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In this paper, we propose an adaptive algorithm for scalable wavelet image coding, which is 
based on the general feature, the regularity, of images. In pattern recognition or computer vision, 
regularity of images is estimated from the oriented wavelet coefficients and quantified by the 
Lipschitz exponents. To estimate the Lipschitz exponents, evaluating the interscale evolution of 
the wavelet transform modulus sum (WTMS) over the directional cone of influence was proven 
to be a better approach than tracing the wavelet transform modulus maxima (WTMM). This is 
because the irregular sampling nature of the WTMM complicates the reconstruction process. 
Moreover, examples were found to show that the WTMM representation cannot uniquely 
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characterize a signal. It implies that the reconstruction of signal from its WTMM may not be 
consistently stable. Furthermore, the WTMM approach requires much more computational effort. 
Therefore, we use the WTMS approach to estimate the regularity of images from the separable 
wavelet transformed coefficients. Since we do not concern about the localization issue, we allow 
the decimation to occur when we evaluate the interscale evolution. After the regularity is 
estimated, this information is utilized in our proposed adaptive regularity scalable wavelet image 
coding algorithm. This algorithm can be simply embedded into any wavelet image coders, so it is 
compatible with the existing scalable coding techniques, such as the resolution scalable and 
signal-to-noise ratio (SNR) scalable coding techniques, without changing the bitstream format, 
but provides more scalable levels with higher peak signal-to-noise ratios (PSNRs) and lower bit 
rates. In comparison to the other feature-based wavelet scalable coding algorithms, the proposed 
algorithm outperforms them in terms of visual perception, computational complexity and coding 
efficiency.  
 
Keywords: Feature-based scalable coding; regularity; separable wavelet transform. 

 
 
1.  Introduction 
 
With the decreasing cost and increasing computational power and storage capabilities 
of digital multimedia systems, more and more visual information and large image 
databases will be available on-line. For rapid transmission or fast image browsing, it is 
desirable to provide a fast coarse approximation of the shape of an image at very low 
bit rates, and then progressively enhance it as more bits are transmitted P

1
P. This 

fascinates numerous signal processing researchers to develop new scalable image 
coding algorithms for such multimedia applications. 
      Existing wavelet image compression algorithms, such as embedded zero-tree 
coding of wavelet coefficients (EZW) algorithmP

2
P in MPEG-4, set partitioning in 

hierarchical trees (SPIHT)P

3
P and embedded block coding with optimized truncation of 

the embedded bit streams (EBCOT) algorithmsP

4
P in JPEG2000, provide scalabilities in 

both resolution and SNR (or accuracy). Resolution scalability allows different 
resolutions or sizes of a decoded image to be displayed, which affects the bit rates. 
SNR or accuracy scalability allows different image quality to be reconstructed by 
transmitting different numbers of significant bit-planes. However, these two 
scalabilities only allow a coarse-to-fine approximation of images at various bit rates, 
which do not exploit the visual perception. Particularly, they do not allow the display 
of the shape or some features of a decoded image at very low bit rates. 
      Therefore, various researchers seek for other scalabilities that utilize visually 
important information of an image. Edges, boundaries, textures and surfaces of an 
image are usually considered to be the visually important features. So various 
progressive or scalable wavelet image coding algorithms based on the edges and 
surfaces of an image were proposedP

5-7
P. Nevertheless, these algorithms do not consider 

some practical issues, such as the computational complexity and coding efficiency. The 
details will be discussed in Section 2. 
      The lack of scalable image coding schemes which consider the visual perception, 
computational complexity and coding efficiency motivates us to develop a simple and 
effective scalable wavelet image coding algorithm. First of all, we need to determine 
the type of features that can mostly characterize an image. Then we need to detect and 
represent these visually important features. Finally, we need to capture these features 
into the existing wavelet image coders, which is the most important part for the image 
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coding application. For the first part, the local visual smoothness of an image is chosen 
as the feature that characterizes an image. For the second part, as multiscale edges of 
an image in computer vision or pattern recognition systems are often detected by 
oriented wavelets with partial derivative of order oneP

8-9
P, and the Lipschitz regularity of 

an image is related to the asymptotic decay of the wavelet transformed coefficients in 
the corresponding neighborhood in both horizontal and vertical directions, Lipschitz 
regularity is used to detect multiscale edges and quantify the local visual smoothness of 
an image. Since the decay of the wavelet transformed coefficients is controlled by the 
WTMMP

10-11
P, it was shown analytically in P

10
P that the local WTMM provide numerical 

information to compute Lipschitz exponents. Nevertheless, many errors and 
ambiguities are introduced when tracing the WTMM at coarse scales, These include: 1) 
the irregular sampling nature of the WTMM complicates the reconstruction process, 2) 
examples were found to show that the WTMM representation cannot uniquely 
characterize a signal, 3) the reconstruction of signal from its WTMM may not be 
consistently stable, and 4) the WTMM approach requires much more computational 
effort. Therefore, the WTMS approach was proposedP

12
P to replace tracing the WTMM 

one. In our scalable coding algorithm, we estimate the Lipschitz regularity from the 
separable wavelet transformed coefficients by evaluating the interscale evolution of the 
magnitude sum over the cone of influence. The details of this part will be discussed in 
Section 3. For the last part, we select the wavelet coefficients at various Lipschitz 
regularity levels and encode them in the order of starting from the lowest to the highest 
regularity. Since it is not necessary to perform edge detection, the approximation at the 
coarse scales after the decimation is still valid and this approach can be embedded into 
any existing wavelet scalable image coder. The validity under the decimation domain 
will be demonstrated in our simulation results and the details of this part will be 
discussed in Sections 4 and 5. 
      When this scalable coding algorithm is applied in the resolution scalability, we 
introduce some quality levels at each resolution level. These quality levels are 
determined from the Lipschitz regularity. We can produce images with higher quality 
at each resolution level. That means at the same resolution level, it is possible to 
produce images at much lower bit rates with an insignificant degradation of image 
quality. Comparing to the existing feature-based scalable wavelet image coding 
algorithms, the decoded images are better in visual quality and higher in PSNR at 
similar bit rates. The implementation complexity is also lower among the existing 
feature-based scalable wavelet image coding algorithms. These results will be shown in 
Section 5. 
      This paper is organized as follows. In Section 2, we review and discuss the existing 
scalable wavelet coding algorithms based on image features. In Section 3, we review 
the estimation of the Lipschitz regularity via the WTMS approach. In Section 4, we 
propose a simple and efficient adaptive regularity scalable coding algorithm, which can 
be embedded to any existing wavelet image coders. This part is the main contribution 
of the paper. Section 5 presents the results of the proposed regularity scalable coding 
algorithm when it is applied in addition to the resolution scalability. The comparison 
between our results and that of two existing scalable wavelet image coding algorithms, 
which are based on some features of the image, is also shown in Section 5. Finally, we 
conclude our works in Section 6. 
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2.  Review of the Existing Feature-based Scalable Wavelet Image Coding 
Algorithms 

 
For fast image browsing and retrieval over the bandwidth varying network, since edges 
of different structures are often the most important features for recognizing the image, 
it is usually desirable to display or recognize the shape of an image at very low bit 
rates, and then progressively enhance it as more bits are received. Various progressive 
or scalable wavelet image coding algorithms based on edges and surfaces of an image 
were proposedP

5-7
P. 

      In hierarchical octave-band wavelet image coding, traditional scalable coding 
techniques encode an image starting from the lowest subband. At very low bit rate, the 
low frequency information together with the blurred and blotchy artifacts will dominate 
the decoded image. To enhance the visual appearance and recognizability of the 
decoded image at very low bit rates, a progressive coding scheme based on edge 
information was suggestedP

6
P. In ref. 6, the high resolution subbands is encoded first. 

This is because the visually important features, such as the skeleton, can be encoded, 
decoded and displayed first by encoding wavelet coefficients in these high resolution 
subbands. Although the bit rate can be reduced without any significant degradation on 
the decoded image quality, numerous bits are still needed to encode the simplest edges 
that make the coding algorithm inefficient. 
      Another edge-enhanced image coding algorithm was proposed inP

5
P. In ref. 5, edge 

detection is integrated into the SPIHT algorithmP

3
P. The detected edges are encoded, 

transmitted and decoded separately, and then combined with decoded images at very 
low bit rates to produce edge-enhanced images. Although this approach allows the 
recognition of the shape of an image at very low bit rates, and the edge detection 
algorithm SUSAN is insensitive to noise and has good edge localization, the involved 
multi-ring chain coding scheme, which is effective for long and smooth curves only, is 
too costly for most images, especially for those contain many fine textures or patterns. 
Moreover, the method for the combination of the decoded edges and decoded images is 
also very complicated. 
      According to the properties of the human visual system (HVS), surface orientation 
is also important for the recognition and the extraction of visual objects. Therefore, 
another scalable coding algorithm based on the surface orientation was proposedP

7
P. It 

was suggested that the gray levels should be maintained at all time in order to have a 
‘good impression’ of the decoded images. The surface orientation determined from the 
shadings is used as the criteria to decide the order of the subbands and their bit-planes 
for encoding and transmission. The surface orientation is measured by the 
stereographic projection of the reflectance map obtained from the image brightness. 
With this algorithm, coarse shape of objects is first decoded, with shading information 
added progressively. This avoids using many bits for edge coding, like the above edge-
enhanced algorithms. However, since the mathematical relation between the wavelet 
coefficients at different scales and orientations, and the surface orientation is 
complicated and still not concrete, only a trial method can be employed. Moreover, due 
to the assumption of point light source and Lambertian object surfaces, the scope of 
images suitable for this algorithm is limited. Furthermore, since the decoded images at 
high bit rate is closed to the original one, it becomes very difficult to determine the 
transmission sequence as the surface orientations of the several consecutively decoded 
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images are similar. With these unsolvable problems, it still cannot be considered as a 
desirable feature-based scalable wavelet image coding algorithm. 
 
 
3.  Estimation of the Lipschitz Regularity 
 
 
3.1.  Definitions  
 
Denote ),( 21 xx=x , ),( 21 uu=u  and ),( 21 vv=v . Let )(xvp  be a local polynomial in the 

neighborhood of v  and ( ) r
i

r
r

i x∂
∂

=D  be a differential operator such that 
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If f  is in mC , that is f  is m  times continuously differentiable in the neighborhood of 
v , where 2ℜ∈v , then over a small interval, f  can be well approximated by )(xvp , 
that is 
 

)()()( xxx vv ε+= pf , 
 
where )(xvε  is the approximation error in the neighborhood of x , and 
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where )U(v  denotes the neighborhood of v . 
 
Definition 1: A function )( 22 ℜ∈Lf  is called a pointwise Lipschitz with 0≥α  at v , if 
there exists 0>K , and a polynomial vp  of degree ⎣ ⎦α=m  such that 2, ℜ∈∀ vx , 
 

22
22

2
112121 )(),(),(

α

vxvxKxxpxxf −+−≤− v
.    (3a) 

 
If f  is ⎣ ⎦α=m  times continuously differentiable in )U(v , then vp  is the Taylor 
expansion of f  at v  and the polynomial )(xvp  is uniquely defined for any v . Since 
pointwise Lipschitz exponents may vary arbitrary from abscissa to abscissa, to obtain a 
more global measurement of regularity over a region )U(v , we need to define uniform 
Lipschitz regularity. 
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Definition 2: Let 10 ≤≤α . A function )( 22 ℜ∈Lf  is called a uniformly Lipschitz with 
α  in )U(v , if there exists 0>K  which is independent of v , and a polynomial vp  of 
degree ⎣ ⎦α=m  such that )U(vv∈∀ , 2ℜ∈∀x , 
 

22
22

2
112121 )(),(),(

α

vxvxKvvfxxf −+−≤− .    (3b) 
 
If the Lipschitz exponent is smaller than 1, then f  is not differentiable at v  and α  
characterizes the singularity type. 
 
 
3.2.  Vanishing moments and decay of the wavelets  
 
Since the vanishing moment of the mother wavelet has an important role in 
characterizing the regularity of an image, we denote )(ψ xl  as mother wavelets with n  
vanishing moments for 31 ≤≤ l , where l  is the index of orientation and it is discussed 
in Section 3.3. A wavelet )(ψ xl  having n  vanishing moments is orthogonal to 
polynomials of degree 1−n . When we estimate the Lipschitz exponents of f , we often 
ignore the wavelet transform of vp  in Eq. (1) if a wavelet )(ψ xl  has ⎣ ⎦α>n  vanishing 
moments. It is because if ⎣ ⎦α>n , then vp  has degree of at most 1−n . With the change 
of variable, the wavelet transform of vp  is 
 

0)(W =uvpj
.    (4) 

 
Suppose that the wavelet )(ψ xl  has n  vanishing moments and is n  times continuously 
differentiable with fast decay, that is for any natural number q  and any nk ≤≤0 , there 
exists a constant 

qC  such that 2ℜ∈∀x , 
 

.)1)(1(
)(ψ

21
qq

qlk

xx
C

++
≤∇ x     (5) 

 
If f  has n  vanishing moments, then the wavelet transform of f  can be interpreted as 
a multiscale differential operator of order n . Hence, there is a relationship between the 
differentiability of f  and the decay of the wavelet transform at fine scales. 
 
 
3.3.  Definition of the separable wavelet transform 
 
Recall that l  is the index of orientation and ),( 21 xx=x , ),( 21 uu=u . Let φ  be a scaling 
function such that 
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1d)φ( =∫
+∞

∞−
xx     (6) 

 
and ψ  be the corresponding wavelet that generates a wavelet orthonormal basis of 

)( 22 ℜL . The set of separable mother wavelets { } 31ψ ≤≤l
l  can then be constructed with 

tensor products of the scaling function φ  and the wavelet function ψ . That is, 
)ψ()φ()(ψ 21

1 xx=x , )φ()ψ()(ψ 21
2 xx=x  and )ψ()ψ()(ψ 21

3 xx=x . Let ( )xu
l
j ,ψ  be the set 

of translations and dilations of the mother wavelets { } 31ψ ≤≤l
l , that is 

)2,2(ψ2)(ψ 2211, uxux jjljl
j −−= −−−xu

, then { }
31,ψ

≤≤l
l
j u

 is an orthonormal basis of 

)( 22 ℜL  as shown in Figure 1. Let
 )2,2(φ2)(φ 2211

22
, uxux JJJ

J −−= −−−xu
, where 

( ) )φ()φ(φ 21
2 xx=x  and J  is the total number of scales. Then the separable wavelet 

transform of a signal )( 22 ℜ∈Lf  at u  is defined as: 
 

( ) ( )( ){ }
31,1,

2
, ψ,W,φ,

≤≤≤≤
==

lJj

l
j

l
jJJ ffffS uu uu ,    (7) 

 
where fSJ  and fl

jW  represent the scaling coefficients and the wavelet coefficients 
respectively. 
      The three mother wavelets can be used to extract image details at different scale. So 
wavelet coefficients at different scales and orientations can fully represent different 
features of an image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Dyadic rectangles indicating the frequency regions for which the energy of )(ψ , xu
l
j

 is mostly 

concentrated. 
 
 
 
 

x B2B 

x B1B 
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3.4.  Uniform Lipschitz regularity for the separable dyadic wavelet transform 
 
Let ( ) { }δεδεδ +≤−+≤−= 2211 ,:U vuvuuv  for 0>δ  be the region that belongs to 
the support of ( )xu

l
j ,ψ , that is the cone of influence which is denoted by )(COI vl

j
 for 

Jj ≤≤1  and 31 ≤≤ l , where J  is the total number of scales. Let n  be the order of the 
multiscale differential operator of f , then we have the following theorem. 
Theorem 1: If f  is uniformly Lipschitz with n≤α  in the neighborhood of v  defined 
by ( )vδU , then there exists a finite constant 0>A  such that 
 

( ) ( )vu ,, jSj ∈∀ , ( ) ( )αjl
j Af 2W ≤u .    (8) 

 
Conversely, suppose that f  is bounded and n<α  is not an integer. If there exists a 
finite constant 0>′A  and αα <′  such that 
 

( ) ( )vu ,, jSj ∈∀ , ( ) ( )α′′≤ jl
j Af 2W u ,  (9) 

 
then f  is Lipschitz with α  in ( )vδU . 
 
Proof: The proofs of Eq. (8) and Eq. (9) are shown in Appendix A and B, respectively.  
 
 
3.5.  Lipschitz regularity estimation from the decimated separable wavelet transform 
 
By theorem 1, it is plausible to characterize the regularity from the evolution of the 
coefficients generated from the decimated separable wavelet transform. Experimental 
observation indicates that strong edges achieve equality in Eq. (8)P

14
P. This is the extreme 

case. In general, different levels of Lipshitz regularity can be distinguished and 
obtained by computing the interscale ratios of the decimated wavelet coefficient 
magnitudes. Wavelet zero-tree coding algorithm also takes the advantage of the decay 
of decimated wavelet coefficients by exploiting the relationship between the wavelet 
coefficients at different scales and orientations and their quad-trees. Here, quad-trees 
refer to the four children of each wavelet coefficient [ ]ufl

jW  to the next fine scale 12 −j  
, that is [ ]211 2,2W uufl

j−
, [ ]211 2,12W uufl

j −−
, [ ]12,2W 211 −− uufl

j
 and 

[ ]12,12W 211 −−− uufl
j

. At the largest scale J2 , the children of [ ]ufJS  are defined as the 
three wavelet coefficients at the same scale and location [ ]ufJ

1W , [ ]ufJ
2W  and 

[ ]ufJ
3W . The construction of the quad-trees is illustrated in Figure 2. The values of a 

wavelet coefficient and its four children depend on the gray level variation of the image 
in the same spatial area. So we compute the interscale ratios as the following, 
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and at the coarse scale Jj = , 
 

[ ] [ ]
[ ]u
u

u
f
f

l
J
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S
R = .  (10b) 

 
In our adaptive scalable coding algorithm, different levels of regularity of the 
decimated separable wavelet transformed image are estimated by the following 
equation: 
 

[ ] 2
1 2R +
− = αul

j
.  (11) 

 
Apart from this, finer estimation of regularity can also be performed with the expense 
of computation by computing the interscale ratios for each coefficient at the fine scales, 
that is: 
 

[ ]
[ ]

[ ]22111
22111 2,2W

W
2,2R

uuuuf

f
uuuu

l
j

l
jl
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=′−′−
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−

u  for 1,0, 21 =′′ uu ,  (12) 

 
and 
 

[ ] α2R 1 =− ul
j

.  (13) 
 
Therefore, the children belonging to a parent can be set to zeros when they are found to 
be above a certain level of regularity. 
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Fig. 2. The decimated separable wavelet transform and the construction of quad-trees. 
 
 
3.6.  Decimated separable wavelet transform magnitude sum over the ‘cone of 

influence’ 
 
It has been shown in ref. 13 that the interscale ratios of the magnitude sums over the 
‘cone of influence’ can provide a fast and effective estimation of Lipschitz regularity. 
Before determining the ‘cone of influence’, that is the regions for the magnitude sums, 
for the decimated case, let us consider the undecimated case first. Suppose φ  and ψ  
have compact supports [ ]11, KK−  and [ ]22 , KK− , respectively. Denote ),( 21 nn=n .  The 
regions for the magnitude sums at position u  , scale j  and orientation l  over the 
undecimated separable wavelet transform are 
 

[ ] { }jj
j KunKun 2,2:COI 222111

1 ≤−≤−= nu , 
 

[ ] { }jj
j KunKun 2,2:COI 122211
2 ≤−≤−= nu , 

 
[ ] { }jj

j KunKun 2,2:COI 222211
3 ≤−≤−= nu , 

 
and 
 

[ ] { }JJ
J KunKun 2,2:COI 122111
4 ≤−≤−= nu . 

 
When each subband is downsampled by j2 , the positions are shifted and scaled as 
shown in Figure 3. So we define the ‘cone of influence’ for the decimated separable 
wavelet transform as follow, 
 

[ ] ( ) ( ){ }222111
1 2,2:dCOI KunKun jj
j ≤−≤−= nu , 

[ ]12,12 21
1
2 1 −−− uufW J  

[ ]21
1
2

2,121 uufW J −−  

[ ]12,2 21
1
2 1 −− uufW J  

[ ]21
1
2

2,21 uufW J−  
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[ ] ( ) ( ){ }122211
2 2,2:dCOI KunKun jj
j ≤−≤−= nu , 

 
[ ] ( ) ( ){ }222211

3 2,2:dCOI KunKun jj
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and 
 

[ ] ( ) ( ){ }122111
4 2,2:dCOI KunKun JJ
J ≤−≤−= nu . 

 
We then compute the magnitude sums as follows: 
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l
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l
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and 
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Similar to Eq. (10) and Eq. (12), we obtain the interscale ratios as, 
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−
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and at the coarsest scale Jj = , 
 

[ ] [ ]
[ ]u
uu l

J

Jl
J N

NR = .  (15b) 

 
Similar to the result from ref. 13 and Eq. (8), we have 
 

[ ] ( ) 12N +′′≤
αjl

j Au , 
 
where 0>′′A  is a finite constant. From Eq. (11) and Eq. (13), we also have the 
interscale ratios for the magnitude sum over the ‘cone of influence’ as 
 

[ ] 32R += αul
j

,  (16a) 
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or 
 

[ ] 12R += αul
j

.  (16b) 
 
As a result, we avoid the complicated procedure from the direct computation of the 
Lipschitz exponents. Hence, the errors and ambiguities that occur when tracing the 
evolution of the wavelet transform coefficient magnitudes at coarse scales are avoided. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The decimated COI of the separable discrete wavelet transform. 
 
 
4.  Our Proposed Algorithm 
 
The technique which employs regularity as a post-processing to preserve the edges of 
the noisy natural or tomographic images was proposed in ref. 13. Although there are 
some common points between the work in ref. 13 and that in this paper, such as the 
estimation of the regularity of the signals or images via the WTMS approach, there are 
lots of differences. The work in ref. 13 was for denoising applications, but not for 
coding applications. The difference between these two applications is that the size of 
data is not important for denoising applications, while it is extremely critical for coding 
applications. Hence, all processing for denoising applications can be performed in the 
undecimated domain. However, all processing for the coding applications are needed to 
perform in the decimated domain. One of the contributions of this paper is to show that 
the technique for the estimation of the regularity of a signal can really be applied in the 
decimated domain. Besides, denoising applications emphasize on the determination of 
the threshold, which is determined based on the regularity of the signalP

13
P, so that the 

SNR is improved. On the other hand, coding applications emphasize on the selection of 
the appropriate coefficients, which is also based on the regularity of the signal, and the 
combining of these selected coefficients in a sequence for encoding and transmission, 
so that the coding gain is maximized. Since the objectives of these two applications are 
completely different, the ways to employ the regularity property are also completely 
different. 
      Since we have shown in the previous section that we can estimate the Lipschitz 
regularity from the interscale ratios of the transformed coefficient magnitudes or the 
magnitude sums over the ‘cone of influence’, in this section, we will focus on the 

l=2 l=3 

l=1

1K

1K

2K  
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methods for the selection of the appropriate coefficients based on the regularity of an 
image and combining these selected coefficients in a sequence. 
      The proposed algorithm is shown as follows. 
 
Procedures: 
 
Step 1: Obtain the decimated wavelet coefficients as Eq. (7) from the existing wavelet 

image encoder. 
 
Step 2: Compute the magnitude sums using Eq. (14), where Jj ≤≤1  and 31 ≤≤ l . 
 
Step 3: Compute the interscale ratios using Eq. (15a) and Eq. (15b). 
 
Step 4: Normalize the magnitudes of the interscale ratios individually before 

combining them. 
 
Step 5: Sort these magnitudes of the interscale ratios in ascending order. 
 
Step 6: Determine 

iα  for Li ,...,2,1= , where L  is the total number of regularity levels. 
 
Step 7: Set [ ] 1

, 2R += il
ij

αu  for each Li ...,,2,1= . 
 
Step 8: Starting at Jj = , for regularity level i , select [ ]ufl

jW  if [ ] [ ]uu ff l
ij

l
j ,RR ≤  

lj,∀ . 
 
      In Step 1, we obtain the wavelet coefficients from the image coder. Traditionally, a 
jointly shiftable wavelet transformP

15
P with the wavelet filters having compact supports 

in time domain is used to represent multiscale signals and perform image analysis 
because the transform coefficients are translation invariant in position and orientation. 
There is also no aliasing effect upon subsamplings and zero interpolation. However, 
since our objective is to compress images, it is more desirable to obtain a 
representation of signal information with a minimal degree of correlation and 
redundancy but a maximal concentration of energy distribution, so that the coding gain 
is maximized. Therefore, regularity estimation is conducted via the biorthogonal 
wavelet filters employed in the existing image coder. Moreover, using these 
biorthogonal wavelet filters can be compatible to the existing wavelet image coder. The 
interscale ratios of the magnitude sums defined in Steps 2 and 3 can be obtained easily. 
Since wavelet coefficients will have large amplitudes when the signal has sharp 
transitions, the important visual information are found in the wavelet coefficients with 
large amplitude. This property can be captured into the wavelet image coder via 
normalizing the interscale ratios by the magnitude of the wavelet coefficients, which is 
described in Step 4 of the procedures, that the interscale ratios of the magnitude sums 
are normalized by a larger factor if the corresponding wavelet coefficients have larger 
magnitude. Moreover, since the dynamic ranges of different images are different, 
normalization on these interscale ratios to the same range are required before 
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combining them via a simple matrix multiplication. Then the combined values are 
sorted in Step 5 and the coefficients are selected using the criteria defined in Steps 7 
and 8 so that those coefficients with larger magnitudes and smaller interscale ratios 
have a higher priority to be selected and encoded. The regularity levels defined in Step 
6 are in an even progression. This arrangement of the bitstream can effectively increase 
the coding efficiency of the regularity scalable coder and the result will be shown in 
Section 5. 
      Since the regularity levels are determined adaptively from the images, a full range 
of regularity levels can be utilized and better image quality can be achieved. Figure 4 
shows how this proposed scalable coding algorithm (Steps 7 and 8) is embedded in the 
zero-tree wavelet image encoder. Layers of selected wavelet coefficients at different 
regularity levels are subsequently quantized and entropy coding is performed to form a 
regularity and resolution scalable bitstream for transmission. Note that the level of 
regularity of the reconstructed image depends on the bit rate budget, the required 
resolution and the employed quantization steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Embedding the proposed regularity scalable coding algorithm into the existing wavelet zero-tree 
image encoder. 

 
 
5.  Simulation Results 
 
We adopt the proposed algorithm to the MPEG-4 still image codec with the popular 
Daubechies 9/3 biorthogonal filters (KB1 B=4, KB2B=1) for an illustration. In fact, our 
proposed regularity scalable coder can work with any kind of scalable wavelet coding 
techniques, such as the JPEG2000 coding scheme, without changing the bitstream 
format. However, we choose the MPEG-4 still image codec for an illustration because 
images are broken down into several pieces in the JPEG2000 coding scheme and 
wavelets transforms are applied on each pieces. As a result, the number of interscales 
of wavelet coefficients in the JPEG2000 coding scheme is usually less than that of the 
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MPEG-4 still image codec. For our proposed regularity scalability coding scheme, 
since one of the objectives and important advantages of our proposed approach is to 
introduce regularity scalability in addition to the resolution scalability without a change 
in the bitstream format, more interscales of wavelet coefficients would provide more 
scalable levels. Hence, we choose the MPEG-4 still image codec for an illustration. 
      To compare the quantitative performance of our proposed coder with that of the 
existing coder, the PSNR against the bit rate at each resolution scale is shown in Figure 
5. The overall PSNR for all resolution scales of our scalable coding algorithm 
outperforms significantly than that of the original coding algorithm with resolution 
scalability only at the similar bit rates. This implies that if the original image coder can 
compress images at a certain bit rate, our proposed regularity scalable coder can also 
compress the same images with similar bit rates, but higher PSNR. 
      To compare the qualitative performance of our proposed coder with that of the 
existing coder, the well-known USC image “Lena” are presented for the comparison. 
Table 1 shows the quantitative results of both our proposed coding algorithm and the 
existing image coding algorithm (Comparison A in Figure 5a). Figures 6 and 7 show 
the qualitative results. At resolution scale 2, when the quantization step size is equal to 
6, we can see that up to 34.98% reduction in bit rate can be obtained without significant 
change in the visual quality (3P

rd
P row of Figure 6) and only less than 2.53% reduction in 

PSNR is resulted for encoding the image “Lena”. That means the low regularity 
components, such as the edges and textures, are enhanced significantly with a small 
addition of the bit rate. The significant improvement can also be noted in the 
Comparison B in Figure 5a. The bit rate of the image can be enormously reduced from 
1.4898bpp to 0.58475bpp (a reduction of 60.75%) without markedly change in PSNR 
(a reduction of 3.08%). The results of the visual quality of the images in the 
Comparison A shown in Figure 6 show the success of the proposed algorithm. 
      Zooming into different parts of the decoded image as shown in Figure 7, we assure 
that there is almost no degradation of the visually important features, such as the edges 
and the hat strings, upon a significant reduction in the bit rate. This is because with the 
proposed algorithm, these low regularity components suffer less to the distortion. 
Severe degradation just exists in the smooth areas, such as the shoulder, but it is not 
visually annoying as it just gives a smoothening effect. Since the order of the 
embedded coding begins at the largest quantization step which is progressively 
decreasing, the coding precision increases as the number of quantization refinements 
increases. Therefore, to visualize the qualitative and quantitative improvements of the 
regularity scalability, we preserve the highest precision without performing 
quantization, as the results shown in Figures 5 and 7. 
      Recall that ref. 5 suggests encoding the higher resolution subbands first, so that the 
visually important edges are decoded and displayed first. On the other hand, it is 
traditionally suggested that the lowest resolution subband should be encoded first. Here 
we adopt our proposed algorithm into these two transmission schemes. Results of the 
well-known USC images “Pepper” are presented in Figure 8. For the transmission 
scheme based on ref. 5, the result is shown in Figure 8a. It is worth noting that the 
overall quality of the reconstructed images under our proposed algorithm outperforms 
than that of ref. 7 and the quality of the image is enhanced significantly at very low bit 
rates. For the comparison with the results in ref. 7, which is shown in Figure 8b, we 
also note that the overall quality of the reconstructed image using our proposed 
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approach outperforms than that of ref. 5. In particularly, the boundary shapes and edges 
of the decoded images are improved significantly. 
      To compare the complexity of the proposed coder, since it only involves the 
computation of magnitude sums and interscale ratios in the decimated domain, the 
computational cost is low. For the existing edge-enhanced scalable coding techniquesP

5-

6
P, edge detection is required and these algorithms are performed in the undecimated 

domain. Obviously, the computational cost of these algorithms is much higher than that 
of our proposed algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Performances of resolution scalability versus resolution and regularity scalability at resolution scales 

(a) 2-5. (b) 4 and 5. 
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Table 1. Effect of quantization to the regularity scalable coding at resolution scale 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Resolution scalable Regularity and resolution scalable Percentage change 

Quantization 

step size PSNR (dB) Bit rates (bpp) PSNR (dB) Bit rates (bpp) PSNR (%) Bit rates (%)

2 34.5795 1.49017 33.5911 0.83072 -2.86 -44.25 

4 34.5229 1.14035 33.5762 0.67340 -2.74 -40.95 

6 34.4211 0.89929 33.5495 0.58475 -2.53 -34.98 

8 34.3012 0.73837 33.5113 0.52167 -2.30 -29.35 

32 32.5595 0.25671 32.4216 0.24667 -0.42 -3.91 

64 30.4063 0.13934 30.4040 0.13931 -0.01 -0.02 
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Fig. 6. Reconstructed image “Lena”. 1P

st
P column: resolution scalable; 2 P

nd
P column: regularity and resolution 

scalable. 1 P

st
P row: at resolution scale 4; 2 P

nd
P row: at resolution scale 3; 3 P

rd
P row: at resolution scale 2. The 

quantization step is equal to 6. 
 
 
 
 
 
 
 
 
 

25.4256dB, 0.12747bpp 24.9357dB(-1.93%), 0.07388bpp(-42.04%) 

29.3175dB, 0.36499bpp 28.8936dB(-1.45%), 0.21960bpp(-39.83%) 

34.4322dB, 0.89929bpp 33.5495dB(-2.53%), 0.58475bpp(-34.98%) 
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Fig. 7. Different parts of the reconstructed image “Lena” at resolution scale 2 with the highest precision. The 
quantization step is 2. 1P

st
P column: resolution scalable only (34.5795dB, 1.49017bpp); 2P

nd
P column: resolution 

and regularity scalable (33.5911dB, 0.83072bpp); 3P

rd
P column: original image at 3.25668bpp. The proposed 

algorithm can achieve 2.86% and 44.25% reduction in PSNR and bit rate, respectively. 
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Fig. 8a. The reconstructed images “Pepper” at various regularity levels (second row) and the results of the 
edge-oriented progressive coding algorithmP

5
P (first row). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8b. The reconstructed images “Pepper” at various regularity levels (second row) and the results of the 
surface-oriented progressive coding algorithmP

7
P (first row). 

0.0120bpp 0.2203bpp 0.2990bpp 0.3235bpp 

0.0120bpp 0.2227bpp 0.3004bpp 0.3274bpp 

0.0367bpp 0.0524bpp 0.1442bpp 0.2808bpp 

0.03738bpp 0.05368bpp 0.1443bpp 0.2822bpp 
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6.  Conclusion 
 
In computer vision or pattern recognition systems, multiscale edges of an image are 
often detected by oriented wavelets in the undecimated domain. In this paper, we show 
that it can also be achieved in the decimated domain. Based on this property, we further 
propose an adaptive regularity scalable wavelet image coding algorithm to demonstrate 
the application of the estimation of the Lipschitz regularity from modulus sum from the 
decimated separable wavelet transform. 
      The proposed image coding algorithm achieves regularity scalability by selecting 
different decimated wavelet coefficients at different regularity levels. The selection is 
based on the interscale ratios of the wavelet transform magnitude sums over the ‘cones 
of influence’ which is computed adaptively. The proposed regularity scalable coding 
algorithm outperforms various existing scalable coding algorithms in terms of visual 
perception, implementation complexity and coding efficiency. For the visual 
perception, since the proposed regularity scalable coding algorithm emphasizes on a 
particular feature of an image, it can provide a better visual perception of an image at 
very low bit rates. Simulation results show that the proposed regularity scalable coding 
algorithm is also benefited by its high coding efficiency. For the computational 
complexity, since only the computation of the sum of the wavelet coefficients and their 
interscale ratios in the decimated domain is required, the computational cost is low. On 
the other hand, for those edge-enhanced coding algorithms, there are high 
computational costs on the edge detection algorithms implemented in the undecimated 
domain. Another advantage of our proposed algorithm is that it can be embedded in 
any existing wavelet image coder, such as MPEG-4 still image codec, in which it is 
compatible with other scalable coding techniques, such as resolution scalability, 
without changing the bitstream format. In addition, similar to ref. 12 and ref. 13, it also 
possesses good robustness to noise by rejecting wavelet coefficients with negative 
Lipschitz exponents, which correspond to noise. 
      This scalable coding algorithm would be very useful in image browsing and 
retrieval applications. For image browsing application, a user may want to search 
through the database to find an image with particular features and minimize the number 
of transmitted bits. With the proposed scalable coding algorithm, which is based on 
Lipschitz regularity, an image becomes easier to be recognized at low bit rates and 
some particular features of an image will be visualized first at these low bit rates. 
 
 
Appendix A 
 
Proof of the necessary condition Eq. (8) in Theorem 1: 
      Since f  is Lipschitz α  in ( )vU , f  is also Lipschitz α  at v , ( )vv U∈∀ , by Eq. 
(3), there exists a polynomial vp  of degree ⎣ ⎦α>n  and 0>K  such that 
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By Cauchy Schwarz inequality, ( )rrrr baba +≤+ 2 , so 
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Since we assume that the mother wavelet ( )xψ  has n  vanishing moments, ( )xlψ  also 
has n  vanishing moments for all l , and is nC  with the derivatives having a fast decay. 
So by Eq. (5), we have 
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For ( )vu U∈ , we can choose ( ) uv == −−

21 2,2 vv jj , so we have ( ) ( )αjl
j Af 2W ≤u . 

 
 
Appendix B 
 
Proof of the sufficient condition Eq. (9) of Theorem 1: 
      To prove that f  is uniformly Lipschitz with α  in ( )vδU , we must verify that there 
exists 0>K  such that for all ( )vv δU∈ , we can find a polynomial vp  of degree ⎣ ⎦α  
such that 
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22

2
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Case 1 ( )vx 2/Uδ∉  
 



Regularity Scalable Image Coding Based on Wavelet Singularity Detection   23 

      Then 2/11 δ≥− vx  and 2/22 δ≥− vx . Since f  is bounded, Eq. (A.3) can be 
verified with a constant 0>K  that depends on δ . 
 
Case 2 ( )vx 2/Uδ∈  
 
      Since f  can be decomposed in a Littlewood-Paley type sum as follows: 
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Taylor polynomial as follows: 
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Since ( )xlψ  has fast decay, by Eq. (5) and Eq. (A.2), we have 
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By the inequality ( )rrrr bccaba −+−≤− 2 , with ua = , vb j−= 2  and xc j−= 2 , and 

with the change of variables, 111 2 xuu j−−=′  and 222 2 xuu j−−=′ , 
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By choosing 2+′= αm , we have, 
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Note that this is also applied to the partial derivatives of ( )xjΔ  ⎣ ⎦ 1+≤∀ αk , that is: 
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At vx = , it follows that ⎣ ⎦ 1+≤∀ αk  
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Before computing ( ) ( )xx vpf −  directly, we first need to check if the polynomial vp  
in Eq. (A.6) has finite number of coefficients. 
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By the fast decay with 2+′=αq  and at vx = , and from Eq. (A.10), we have 
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Together with Eq. (A.10), this proves that the polynomial vp  defined in Eq. (A.6) has 
coefficients that are finite. Now, with the Littlewood-Paley decomposition, we can 
compute ( ) ( )xx vpf −  directly as follows: 
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The sum over scales is divided into two parts such that 122 −≥−≥ JJ vx . The first part 
considers the case when Jj ≥ , while the second part considers the case when Jj < . 
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Inserting Eq. (A.9) yields 
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By Eq. (A.8), the first term 
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Also, by Eq. (A.10), the second term is bounded. And since 122 −≥−≥ J

ii
J vx  for 

2,1=i , we get ( )22
22

2
11II

α

vxvxK −+−≤ . As a result, we have 

( ) ( ) ( )22
22

2
11III

α

vxvxKff −+−≤+≤− vx , which proves that f  is uniformly 
Lipschitz α  in ( )vδU . 
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