10,445 research outputs found

    Novel statistical modeling methods for traffic video analysis

    Get PDF
    Video analysis is an active and rapidly expanding research area in computer vision and artificial intelligence due to its broad applications in modern society. Many methods have been proposed to analyze the videos, but many challenging factors remain untackled. In this dissertation, four statistical modeling methods are proposed to address some challenging traffic video analysis problems under adverse illumination and weather conditions. First, a new foreground detection method is presented to detect the foreground objects in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global probability density function for the foreground and applies the Bayes decision rule for model selection, is proposed to model the foreground globally. A Local Background Modeling (LBM) method is applied by choosing the most significant Gaussian density in the Gaussian mixture model to model the background locally for each pixel. In addition, to mitigate the correlation effects of the Red, Green, and Blue (RGB) color space on the independence assumption among the color component images, some other color spaces are investigated for feature extraction. To further enhance the discriminatory power of the input feature vector, the horizontal and vertical Haar wavelet features and the temporal information are integrated into the color features to define a new 12-dimensional feature vector space. Finally, the Bayes classifier is applied for the classification of the foreground and the background pixels. Second, a novel moving cast shadow detection method is presented to detect and remove the cast shadows from the foreground. Specifically, a set of new chromatic criteria is presented to detect the candidate shadow pixels in the Hue, Saturation, and Value (HSV) color space. A new shadow region detection method is then proposed to cluster the candidate shadow pixels into shadow regions. A statistical shadow model, which uses a single Gaussian distribution to model the shadow class, is presented to classify shadow pixels. Additionally, an aggregated shadow detection strategy is presented to integrate the shadow detection results and remove the shadows from the foreground. Third, a novel statistical modeling method is presented to solve the automated road recognition problem for the Region of Interest (RoI) detection in traffic video analysis. A temporal feature guided statistical modeling method is proposed for road modeling. Additionally, a model pruning strategy is applied to estimate the road model. Then, a new road region detection method is presented to detect the road regions in the video. The method applies discriminant functions to classify each pixel in the estimated background image into a road class or a non-road class, respectively. The proposed method provides an intra-cognitive communication mode between the RoI selection and video analysis systems. Fourth, a novel anomalous driving detection method in videos, which can detect unsafe anomalous driving behaviors is introduced. A new Multiple Object Tracking (MOT) method is proposed to extract the velocities and trajectories of moving foreground objects in video. The new MOT method is a motion-based tracking method, which integrates the temporal and spatial features. Then, a novel Gaussian Local Velocity (GLV) modeling method is presented to model the normal moving behavior in traffic videos. The GLV model is built for every location in the video frame, and updated online. Finally, a discriminant function is proposed to detect anomalous driving behaviors. To assess the feasibility of the proposed statistical modeling methods, several popular public video datasets, as well as the real traffic videos from the New Jersey Department of Transportation (NJDOT) are applied. The experimental results show the effectiveness and feasibility of the proposed methods

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    Reliving the Dataset: Combining the Visualization of Road Users' Interactions with Scenario Reconstruction in Virtual Reality

    Full text link
    One core challenge in the development of automated vehicles is their capability to deal with a multitude of complex trafficscenarios with many, hard to predict traffic participants. As part of the iterative development process, it is necessary to detect criticalscenarios and generate knowledge from them to improve the highly automated driving (HAD) function. In order to tackle this challenge,numerous datasets have been released in the past years, which act as the basis for the development and testing of such algorithms.Nevertheless, the remaining challenges are to find relevant scenes, such as safety-critical corner cases, in these datasets and tounderstand them completely.Therefore, this paper presents a methodology to process and analyze naturalistic motion datasets in two ways: On the one hand, ourapproach maps scenes of the datasets to a generic semantic scene graph which allows for a high-level and objective analysis. Here,arbitrary criticality measures, e.g. TTC, RSS or SFF, can be set to automatically detect critical scenarios between traffic participants.On the other hand, the scenarios are recreated in a realistic virtual reality (VR) environment, which allows for a subjective close-upanalysis from multiple, interactive perspectives.Comment: Accepted for publication at ICITE 202

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    • …
    corecore