4,801 research outputs found

    Ductal carcinoma in situ of the breast: the importance of morphologic and molecular interactions.

    Get PDF
    Ductal carcinoma in situ (DCIS) of the breast is a lesion characterized by significant heterogeneity, in terms of morphology, immunohistochemical staining, molecular signatures, and clinical expression. For some patients, surgical excision provides adequate treatment, but a subset of patients will experience recurrence of DCIS or progression to invasive ductal carcinoma (IDC). Recent years have seen extensive research aimed at identifying the molecular events that characterize the transition from normal epithelium to DCIS and IDC. Tumor epithelial cells, myoepithelial cells, and stromal cells undergo alterations in gene expression, which are most important in the early stages of breast carcinogenesis. Epigenetic modifications, such as DNA methylation, together with microRNA alterations, play a major role in these genetic events. In addition, tumor proliferation and invasion is facilitated by the lesional microenvironment, which includes stromal fibroblasts and macrophages that secrete growth factors and angiogenesis-promoting substances. Characterization of DCIS on a molecular level may better account for the heterogeneity of these lesions and how this manifests as differences in patient outcome and response to therapy. Molecular assays originally developed for assessing likelihood of recurrence in IDC are recently being applied to DCIS, with promising results. In the future, the classification of DCIS will likely incorporate molecular findings along with histologic and immunohistochemical features, allowing for personalized prognostic information and therapeutic options for patients with DCIS. This review summarizes current data regarding the molecular characterization of DCIS and discusses the potential clinical relevance

    Complexity of the genomic landscape of renal cell carcinoma: Implications for targeted therapy and precision immuno-oncology

    Get PDF
    The topic of tumoral heterogeneity at the genetic level has become relevant in various solid origin tumors, particularly in an age of targeted treatment. Renal cell carcinoma is known for a sizable subset of tumors presenting at advanced clinical stage, further highlighting the importance and timeliness of this topic and its potential impact on adjuvant therapy. Recent studies have shown that molecular aberrations in renal cell carcinoma go beyond known truncal mutations and that downstream, subclonal aberrations are spatially heterogenous. Intratumoral heterogeneity as well as the differences in the molecular landscape between primary and metastatic lesions remains underappreciated, often due to inadequate sampling of tumors. The overall effect of these factors on the efficacy of current treatment options in renal cell carcinoma remains unknown; however, several recent studies have attempted to elucidate the extent and impact genetic heterogeneity in renal cell neoplasia may have on patient treatment and prognosis

    A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era.

    Get PDF
    Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on blastomas, which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account

    A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era

    Get PDF
    Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on “blastomas,” which variably recapitulate the morphologic maturation of organs from which they originate

    Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    Full text link
    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN

    Integrating the diagnosis of childhood malignancies

    Get PDF
    Significant progress has been made in understanding the molecular basis of pediatric malignancies. Mechanisms of pediatric acute leukemia induction include hyperdiploidy, aberrant expression of proto-oncogenes, and activation of transcription factors or kinases by aberrant fusion genes. Molecular analysis of these alterations has facilitated the recognition of distinct groups with different sensitivity to therapy, and identified potential targets for antileukemic agents. Similar analysis of pediatric soft tissue and bone tumors also resulted in the identification of specific fusion genes, and their characterization has contributed greatly to understand their biology. Molecular assays for these rearrangements have become important tools in classifying these tumors, providing important prognostic data. However, the understanding of mechanisms involved in the pathogenesis of many other pediatric malignancies, including some embryonal tumors -believed to arise due to perturbation of the normal developmental program- is still vastly incomplete. The Department of Pathology at Texas Children’s Hospital is one of the Children’s Oncology Group (COG) reference centers for pediatric liver tumors. We have been particularly interested in the biology of hepatoblastoma, the most common type of pediatric liver tumor. Although a number of cytogenetic and molecular abnormalities have been described for this type of embryonal tumor, its pathogenesis is still poorly understood. In an attempt to explore the role of different signaling pathways in this disease, we analyzed the expression patterns of different histologic subtypes of hepatoblastoma using cDNA microarray analysis, QRT-PCR and immunohistochemistry. Wnt signaling pathway, critical both in development and in neoplasia, appears to be particularly relevant in these tumors. Mutations of the β-catenin gene are present in over 90% of hepatoblastomas, leading to activating transcription of a number of target genes. The pattern of β-catenin expression and type of mutation in groups of tumors are crucial to understand the corresponding differences in their gene expression profiles. Our findings are consistent with a relationship between poor histologic phenotype and β-catenin activation, indicating the potential utility of targeted gene expression assays to identify molecular events related to the pathogenesis and prognosis of hepatoblastomas

    The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours.

    Get PDF
    The fifth edition of the World Health Organization (WHO) classification of urogenital tumours (WHO "Blue Book"), published in 2022, contains significant revisions. This review summarises the most relevant changes for renal, penile, and testicular tumours. In keeping with other volumes in the fifth edition series, the WHO classification of urogenital tumours follows a hierarchical classification and lists tumours by site, category, family, and type. The section "essential and desirable diagnostic criteria" included in the WHO fifth edition represents morphologic diagnostic criteria, combined with immunohistochemistry and relevant molecular tests. The global introduction of massive parallel sequencing will result in a diagnostic shift from morphology to molecular analyses. Therefore, a molecular-driven renal tumour classification has been introduced, taking recent discoveries in renal tumour genomics into account. Such novel molecularly defined epithelial renal tumours include SMARCB1-deficient medullary renal cell carcinoma (RCC), TFEB-altered RCC, Alk-rearranged RCC, and ELOC-mutated RCC. Eosinophilic solid and cystic RCC is a novel morphologically defined RCC entity. The diverse morphologic patterns of penile squamous cell carcinomas are grouped as human papillomavirus (HPV) associated and HPV independent, and there is an attempt to simplify the morphologic classification. A new chapter with tumours of the scrotum has been introduced. The main nomenclature of testicular tumours is retained, including the use of the term "germ cell neoplasia in situ" (GCNIS) for the preneoplastic lesion of most germ cell tumours and division from those not derived from GCNIS. Nomenclature changes include replacement of the term "primitive neuroectodermal tumour" by "embryonic neuroectodermal tumour" to separate these tumours clearly from Ewing sarcoma. The term "carcinoid" has been changed to "neuroendocrine tumour", with most examples in the testis now classified as "prepubertal type testicular neuroendocrine tumour"
    corecore