77 research outputs found

    Towards Integration of IndoorGML and GDF for Robot Navigation in Warehouses

    Get PDF
    With the development of the navigation technology, the outdoor navigation has made great progress, whereas the indoor navigation has some areas which is underdeveloped, insufficient to meet the rapidly increasing demands of people as well as the robotics. Even though, the advance in indoor navigation technology still has really brought a wide range of applications and a broad market, for instance, the flourishing intelligent warehouse system utilizes multi-robot operation which have the certain requirement for an accurate indoor navigation system. As for the indoor navigation, the OGC standard IndoorGML has been released and undergoing revision constantly. While the document really provides more advantageous support for the applications of Indoor Location-Based Services (LBS), in some aspects, especially the door-to-door navigation and the warehouse environment, it is not sufficiently adaptable, with still some room for improvement. IndoorGML is powerful for the common indoor scenarios like malls and offices, while as for carefully-arranged warehouse environment and other large-scale operation scenarios with multi-robots that is more similar to an ordered system, it is obviously insufficient. In this paper, we discuss about the potential to combination of IndoorGML and ITS standard ISO 20524 (GDF5.1), and extend the OGC standard indoorGML. We analyze the definition as well as function of related concepts, making some comparisons between these two standards. We conclude that these two standards are well-matched with vital potential to merge and unify the indoor and outdoor systems for spatial information

    Outdoor-Indoor tracking systems through geomatic techniques: data analysis for marketing and safety management

    Get PDF
    Negli ultimi decenni, l'utilizzo di sistemi di gestione delle informazioni nel trattamento dei dati edilizi ha portato a cambiamenti radicali nei metodi di produzione, documentazione e archiviazione dei dati. Dato il crescente interesse per i dati e la loro gestione, l'obiettivo di questa tesi è quello di creare un flusso di lavoro efficace e chiaro a partire dai rilievi geomatici in un'ottica di miglioramento dei dati raccolti sul territorio, sugli edifici circostanti e su quelli relativi al comportamento umano, in modo che possano essere meglio sfruttati e integrati in modelli di gestione intelligenti. Come primo passo, questa tesi mira a comprendere i limiti dell'interoperabilità e dell'integrazione dei dati nei GIS. Per promuovere l'interoperabilità dei dati GIS, è necessario analizzare i metodi di conversione nei diversi modelli di archiviazione dei dati, come CityGML e IndoorGML, definendo un dominio ontologico. Questo ha portato alla creazione di un nuovo modello arricchito, basato sulle connessioni tra i diversi elementi del modello urbano in GIS. Il secondo passo consiste nel raccogliere tutti i dati tradotti in un database a grafo sfruttando il web semantico. Il risultato offrirà vantaggi sostanziali durante l'intero ciclo di vita del progetto. Questa metodologia può essere applicata anche al patrimonio culturale, dove la gestione delle informazioni gioca un ruolo fondamentale. Un altro lavoro di ricerca è stato quello di sviluppare un sistema di gestione SMART per le attività di conservazione dei borghi storici attraverso la gestione di tipologie eterogenee di dati, dal rilievo alla documentazione tecnica. Il flusso di lavoro è stato strutturato come segue: (i) acquisizione dei dati; (ii) modellazione 3D; (iii) modellazione della conoscenza; (iv) modellazione della gestione SMART. Questa ricerca apre la strada allo sviluppo di una piattaforma web in cui importare i dati GIS per un approccio di digital twin. Tutte le ricerche svolte fino a questo punto sono state finalizzate a comprendere la capacità di creare modelli e sistemi informativi intelligenti per capire la fattibilità di ospitare dati eterogenei che potrebbero essere inclusi in futuro. Il passo successivo consiste nel comprendere il comportamento umano in uno spazio. Finora sono pochi i lavori di ricerca che si occupano di sistemi di mappatura e posizionamento che tengono conto sia degli spazi esterni che di quelli interni. Questo argomento, anche se ha pochi articoli di ricerca, rappresenta un aspetto cruciale per molte ragioni, soprattutto quando si tratta di gestire la sicurezza degli edifici danneggiati. Angelats e il suo gruppo di ricerca al CTTC hanno lavorato su questo aspetto, fornendo un sistema in grado di seguire in tempo reale le persone dall'esterno all'interno di spazi chiusi e viceversa. L'uso di sensori GNSS combinato con l'odometria inerziale visiva fornisce una traiettoria continua senza perdere il percorso seguito dall'utente monitorato. Una parte di questa tesi si è concentrata sul miglioramento della traiettoria finale ottenuta con il sistema appena descritto, effettuando test sulla traiettoria esterna del GNSS per capire il comportamento della traiettoria quando si avvicina agli edifici o quando l'utente si sposta in indoor. L'ultimo aspetto su cui si concentrerà la tesi è il tracciamento delle persone in ambienti chiusi. Il comportamento umano è al centro di numerosi studi in diversi campi, come quello scientifico, sociale ed economico. A differenza del precedente caso di studio sul tracciamento delle persone in aree esterne/interne, l'obiettivo è stato quello di raccogliere informazioni sul posizionamento dinamico delle persone in ambienti indoor, sulla base del segnale WiFi. Verrà effettuata una breve analisi dei dati per dimostrare il corretto funzionamento del sistema, per sottolineare l'importanza della conoscenza dei dati e l'uso che se ne può fare.In the last decades, the use of information management systems in the building data processing led to radical changes to the methods of data production, documentation and archiving. Given the ever-increasing interest in data and their management, the aim of this thesis is to create an effective and clear workflow starting from geomatic surveys in a perspective of improving the collected data on the territory, surrounding buildings and those related to human behaviour so they can be better exploited and integrated into smart management models As first step this thesis aims to understand the limits of data interoperability and integration in GIS filed. Before that, the data must be collected as raw data, then processed and interpret in order to obtain information. At the end of this first stage, when the information is well organized and can be well understanded and used it becomes knowledge. To promote the interoperability of GIS data, it is necessary at first to analyse methods of conversion in different data storage models such as CityGML and IndoorGML, defining an ontological domain. This has led to the creation of a new enriched model, based on connections among the different elements of the urban model in GIS environment, and to the possibility to formulate queries based on these relations. The second step consists in collecting all data translated into a specific format that fill a graph database in a semantic web environment, while maintaining those relationships. The outcome will offer substantial benefits during the entire project life cycle. This methodology can also be applied to cultural heritage where the information management plays a key role. Another research work, was to develop a SMART management system for preservation activities of historical villages through the management of heterogeneous types of data, from the survey to the technical documentation. The workflow was structured as follows: (i) Data acquisition; (ii) 3D modelling; (iii) Knowledge modelling; (iv) SMART management modelling. This research paves the way to develop a web platform where GIS data would be imported for a digital twin approach. All the research done up to this point was to understand the capability of creating smart information models and systems in order to understand the feasibility to host heterogeneous data that may be included in the future. The next step consist of understanding human behaviour in a space. So far only a few research papers are addressed towards mapping and positioning systems taking into account both outdoor and indoor spaces. This topic, even though it has few research articles, represents a crucial aspect for many reasons, especially when it comes to safety management of damaged building. Angelats and his research team at CTTC have been working on this aspect providing a system able to track in real time people from outdoor to indoor areas and vice-versa. The use of GNSS sensors combined with Visual Inertial Odometry provide a continuous trajectory without losing the path followed by the monitored user. A part of this thesis focused on enhancing the final trajectory obtained with the described system above, carrying out tests on the outdoor trajectory of GNSS in order to understand behaviour of the trajectory when it gets close to buildings or when the user moves indoor. The last aspect this thesis will focus on is the tracking of people indoor. Human behaviour is at the centre of several studies in different fields such as scientific subjects, social and economics. Differently from the previous case study of tracking people in outdoor/indoor areas, the scope was to collect information about the dynamic indoor positioning of people, based on the WiFi signal. A brief analysis of the data will be made to demonstrate the correct functioning of the system, to emphasise the importance of data knowledge and the use that can be made of it

    Survey on indoor map standards and formats

    Get PDF
    With the adoption of indoor positioning solutions, which enable for a variety of location-based spatial services, a number of indoor map standards and formats have been proposed in the last decade. As each of these indoor map standard has its own purpose, the strengths and weaknesses are necessary to be understood and analyzed before selecting one of them for a given application. The Indoor Map Subcommittee has been established under IPIN/ISC in 2017. Among others, the goal of this working group is to compare available indoor map standards, provide a guideline for their application and advise on changes to their standardization development organizations if necessary. In this paper we present a survey of indoor map standards as an achievement of the subcommittee. The scope of the survey covers official standards such as IFC of BuildingSmart, IndoorGML and CityGML of OGC, and Indoor OpenStreetMap. We present several use-cases to show and discuss how to build indoor maps.The work of K.-J. Li was supported by a grant (19NSIP-B135746-03) from National Spatial Information Research Program (NSIP) funded by MOLIT of Korean government. The work of C. Laoudias has been supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development. Torres-Sospedra and Perez-Navarro want to thank the Spanish network of excellence, REPNIN+,TEC2017-90808-REDT. The work of A. Moreira has been supported by FCT -Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2019

    The Significance of Porches in Urban Applications: A Method for Automated Modeling and Integration

    Get PDF
    Porches, as defined by the Art & Architecture Thesaurus, serve as vital transitional spaces linking indoor and outdoor environments. Despite their historical and contemporary significance, porches lack explicit representation in prevalent standards like CityGML and IndoorGML, posing challenges for comprehensive spatial modeling and its application. This paper proposes a method for modeling porches that aligns with the existing OGC standard CityGML 3.0, ensuring accuracy and compatibility. Drawing upon geomatics techniques, the method aims to bridge the gap in representing these spaces, critical for applications such as navigation systems, urban planning, and energy simulations. By integrating geometric, machine learning, and informative modeling approaches, this method seeks to provide a robust foundation for various practical applications. The paper outlines a comprehensive state-of-the-art review, describes the proposed method from digitalization to random forest (RF)-based point cloud classification and vectorization, presents case studies and results, and offers critical discussions and conclusions. Through this endeavor, the paper contributes to enhancing the representation and understanding of porches within the digital spatial landscape

    A semantic graph database for the interoperability of 3D GIS data

    Get PDF
    none6siIn the last decades, the use of information management systems in the building data processing led to radical changes to the methods of data production, documentation and archiving. In particular, the possibilities, given by these information systems, to visualize the 3D model and to formulate queries have placed the question of the information sharing in digital format. The integration of information systems represents an efficient solution for defining smart, sustainable and resilient projects, such as conservation and restoration processes, giving the possibilities to combine heterogeneous data. GIS provides a robust data storage system, a definition of topological and semantic relationships and spatial queries. 3D GIS makes possible the creation of three-dimensional model in a geospatial context. To promote the interoperability of GIS data, the present research aims first to analyse methods of conversion in CityGML and IndoorGML model, defining an ontological domain. This has led to the creation of a new enriched model, based on connections among the different elements of the urban model in GIS environment, and to the possibility to formulate queries based on these relations. The second step consists in collecting all data translated into a specific format that fill a graph database in a semantic web environment, while maintaining those relationships. The semantic web technology represents an efficient tool of interoperability that leaves open the possibility to import BIM data in the same graph database and to join both GIS and BIM models. The outcome will offer substantial benefits during the entire project life cycle. This methodology can also be applied to cultural heritage where the information management plays a key role.openMalinverni E.S.; Naticchia B.; Lerma Garcia J.L.; Gorreja A.; Lopez Uriarte J.; Di Stefano F.Malinverni, E. S.; Naticchia, B.; Lerma Garcia, J. L.; Gorreja, A.; Lopez Uriarte, J.; Di Stefano, F

    A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS)

    Get PDF
    The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as "EEEF" criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration

    Map data representation for indoor navigation - a design framework towards a construction of indoor map

    No full text
    A map is a basic component used in a part of navigation in everyday life, which helps people to find information regarding locations, landmarks, and routes. By GPS and online service map e.g. Google maps, navigating outdoors is easier. Inside buildings, however, navigating would not be so easy due to natural characteristics and limitations of GPS, which has led to the creations of indoor navigation system. Even though the indoor navigation systems have been developed for long time, there are still some limitation in accuracy, reliability and indoor spatial information. Navigating inside without indoor spatial information would be a challenge for the users. Regarding the indoor spatial information, a research question has been drawn on finding an appropriate framework towards map data representation of an indoor public spaces and buildings in order to promote indoor navigation for people, robotics, and autonomous systems. This paper has purposed a list of factors and components used towards the design framework for map data representation of indoor public spaces and buildings. The framework, in this paper, has been presented as a form of a multiple-layered model, which each layer designed for a different propose, with object and information classifications

    A Proposal for Modeling Indoor–Outdoor Spaces through IndoorGML, Open Location Code and OpenStreetMap

    Get PDF
    Traditionally, the standards of spatial modeling are oriented to represent the quantitative information of space. However, in recent years an increasingly common challenge is appearing: flexibly and appropriately integrating quantitative information that goes beyond the purely geometric. This problem has been aggravated due to the success of new paradigms such as the Internet of Things. This adds an additional challenge to the representation of this information due to the need to represent characteristic information of the space from different points of view in a model, such as WiFi coverage, dangerous surroundings, etc. While this problem has already been addressed in indoor spaces with the IndoorGML standard, it remains to be solved in outdoor and indoor&ndash outdoor spaces. We propose to take the advantages proposed in IndoorGML, such as cellular space or multi-layered space model representation, to outdoor spaces in order to create indoor&ndash outdoor models that enable the integration of heterogeneous information that represents different aspects of space. We also propose an approach that gives more flexibility in spatial representation through the integration of standards such as OpenLocationCode for the division of space. Further, we suggest a procedure to enrich the resulting model through the information available in OpenStreetMap. Document type: Articl

    ABOUT THE SUBDIVISION OF INDOOR SPACES IN INDOORGML

    Get PDF
    corecore