many other areas.

Here, we review two widely used tensor decomposition techniques which have many successful

implementations in the recommend systems as well.

CANDECOMP/PARAFAC (CP) decomposition

The idea of polyadic decomposition of tensors was first proposed by Hitchcock [63]. Fur-

ther, it rediscovered by other researchers in the form of CANDECOMP (canonical polyadic

decomposition) [64] and PARAFAC (parallel factor decomposition) [65]. Later, due to the

Kiers study [66], this technique has become popular as the CANDECOMP/PARAFAC (CP)

approach.

As in this research study we are using the 3-way tensor as part of our suggested solutions

in the next chapter, here we are going to introduce the 3-way CP decomposition. Assume 3-

order tensor X ∈ IRI×J×K , then based on CP we can represent the X as the sum of three-way

outer products [67]:

X =
R∑

r=1

ar ⊗ br ⊗ cr (3.23)
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where, ar ∈ IRI , br ∈ IRJ , and cr ∈ IRK . R is a positive integer which is called the number

of components. In addition, The following matrices are identified as the factor matrices which

are the combinations of the vectors from the rank-one components:

A = [a1 a2 · · · aR]

B = [b1 b2 · · · bR]

C = [c1 c2 · · · cR]

(3.24)

In can be shown that [68]

X ' AD(k)BT (3.25)

where, D(k) ≡ diag(ck:) for k = 1, 2, · · · , K.

The CP decomposition may be regarded as the generalization of the matrix SVD because,

as it can be seen in the Equation 3.25, like the SVD which factorizes a matrix to three

matrices, the result of the CP decomposition can be represented as the three factor matrices.

In order to solve the CP decomposition, we find the A, B, and C such that they minimize

the following equation:

F (X , A,B,C) = ‖X −
R∑

r=1

ar ⊗ br ⊗ cr‖2
F = ‖X − AD(k)BT‖2

F (3.26)

One of main the reasons for the popularity of the CP decomposition is that it is ease for

interpretation. In fact, each decomposed rank-one component serves as a cluster is data. In

addition, one another feature of CP decomposition is that its’ result is unique [69].

Tucker decomposition

The Tucker decomposition was first presented by Tucker in 1963 [55] and more comprehensive

versions of this idea was introduced later in 1966 [57] by the same author. Although, Tucker

offered three different methods in the later study, but the third, which known as Tucker-3,

became more prevalent. Therefore, we shortly review this technique here and for the ease

refer to Tucker-3 as Tucker decomposition technique.
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Assume the 3-way tensor X ∈ IRI×J×K . The Tucker technique decomposes this tensor to

three factor matrices A ∈ IRI×R1 , B ∈ IRJ×R2 , C ∈ IRK×R3 , and a smaller tensor, also known

as core tensor, G ∈ IRR1×R2×R3 . Therefore, we have:

X ' G ×1 A×2 B ×3 C (3.27)

Xi j k '
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

Gr1 r2 r3Ai r1Bj r2Ck r3 (3.28)

The Tucker problem can be described as finding the G, A, B, and C for selected reduced

dimensions R1, R2, and R3 in order to minimize the difference between the original tensor

and the reconstructed one:

F (X ,G, A,B,C) = ‖X − (G ×1 A×2 B ×3 C)‖2F (3.29)

In contrast with the CP decomposition, the Tucker’s result is not unique. However, this

decomposition technique provides a good low-rank approximation of tensor, much like the

SVD for matrices. Also, it is widely used for dimensional reduction purposes as well. Beside

the Tucker-3 [57], another popular algorithm for Tucker decomposition is the Higher-Order

Singular Value Decomposition (HOSVD) presented by De Lathauer et al. [70].

Papalexakis et al. [53] summerize popular tensor decomposition techniques and review

their applications in many diverse fields, such as social network analysis, recommender sys-

tems, computer networks, information retrieval, web mining, healthcare, speach and image

processing, and urban computing. Moreover, in this survey paper, the authors cover most

important studies that have attempted to design scalable tensor decompositions to handle

large datasets and be compatible with the big data. Table 3.2 summerizes their findings.
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Table 3.2: Comparison between CP and Tucker decompositions

Tensor
decomposition

technique
Advantages Disadvantages Applications

CP

Easy to interpret,

unique under mild

conditions

Hard to find the

proper rank, hard

to determine the

global minimum

Explanatory analysis,

clustering, capturing

latent factors,

compressing data which

have low-rank multilinear

structure

Tucker

Compresses the

tensor, extracts

non-trilinear

variations

Hard to interpret,

Nonunique result,

Compressing the data

that do not have low

tensor rank, analyzing

relations between latent

components

3.3.3 Applications of tensor decomposition in recommender sys-

tems

CP applications

Zheng et al. [71] consider GPS data and develop a collaborative recommendation system

to suggest locations and activities based on the users GPS traces. They construct a user-

location-activity tensor and apply a nonnegative CP-style decomposition to this tensor along

with four supplementary matrices. These matrices, namely user-location, user-user, location-

feature, and activity-activity matrices, are integrated with the original tensor to deal with

its inherent sparsity. Based on the result, using the additional information represented in the

mentioned matrices increases the accuracy of the produced recommendations in comparison

to the case that the only input information is the original 3-way tensor.

Kutty et al. [72] propose a tensor-based hybrid recommendation system for the people

32



network with two different user types, such as male-female, doctor-patient, and employer-

employee. They capture the present 2-way relationships in these networks by considering two

separate third-order tensors in shape of (sender, receiver, attribute values of the receiver),

which sender and receiver are network’s users with various types. Based on the interaction

between the users, each element of the tensor might be positive or negative. If the message

had sent by the sender got a positive response from the receiver the corresponding element is

positive. However, if the receiver has negatively responded to the message or ignored it, the

element is negative. The authors apply the CP method over two tensors separately. Each

reconstructed tensor can be used to create 1-way recommendations, but, to follow the inherent

2-way relationships of the network they only collect those pairs which is recommended in both

reconstructed tensors. To Evaluate their people-to-people recommendation system, Kutty et

al. use a dataset collected from an online dating site and show that their method can achieve

better precision and recall in comparison to former algorithms.

Kao et al. [73] show in their study that how CP decomposition can be applied to reveal

topics and relationships in a temporal social network. In their case study, they extract data

from Twitter including tweets related to a specific event. Considering various parameters

such as user, retweeted user, term, hashtag, and time, they create 3-way and 4-way tensors

and decompose them to explore the principal factors, different relationships between terms

and users, and topic trend in different time windows.

Yao et al. [74] use the multidimensional information of check-in data from Location Based

Social Networks (LBSNs) to develop a context-aware Point of Interest (POI) recommender

system. They construct a 3-way user-location-time frame tensor and apply the CP technique

to extract the hidden information. They also impose the users’ social connections as an addi-

tional social regularization to improve the accuracy of the produced predictions. Since in the

tensor decomposition technique the natural multidimensional relationship between LBSN’s

data is considered properly, the suggested method results in more accurate recommendations

rather than baseline linear algorithms.

Zheng et al. [75] develop a recommender system using a CP-based probabilistic tensor

factorization which takes into account the social relationships, rating, item content, and

contextual information by decomposing a 4-way user-item-context-rating tensor. Through
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proving the superiority of the proposed approach in comparison with other common context-

aware recommender systems, which most consider only two parameters, the authors show

that different information types affect the users’ behavior simultaneously and considering

them together results in more accurate predictions.

In another study, Park et al. [76] develop a tensor decomposition package, running on

distributed Hadoop to manipulate large scale tensors. The core ideas in their work are

handling the intermediate data explosion problem, reducing the floating point operations,

and decreasing the number of redundant MapReduce jobs. The package consists of five

different decomposition methods: CP, non-negative CP, Tucker, non-negative Tucker, and

coupled matrix-tensor factorization. In order to analyze the obtained factor matrices from

huge tensors, they also consider two more points. First, they consider only the top-k highest

valued elements in each factor matrix because the number of elements in each matrix is too

large to be explored easily. Second, they rank these top-k elements based on the calculated

specificity score to avoid biased filtering toward frequent elements in different columns.

Almutairi et al. [77] investigate the application of matrix and tensor factorizations in the

learning analytics by developing recommender models to predict students’ grades in courses

which are new for them. They propose two models based on the coupled matrix factorization

method which incorporate a main historical grades matrix with a context matrix. They

consider absolute time, measured in semesters, in which the course is taken and student

experience, which is equal to the number of semesters the student has been in the current

program, as the contextual information. Moreover, they suggest another model based on

the tensor decomposition as well. In this approach, they create a tensor by combining those

matrices and apply the CP decomposition to predict the students’ future grades. The authors

show that all these model represent higher accuracy rather than the matrix factorization

method because they take extra contextual information into account.

Nakatsuji et al. [78] use 3-way tensors, (user-topic-user), extracted from Twitter to predict

links among users and topics discussed among them. Their proposed algorithm consists of an

extension of the Variational nonnegative matrix factorization method which is an instance

of the CP decomposition technique. In addition, they tackle the biased prediction issue and

tensor sparsity problem by connecting topics extracted from tweets to the DBpedia dataset.
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They create a single tensor including all the users who tweet or retweet contents about

some chosen topics. However, the authors claim that the prediction created using this single

tensor tends to be biased toward the popular topics. In addition, they state that this social

network tensor is usually sparse because tweets and retweets of each user just include a small

set of topics among the wide range of topics that are discussed in the network. Therefore,

they suggest the following steps in their method to answer these mentioned problems: 1)

Considering crawled tweets about some initial topics and the corresponding DBpedia entities

to these topics, first for each chosen topic they find those entities in the DBpedia knowledge

base which are in the certain neighborhood radius of that specific entity. If these achieved

entities are used in the extracted tweets, they consider them as the related topics to the initial

topic. In this way, for each initial topic, they create a domain which is a set of topics. So,

they avoid strong biases toward a specific topic or domain by creating a separate tensor for

each domain. 2) in order to deal with the sparsity, the authors select the most sparse topics

in the obtained tensors and for each of these sparse topics, they find the neighboring entities

of the corresponding entity in the DBpedia dataset. Then, they create a newly augmented

tensor by adding new (user-topic-user) relationships including the topics of these neighboring

entities to the tensor from the previous step. Next, they decompose the tensors obtained

from steps 1 and 2 as well as the first large tensor simultaneously and semantically augment

tensors in different domains to handle sparsity of the tensors.

Rabanser et al. [79] conduct a case study to show how tensor decomposition can be

implemented in the machine learning solutions. In order to estimate the latent variable

models, they first apply the Method of Moments over Gaussian Mixture Model and Topic

Model to create 3-way moments, then they utilize the Tensor Power Method to uncover the

latent structure of these moment tensors.

More recently, Ioannidis et al. [80] develop a new method to decompose a tensor coupled

with a graph-style data. They argue that this joint analysis method can demonstrate the

latent structure of related heterogeneous data from various information repositories. Their

proposed method consists a CP decomposition for the tensor and a nonnegative matrix

factorization for the corresponding matrix of the graph. Furthermore, they use an algorithm

based on the alternating direction method of multipliers to obtain the latent factor matrices
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and predict the missing values of the tensor by considering the graph matrix. They show that

this graph-tensor factorization method can also be implemented to detect communities on

an incomplete graph by using the recovered factors. To evaluate their method, the authors

create an activities recommender system using a real dataset and compare the results with

CP, nonnegative tensor decomposition, and matrix-tensor decomposition algorithms. Based

on these results, the proposed algorithms achieve more accurate predictions and perform

better than those mentioned alternatives.

Tucker applications

Peng et al. [81] suggest a collaborative recommender for social tagging system. They apply

Tucker decomposition to extract the lower dimensional representation of users and use them

to compute the users’ similarity. Instead of using only these similarities to make recommen-

dations, they construct item-tag joints and project them into the item space to make the

final recommendation. They evaluate this method using various datasets and show that it

gives more precise recommendation than previous user-based methods.

Around the same time, Symeonidis et al. [82] implement the HOSVD method to reduce

the dimensionality of a 3-way (user, tag, item) tensor and analyze multiway latent semantic

presents in social tagging systems’ data. In addition to the tensor decomposition method,

they utilize the kernel-SVD smoothing technique to deal with the tensor sparsity. They cre-

ate recommendation systems using tensor decomposition and kernel-SVD methods to suggest

tags, items, and similar users. They show that the tensor decomposition method provides

more precise recommendations in comparison with other traditional approaches such as fu-

sion, matrix SVD, item-based, FolkRank, and baseline algorithms. Moreover, they study

the influence of the core tensor dimensions on the recommendation accuracy. They demon-

strate that by fixing the dimensionality of one modal, the optimal value for other two can be

calculated.

Zou et al. [83] exploit the GPUs’ flexible programming feature as well as their efficient

parallelism to accelerate the tensor decomposition, especially for big data. The suggested

GPU-based algorithm partitions a tensor to some smaller blocks and then perform the n-mode

production block by block, then calculate the tensor factorization parallelly using HOSVD. It
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also comprises an optimization strategy to deal with the intermediate data explosion problem.

The authors show that the parallel GPU-based HOSVD can be 10 times faster than the case

which this decomposition technique is applied without parallelism using CPU.

Maroulis et al. [84] propose a context-aware POI recommendation system for LBSNs.

By considering various contexts such as time, date, and category transition, they construct

a user-POI-context tensor and apply the HOSVD. The authors assess the performance of

this method by comparing its results to some other techniques which rely on the matrix

factorization approach. They show that the tensor-based method provides higher precision

and recall rather than matrix-based algorithms.

Symeonidis [85] suggests an approach to deal with some of the drawbacks of the HOSVD

technique in social tagging systems. To be more specified, this method reduces the high

factorization dimension of HOSVD and addresses the data sparsity in the STSs simultane-

ously. Technically, it includes a tag clustering step before constructing the tensor. Therefore,

HOSVD is applied over the user-tag cluster-item tensor instead of the user-tag-item tensor.

This method not only reduces the tensor sparsity and causes more accurate recommendations

but it also decreases tag ambiguity and tag redundancy. K-means, spectral, and hierarchi-

cal agglomerative methods are compared for the clustering step. Although, using each of

them with HOSVD leads better results rather than the HOSVD itself, but higher precision

is achieved using the spectral clustering method.

Zheng et al. [86] develop a Tucker-based tensor topic model to capture low-dimensional

representations of users, words, and items in textual reviews. To do that, they form a 3-way

(user, item, word) tensor and apply the Tucker decomposition to obtain the multi-modal

relationships. Afterward, these results are used to construct a probabilistic model for rating

prediction.

Ying et al. [87] propose a temporal-aware POI recommendation system consists of two

steps. The first step is learning temporal-aware user preferences through a Tucker-based

decomposition method; Second is inferring the score of POI using a weighted Hypertext

Induced Topic Search (HITS)-based rating approach. Finally, POI recommendations are

produced by assembling these two steps, considering user preferences, temporal influences,

and social opinions. In order to model the user preferences in the first step, they create a
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3-way (user, POI category, time) tensor. Then, the authors suggest a Tucker-based context-

aware decomposition approach which can partly handle the sparsity of this tensor and create

better estimations, by incorporating the original tensor with three auxiliary user-features,

category-time and category-category matrices. The authors evaluate the effectiveness of the

proposed approach for user preferences modeling by comparing it with some other options.

These options include using the average of all non-zero entries in the related time slot instead

of implementing the tensor decomposition method, applying the user-category matrix fac-

torization instead of the tensor decomposition, and the tensor decomposition using only one

or two of the three mentioned supplementary matrices. The results show that the suggested

context-aware tensor decomposition method outperforms all other options by showing less

root mean square error (RMSE) and mean absolute error (MAE).

Another research which investigates the application of tensor decomposition for cross-

domain recommendation is the Taneja and Arora study [88]. The authors design a cross-

domain recommender system which takes into account the different features of users’ interests,

expressed within the source and target domains, in order to provide new recommendations.

The authors state that using proposed cross-domain multi-dimension tensor factorization

method, this recommender system can deal with the sparsity and cold start problems better

than traditional single-domain recommenders. In their case study, they consider two 5-way

tensors in the source and target domains. To handle the sparsity of tensors, they use the

agglomerative hierarchical clustering technique to group data in the source domain based

on the available features and then map the common features in the target domain to the

corresponding created clusters. In addition, they implement the HOSVD to discover the

relations between different modes and create new recommendations.

In addition, recently Zhao et al. [89] present a model for POI recommendation by con-

sidering the most important temporal properties, including periodicity, consecutiveness, and

non-uniformness. They construct a (user, time label, POI) user-time label-POI tensor and

implement a Tucker-based decomposition technique, based on the study of Rendle et al. [90],

to capture different temporal latent features. Then, they aggregate these features using a

linear convex combination operator to calculate a score function for each given time label,

user, and POI.
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3.4 Summary

According to the importance of the recommender systems, any online service provider or so-

cial media uses some kind of recommendation techniques. These recommendation models may

include collaborative filtering to capture the similarities between the users and suggest new

items to a particular user based on these similarities, or may include content-based approach

to understand the items’ contents and recommend new items based on the items’ descrip-

tions, or even may be a combination of the collaborative and content-based methods (Figure

3.2). While these recommendation models usually use the information of a specific domain,

such as a particular social media, to create a recommendation for that specific domain, they

face with some important problems which decrease the accuracy of the recommended items.

Recently, it has found that by integrating different information from separate domains

(Figure 3.6) and produce cross-domain recommender system, some of these problems, such

as data sparsity and cold-start problem, can be partially addressed. In a cross-domain

recommender system, various information exposed in separate domains are incorporated in

one of these approaches: transferring knowledge from one domain to another one, or merging

knowledge from various domains together.

The coupled matrix factorization technique is an example of knowledge transmission

approach. While various matrix factorizations are well-known techniques to create single-

domain collaborative filtering recommender systems, factorizing two separate user-item ma-

trices can be used to create cross-domain recommendation models. It actually shares the

latent features of these matrices together in order to make more precise recommendations.

On the other hand, tensor decomposition can be considered as an example of knowledge

merge approach. By creating the multi-modal data structure using different domains’ in-

formation, the latent relations between users and various items can be taken into account.

Then, various tensor decomposition techniques can be applied to capture the latent features

between these modes or to capture a compressed core of data.
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4

RESEARCH METHODOLOGIES AND IMPLE-

MENTATIONS

As it said before, the main purpose of this study is bringing new recommender systems

forth, which link various information from different domains together. We are using the state

of art techniques, coupled matrix factorization and tensor decomposition, as well as diverse

knowledge-based algorithms, to develop those cross-domain recommender systems. In order

to implement and evaluate our suggested models, we are using a real dataset extracted from

two popular social media websites, namely Twitter and LinkedIn.

In this chapter, we first describe our considered domains and the crawled dataset. The

suggested methodologies can be divided into three parts. First part includes four different

knowledge-based recommender algorithms which connect the LinkedIn’s user-skill dataset

as the source domain to the Twitter’s user-account dataset as the target domain and vice

versa. In the second part, a coupled matrix factorization method is proposed to make item

recommendations using these two domains. And finally, the last part comprises a tensor

decomposition model which is used to create cross-domain recommendations. The evaluation

and results of these methodologies will be discussed in the next chapter.

4.1 Dataset Description

The Twitter and LinkedIn are considered as separate domains and suggested recommender

systems connect information from those by either merging users’ preferences or sharing latent

factors of user-item matrices (Figure 4.1). Based on the Figure 3.6, it can be seen that the

difference between the two domains is at the system level.
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Figure 4.1: Schematic view of separate domains in our study

The first step is extracting desired data from these two domains such that they express

various features of identical users. To do this, we chose to extract LinkedIn skills and Twitter

following accounts of some computer scientists. The dataset should be about computer

scientists who have active accounts on both Twitter and LinkedIn.

The first challenge here is: how to find experts working in the computer science area?

Should we search LinkedIn to find who claimed to have computer science-related skills?

Undoubtedly, if we just rely on the claimed skills of random people in LinkedIn, the gathered

data will not be precise. As a solution, in this study, we used the LinkedIn search engine to

find people with computer science-related skills who are working in high-tech companies of

the computer industry, like Google, Facebook, Microsoft, IBM, and Amazon, and previously

worked in one of these companies as well. Therefore, we assume that these people, who

have computer science skills and have been worked in at least two high-tech companies,

have enough knowledge and expertise in this field to recognize their own proficiencies with

acceptable accuracy.

The second important issue is that finding all corresponding Twitter accounts is almost

impossible. Every person who has a LinkedIn account not necessarily has a Twitter account.

In addition, comparing LinkedIn and Twitter accounts based on the matching name is not

practical too because there might be more than one account with the same real name on

41



Twitter. Also, finding Twitter accounts using image processing and based on matching

pictures of two social medias’ profiles might result in high inaccuracy. In this research study,

to avoid mentioned errors, we just consider those above computer scientists who declared

their Twitter IDs on their LinkedIn profile page. Table 4.1 describes the statistics of the

extracted dataset.

Table 4.1: Statistics of the dataset

Description Number

Users 492

All Twitter’s following accounts 194053

Unique Twitter’s following accounts 143974

Unique Twitter’s following accounts

which are followed by at least 5 users
3486

All LinkedIn’s skills 13986

Unique LinkedIn’s skills 2566

The word-cloud of Twitter following accounts and the word-cloud of LinkedIn skills are

illustrated in Figure 4.2 and Figure 4.3 respectively. Using these figures we can understand

easily which twitter accounts are more interesting for computer scientists and also which skills

are more important in professional marketing. Words with larger size are more repeated in

our dataset.

According to Table 4.1, more than %74 of Twitter accounts are unique. It means that

there are many Twitter accounts followed by only a few users in our dataset. Although

these accounts may not be related to computer science field, they actually do not affect the

performance of proposed knowledge-based recommender systems, because, for them, we only

consider most related cases while recommending Twitter accounts to follow or predicting

LinkedIn skills. However, for coupled matrix factorization-based and tensor decomposition-

based recommender systems, the unique Twitter’s following accounts which are followed by

at least five computer scientists are utilized to develop the recommending models.
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Figure 4.2: The word-clouds of following accounts extracted from Twitter

4.2 Part I: Knowledge-Based Recommender Systems

As we should verify the usefulness of proposed recommender systems in this section, we use

train-test-split method and divide our dataset into two separate subsets randomly: a larger

set which is used to train our algorithms and a smaller set that is used to evaluate the

accuracy of proposed models. The train set includes the information of 90 percent of users

in the two distinct domains.

4.2.1 Collaborative filtering recommender system

The first algorithm is collaborative filtering. In this approach, in order to suggest new items

in the target domain to a particular user, we use the train set to find the first 10 percent

of users who have most similarity with that user in the source domain. Then we suggest 50

Twitter accounts to follow (or 20 LinkedIn skills to add), based on the preferences of these

similar users. Assume that we want to recommend some Twitter accounts to one of the users
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Figure 4.3: The word-clouds of skills obtained from LinkedIn

of our test set based on his or her skills. Therefore, the input here is a set of LinkedIn skills.

The first step is sorting the users of train set based on the matching between their list of

LinkedIn skills and the input list. Then we select the top 10 percent computer scientists who

have the highest number of common skills with that particular user. In the second step, we

accumulate all Twitter following accounts belonging to these top similar users and sort them

based on their repetition. In the end, we recommend 50 Twitter accounts which have more

frequency in the obtained list of Twitter following accounts. Figure 4.4 shows the flowchart

of our collaborative filtering recommender system.

4.2.2 Content-based recommender system

Here as the first step, we create a description for each Twitter account or LinkedIn skill; we

want to know that having which skills may cause following a specific Twitter account, and

following which Twitter accounts show that the user might have a unique skill. Hence, for

each user in the train set, we create all possible skill-account pairs, where the skill belongs to

the list of user’s LinkedIn skills and the account belongs to the list of user’s Twitter accounts.
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Figure 4.4: Flowchart of the knowledge-based collaborative algorithm

Then we aggregate all pairs related to all users of the train set, count each available pair

in the obtained list of pairs, and sort pairs based on their frequency. As a result, by looking

to this sorted list we can find which Twitter accounts have a tighter relationship with one

specific LinkedIn skill and vice versa. Figure 4.5 shows the flowchart of this step. It should

be noted that this step is done only once.

To recommend some Twitter accounts to follow, or predict some LinkedIn skills, we use

the acquired weighted list of pairs of the LinkedIn skill and the Twitter following accounts.

This list abstracts the features of the items in our train set and explains the relations be-
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Figure 4.5: Flowchart of creating a description for each item in shape of (LinkedIn
skill, Twitter account)

tween LinkedIn skills and Twitter accounts. Therefore, we can consider it to determine the

preferences of any particular user.

In the content-based recommender system, we get the input list which can be either a list

of LinkedIn skills or a list of Twitter accounts. If it involves some skills, for each skill S in

this list we find 50 pairs in the list of weighted pairs, obtained in the first step, where their

first component is S. In fact, these 50 pairs represent the 50 Twitter accounts that have the

most influence on skill S. Then we accumulate all effective Twitter accounts related to all

input skills and sort them based on their frequency. The same process is used when the input

list includes some twitter accounts; nut, in this case, we find 20 pairs for each unique Twitter

account and recommend 20 LinkedIn skills at the end. The flowchart of the content-based
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recommender system is shown in Figure 4.6.

Figure 4.6: Flowchart of the knowledge-based content-based algorithm

4.2.3 Hybrid mix recommender system

The third algorithm, which is a hybrid recommender system, is the union of two previous

algorithms. It aggregates the results of collaborative and content-based approaches, sort

recommended items again based on their repetition, and suggests 50 Twitter account or 20

LinkedIn skills at the end, depending on the type of input list.
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4.2.4 Hybrid feature combination recommender system

The fourth knowledge-based algorithm has some features of the collaborative filtering and

some features of the content-based approach method. Like the first one, for any input list,

it finds top 10 percent of similar users in the source domain who have more commons with

the input list. Afterward, considering only these similar users, it creates a weighted list of

possible pairs of LinkedIn skills and Twitter accounts. Then, it follows the content-based

algorithm to create the final output. Therefore, this hybrid algorithm utilizes a feature of

the collaborative filtering and uses it to modify a feature of the content-based recommender

system.

4.3 Part II: Recommender System based on Coupled

Matrix Factorization

As discussed in part 3.1.3, one type of information flow in cross-domain recommender systems

is the knowledge transmission. A coupled NMF-based recommender system is one example for

this type of knowledge flow, where latent features of user-item matrices in different domains

are shared together in order to capture the influences of all available features on the users’

preferences.

4.3.1 k-modes pre-clustering

One of the main weakness of recommender systems is their inability to work with sparse

data. The sparsity may be defined slightly different in various studies. Sometimes it refers

to having a few numbers of high-value ratings in the user-item matrix but most of the time

it means few available ratings in comparison to all possible rating cases. Today, according to

exponential growth in the number of users and also the number of available features of social

media, the problem of data sparsity is more tangible. Data sparsity negatively affects the

accuracy of the recommender system and increase the cold-start problem. Therefore, many

researchers try to address this issue by using diverse methods [91, 92, 93].
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Table 4.2 shows the characteristics of sparse information in our separate domains, Twit-

ter domain and LinkedIn domain. It should be noted again, that we consider only those

Twitter accounts which are followed by at least five users. As can be seen in this table, the

corresponding matrices are large and highly sparse. Developing a cross-domain recommender

system based on these user-item matrices, by using the coupled matrix factorization or any

other technique, will not produce highly accurate recommendations.

Table 4.2: Sparsity characteristics of the original matrices

Description Value

Number of all elements in the

user - twitter account

matrix

1715112

Percentage of non-zero elements

in the user - twitter account

matrix

% 2.53

Number of all elements in the

user - skill matrix
1262472

Percentage of non-zero elements

in the user-skill matrix
% 1.23

In order to reduce the sparsity problem, we perform clustering on LinkedIn skills as

well as on Twitter accounts. Then we apply the coupled matrix factorization (or tensor

decomposition) into the reconstructed clustered user-item matrices.

One of the widely used clustering methods is the k-means algorithm [94]. It allows dividing

the numerical data in k clusters according to the similarities among them. In order to specify

these clusters, the k-means algorithm starts by initializing the centroids of the clusters. Each

centroid can be either one of the data points or even an imaginary point within the data

range. Then, it computes the differences of each point to those centroids. There are different

metrics to measure these differences but the most popular one is the Euclidian distance. Each
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data point is assigned to the cluster it is closer to. After that, centroids are redefined to be

at the center of the clusters. The distances are calculated again and the data points are re-

assigned to the new centroids. This procedure is continued for a specific number of iterations

or until the centroids do not move any more ore the sum of centroids displacements is under

a certain small threshold. Symeonidis [85] utilizes various clustering methods, such as the

k-mode algorithm, to reduce the sparsity of the user-tag matrix before using it to construct

a 3-way tensor and create a recommender system by decomposing the tensor. This study

is one example of how a wise pre-clustering can increases the accuracy of the recommender

system.

As it said, the k-means stands on a mathematical calculation like measuring the Euclidian

distance between data points and clusters’ centroids or calculating the mean of data points

in a cluster to move its’ centroid. However, in many cases, like our research study, we are

dealing with categorical data. Converting the categorical data into numerical data using

label encoding or one-hot encoding and applying the k-means clustering is not appropriate

because it could consider close two really different items and results low-quality clusters.

In this study, we implement the k-modes clustering algorithm. This technique which was

introduced by Huang [95, 96], is an extension of the k-means. The main differences between

these two include distance function and centroids representation [97].

In contrast to the k-means which calculates the Euclidian distances, the k-modes al-

gorithms measures the dissimilarity between the object X and the centroid of a cluster Z

described by m categorical attributes, as follow:

dissim(X,Z) =
m∑
j=1

δ(xj, zj) (4.1)

where

δ(xj, zj) =

0 if xj = zj

1 if xj 6= zj

(4.2)

In addition, in k-modes clustering, the centroids are identified by vectors of modes of

categorical attributes. the mode vector of a cluster centroids is selected such that it minimizes

the sum of the dissimilarities between available objects in that cluster and the centroid.
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We apply the k-modes clustering algorithm on LinkedIn skills and Twitter following

accounts and divide them into kl and kt clusters respectively, which kl is equal to the one

percent of the number of all LinkedIn skills, and similarly kt is equal to the one percent

of the number of Twitter accounts following by at least five users. The clustered user-skill

and user-account matrices are created by using these clusters. Table 4.3 shows the sparsity

characteristics of these clustered matrices.

Table 4.3: Sparsity characteristics of the clustered matrices

Description Value

Number of all elements in the

clustered user - twitter account

matrix

17220

Percentage of non-zero elements in the

clustered user - twitter account

matrix

% 46.58

Number of all elements in the

clustered user - skill matrix
12792

Percentage of non-zero elements

in the clustered user-skill matrix
% 47.74

By comparing Tables 4.2 and 4.3, it found that the pre-clustering using the k-modes

reduces the inherent sparsity of the extracted data from both domains. Next step, is using

this clustered matrices to create recommender systems.

4.3.2 Problem formulation

Although using the coupled matrix factorization in recommender systems have become popu-

lar in last few years in order to deal with the data sparsity, cold-start, and new user problems

as well as increasing the accuracy of recommender systems but it has a long presence in some

other fields. Acar et al. [50] use the equation 3.18 to analyze metabolomic information from
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two distinct domains. Our suggested method is based on their work.

We have two different domains: Twitter and LinkedIn. In each domain, we have a

nonnegative user-item matrix: user-account in the Twitter domain and user-skill in the

LinkedIn domain. These two matrices have one mode in common; in other words, they are

describing different features of identical users. Assume user-account matrix as A ∈ IRm×n

and user-skill matrix as B ∈ IRm×q, we are using a coupled nonnegative matrix factorization

technique to calculate lower-rank matrices of U ∈ IRm×r, VA ∈ IRn×r, and VB ∈ IRq×r such

that A ' Á = UV T
A and B ' B́ = UV T

B . The Á and B́ are sharing the matrix U ; this

matrix represents the latent features of the users. On the other hand matrices, VA and VB

express the latent features of Twitter following accounts and LinkedIn skills respectively.

Our purpose is to calculating the U , VA, VB in order to minimize the difference between the

original user-item matrices, A and B, and the reconstructed matrices, Á and B́, (A− Á and

B − B́). Therefore considering the following equation:

F (A,B, Á, B́) =
1

2
‖ A− Á ‖2F +

1

2
‖ B − B́ ‖2F +R (4.3)

F (A,B, U, VA, VB) =
1

2

(
‖ A− UV T

A ‖2F + ‖ B − UV T
B ‖2F

)
+ R(U, VA, VB) (4.4)

we find the answer of this:

min
U,VA,VB

1

2

(
‖ A− UV T

A ‖2F + ‖ B − UV T
B ‖2F

)
+R(U, VA, VB) (4.5)

where, R(U, VA, VB) is the Lasso regularization [98] terms:

R(U, VA, VB) = λ
(
‖ U ‖2F + ‖ VA ‖2F + ‖ VB ‖2F

)
(4.6)

Here, we use a SGD based [99] algorithm for solving the equation 4.5. First, we calculate
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the partial differentiations of the cost function (equation 4.4):

∂F

∂U
= (A− UV T

A )(−VA) + (B − UV T
B )(−VB) + 2λU

∂F

∂VA
= (A− UV T

A )T (−U) + 2λVA

∂F

∂VB
= (B − UV T

B )T (−U) + 2λVB

(4.7)

Lets X = UV T
A and Y = UV T

B , then:

∂F

∂U
= (X − A)U + (Y −B)VB + 2λU

∂F

∂VA
= (X − A)TU + 2λVA

∂F

∂VB
= (Y −B)TU + 2λVB

(4.8)

Then, we iterate over the data and update the following equations using one randomly

piece of data in each step, until the algorithm converges:

U := U − α∂F
∂U

VA := VA − α
∂F

∂VA

VB := VB − α
∂F

∂VB

(4.9)

where, α is a scalar, typically between 0.00001 to 1, and it is called the step size or the

learning rate.

4.3.3 Handling missing values

One important matter is how to handle the missing values in the LinkedIn’s user-skill and

Twitter’s user-account matrices, First of all, we want to design a general solution which can
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be used to create a cross-domain recommender system and real-world rating matrices usually

include a number of missing values. The method we choose to replace these missing values is

more important if we have a significant number of missing values in our dataset. In addition,

to evaluate our proposed models, we want to randomly remove some elements from the rating

matrices and see how well those models can predict the missing values.

There are many different ways to deal with the missing values and it really depends on the

nature of data, the number of missing values and the knowledge we have about the dataset.

One possible method is dropping the data entity or even the feature. Here, we avoid to do

this because, as it shown before, the sparsity of the data is reduced using the pre-clustering

and the chance to have a lot of missing values in one row or one column of the clustered

matrices is very low. Another popular approach is replacing the missing values with zeros.

However, a zero element in the user-skill matrix, Aij means that the i-th user does not have

the j-th skill; and also, if the element Bik of the user-account matrix is zero, it means that

the i-th user does not follow the k-th twitter account. Therefore, since zeros have meaning

in our matrices, it seems that replacing missing values with zeros is not a good idea.

So, we need to replace possible missing values with some numbers except zero. We can

consider the average of all the present values in the matrix, the average of all available values

in the corresponding row, or the average of all the present values in the related column. Our

purpose in this section is using the coupled NMF to develop a cross-domain recommender

system; therefore, we want to know which case is more appropriate to replace missing values

before applying the NMF. To determine which case works best for our data and with the

NMF, we randomly remove elements from the clustered user-skill and clustered user-account

matrices. Then, the NMF technique is used to predict those missing values of each domain

separately. We use the Mean Squared Error (MSE) as the measure to see how close the

predicted matrices are to the actual matrices.

MSE =
1

nm

n∑
i=1

m∑
j=1

(Xij − X́ij) (4.10)

Tables 4.7 and 4.8 show the obtained results. According to these tables, we will use the

average of non-missing values in each column to replace the missing value in that column.
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Figure 4.7: Difference between actual user-account matrix and its corresponding pre-
dicted matrix using NMF

Each column in the clustered user-skill matrix represents a unique cluster of LinkedIn’s skills;

likewise, each column of the clustered user-account indicates one specific cluster of Twitter’s

following account.

4.3.4 Selecting the factorization rank

Assume that k is the factorization rank in the coupled NMF. By other means, if A ∈ IRm×n

and B ∈ IRmtimesq, then by applying the coupled NMF we have A ' UV T
A and B ' UV T

B

where U ∈ IRm×k, VA ∈ IRn×k and VB ∈ IRq×k. The k is a hyperparameter whose its’ value

needs to be set before the learning process begins. Here, we consider different possible values

for k: 25, 50, 100, 200, and 400. For each of these values, we determine the performance of

the recommender system in term of precision.
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Figure 4.8: Difference between actual user-skill matrix and its corresponding predicted
matrix using NMF

Consider one of the domains as the source domain and another as the target domain. We

randomly replace some of the elements of the target domain with missing values. The missing

values are handled according to the part 4.3.3. Then, coupled NMF-based recommender

systems are produced to recommend top 5 items to each user in the target domain. The only

difference between these recommender systems is the value of the factorization rank, k. The

performances of created recommender systems are compared based on their precision.

Here, the precision of the recommender system, to suggest items to one particular user, is

defined as the number of elements in the intersection of recommended items and actual items,

divided by the number of recommended items. Hence, the total precision of the recommender
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Figure 4.9: Comparison between coupled NMF-based recommender systems with
different factorization rank; source domain is the user-skill matrix and target domain
is the user-account matrix.

system is calculated as the mean of its precisions for all users.

precision =
| recommended items ∩ actual items |

| recommended items |
(4.11)

We also consider this constraint that |recommended items| = |selected actual items|.

In other words, if the number of values greater than zero for the user in the reconstructed

matrix using coupled NMF is n and the number of desired top item to recommend is N and

n < N , then |recommended items| = |selected actual items| = n; Otherwise if n ≥ N ,

then |recommended items| = |selected actual items| = N .

Figure 4.9 illustrates the precision of recommender systems when the LinkedIn dataset

is the source domain and Twitter dataset is the target domain. Here, we used recommender
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Figure 4.10: Comparison between coupled NMF-based recommender systems with
different factorization rank; source domain is the user-account matrix and target domain
is the user-skill matrix.

systems based on coupled NMF to recommend top 5 twitter accounts. According to this table,

the recommender system with the factorization rank of 50 shows the best performance.

Considering Twitter’s user-account matrix as the source domain and LinkedIn’s user-skill

matrix as the target domain, Figure 4.10 shows the performance of recommender systems to

predict the skills of the users. As can be seen in this figure, the recommender system with

factorization rank of 25 has the best precision.

4.3.5 Selecting the number of items to recommend

Another parameter which can affect the performance of the coupled NMF-based recommender

system is the number of items it recommends to each particular user.
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Like the scenario of part 4.3.4, assume one of the domains as the source domain and

another one as the target domain. Considering different ratios of missing values in the target

domain, we create coupled NMF-based recommender system, with proper factorization rank,

to suggest N items in the target domain. As it obtained before, the factorization rank to

recommend Twitter’s accounts to follow is k = 50 and the considered factorization to suggest

LinkedIn’s skills to add to the profile is k = 25. In addition, we deal with missing values

based on the result of part 4.3.3.

We compare different numbers of recommended items, N : 3, 5, 10, 15, 20. If the number

of values greater than zero for a user, n, is less than N , the n is considered to calculate the

precision. According to Figures 4.11 and 4.12 the best numbers of Twitter accounts and

LinkedIn skills to recommend are 10 and 15 respectively.

Figure 4.11: Coupled NMF-based recommender systems to recommend N items;
source domain is the user-skill matrix and target domain is the user-account matrix.
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Figure 4.12: Coupled NMF-based recommender systems to recommend N items;
source domain is the user-account matrix and target domain is the user-skill matrix.

4.4 Part III: Recommender System based on Tensor

Decomposition

One another case of knowledge flow in cross-domain recommender systems is knowledge

aggregation (as discussed in the part 3.1.3). The tensor decomposition-based recommender

system is an example of knowledge aggregation, where users’ preferences in different domains

are merged together in order to create more accurate recommendations as well as to deal

with data sparsity and cold-start problems.

In this section, we first construct a 3-way tensor of user-account-skill by combining the

available information in separate domains. Then, considering one of the domains as the target

domain and by using a CP-style decomposition, we design and implement a cross-domain

recommender system to suggest items in the target domain.
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4.4.1 Problem formulation

k-modes pre-clustering

As discussed before the original user-item matrices in our diverse domains are very large and

highly sparse. Creating a 3-way tensor using these matrices results in a huge tensor with

even worse sparsity status. Because of the large dimensionality of the original tensor’s orders,

calculating the decomposition of the tensor and developing the recommender system base on

it needs a lot of computational power and time. In addition, the intense sparsity status of

this cube of numbers leads to low accurate recommendations. Therefore, similar to part 4.3.1

we apply a k-modes clustering on the original user-skill and user-account matrices; and then,

utilize these clustered matrices to construct the clustered tensor. Table 4.4 compares the

sparsity properties of the original tensor and clustered tensor together.

Table 4.4: Sparsity properties of original and clustered tensors

Description Value

Number of all elements in the

original tensor
4400977392

Percentage of non-zero elements in the

original tensor
% 0.03

Number of all elements in the

clustered tensor
447720

Percentage of non-zero elements

in the clustered tensor
%22.81

Tensor construction

A 3-way tensor T in created using information in various domains. If A ∈ IRm×n and

B ∈ IRm×q are clustered user-item matrices in two domains, then the constructed tensor is

of the shape of T ∈ IRm×n×q. A schematic view of the tensor is showed in Figure 4.13.
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Figure 4.13: Schematic view of the constructed tensor

Handling missing values

We want to implement the CP decomposition technique to factorize the clustered tensor

of user-account-skill in order to use the reconstructed tensor to suggest Twitter’s following

accounts to follow or recommend LinkedIn skills to add.

Assume that the Twitter domain is our target domain; therefore, we can look at the

clustered tensor T as a list of user-account matrices. Each user-account matrix is related

to a unique skill. In other words, for each particular skill, the corresponding user-account

matrix explains the relationships between users and Twitter accounts for those users who

have that particular skill. Similarly, if the LinkedIn domain is the target domain, the tensor

T can be considered as a list of user-skill matrices. the i-th matrix represents that which

skills are claimed by users who follow the i-th Twitter accountAccounti. Figure 4.14 helps

to understand these different perspectives. It is important that the two tensors displayed

in this figure are mathematically identical; we just looking at a unique tensor from different

points of view.

To handle missing values in the clustered tensor, we use our finding in the part 4.3.3.

Therefore, if we are going to use the CP decomposition to recommend some Twitter accounts,

we replace a missing value with its column’s average in the corresponding user-account matrix.

For example, if the element Tijk in the user-account-skill tensor is a missing value, it is replaced

by the average of j-th column in the k-th user-account matrix. Similarly, if the LinkedIn

domain is the target, a missing value in the j-th matrix is replaced by the average of k-th
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Figure 4.14: The 3-way tensor can be thought as either list of user-account matrices
or list of user-skill matrices

column.

Applying CP decomposition

When the tensor is constructed, a nonnegative CP decomposition via alternating least squares

is applied on it [100]. Figure 4.15 shows a schematic view of the CP decomposition of a 3-

way tensor. The recreated tensor T́ is used to suggest new recommendations. Assume

T ∈ IRm×n×q as our clustered tensor. According to the CP decomposition, which is discussed

in part 3.3.2, we have:

T ' T́ =
K∑
i=1

ai ⊗ bi ⊗ ci (4.12)

Figure 4.15: CP decomposition of a 3-way tensor
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4.4.2 Selecting the number of components

As shown in Equation 4.12 the CP decomposition factorize the 3-way tensor T into the sum

of K component rank-one tensors. The number of components should be selected before

applying the CP.

To evaluate the effect of the number of rank-one components on the performance of

the final recommender system, we consider various numbers of Ks : 25, 50, 100, 200, 400.

In addition, different ratios of missing values are considered in the target domain before

constructing the clustered tensor. For each case, we apply the nonnegative CP decomposition-

based recommender system to suggest the top 5 items in the target domain. Assume that

the Twitter is the target domain and the reconstructed tensor is T́ ∈ IRm×\×q; In order to

recommend some twitter accounts to the user i, i ≤ m, we calculate the following score for

each twitter account j, j ≤ n, in the T́ :

score(accountj) =
1

q

q∑
k=1

T́ijk (4.13)

Then, the N top score twitter accounts are selected to recommend to the user i. Figure

4.16 displays the content of the Equation 4.13. Likewise, in order to recommend LinkedIn

skills to user i, the following score is calculated for each skill k, k ≤ q:

score(skillk) =
1

n

n∑
j=1

T́ijk (4.14)

Figure 4.16: Create a score for each item in the target domain using the reconstructed
tensor
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Obtained results are compared to each other using precision and F-score measures, where:

precision =
| recommended items ∩ actual items |

| recommended items |
(4.15)

recall =
| recommended items ∩ actual items |

| actual items |
(4.16)

F score = 2
precision.recall

precision+ recall
(4.17)

As it can be seen in Figures 4.17 and 4.18 the best K number (number of decomposi-

tion components) between the investigated numbers is K = 400 when the target domain is

Twitter. Likewise, when we want to predict LinkedIn skills, the recommender system with

K = 400 shows better performance in comparison with other recommender systems which

have different number of Ks (Figures 4.19 and 4.20).

4.4.3 Selecting the number of items to recommend

Similar to the last part, consider one of the distinct domains as the target domain. First, we

randomly replace some elements of the user-item matrix in the target domain with missing

values. Then using this matrix and the rating matrix from the source domain, we construct

the 3-way tensor of user-account-skill. By applying the CP decomposition and calculating a

score for each item in the target domain, we suggest top N items to each user. The precision

of the recommended items for each particular user is determined by Equation 4.15. The

precision of the recommender system is the average of these precisions.

The influence of the number of recommended items, N , on the precision of CP-based rec-

ommender system is investigated by testing various N values: 3, 5 10, 15, and 20. According

to Figures 4.21 and 4.22, Although the precision of the recommender system decreases by

increasing the number of recommended items in case of no missing value, however, it seems

that the N = 10 is the best case when the target domain includes some missing values.
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Figure 4.17: Comparison between CP decomposition-based recommender systems
with different number of components, based on the precision. Twitter is the target
domain.

Figure 4.18: Comparison between CP decomposition-based recommender systems
with different number of components, based on the F-score. Twitter is the target
domain.
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Figure 4.19: Comparison between CP decomposition-based recommender systems
with different number of components, based on the precision. LinkedIn is the target
domain.

Figure 4.20: Comparison between CP decomposition-based recommender systems
with different number of components, based on the F-score. LinkedIn is the target
domain.
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Figure 4.21: CP decomposition-based recommender system to recommend N items;
target domain is the Twitter domain.

Figure 4.22: CP decomposition-based recommender system to recommend N items;
target domain is the LinkedIn domain.
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5

RESULTS AND DISCUSSION

In the previous chapter the ideas and the implementation methods of the knowledge-

based, coupled NMF-based, and CP-based cross-domain recommender systems were ex-

plained. In addition, comprehensive information about two separate domains, the Twitter

domain and the LinkedIn domain, were presented.

In the first section of this chapter, we start with the network analysis of different domains.

In the second section, results of diverse knowledge-based algorithms, namely collaborative

filtering, content-based, hybrid mix, and hybrid feature combination, are discussed and com-

pared to each other. Finally, in the last section, the performance of coupled NMF-based and

CP decomposition-based cross-domain recommender systems are compared together.

5.1 Network Analysis

Although the main purpose of this thesis is suggesting the discussed cross-domain recom-

mender systems, but before investigating their results, we have a deeper look at our datasets

and their characteristics in this section. In addition, the findings of this section will be used

in the last chapter, to answer one of the appeared questions during studying the proposed

techniques’ results.

The graph of Twitter following accounts and the graph of LinkedIn skills are created

using information in their related domains. Bearing in mind two sets of LinkedIn skills and

Twitter accounts, the definitions of their corresponding graphs are almost similar, except

that for the following accounts graph we just consider those accounts which are followed by

at least five users; but, we consider all skills in order to model the LinkedIn skills graph.

In Twitter accounts graph, nodes are Twitter accounts and there is an edge between two
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nodes if there is at least one user following both accounts. In addition, the weight of the

edge connecting nodes TA and TB together is the reciprocal of the number of users who are

following both corresponding accounts to these two nodes:

WAB =
1

nAB

(5.1)

where, WAB is the weight of edge between nodes TA and TB, and nAB is the number

of people who follow both related Twitter accounts. Again, both TA and TB are Twitter

accounts followed by at least five users.

Likewise, in our LinkedIn skills graph, there is an edge between two different skills if

someone has both of them (Figure 5.1). Also, the weight of the edge, ẂXY , is equal to the

multiplicative reverse of the number of users who have both skill LX and skill LY :

ẂXY =
1

ńXY

(5.2)

Figure 5.1: Schematic view of an edge in the created graphs

The statistical characteristics of these graphs are presented in Table 5.1. It should be

noted that since these two networks are too dense, showing them, showing them here as

graphs are not useful.

The distribution of degree centrality of two graphs are illustrated in Figures 5.2 and 5.3.

As can be seen in these figures, degree distributions are quite different for these graphs.

As can be seen in Figure 5.2, in the LinkedIn skills graph most of the nodes, which are

skills, have a low degree centrality and only a few of those have a centrality degree greater
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Figure 5.2: Degree centrality versus number of nodes in the LinkedIn skills graph

Figure 5.3: Degree centrality versus number of nodes in the Twitter accounts graph
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Table 5.1: Number of nodes and edges in following accounts graph and skills graph

Description
Twitter following

accounts graph

LinkedIn skills

graph

Number of nodes 3486 2566

number of edges 2031172 1222238

than 0.35. It means that there are a few highly linked nodes, while the majority of nodes

have a low number of links. In addition, if we consider the distribution of the clustering

coefficient for this graph (Figure 5.4), we can see that the clustering coefficient decreases as

the node degree centrality rises.

Figure 5.4: Clustering coefficient versus number of nodes in the LinkedIn skills graph

Therefore, this implies that there are some hubs with high degrees in the skills network

which connect some sub-graphs to each other where these sub-graphs consist other low-degree

nodes. These features belong to a scale-free network. So, we can consider the LinkedIn skills

graph as a scale-free network. Table 5.2 shows some nodes in this network that have greater

degree centrality, betweenness, or closeness rather than other nodes. Also, Table 5.3 states
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the degree centrality and betweenness ranks of some popular programming languages. In

contrast with LinkedIn skills, the distribution of degree centrality of the Twitter following

account, shown in Figure 5.3, is not like a scale-free network because, in this network, most

of the nodes have a medium degree.

Table 5.2: Important nodes in the LinkedIn skills graph

Name of skill
Degree centrality

rank

Betweenness

rank

Closeness

rank

Leadership 1 1 1

Management 2 2 2

Strategy 3 3 3

Project Management 4 5 4

Social Media 5 4 5

Mobile Devices 6 6 6

Business Development 7 7 7

Product Management 8 13 8

Start-ups 9 9 9

Marketing 10 16 10

Cloud-computing 11 8 11

Java 16 10 16

5.2 Knowledge-based Recommender Systems

As said in section 4.2 we use the train-test-split technique to develop and evaluate our

knowledge-based recommender systems. The test set includes information about 10 percent

of users in both domains. We implement the proposed algorithms to recommend items
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Table 5.3: Characteristics of some of the popular languages in the LinkedIn skills
graph

Name of skill
Degree centrality

rank
Betweenness

rank

Java 16 10

JavaScript 21 17

Python 23 15

C++ 30 23

SQL 37 25

C 41 27

PHP 45 36

Perl 91 65

C# 99 88

Ruby 175 207

Scala 325 357

Go 632 747

Erlang 962 923

in the target domain for these users; and the suggested items are compared to the actual

items in order to determine the performance of the recommender system. The precision of a

recommender system can be interpreted as the percentage of recommended options, produced

by it, which were already chosen by the user. In addition, we measured the run-time of each

knowledge-based recommender system using a computer with Intel Core i7-4765T 2.00GHz×8

processor and memory of 8GiB.

The statistic characteristics of the obtained results are presented in Tables 5.4, 5.5. There

are two important points here; first the presented run times in these tables are calculated

considering hundred runs’ results, and second, the presented precisions show the performance
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of these recommender systems under the new-user situation because we do not use any

information about the user in the target domain to select recommended items. The obtained

results show that the precision and time consumption of each model vary from person to

person. Mainly, they depend on the selected target domain and number of available ratings

in the source domain.

Table 5.4: Statistic results of the knowledge-based recommender systems for suggest-
ing Twitter accounts

Algorithm
Precision
mean (%)

Precision
s.d. (%)

Time
mean (s)

Time
s.d. (s)

Collaborative filtering 8.86 6.48 10.6 6.61

Content-based 21.91 19.32 17.5 9.42

Hybrid mix 20.01 17.78 26.84 11.96

Hybrid feature

combination
21.33 18.75 8.88 4.37

Table 5.5: Statistic results of knowledge-based recommender systems for suggesting
LinkedIn skills

Algorithm
Precision
mean (%)

Precision
s.d. (%)

Time
mean (s)

Time
s.d. (s)

Collaborative filtering 25.02 15.83 1.37 1.93

Content-based 29.40 19.54 72.44 95.32

Hybrid mix 28.17 18.80 75.35 103.13

Hybrid feature

combination
30.60 21.36 28.63 33.86

The precision of the hybrid mix and hybrid feature combination recommender systems

are very close, however, using the feature combination algorithm decreases the run time by

%67 and %62 on average for recommending Twitter following accounts and LinkedIn skills

respectively. Also, it seems that the feature combination system shows the best performance
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in comparison to other three recommending systems. Figure 5.5 compares the precision of

collaborative filtering, content-based, mix, and feature combination knowledge-based recom-

mender systems together.

Figure 5.5: Comparison between performance of the proposed knowledge-based rec-
ommender systems

5.3 Recommender systems based on matrix and tensor

factorizations

The k-fold cross-validation technique is used to evaluate the TD-based and coupled NMF-

based cross-domain recommender systems. The data in the target domain are divided into

ten folds; considering each fold in the target domain as the test set, we produce recommender

systems using the available data in the source domain and other folds in the target domain

as well as partial information in the test set. The partial data of the test set is created

by replacing different ratios of missing values inside it. For each suggested cluster of items,

two more frequent items are recommended. Then, the precision is calculated for each test

fold; and finally, the total precision is determined as the average of different folds’ precisions.

the Figures 5.6 and 5.7 show the result of coupled-NMF based and TD-based recommender

systems respectively.
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The performances of proposed cross-domain recommender systems are compared to the

traditional single-domain collaborative filtering recommender system using matrix factoriza-

tion. Figures 5.8 and 5.9 display the results of this comparisons.

Figure 5.6: Cross-domain recommender systems based on the coupled nonnegative
matrix factorization

According to the 5.7 and 5.6 the precision of cross-domain recommender systems de-

creases with increasing the number of missing values in the target domain. It simply means

that recommender systems can create more accurate recommendations when they have more

information about the user’s preferences. In contrast, If the user has only a few past rating

or even no any past rating, the recommended list of items is less precise.

Another interesting point, which can be found from these figures, is that the precision

of recommender systems to recommend LinkedIn skills are higher than their precision to

suggest Twitter following accounts. We believe that it comes from different natures of data

in these two separate domains. Assume that the recommender system wants to produce a

list of LinkedIn skills which is likely to be interested by a particular user. As it discussed

before, in the section 5.1, the LinkedIn skills form a scale-free network with few highly linked
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Figure 5.7: Cross-domain recommender systems based on tensor decomposition

Figure 5.8: Comparison between different recommender systems to suggest Twitter
following accounts
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nodes. It also can imply that they are some skills in this dataset which are selected by the

majority of the users or at least a large portion of them. So, there is a high chance that this

unique user wants to claim some of those skills as well. We guess that the proposed coupled

NMF-based and TD-based recommender systems can find the most-related popular skills for

each user. This guess is also confirmed by our previous finding in the Figure 5.5 where all

the suggested knowledge-based recommender systems follow the same trend: they can create

more accurate suggestions for LinkedIn rather than Twitter. In contrast, to the LinkedIn

skills, Twitter following accounts do not form a scale-free network. By other words, it is hard

to find a particular Twitter account which is followed by the majority of the users.

Figures 5.8 and 5.9 shows that the both suggested cross-domain recommendation frame-

works, namely coupled NMF-based and TD-based recommender systems, show better per-

formance in comparison with the single-domain NMF-based collaborative filtering technique.

The main reason is that they use more information to identify the users’ preferences. While

the single-domain matrix factorization tries to understand the similarities between the users

based on the features in the target domain in order to suggest new items in that specific

domain, the cross-domain recommender systems take the benefit of using additional features

exposed in the source domain as well. Although, both coupled NMF-based and TD-based

recommender systems show higher precision rather than the baseline method, however, the

multi-modal TD-based technique superior to the coupled NMF-based algorithm. Like the

single-domain NMF, the cross-domain coupled NMF tries to understand the similarities be-

tween users but using both rating features in the two domains. Therefore, both of these

techniques are the type of collaborative filtering. On the other hand, in the TD-based rec-

ommender system, we construct a tensor of data; inside this tensor, all the modes are related

to each other. By applying the tensor decomposition on this tensor, the TD-based rec-

ommender system tries to find the relationships between all the modes: user-user, user-skill,

user-account, and even skill-account and utilize these relationships to suggest a more accurate

list of items. Therefore, this techniques has a hybrid type and because it considers multi-

modal relationships between the users and different features, it can produce more precise

recommendations.
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Figure 5.9: Comparison between different recommender systems to suggest LinkedIn
skills
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6

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, novel cross-domain recommender systems have been proposed which can

suggest items to users with high accuracy, even under the cold-start or new-user situations.

In addition, it has been shown that by implementing a pre-clustering on available data, the

sparsity of the data can be reduced sharply. Here, we present the main conclusions derived

from our research study. First, we summarize the findings of the thesis and discuss the

obtained contributions; then, we mention potential research directions in this area.

6.1 Summary of Contributions

Considering the research goal number one, stated in chapter 2, we first started our research

study by reviewing the recommender systems’ concepts, their different classification, and var-

ious recommendations techniques. In addition, in chapter 3, we followed the second research

goal; and reviewed the idea of cross-domain recommendation. We provided a framework

to define the difference between two domains into one of the following levels: system level,

type level, attribute level, and value level. In addition, by reviewing previous related stud-

ies, we found that the knowledge-flow between different domains is either as a knowledge

transmission, where the explicit or implicit features of the source domain are used to make

recommendation in the target domain, or as a knowledge aggregation, where different fea-

tures in distinct domains are combined together in order to create a better understanding of

users’ preferences. Moreover, chapter 3 covered the fifth research goal as well. Hence, the

preliminaries of the matrix and tensor algebra, as well as the most popular matrix factoriza-

tion and tensor decomposition techniques, are reviewed in this chapter. It showed that these

techniques are the state of art methods on the recommender systems and, during last few
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years, many studies utilized matrix-based or tensor-based methods to represent multi-modal

data and produce recommender or predictor models.

In chapter 4, we first described the extracted data from two different social media, the

Twitter and the LinkedIn. These information showed different features of identical computer

scientists: their Twitter following accounts and their LinkedIn technical skills. We discussed

that the difference between the Twitter and the LinkedIn domains can be considered as a sys-

tem level dissimilarity. Further, this chapter covered the fourth research goal. Based on the

reviewed studies in the previous chapter, four knowledge-based cross-domain recommender

systems were proposed to recommend Twitter accounts to follow or LinkedIn skills to add.

These recommender systems included a collaborative filtering, a content-based, a hybrid mix,

and a hybrid feature combination algorithms. Actually, we have investigate the applicability

of the cross-domain recommendation idea by proposing these four knowledge-based algo-

rithms. Although these methods rely on our information about the considered Twitter and

LinkedIn domains, however, in the following sections we have proposed the coupled-NMF

and TD-based techniques which have the minimum dependency to the domains specific char-

acteristics.

In addition to those knowledge-based recommendation models, chapter 4 included two

more important parts: designing and implementing a coupled NMF-based recommender

system as well as a TD-based recommender system. In fact, to address the sixth research goal

we developed two cross-domain recommendation algorithms: 1) the coupled NMF algorithm

which produces recommendation in target domain by sharing the latest features of the source

domain, and 2) the CP-style tensor decomposition which suggests item to users in the target

domain by merging users’ preferences from distinct domains. Their implementation included

various steps, such as a pre-clustering stage to reduce the data sparsity, handling the missing

values, and tuning different hyperparameters. To the best of our knowledge, it is the first

time that the suggested coupled NMF-based formula with its regularization terms is used to

develop a cross-domain recommendation system for social media domains. And also, using

CP to integrate Twitter and LinkedIn data is a novel idea proposed by this thesis.

To address the last research goal, we analyzed the performance of the proposed cross-

domains recommender systems in chapter 6. We compared the precision of the knowledge-
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based recommender systems together and showed that, on average, the hybrid feature com-

bination algorithms could suggest more accurate items in the target domain rather than the

collaborative filtering, the content-based, and the hybrid mix algorithms. We also analyzed

the data in our two domains by constructing the LinkedIn skills graph and the Twitter ac-

counts graph. Based on the obtained results, the LinkedIn skills formed a scale-free network;

we recognized the most popular and important skills in this network by looking at their

degree centrality as well as their betweenness and closeness degrees.

Furthermore, the performance of the coupled NMF-based and TD-based cross-domain

recommender systems were compared together as well as with the single-domain NMF-based

traditional recommendation model. We saw that both cross-domain algorithms show better

performance in comparison with the single-domain recommender system. The main reason is

that these multi-domain models use more features to understand the users’ preferences or re-

lationships between users and items. Also, based on the results, The TD-based recommender

system was superior to the coupled NMF-based recommender system; because although the

coupled NMF-based model use different features to make a more comprehensive description of

users’ preferences, however, the TD-based model consider the multidimensional relationship

between users, Twitter accounts, and LinkedIn skills. In other words, the coupled NMF-

based model is a collaborative filtering recommender system and the TD-based model has a

hybrid type.

The followings are the thesis’s most important findings in nutshell:

• Cross-domain recommender system can partially answer some common issues of current

recommendation techniques, such as data sparsity, cold-start problem, and new user-

problem.

• Like single-domain recommender systems, the cross-domain models can be implemented

as a content-based filtering, collaborative filtering or hybrid recommender systems.

• Using a pre-clustering can reduce the data sparsity significantly. If the data we are

working with is a categorical data, or is a combination of categorical and numerical

data, the k-modes clustering technique can be a proper choice.

• Both the proposed TD-based and coupled NMF-based recommender systems produce
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more precise recommendation rather than collaborative filtering NMF-based model.

However, the TD-based recommender systems show far better results.

6.2 Open Research Issues

In this thesis, we have shown that the wise integration of data from diverse domains can

increase the accuracy of the recommendations in the target domain. However, selecting the

proper auxiliary information from another domain, choosing the type of knowledge-flow, and

developing the model itself are not easy and straightforward. There is not such a rubric to

determine if the source domain preferences should be considered or not. On the other hand,

an inappropriate cross-domain recommender system even may reduce the accuracy of the

single-domain model. Therefore, trying to design an intelligent method to ease these steps

can be a great achievement.

Assume that we decided to use another domain, as the source, to make a recommendation

in the target domain. There might be a variety of different matrix or tensor factorization

methods, such as coupled NMF, coupled SVD, CP, Tucker, and etc. One another research

direction is to create an unsupervised model to select the appropriate technique.

Finally, the most interesting research direction is developing the frameworks which can

properly deal with high-order high-scale data. For example, in this thesis, we proposed a CP

tensor decomposition model for the cross-domain recommendation. As discussed before, the

considered tensor has three modes: user, Twitter account, LinkedIn skill. Although here this

model can create high accurate suggestions, if the number of considered features becomes

much higher than three (the tensor has much higher than three orders), then, implementation

of any TD-based method needs an unreasonably high storage capacity; therefore, using these

models becomes impractical.
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