4 research outputs found

    Model compendium, data, and optimization benchmarks for sector-coupled energy systems

    Get PDF
    Decarbonization and defossilization of energy supply as well as increasing decentralization of energy gen- eration necessitate the development of efficient strategies for design and operation of sector-coupled energy systems. Today, design and operation of process and energy systems rely on powerful numeri- cal methods, in particular, optimization methods. The development of such methods benefits from re- producible benchmarks including transparent model equations and complete input data sets. However, to the authors’ best knowledge and with respect to design and optimal control of sector-coupled en- ergy systems, there is a lack of available benchmarks. Hence, this article provides a model compendium, exemplary realistic data sets, as well as two case studies (i.e., optimization benchmarks) for an in- dustrial/research campus in an open-source description. The compendium includes stationary, quasi- stationary, and dynamic models for typical components as well as linearization schemes relevant for optimization of design, operation, and control of sector-coupled energy systems

    Modular Supply Network Optimization of Renewable Ammonia and Methanol Co-production

    Get PDF
    To reduce the use of fossil fuels and other carbonaceous fuels, renewable energy sources such as solar, wind, geothermal energy have been suggested to be promising alternative energy that guarantee sustainable and clean environment. However, the availability of renewable energy has been limited due to its dependence on weather and geographical location. This challenge is intended to be solved by the utilization of the renewable energy in the production of chemical energy carriers. Hydrogen has been proposed as a potential renewable energy carrier, however, its chemical instability and high liquefaction energy makes researchers seek for other alternative energy carriers. Ammonia and methanol can serve as promising alternative energy carriers due to their chemical stability at room temperature, low liquefaction energy, high energy value. The co-production of these high energy dense energy carriers offers economic and environmental advantages since their synthesis involve the direct utilization of CO2 and common unit operations. This problem report aims to review the optimization of the co-production of methanol and ammonia from renewable energy. Form this review, research challenges and opportunities are identified in the following areas: (i) optimization of methanol and ammonia co-production under renewable and demand uncertainty, (ii) impacts of the modular exponent on the feasibility of co-production of ammonia and methanol, and (iii) development of modern computational tools for systems-based analysis

    A novel time discretization method for solving complex multi-energy system design and operation problems with high penetration of renewable energy

    Get PDF
    Modelling and optimising modern energy systems is inherently complex and often requires methods to simplify the discretization of the temporal domain. However, most of them are either (i) not well suited for systems with a high penetration of non-dispatchable renewables or (ii) too complex to be broadly adopted. In this work, we present a novel method that fits well with high penetration of renewables and different spatial scales. Furthermore, it is framework-independent and simple to implement. We show that, compared to the full time discretization, the proposed method saves >90% computation time with <1% error in the objective function. Moreover, it outperforms commonly used methods of modelling through typical days. Its practical usefulness is demonstrated by applying it to a case study about the optimal hydrogen production from renewable energy. The increased modelling fidelity results in a significantly cheaper design and reveals operational details otherwise hidden by typical days

    Advances in the Optimization of Energy Systems and Machine Learning Hyperparameters

    Get PDF
    Intensifying public concern about climate change risks has accelerated the push for more tangible action in the transition toward low-carbon or carbon-neutral energy. Concurrently, the energy industry is also undergoing a digital transformation with the explosion in available data and computational power. To address these challenges, systematic decision-making strategies are necessary to analyze the vast array of technology options and information sources while navigating this energy transition. In this work, mathematical optimization is utilized to answer some of the outstanding issues around designing cleaner processes from resources such as natural gas and renewables, operating the logistics of these energy systems, and statistical modeling from data. First, exploiting natural gas to produce lower emission liquid transportation fuels is investigated through an optimization-based process synthesis. This extends previous studies by incorporating chemical looping as an alternative syngas production method for the first time. Second, a similar process synthesis approach is implemented for the optimal design of a novel biomass-based process that coproduces ammonia and methanol, improving their production flexibility and profit margins. Next, operational difficulties with solar and wind energies due to their temporal intermittency and uneven geographical distribution are tackled with a supply chain optimization model and a clustering decomposition algorithm. The former describes power generation through energy carriers (hydrogen-rich chemicals) connecting resource-dense rural areas to resource-deficient urban centers. Results show the potential of energy carriers for long-term storage. The latter is developed to identify the appropriate number of representative time periods for approximating an optimization problem with time series data, instead of using a full time horizon. This algorithm is applied to the simultaneous design and scheduling of a renewable power system with battery storage. Finally, building machine learning models from data is commonly performed through k-fold cross-validation. From recasting this as a bilevel optimization, the exact solution to hyperparameter optimization is obtainable through parametric programming for machine learning models that are LP/QP. This extends previous results in statistics to a broader class of machine learning models
    corecore