2,724 research outputs found

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ļ¬ndings in cognitive psychology, our model is composed of layers representing maps at diļ¬€erent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Multi-layered map based navigation and interaction for an intelligent wheelchair

    Get PDF
    Intelligent wheelchair is a paradigm of assisted living applications for elderly and disabled people. Its autonomous navigation and human-robot interaction is the major challenge. The previous intelligent wheelchair research has been mainly focused on geometric map based navigation, which is computational expensive in a large scale environment. This paper proposes the use of multi-layered maps for navigation and interaction of an intelligent wheelchair. The semantic information can improve the efficiency of path planning and navigation as well as extend the capability of task planning for the wheelchair. Some experimental results are given to demonstrate the feasibility and performance of the proposed approach

    SLAM and exploration using differential evolution and fast marching

    Get PDF
    The exploration and construction of maps in unknown environments is a challenge for robotics. The proposed method is facing this problem by combining effective techniques for planning, SLAM, and a new exploration approach based on the Voronoi Fast Marching method. The final goal of the exploration task is to build a map of the environment that previously the robot did not know. The exploration is not only to determine where the robot should move, but also to plan the movement, and the process of simultaneous localization and mapping. This work proposes the Voronoi Fast Marching method that uses a Fast Marching technique on the Logarithm of the Extended Voronoi Transform of the environment"s image provided by sensors, to determine a motion plan. The Logarithm of the Extended Voronoi Transform imitates the repulsive electric potential from walls and obstacles, and the Fast Marching Method propagates a wave over that potential map. The trajectory is calculated by the gradient method

    A WSNs-based Approach and System for Mobile Robot Navigation

    Get PDF

    Robot Mapping and Navigation by Fusing Sensory Information

    Get PDF
    • ā€¦
    corecore