4,070 research outputs found

    Radio frequency fingerprint identification for Internet of Things: A survey

    Get PDF
    Radio frequency fingerprint (RFF) identification is a promising technique for identifying Internet of Things (IoT) devices. This paper presents a comprehensive survey on RFF identification, which covers various aspects ranging from related definitions to details of each stage in the identification process, namely signal preprocessing, RFF feature extraction, further processing, and RFF identification. Specifically, three main steps of preprocessing are summarized, including carrier frequency offset estimation, noise elimination, and channel cancellation. Besides, three kinds of RFFs are categorized, comprising I/Q signal-based, parameter-based, and transformation-based features. Meanwhile, feature fusion and feature dimension reduction are elaborated as two main further processing methods. Furthermore, a novel framework is established from the perspective of closed set and open set problems, and the related state-of-the-art methodologies are investigated, including approaches based on traditional machine learning, deep learning, and generative models. Additionally, we highlight the challenges faced by RFF identification and point out future research trends in this field

    Medical Image Analysis using Deep Relational Learning

    Full text link
    In the past ten years, with the help of deep learning, especially the rapid development of deep neural networks, medical image analysis has made remarkable progress. However, how to effectively use the relational information between various tissues or organs in medical images is still a very challenging problem, and it has not been fully studied. In this thesis, we propose two novel solutions to this problem based on deep relational learning. First, we propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation. The network achieves the state-of-the-art segmentation results on the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and our hierarchical homography estimation network outperforms the other state-of-the-art mosaicing methods while generating robust and meaningful mosaicing result on unseen frames.Comment: arXiv admin note: substantial text overlap with arXiv:2007.0778

    Marchenko-Lippmann-Schwinger inversion

    Get PDF
    Seismic wave reflections recorded at the Earthā€™s surface provide a rich source of information about the structure of the subsurface. These reflections occur due to changes in the material properties of the Earth; in the acoustic approximation, these are the density of the Earth and the velocity of seismic waves travelling through it. Therefore, there is a physical relationship between the material properties of the Earth and the reflected seismic waves that we observe at the surface. This relationship is non-linear, due to the highly scattering nature of the Earth, and to our inability to accurately reproduce these scattered waves with the low resolution velocity models that are usually available to us. Typically, we linearize the scattering problem by assuming that the waves are singly-scattered, requiring multiple reflections to be removed from recorded data at great effort and with varying degrees of success. This assumption is called the Born approximation. The equation that describes the relationship between the Earthā€™s properties and the fully-scattering reflection data is called the Lippmann-Schwinger equation, and this equation is linear if the full scattering wavefield inside the Earth could be known. The development of Marchenko methods makes such wavefields possible to estimate using only the surface reflection data and an estimate of the direct wave from the surface to each point in the Earth. Substituting the results from a Marchenko method into the Lippmann-Schwinger equation results in a linear equation that includes all orders of scattering. The aim of this thesis is to determine whether higher orders of scattering improve the linear inverse problem from data to velocities, by comparing linearized inversion under the Born approximation to the inversion of the linear Lippmann-Schwinger equation. This thesis begins by deriving the linear Lippmann-Schwinger and Born inverse problems, and reviewing the theoretical basis for Marchenko methods. By deriving the derivative of the full scattering Greenā€™s function with respect to the model parameters of the Earth, the gradient direction for a new type of least-squares full waveform inversion called Marchenko-Lippmann-Schwinger full waveform inversion is defined that uses all orders of scattering. By recreating the analytical 1D Born inversion of a boxcar perturbation by Beydoun and Tarantola (1988), it is shown that high frequency-sampling density is required to correctly estimate the amplitude of the velocity perturbation. More importantly, even when the scattered wavefield is defined to be singly-scattering and the velocity model perturbation can be found without matrix inversion, Born inversion cannot reproduce the true velocity structure exactly. When the results of analytical inversion are compared to inversions where the inverse matrices have been explicitly calculated, the analytical inversion is found to be superior. All three matrix inversion methods are found to be extremely ill-posed. With regularisation, it is possible to accurately determine the edges of the perturbation, but not the amplitude. Moving from a boxcar perturbation with a homogeneous starting velocity to a many-layered 1D model and a smooth representation of this model as the starting point, it is found that the inversion solution is highly dependent on the starting model. By optimising an iterative inversion in both the model and data domains, it is found that optimising the velocity model misfit does not guarantee improvement in the resulting data misfit, and vice versa. Comparing unregularised inversion to inversions with Tikhonov damping or smoothing applied to the kernel matrix, it is found that strong Tikhonov damping results in the most accurate velocity models. From the consistent under-performance of Lippmann-Schwinger inversion when using Marchenko-derived Greenā€™s functions compared to inversions carried out with true Greenā€™s functions, it is concluded that the fallibility of Marchenko methods results in inferior inversion results. Born and Lippmann-Schwinger inversion are tested on a 2D syncline model. Due to computational limitations, using all sources and receivers in the inversion required limiting the number of frequencies to 5. Without regularisation, the model update is uninterpretable due to the presence of strong oscillations across the model. With strong Tikhonov damping, the model updates obtained are poorly scaled, have low resolution, and low amplitude oscillatory noise remains. By replacing the inversion of all sources simultaneously with single source inversions, it is possible to reinstate all frequencies within our limited computational resources. These single source model updates can be stacked similarly to migration images to improve the overall model update. As predicted by the 1D analytical inversion, restoring the full frequency bandwidth eliminates the oscillatory noise from the inverse solution. With or without regularisation, Born and Lippmann-Schwinger inversion results are found to be nearly identical. When Marchenko-derived Greenā€™s functions are introduced, the inversion results are worse than either the Born inversion or the Lippmann-Schwinger inversion without Marchenko methods. On this basis, one concludes that the inclusion of higher order scattering does not improve the outcome of solving the linear inverse scattering problem using currently available methods. Nevertheless, some recent developments in the methods used to solve the Marchenko equation hold some promise for improving solutions in future

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM ā€œSchwingungen in rotierenden Maschinenā€. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name ā€œEuropean Conference on Rotordynamicsā€. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Toward smart and efficient scientific data management

    Get PDF
    Scientific research generates vast amounts of data, and the scale of data has significantly increased with advancements in scientific applications. To manage this data effectively, lossy data compression techniques are necessary to reduce storage and transmission costs. Nevertheless, the use of lossy compression introduces uncertainties related to its performance. This dissertation aims to answer key questions surrounding lossy data compression, such as how the performance changes, how much reduction can be achieved, and how to optimize these techniques for modern scientific data management workflows. One of the major challenges in adopting lossy compression techniques is the trade-off between data accuracy and compression performance, particularly the compression ratio. This trade-off is not well understood, leading to a trial-and-error approach in selecting appropriate setups. To address this, the dissertation analyzes and estimates the compression performance of two modern lossy compressors, SZ and ZFP, on HPC datasets at various error bounds. By predicting compression ratios based on intrinsic metrics collected under a given base error bound, the effectiveness of the estimation scheme is confirmed through evaluations using real HPC datasets. Furthermore, as scientific simulations scale up on HPC systems, the disparity between computation and input/output (I/O) becomes a significant challenge. To overcome this, error-bounded lossy compression has emerged as a solution to bridge the gap between computation and I/O. Nonetheless, the lack of understanding of compression performance hinders the wider adoption of lossy compression. The dissertation aims to address this challenge by examining the complex interaction between data, error bounds, and compression algorithms, providing insights into compression performance and its implications for scientific production. Lastly, the dissertation addresses the performance limitations of progressive data retrieval frameworks for post-hoc data analytics on full-resolution scientific simulation data. Existing frameworks suffer from over-pessimistic error control theory, leading to fetching more data than necessary for recomposition, resulting in additional I/O overhead. To enhance the performance of progressive retrieval, deep neural networks are leveraged to optimize the error control mechanism, reducing unnecessary data fetching and improving overall efficiency. By tackling these challenges and providing insights, this dissertation contributes to the advancement of scientific data management, lossy data compression techniques, and HPC progressive data retrieval frameworks. The findings and methodologies presented pave the way for more efficient and effective management of large-scale scientific data, facilitating enhanced scientific research and discovery. In future research, this dissertation highlights the importance of investigating the impact of lossy data compression on downstream analysis. On the one hand, more data reduction can be achieved under scenarios like image visualization where the error tolerance is very high, leading to less I/O and communication overhead. On the other hand, post-hoc calculations based on physical properties after compression may lead to misinterpretation, as the statistical information of such properties might be compromised during compression. Therefore, a comprehensive understanding of the impact of lossy data compression on each specific scenario is vital to ensure accurate analysis and interpretation of results

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steerā€”a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port
    • ā€¦
    corecore