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a b s t r a c t 

Decarbonization and defossilization of energy supply as well as increasing decentralization of energy gen- 

eration necessitate the development of efficient strategies for design and operation of sector-coupled 

energy systems. Today, design and operation of process and energy systems rely on powerful numeri- 

cal methods, in particular, optimization methods. The development of such methods benefits from re- 

producible benchmarks including transparent model equations and complete input data sets. However, 

to the authors’ best knowledge and with respect to design and optimal control of sector-coupled en- 

ergy systems, there is a lack of available benchmarks. Hence, this article provides a model compendium, 

exemplary realistic data sets, as well as two case studies (i.e., optimization benchmarks) for an in- 

dustrial/research campus in an open-source description. The compendium includes stationary, quasi- 

stationary, and dynamic models for typical components as well as linearization schemes relevant for 

optimization of design, operation, and control of sector-coupled energy systems. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Realistic mathematical models of sector-coupled energy systems

re a key for developing tailored numerical optimization meth-

ds, which in turn are essential for manifold research efforts to-

ards a successful decarbonization, defossilization, and decentral-

zation of energy supply. Numerical optimization allows to opti-

ally plan, design, operate, and control energy systems while ac-

ounting for the inherent volatility of renewables as well as for en-

ironmental, economic, and social aspects, see Andiappan (2017) ;

itsos et al. (2018) . 
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In process systems engineering, numerical optimization is in

any cases the method of choice for control and automation

roblems ( Engell, 2007; Engell and Harjunkoski, 2012; Kadam

nd Marquardt, 2007 ). Moreover, its importance for design opti-

ization ( Frangopoulos, 2018 ) and operation of energy systems is

teadily increasing. The respective research efforts regarding the

ynamic optimization of energy systems comprise a variety of

ethods and applications, spanning from the development of ac-

urate and fast simulation methods for the control of thermal en-

rgy storage ( Barz et al., 2018 ) via the incorporation of real-world

eather forecasts ( Constantinescu et al., 2011 ) to nonlinear model-

redictive control and/or real-time optimization of power grids

ith storage ( Adeodu et al., 2019; Braun et al., 2018; Faulwasser

nd Engelmann, 2019; Matke et al., 2016 ), and the optimization

f HVAC (Heating, Ventilation, and Air Conditioning) systems for

uildings ( Bürger et al., 2018; Harb et al., 2015; Perez et al., 2016;

ouretzky and Baldea, 2016; Zhang et al., 2014 ). 

Design of energy systems is typically cast as Mixed-integer

onlinear Programs (MINLPs), e.g., in Li and Barton (2015) , or
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1 This article is a contribution to the open source and benchmark project HECI –

Helmholtz Energy Computing Initiative ( HECI, 2019 ). 
Mixed-integer Linear Programs (MILPs), e.g., in Lara et al. (2018) ;

Mancarella (2014) ; Zhang et al. (2019) . Besides, dynamic opti-

mization problems comprising operational optimization and opti-

mal control are typically solved by direct methods based on dis-

cretization, yielding MINLPs, NLPs (Nonlinear Programs), or MILPs,

see Biegler and Grossmann (2004) ; Grossmann and Biegler (2004) .

Optimization problems arising in context of sector-coupled energy

systems are challenging for a number of reasons: multiple time

scales, large number of equations, uncertainties, potentially con-

flicting multiple objectives, or the hard-to-quantify effect of un-

derlying modeling assumptions. Hence, there are widespread and

ongoing research efforts on modeling and numerical optimization

for such systems, see, e.g., Barton (2009) ; Faulwasser et al. (2018) ;

Majewski et al. (2017) ; Mühlpfordt et al. (2018) ; Roald et al. (2017) .

The development of any numerical method benefits from well-

defined, transparent, and realistic benchmark problems. In numer-

ical optimization, benchmark libraries are therefore widely estab-

lished, including MINLPLib ( Bussieck et al., 2003 ), PrincetonLib

( Vanderbei et al., 2004 ), COCONUT benchmark ( Shcherbina et al.,

2002 ), MINTOC benchmark ( Sager, 2012 ), and MIPLIB ( Koch et al.,

2017 ). Benchmark problems are also common in Process Sys-

tems Engineering such as the Williams-Otto reactor ( Williams and

Otto, 1960 ), which, up to this day, is frequently used to com-

pare methods for real-time optimization of process systems

( Srinivasan and Bonvin, 2019 ). Another well-known benchmark

problem is the Tennessee Eastman process proposed by Downs and

Vogel (1993) . It is still in use for a wide range of research purposes,

e.g., for demonstrating the efficiency of a newly developed plant-

wide control scheme ( Luppi et al., 2018 ). Recently, similar effort s

have been made for energy systems. This includes 

• software frameworks for modeling and optimization of sector-

coupled energy supply systems available online, compare for

example Augenstein et al. (2005) , Ringkjøb et al. (2018) ,

Schütz et al. (2017) , and the Temoa framework with the

widely accepted linear and quasi-stationary benchmark model

Utopia ( Howells et al., 2011; Hunter et al., 2013 ); 
• a lately increasing number of open source data-bases provid-

ing country-scale data like the Open Energy Modeling Initiative

( Open Energy Modelling Initiative, 2019 ) or specifications of

complete power plants like the JRC Open Power Plants Database

( Hidalgo Gonzalez et al., 2019 ); 
• benchmarks for specific energy systems like electricity grids

( IEEE, 2018; Hörsch et al., 2018; University of Washington, 2018 )

or energy supply systems for supermarkets as used, e.g., in

Beykal et al. (2018) ; and 

• specifically focused model collections, e.g., for ship energy sys-

tems ( Sakalis et al., 2019 ) or for economic design of combined

cooling, heating, and power (CCHP) systems ( Rech, 2019 ). 

However, there are also certain shortcomings and gaps in the

benchmarks available in the literature. 

• The existing software frameworks usually lack transparency.

Typically, there is no easily accessible documentation of model

equations and corresponding example data. 
• Existing data-sets do not account for the scale of an indus-

trial/research campus or specifications of individual compo-

nents like boilers. 
• Specific benchmarks and model collections lack flexibility. If the

focus is on a particular sector-coupled energy system, different

objectives, or the combination of quasi-stationary and dynamic

operation of different components, the adaptation of the pro-

posed setting is usually time consuming or even effectively im-

possible due to a lack of documentation. 

To the best of the authors’ knowledge, there is currently no

widely accepted benchmark for the optimization of design, oper-
tion, and control of energy systems supplying industrial/research

ampuses. Moreover, models and especially input data for such en-

rgy systems are scattered over numerous publications, specifica-

ion sheets, websites, etc. and are often subject to data protection

egulations. 

Thus, we compile a model compendium for typical components

f an energy supply system coupling cooling, heating, and electric-

ty for industrial/research campuses. The considered setting is in-

pired by the real-world supply systems of the Campus North of

he Karlsruhe Institute of Technology and the Forschungszentrum

ülich. 1 We provide a complete data set for weather, energy prices,

ooling, heating, and electricity demands as well as parameter val-

es for the system components. On the demand side, we include

uilding models validated with real-world measurements. The ap-

lication setting considered is the optimal design and operation of

ndustrial/research campuses. In principle the scope of the models

ould be extended to include industrial processes and large-scale

etworks; however, this is outside the scope of the manuscript.

inally, we propose two optimization case studies as open-source

enchmark problems: (1) a bi-objective design optimization of a

eneric energy system and (2) the operational optimization of a

ynamic model for a sector-coupled energy system with fixed de-

ign. 

We address requirements of different application contexts,

amely the optimization of design, operation, and control of en-

rgy systems. Hence, we include stationary, quasi-stationary, and

ynamic model equations of the most frequently considered com-

onents. We do not attempt an extensive review on modeling

trategies or data ranges. Rather we present one common model

ormulation for each component. These models are based on al-

eady available publications and specification sheets. In fact, the

omponents are modeled based on energy flow rates, which have

o satisfy energy balance equations and input-output-relations

iven by efficiency or COP (coefficient of performance) curves, i.e.,

hey are first-principles models. For the sake of self-containment,

e recall a linearization scheme ( Voll et al., 2013 ) and an approach

or considering a minimum load fraction within the purely con-

inuous and smooth dynamic optimization model of our second

enchmark case study based on standard techniques. To foster ac-

essibility of the compendium, we propose a consistent notation. 

The remainder of this article is structured as follows: In

ection 2 , we present the virtual campus including all components

f an energy supply system, which are considered in this article.

ased on this generic energy system , we emphasize how the con-

istent notation and modeling of our corresponding model com-

endium allows for identifying synergies and structural differences

f the various fields of applications. Section 3 contains description

nd results of the two benchmark case studies. Finally, conclusions

re drawn in Section 4 . The Appendix starts with the introduc-

ion of the notation in Appendix A . Afterwards, the model com-

endium including example parameter values forms Appendix B .

n Appendix C and Appendix D , the linearization scheme and a

mooth extension of the dynamic equations regarding a minimum

oad fraction, respectively, are given. The git repository available at

ttps://git.es2050.org/heci/energy-benchmark contains input and

utput data as well as the models and optimization formulations

n GAMS ( McCarl and Rosenthal, 2016 ), Modelica ( Mattsson and

lmqvist, 1997 ), and Pyomo http://www.pyomo.org/ . 

. Generic energy system for a campus 

Fig. 1 shows the generic structure of a sector-coupled energy

upply system for a campus of variable size considered in this arti-

https://git.es2050.org/heci/energy-benchmark
http://www.pyomo.org/


S. Sass, T. Faulwasser and D.E. Hollermann et al. / Computers and Chemical Engineering 135 (2020) 106760 3 

c  

a  

c  

e  

d

 

e  

s  

m  

b  

S  

t  

A  

w  

t  

o  

m  

e  

m  

m  

s  

s

 

s  

s  

i  

m  

d  

r  

f  

p  

e  

a  

g  

t  

t  

o  

t  

i  

i  

f  

m  

p  

h  

w  

t

3

 

a  

c  

o  

b  

i  

c  

c  

“  

i  

B  

r  

“  

s  

l  

r  

fi  

C

(  

“

 

a  

w  

T  

d  

m

 

t  

p

3

 

p  

r  

2  

p  

c  

w  

s  

s  

n  

g  

T  

i  

s  

s  

e

“  

t  

s  

(

 

F  

t  

l  

m  

u  

B  

A  

B  

P  

a  

i  

q  

l  

g  

c  

a  

d  

r  

c  

g  

d  

p  

e

i  

g  

(  

m  

t  

t  

o  
le. The eventual choice of components, number of respective units

s well as coupling points between the gas, electricity, heating, and

ooling grid is subject to the specifically chosen application. Both

conomic and environmental criteria can be chosen for evaluating

esign and operation of the generic energy system. 

To cover the specific needs of the optimization of design, op-

ration, and control of energy supply systems, consistent quasi-

tationary and dynamic models as well as linear and nonlinear

odels are provided. The quasi-stationary models can be obtained

y setting all temporal derivatives to zero in the dynamic models.

imilarly, the linear models converge to the nonlinear models in

he limit of zero distance between two adjacent supporting points.

s a result, the gathered component models form a unified frame-

ork, which allows to investigate the impact of linearizations and

he assumption of quasi-stationary behavior for the optimization

f energy supply systems without distortions caused by different

odeling premises. Note that we present only models based on

nergy flow rates. Moreover, we provide dynamic extensions for

odels with thermal inertia on a scale of minutes. In contrast,

odels referring to electricity are assumed to be (quasi-)stationary,

ince the dynamics of electrical processes is usually on a scale of

econds. 

The model compendium aims to emphasize synergies and

tructural differences between optimization applications in energy

upply systems. For instance, the incorporation of battery models

ntrinsically introduces nonsmoothness/nonconvexity in any opti-

ization problem, cf. discussion in Appendix B.5.2 . Moreover, some

egrees of freedom of a model depend on the type of component

ather than the field of optimization: the input power/heat trans-

er rate is strictly determined by the output for conversion com-

onents, only bounded by the technical possible output for gen-

ration components and loosely coupled to the output via stor-

ge level and capacity for storage components. However, other de-

rees of freedom depend on the field of application and increase

he complexity of the optimization problem significantly, even if

he same model equations are used. E.g., the linearization scheme

f the efficiency or COP in Appendix C.1 is sufficient for opera-

ional optimization problems with a-priori known capacities, while

t needs to be combined with Glover’s reformulation ( Glover, 1975 )

n design optimization problems where capacities are degrees of

reedom. Besides, the choice between algebraic and dynamic opti-

ization can influence the mathematical properties of the same

hysical variable. As an example, the roles of input and output

eat transfer rate of a boiler are interchangeable for the optimizer

ithin a quasi-stationary, algebraic problem, see Eq. (B.4a) , while

heir hierarchy is fixed in the dynamic model, see Eq. (B.5) . 

. Optimization benchmarks 

As a proof-of-concept as well as to show the wide range of

pplications of the provided model compendium, we propose two

ase studies as optimization benchmarks: (1) a bi-objective design

ptimization accounting for economic and environmental criteria

ased on all components of the generic energy system depicted

n Fig. 1 , and (2) a dynamic operational optimization of a sector-

oupled energy supply system with fixed, optimal design. Both

ase studies consider the demand of six office buildings of type

OB”, two smaller office buildings of type “OBM”, and two exper-

mental facilities “EF”, each with one thermal zone, see Appendix

.2.2 for details. More specifically, Appendix B.2.1 describes the pa-

ameter identification of the thermal models for the office building

OB 1” as well as the experimental facility “EF 1” based on mea-

ured temperature data. Figs. 2 and 3 show an excerpt of the simu-

ated temperature and heating/cooling input Q 

dem 

z compared to the

eal measurement data for buildings “OB 1” and “EF 1”. The Coef-

cients of Variation of Root Mean Square Error CV(RMSE) (acc. to
oakley et al. (2014) ) of the indoor temperature are 1.2% for “EF1”

for hourly data between 13 Jan and 11 Sep 2018) and 0.3% for

OB1” (for hourly data between 1 Jun and 31 Dec 2018). 

Example values for general parameters and inputs as well as

ll model equations can be found in Appendix B . Parameter values

hich differ for the two case studies are given in the following.

his includes, e.g., bounds on capacities which are required for the

esign optimization and fixed to the nominal value for the opti-

ization of the operation. 

We scale the values of system variables within the optimiza-

ion models to a range of approximately 0 to 1 to avoid numerical

roblems. 

.1. Design optimization 

Design optimization has to cope with large-scale optimization

roblems, in particular, due to the incorporation of combinato-

ial decisions and operational optimization ( Frangopoulos et al.,

002 ). Goderbauer et al. (2019) have even shown that the design

roblem of (distributed) energy supply systems is NP-hard. In this

ase study, we regard both minimum costs and minimum global

arming impact, which further increases the complexity of the de-

ign optimization problem. Thus, the models are linearized as de-

cribed in Appendix C , allowing for continuous sizing of all compo-

ents. Additionally, the time-varying input parameters are aggre-

ated using the k-medoids method proposed by Bahl et al. (2018b) .

hereby, we employ 4 typical periods and 4 segments per typ-

cal period with additional peak values for demands. The re-

ulting sorted aggregated time-varying demands and prices are

hown in Fig. 4 and are available at https://git.es2050.org/heci/

nergy-benchmark in directory “3_1_Design_Optimization” in file 

AggregatedTimeSeries.csv”. Despite the clear deviations between

he aggregated and the original full time-series, aggregating time-

eries have been shown to lead to near-optimal solutions in studies

 Bahl et al., 2018a; Baumgärtner et al., 2019 ). 

All components of the generic energy system depicted in

ig. 1 are considered for the supply of a campus comprising

en buildings. Only wind turbines are excluded as the instal-

ation is often prohibited due to construction limits as, e.g.,

inimal distances to neighboring residential buildings. The val-

es of Voll (2013) are used for parameters regarding boilers

OI , combined heat and power engines CHP , absorption chillers

C , and compression chillers CC , while the parameter values of

aumgärtner et al. (2019) are taken for the photovoltaic units

V , heat pumps HP , batteries BAT , and thermal energy stor-

ge units T ES , see Tables 1 and 2 . Note that the correspond-

ng references had demonstrated the linearization to be an ade-

uate representation of the nonlinear models. Example values for

inearized part-load behavior and linearized investment costs are

iven in Tables C.1 and C.2 , respectively. Please note that cyclic

onditions apply for the operation of the thermal storage units

s well as the battery in each typical period. Further, charge and

ischarge of all storage units are suppressed in the time steps

epresenting the additional peak demand values. We assume a

onstant global warming impact for the electricity mix of the

rid gwi el = 561 g CO 2 −eq . / kWh . As an alternative, a time depen-

ent global warming impact based on Baumgärtner et al. (2019) is

rovided for the considered time-series as well, see “Aggregat-

dTimeSeries.csv” at https://git.es2050.org/heci/energy-benchmark 

n “3_1_Design_Optimization”. When electricity is fed into the

rid, we assume a credit for the global warming impact GWI

B.1.2) following the idea of the avoided burden ( Baumann and Till-

an, 2014 ). Moreover, we employ gwi 
fuel = 244 g CO 2 −eq . / kWh for

he specific global warming impact of purchased gas as well as

ime horizon τ h = 4 a and interest rate γ5 = 8 % for the calculation

f the present value factor PVF ( Majewski et al., 2017 ). The interest

https://git.es2050.org/heci/energy-benchmark
https://git.es2050.org/heci/energy-benchmark
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Fig. 1. Generic energy system with a free number of component units for the supply of a virtual real-world campus of office buildings and experimental facilities 

Table 1 

Component specifications 

Comp. Min. capacity Max. capacity Min. load fraction maintenance factor 

Q min 
i [ kW ] Q max 

i [ kW ] λout 
i, 1 [ −] γ4 ,i [a −1 ] 

BOI 100 2000 0.2 0.015 

CHP 1 100 1400 0.5 0.1 

CHP 2 1400 2300 0.5 0.1 

CHP 3 2300 3200 0.5 0.1 

AC 100 2000 0.2 0.01 

CC 400 10000 0.2 0.04 

PV 5 550 0.0 0.01 

HP 5 200 0.2 0.01 
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Fig. 2. Comparison of simulation and measurements for the original office building “OB 1”

Table 2 

Storage component specifications 

Comp. Min. capacity Max. capacity maintenance factor 

E min 
i [ kW h ] E max 

i [ kW h ] γ4 ,i [a −1 ] 

BAT 0 2000 0.025 

T ES cool 0 25000 0.01 

T ES heat 0 115000 0.01 
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ate in application cases strongly varies; other authors employ 5 %

or example ( Schütz et al., 2017 ). 

To solve the design optimization problem, we apply the auto-

ated super-structure-generation approach from Voll et al. (2013) .

his approach successively performs superstructure optimization

ntil the objective function value does not further improve. In each

ptimization, the superstructure of the energy supply system is en-

arged by one unit for each component type. Although we consider

hree sizes of combined heat and power engines CHP , see Table 1 ,

e only allow one additional CHP unit rather than one for each

ize when increasing the superstructure by one unit. To decrease

he computational effort, we aggregate the roof area of the office

uildings and of the experimental facilities, respectively, and we al-

ow at most one photovoltaic unit and one storage component for

ach building type. Note that the values for the linearized invest-

ent costs are not changed despite the aggregation, since there is

o significant economy of scale for photovoltaic components. 

The design optimization approach is implemented in GAMS

4.7.3 ( McCarl and Rosenthal, 2016 ). We choose GAMS as it is

ne of the standard modeling environments. To solve the prob-

em, CPLEX 12.6.3.0 ( IBM Corporation, 2015 ) is used employing

n optimality gap of 0.5 %. A GAMS file containing the problem

tatement after automated super-structure generation and using

he single objective of total annualized costs, namely “Model.lst”,

an be found at https://git.es2050.org/heci/energy-benchmark in

3_1_Design_Optimization”. Therein, we also provide a correspond-

ng pyomo file generated automatically via the GAMS convert func-

ion, along with the variable mapping. Pyomo has the advantage

hat it is open source. 

We perform a bi-criteria optimization, minimizing the total an-

ualized costs TAC and the global warming impact GWI employ-

ng the augmented ε-constraint method ( Mavrotas, 2009 ). The re-
ulting trade-off in the Pareto front as well as the corresponding

areto-efficient designs are shown in Fig. 5 . 

The global warming impact GWI decreases for designs with a

ri-generation system in place of separately operating boilers BOI 
nd compression chillers CC with additional purchase of electric-

ty from the grid. Low- GWI energy systems employ a higher num-

er of CHP engines in combination with the installation of absorp-

ion chillers AC , which allows for simultaneous heating and cool-

ng supply while providing electricity for on-site demands or the

rid. As a result, the system is even able to reach a negative global

arming impact GWI , as the avoided burden by feeding in elec-

ricity ( Appendix B.1.2 ) is higher than the global warming impact

nduced by the consumption of fuel on-site. 

The increasing investment in a higher number of smaller con-

ersion units and larger storage units enables a more ecological

peration by utilizing highly-efficient operational points and load

hifting, compare Fig. 5 (b). Moreover, larger photovoltaic units are

nstalled for a more climate-friendly energy supply. The maximum

V area is reached at the third point on the Pareto front with de-

reasing global warming impact GWI . 

Herein, we do not consider the selection of a final design by the

ecision maker. This selection can be done with a wide range of

ecision supporting tools, see, e.g., Jing et al. (2019) . For the syn-

hesis of distributed energy supply systems and other two-stage

ptimization problems, for instance, the flex-hand approach auto-

atically selects a highly flexible design in operation such that

he final design performs well regarding all considered criteria

 Hollermann et al., 2019 ). 

.2. Operational optimization 

The second case study pertains to the offline optimal control of

ominal operation based on realistic simulation data and parame-

er values as well as the dynamic models given in Appendix B with

he extension discussed in Appendix D . The energy supply sys-

em considered is given by the cost-optimal solution of the design

ptimization problem discussed in Section 3.1 . We particularly fo-

us on the parallels between thermal energy storage (TES) and the

hermal inertia in buildings. 

The feasibility of the design for an energy system with either

xplicit or implicit storage is guaranteed by excluding TES units

n the design optimization. Instead, the size of the TES unit is

dapted to heat transfer capacity Q 

max = 100 kW of Building “OB

https://git.es2050.org/heci/energy-benchmark
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Fig. 3. Comparison of simulation and measurements for the original experimental facility “EF 1”

Fig. 4. Sorted full as well as sorted time-aggregated energy demands and prices used in the design optimization 
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1”, cf. Table B.3 , by choosing nominal capacity E 

nom 

i = 1h · Q 

max =
100 kW h , cf. Appendix B.5.1 . The optimal design comprises one

boiler unit with nominal capacity Q 

nom 

i = 530 kW , i ∈ BOI and

minimum load fraction λmin 
i = 0 . 2 , i ∈ BOI , one CHP unit with

nominal capacity Q 

nom 

i = 470 kW , i ∈ CHP and minimum load frac-

tion λmin = 0 . 5 , i ∈ CHP , as well as PV units covering the maxi-
i 
2  
um possible surface area of the solar panels on the buildings,

f. B.4.1 . For the energy conversion components, time constants

i = 0 . 1 h , i ∈ BOI ∪ CHP are chosen due to their fast response in

eality. 

We use weather data of Stuttgart in the winter week November

6, 2018 to December 02, 2018 ( DWD Climate Data Center (CDC),

018 ) and the price data of a similar week during the year, namely
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Fig. 5. Designs of Pareto-efficient solutions based on possibly installed components 

shown in Fig. 1 
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ime points 7896h - 8063h taken from Bahl et al. (2018b) , see

ig. 6 . 

The controls are the heat transfer input of the boiler and the

HP unit, the power provided by the PV components clustered in

ne unit for all (modified) office buildings and one for both ex-
Fig. 6. Electricity and gas costs tak
erimental facilities, as well as the purchased electricity at any

onsidered time point. The initial values of the load fractions of

oiler and CHP are optimized. The TES is set to be half-full at

he beginning to allow for both charging and discharging. The

eat transfer rate exchanged with the TES is the difference be-

ween the given demand and the heat transfer rate provided by

he boiler and the CHP unit. We minimize the total costs subject to

he model constraints reported in Appendix B . Note that violations

f path constraints may occur between discretization points, com-

are Fu et al. (2015) . Besides, we do not impose periodic boundary

onditions to not further restrict the optimizer. Since weather is

ot week-periodic, periodic operation is not expected to be opti-

al. Other researchers, e.g., ( Ghobeity and Mitsos, 2012 ) have im-

osed periodic boundary conditions to avoid discharging the stor-

ge. Our model compendium enables variations of the benchmark

o account for such boundary conditions. Note however that peri-

dic boundary conditions and oscillating systems bring substantial

hallenges ( Wilkins et al., 2009 ). 

For the dynamic optimization of the operation, the dynamic

ptimizer DyOS ( Caspari et al., 2019; DyOS, 2019 ) calling local

onlinear optimizer SNOPT ( Gill et al., 2005 ) and integrator IDAS

 Serban et al., 2018 ) is employed. We use feasibility tolerance

f 0.01 and optimality tolerance of 0.001. We write the model

n Modelica. The motivation is that it is open source and sup-

orted by a variety of commercial and open-source simulation

nd optimization tools, including our in-house solver DyOS. In

onconvex dynamic optimization problems, a good initial guess

s typically required for convergence of the optimizer. While in

rinciple deterministic global methods exist since more than a

ecade ( Singer and Barton, 2006 ), these are far from being ap-

licable to such systems. An alternative are heuristic local meth-

ds such as multistart, which has been applied to energy sys-

ems, e.g., ( Ghobeity and Mitsos, 2012 ). However, a challenge is

hat many runs fail to converge. Herein, we find the initial point

ased on ad-hoc adaptations of intermediate optimization results.

lat Modelica files containing the dynamic optimization prob-

em as well as the dynamic simulation model for building “OB

” are given by “OptModel.mo” and “OB1SimModel.mo”, respec-

ively, at https://git.es2050.org/heci/energy-benchmark in directory 

3_2_Optimal_Control”. 

The CHP over-fulfills the electricity demand when the gas price

s low and the gas demand is high compared to the electricity de-

and, cf. Fig. 7 (b). Thus, no purchase of electricity is required and

nly the volatility of the sale price of electricity can affect the op-

imal solution. In this way, the TES enables a higher CHP load in

eriods with higher sale prices for electricity. For instance Fig. 7 (a)

hows the CHP extended full-load period within interval [18h, 24h]

nd the load fraction peak within interval [150h, 168h]. In contrast

o that, the boiler is only used during the high demand periods of

he workdays, i.e., from 0h to approximately 120h. To satisfy the

emaining heat demand, the boiler is run at about 30 % to 40 %

oad, see Fig. 7 c. Note that the operation with this low load frac-

ion is already highly efficient, cf. Fig. D.1 . At the weekend, the bi-
en from Bahl et al. (2018b) 

https://git.es2050.org/heci/energy-benchmark
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Fig. 7. Optimal operation of an energy supply system for heating and electricity demands of 10 buildings. Note that the transfer rates in (a) and (b) are additive. 

Fig. 8. Internal temperature of Building “OB1” based on simulated heat input and simulated heat input plus optimized heat transfer rate of TES 
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a  
generation capabilities of the CHP are further exploited while the

boiler drops instantaneously below its minimum load fraction and

is therefore turned off. 

Finally, we transfer the capability of the TES as explicit storage

to Building “OB 1” as implicit storage. In particular, the optimized

heat transfer rate interchanged with the TES Q i , i ∈ T ES is added

to heating demand Q 

heat,dem given in B.2.2 which has been used for

the dynamic optimization. The internal temperature within Build-

ing “OB 1” is simulated based on heat demand Q 

heat,dem , i.e., for

an energy system with an explicit storage only, and the combined

demand Q 

heat , dem + Q i , i ∈ T ES , i.e., for an analogous energy sys-

tem with an implicit storage only. Fig. 8 shows that the transfer of

the heat transfer rate Q i , i ∈ T ES from the TES to Building “OB 1”

leads to visible but for human hardly sensible oscillations in the

range of up to 0.2K. 
. Conclusion 

This article presents a model compendium for common com-

onents of energy supply systems present in industrial or re-

earch campus areas. Moreover, the included validated building

odels rely on real-world data from the Campus North of the

arlsruhe Institute of Technology and from the Forschungszentrum

ülich ( HECI, 2019 ). We provide one model formulation on the scale

f energy flow rates for each component considered. The model

ompendium is structured in terms of notation and modeling prin-

iples such that it can be extended by additional components, e.g.,

olar-thermal collectors and power-to-X technologies, or by includ-

ng high-fidelity models, e.g., for gas grids and thermal grids. 

The compendium addresses requirements of different fields of

pplications, namely the optimization of design, operation, and
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Table A.1 

List of variable and parameter symbols 

Symbol Unit Description 

β context dependent slope of line segments used in 

linearization 

γ context dependent miscellaneous parameters 

ε – emissivity 

η – coefficient of performance or 

efficiency, resp. 

ϑ ◦ inclination angle 

θ rad phase angle of electrical voltage 

λ/ λ/ l – load fraction 

ρ kgm 

−3 density 

σ W m 

−2 K −4 Stefan Boltzmann constant 

τ s time constant 

φ ◦ azimuth orientation 

a – absorptivity 

A m 

2 area 

b – indicator for active line segment 

c EUR/(kWh) tariffs for purchasing/selling Energy 

C JK −1 heat capacity 

d W auxiliary variable to linearize bilinear 

product 

E / E kWh (saved) energy 

I W m 

−2 solar irradiance 

m / m kg mass of working fluid 

M kg s −1 mass flow rate 

P / P W electric power 

Q / Q W thermal energy flow rate 

T / T K temperature 

�T K temperature difference 

V m 

3 volume 

CAPEX EUR investment costs 

gwi g CO 2 −eq . / kWh global warming impact of energy 

source 

GWI kg CO 2 −eq . /a global warming impact of energy 

supply system 

PVF a −1 present value factor 

TAC EUR/a total annualized costs 
ontrol of energy supply systems. Hence, it includes both quasi-

tationary and dynamic models as well as linearization schemes.

he notation of all given models is unified for more transparency

oncerning synergies and structural differences of the different

elds of applications. This way, we aim to support the transfer of

odels and methods between the different fields of applications.

oreover, the unified modeling framework allows investigating the

nfluence of different formulations on computation times and on

he accuracy of solutions. For instance, two corresponding opti-

ization problems can be obtained for the same individual energy

ystem by replacing the quasi-stationary model of one component

y the respective dynamic model. 

Additionally, we propose two optimization benchmarks exploit-

ng the wide range of presented model formulations. In the first

ase study, a bi-criteria design optimization regarding total an-

ual costs and global warming impact is performed for the generic

nergy system based on linearized quasi-stationary models. The

esults of the design optimization hint at the benefit of photo-

oltaic components, storage systems as well as the synergy of tri-

eneration for an ecological energy supply. In the second case

tudy, the operational optimization of an energy supply system

ased on nonlinear dynamic models emphasizes the possibility

o exploit varying electricity prices with the help of a combined

eat and power engine and a thermal energy storage. For the

ake of illustration, we also touch upon the role of thermal iner-

ia of buildings via subsequent simulations. The case studies con-

titute substantial numerical challenges, e.g., for testing global so-

ution methods for the operational optimization. Both can be eas-

ly adapted, e.g., to allow for different boundary conditions for the

peration. 

Notably, the benchmarks come with a complete set of ready-

o-use input data and the respective model files, namely a GAMS

 McCarl and Rosenthal, 2016 ) listing file for the design optimiza-

ion and a Modelica ( Mattsson and Elmqvist, 1997 ) file for the dy-

amic optimization of operation, available at https://git.es2050.org/

eci/energy-benchmark . We also provide equivalent Pyomo files.

he data sets may be extended by real-world measurements of de-

ands and their corresponding price and weather data to account

or model-plant-mismatch or real-world uncertainties. 

The novelty of our approach is the definition of suitable bench-

arks, writing consistent models for important unit operations al-

owing for various use cases, and combining these models with

seful data. We utilize established solution methods and the mod-

ls are not fundamentally different from existing state-of-the-art

odels. We envision the modular compendium, the nominal data

et, and the benchmarks to enable transparent comparisons of op-

imization methods for sector-coupled energy systems. 
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ppendix A. Notation 

The variables, see Table A.1 , are specified with the help of su-

erscripts, see Table A.3 , and assigned to certain sets via subscripts,

ee Table A.2 . Apart from this, we omit explicit time-dependency

n equations for the sake of simplicity unless it may create confu-

ions. Thus, variables which depend explicitly on time are written

n standard font, e.g., load fraction λ, while all other variables are

epresented by bold symbols, e.g., minimum load fraction λmin or

fficiency η(λ) . Whenever time-dependent variables occur in equa-

ions, these equations have to be satisfied at any considered time

oint t ≥ 0. 

https://git.es2050.org/heci/energy-benchmark
https://doi.org/10.13039/501100009318
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Table A.2 

List of sets and subscripts 

Symbol Description 

f ∈ F set of mass flows 

j ∈ J set of intervals for piece-wise linearization 

s ∈ S set of building surfaces 

t ∈ T set of time points 

z ∈ Z set of thermal zones 

i ∈ C set of conversion units, i.e., C = AC ∪ BOI ∪ CHP ∪ CC 
i ∈ G set of generators in the electrical grid G ⊆ N
i ∈ N node set of the electrical grid 

i ∈ U superset of all units of any component: 

i ∈ AC set of absorption chiller units 

i ∈ BAT set of battery units 

i ∈ BOI set of boiler units 

i ∈ CC set of turbo-driven compression chiller units 

i ∈ CHP set of combined heat and power engine (CHP) units 

i ∈ HP set of heat pump units 

i ∈ PV set of photovoltaic (PV) units 

i ∈ T ES set of thermal energy storage units 

i ∈ WT set of wind turbine units 

Table A.3 

List of superscripts 

Symbol Description 

air air 

amb ambient 

cool belonging to cooling grid / period 

dem demand 

el belonging to electric grid 

gen generation 

heat belonging to heating grid / period 

in input or inlet 

irr irradiance 

k concerning air exchange rate 

lb lower bound 

loss losses 

max maximum 

min minimum 

nom nominal 

out output or outlet 

th thermal (cooling or heating) 

tot total 

U concerning U value 

ub upper bound 

0 reference value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.1 

Parameter values of the con- 

version components taken from 

Baumgärtner et al. (2019) 

Components CAPEX 0 i /e γ6, i 

BOI 2701.6 0.4502 

CHP 1 9332.6 0.539 

CHP 2 9332.6 0.539 

CHP 3 9332.6 0.539 

AC 8847.5 0.4345 

CC 444.3 0.8732 

PV 4264.3 0.9502 

HP 1654.7 0.6611 

T ES cool 57.5 0.9037 

T ES heat 83.8 0.8663 

BAT 2116.1 0.8382 
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Appendix B. Model compendium 

In this section, economic and environmental evaluation criteria

for design, operation, and control of a sector-coupled energy sup-

ply system as well as (non-)linear quasi-stationary and dynamic

models are given for common components. This includes mod-

els for office buildings and experimental facilities; models for the

conversion components boiler ( BOI ), combined heat and power

engine ( CHP ), absorption chiller ( AC ), turbo-driven compression

chiller ( CC ), and heat pump ( HP ); models for photovoltaic units

( PV ) and wind turbines ( WT ) clustered as generation compo-

nents; models for thermal energy storage ( T ES ) as well as batter-

ies ( BAT ); and, finally, models for the thermal and the electricity

grid coupling these components. 

The linearization scheme for the nonlinear efficiency curves and

investment costs is given in Appendix C . Finally, an extension of

the dynamic model of boiler and CHP for the inclusion of a min-

imum load fraction without the introduction of binaries or non-

smoothness is given in Appendix D . 
1. Evaluation criteria 

In the following Sections B.1.1 and B.1.2 we introduce the total

nnualized costs TAC and the global warming impact GWI as eval-

ation criteria. 

1.1. Total annualized costs 

Total annualized costs (TAC) are an economic criterion for the

valuation of an energy supply system with respect to operational,

nvestment, and maintenance costs. The TAC can be calculated by 

AC = 

∑ 

t∈T 

[ 
8760 h · τ dur (t) ·

(
c fuel (t) · Q 

fuel , in (t) + c el , buy (t) ·

P buy (t) − c el , sell (t) · P sell (t) 
)] 

+ 

∑ 

i ∈U 

(
1 

PVF 
+ γ4 ,i 

)
· CAPEX i 

ith duration of time step 8760 h · τ dur per year τ dur , prices

 

fuel , c el,buy , c el,sell , purchased energy rate with respect to natural gas

 

fuel,in , purchased and sold electricity P buy and P sell , respectively,

resent value factor PVF , factor for maintenance costs per year γ4, i ,

nd capital expenditure CAPEX i . 

The present value factor can be calculated by

 Broverman, 2010 ) 

VF = 

( γ5 + 1) τ
h − 1 

( γ5 + 1) τ h · γ5 

ith interest rate γ5 , e. g., γ5 = 8 % , and time horizon τ h , e. g.,
h = 4 a . In this study, we obtain the CAPEX by the power law of

apacity Smith (2005) 

APEX i = CAPEX 

0 
i ·

(
Q 

nom 

i 

Q 

0 
i 

)γ6 ,i 

, (B.1)

ith reference capital expenditure CAPEX 

0 
i corresponding to the

eference capacity Q 

0 
i 

of 1kW, installed nominal capacity Q 

nom 

i 
,

nd the component dependent constant γ6, i , see for example

able B.1 . The linearization of the nonlinear power law (B.1) is ex-

lained in C.2 . 

Instead of the total annualized costs TAC , any other economic

bjective function could be chosen. However, when regarding eco-

omic and ecologic criteria, the total annualized costs TAC lead to

areto fronts with low environmental impacts compared to other

conomic objective functions ( Pintari ̌c and Kravanja, 2015 ). 

1.2. Global warming impact 

An environmental evaluation criterion of energy supply systems

s given by its global warming impact 
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Fig. B.1. Heat flow scheme for building with relevant contributions 
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Fig. B.2. Dimensions of modeled buildings 
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WI = 

∑ 

t∈T 
8760 h · τ dur (t) ·

[ 
gwi 

fuel · Q 

fuel , in (t) + gwi el (t) ·
(
P in (t) − P out (t) 

)] 
, 

here gwi fuel and gwi el are the specific global warming impacts

f the energy sources, for example values see Section 3.1 or

ederal Environment Office (2018) . Note that the specific global

arming impact of purchased electricity is varying remarkably

ver time. We follow the idea of the avoided burden ( Baumann and

illman, 2014 ) and assume a credit for the global warming im-

act GWI when electricity is fed into the grid. As the operation

sually affects the global warming impact significantly higher than

he manufacturing of the components ( Guillén-Gosálbez, 2011 ), we

nly consider the contribution of the operation. 

2. Buildings 

The models of buildings origin from the energy balance equa-

ion 

 z 
dT z 

dt 
= Q 

in , tot 
z − Q 

out , tot 
z (B.2) 

ased on the following assumptions: 

(A1) Only internal energy is considered. In particular, the ki-

netic energy of the system is neglected and potential energy

cancels out. 

(A2) The change of internal energy equals the heat flow, i.e., no

additional work is applied to the system. 

(A3) The mass balance is fulfilled. 

As sketched in Fig. B.1 , the physical effects which most strongly

nfluence the temperature within the buildings are identified as 

(P1) Heat transport mechanisms with external air of tempera-

ture T amb via air exchange based on air change rate γamb , k 
7 

and heat capacity C air, z as well as heat transfer through

walls, windows, roof, and floor based on heat transfer co-

efficient γamb , U 
7 

, 

(P2) Heat input by solar irradiance Q 

irr 
s,z on the building surface

s with the solar energy absorption coefficient γ irr 
8 according

to Harb et al. (2016) , and 

(P3) Installed heating/cooling system with heating/cooling input

Q 

dem 

z with heating factor γ th 
9 

. 

(P4) Heat capacity C z takes into account internal walls, air, ex-

ternal walls, roof, and basement floor. However, it is only a

fraction of the sum of all heat capacities C tot of the com-

ponents of the building. This is presumably the case, since

the outer shell is stronger coupled to the ambient tempera-

ture than to the inside and therefore does not significantly

contribute to the indoor climate. Due to missing data, the
verification of this hypothesis is subject to future work. The

fraction 

C z 
C tot is determined by the parameter identification

in B.2.1 with γ th 
9 

kept ≤ 1. When transferring the model

to other buildings, a first approximation for C z would be to

calculate C tot of the new building multiplied by a ratio C z 
C tot 

from Table B.3 . 

Incorporating physical effects (P1) to (P4) into Eq. (B.2) yields a

ray-box model equation for each thermal zone z = 1 , ..., n z , n z =
ard (Z) 

 z 
dT z 

dt 
= ( γamb 

7 ) z ·
(
T amb − T z 

)
+ γ irr 

8 

∑ 

s 

(
Q 

irr 
s,z ( A s,z , φs ) 

)
+ γ th 

9 Q 

dem
z 

(B.3) 

ith ( γamb 
7 

) z = γamb , U 
7 

· ∑ 

s ∈S z A s + γamb , k 
7 

· C air , z 
3600 s 

nd S z = 

{ east , south , west , north } ∪ { roof if contained by Zone z }
∪{ floor if contained by Zone z } . 

Eq. (B.3) provides a dynamic equation for differential state T z 
n dependence of control input Q 

dem 

z as well as time-varying pa-

ameters T amb and Q 

irr 
s,z , s ∈ S for any thermal zone z ∈ Z . Example

alues are given in Section B.2.1 . 

The model is based on Park et al. (2011) . It is chosen to be as

imple as reasonable for easy integration in different use cases and

as been extended by considering solar irradiance. The parameter

alues given serve as first orientation for researchers without ac-

ess to building models. It is generally advisable to estimate the

arameters on data as the parameters vary depending on the char-

cteristics of the buildings. The model can be adopted to different

uilding sizes or orientations by changing the surface areas and

he dependent solar irradiance. Moreover, in the case studies, we

onsider simple cuboid shape. If the shape of the building is dif-

erent, it would be sensible to estimate the parameters to temper-

ture measurements and/or explicitly take self-shading effects into

onsideration. 

Note that parameter identification via linear regression of aver-

ged measurement data of the indoor temperature shows that the

onsideration of additional factors like human body heat, electrical

evices, wind velocity, coupling between different zones, and wall

emperatures leads to worse identification results due to linear de-

endencies displayed by high condition numbers. 

2.1. Parameter identification 

The parameters ( γamb 
7 

) z , γ irr 
8 

, and C z of the gray-box model are

tted to measured temperature data T z with γ th 
9 

≤ 1 and the input

ime series T amb , Q 

dem 

z , and Q 

irr 
s,z . In fact, dimensions and common

nformation of the two original buildings, the office building “OB

” and the experimental facility “EF 1”, are retrieved from internal

eports as shown in Fig. B.2 and Table B.2 . 

Moreover, ambient temperature T amb is given by weather data

f year 2018 from Deutscher Wetterdienst for Stuttgart ( DWD Cli-

ate Data Center (CDC), 2018 ). Solar irradiance I s is calculated us-

ng the horizontal global irradiance and the horizontal diffuse irra-

iance of the weather data as well as considering the orientation
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Table B.2 

Common information of modeled buildings and virtual PV, cf. B.4.1 

Attribute Off. bldg. (OB) Off. bldg. mod. (OBM) Exp. fac. (EF) 

Construction year 1973 1973 2011 

Orientation φnorth 13 ◦ 13 ◦ 13 ◦

Position N49 ◦5 ′ 43.9872”, E8 ◦26 ′ 1.2451”

Stories 4 3 1 

Width w [m] 12.6 12.6 12.2 

Height h [m] 13.3 10.1 5.9 

Length l [m] 61.4 61.4 20.0 

Heat capacity air C air [ MW sK −1 ] 11.4 8.7 1.8 

T max 
z Winter [ ◦C] 24 24 24 

T min 
z Winter [ ◦C] 18 18 16 

T max 
z Summer [ ◦C] 26 26 26 

T min 
z Summer [ ◦C] 20 20 18 

Orientation φPV half of the units 103 ◦ , other half 283 ◦ 193 ◦

Inclination ϑPV 10 ◦ 30 ◦

Table B.3 

Parameters of buildings 

Building C z 
C z 

C tot γamb 
7 γamb , U 

7 
γamb , k 

7 
γ irr 

8 γ th 
9 Q dem , max 

z 

[MW s/K] [–] [W/K] [W/(m 

2 K)] [–] [–] [–] [kW] 

OB 1 1530.4 0,529 3651 0,545 0,545 0.037 1 100 

OB 2 1607,3 0,556 4789 0,611 0,833 0.033 1 100 

OB 3 1446.5 0.500 5015 0,750 0,750 0.045 1 100 

OB 4 1522.7 0.526 3480 0,658 0,368 0.037 1 100 

OB 5 1701.8 0.588 4326 0,647 0,647 0.047 1 100 

OB 6 1522.7 0.526 2833 0,474 0,368 0.037 1 100 

OBM 1 1201.1 0.526 3450 0,632 0,632 0.037 1 80 

OBM 2 1267.9 0.556 3872 0,611 0,833 0.033 1 80 

EF 1 98.5 0,443 713 0,518 0,518 0.053 1 18 

EF 2 98.5 0,443 671 0,487 0,487 0.049 1 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.4 

Control parameters of buildings 

Building T 0,cool T 0,heat NS WES γ10 γ11 

[ ◦C] [ ◦C] [–] [–] [kW/K] [W/(K s)] 

OB 1 23 21 true true 100 0 

OB 2 23 22 true true 100 0.1 

OB 3 24 20 false true 100 0 

OB 4 23 21 true false 100 0 

OB 5 23 22 true true 100 0 

OB 6 23 23 false false 100 0 

OBM 1 23 21 true true 100 0 

OBM 2 23 22 true true 100 0.1 

EF 1 23 18 true false 10 0,2 

EF 2 21 19 false false 10 0,2 

F  

t  

i

Q  

p  

r  

t  

c  

i  

a  

s  

Q

 

of each surface s ∈ S by angle φs according to Kreider et al. (2010) .

The two original buildings have no solar panels installed, therefore

possible shading effects are neglected. Finally, solar heat input Q 

irr 
s,z 

is the product of solar irradiance I s and the respective area A s,z for

any surface s ∈ S and thermal zone z ∈ Z . 

The values resulting from the parameter identification process

with one thermal zone are given in Table B.3 . Note that the pa-

rameters for buildings “OB 1” and “EF 1” are identified based on

real measurement data. For the parameters of “OB 2” to “OB 6” as

well as “OBM 1” and “OBM 2”, intervals are predefined according

to empirical considerations. Their parameters approximately follow

a uniform distribution within those intervals. The parameters of

“EF 2” are slight variations of those of “EF 1”. The following Section

B.2.2 depicts the simulation of the heating/cooling demand. 

B2.2. Simulation of building demands 

For simulating realistic building demands 3 , the common ap-

proach of a standard PI controller representing a thermostat is

used for the control of the buildings ( Peeters et al., 2008 ). The

deviation from desired temperature T 0 is the input. The feedback

loop for any thermal zone z ∈ Z is defined by 

Q 

dem 

z = sat 
Q ub 

z 

Q lb z 

(
γ10 ,z 

(
T z − T 0 z 

)
+ γ11 ,z 

∫ t 

0 

(
T z (τ ) − T 0 z 

)
d τ

)

with saturation 

sat Q 
ub 

Q lb 
( u ) = 

⎧ ⎨ 

⎩ 

Q 

ub 
z , if u > Q 

ub 
z 

u , if Q 

lb 
z ≤ u ≤ Q 

ub 
z 

Q 

lb 
z , if u < Q 

lb 
z 

. 
3 These demands are often referred to as building loads in the community for 

modeling, simulation, and optimization of buildings. 

6  

“

a  

c  
or control and optimization, the internal temperatures have

o stay within comfort zones T min 
z ≤ T z ≤ T max 

z and the heat-

ng/cooling input within its technical limitations 0 ≤ | Q 

dem 

z | ≤
 

dem , max 
z . Table B.4 provides the controller gains γ10, z for the pro-

ortional term and γ11, z for the integral term as well as the used

eference temperatures T 0 z . If the parameter night shift (NS) is true,

he temperature set point is changed by +1K during the night in

ooling periods and −1K during the night in heating periods. Sim-

larly, if the parameter weekend shift (WES) is true, the temper-

ture set point is changed ± 1K on weekends and holidays. The

aturation bounds are given by Q 

ub 
z 

winter = Q 

dem , max 
z , Q 

lb 
z 

winter =
 

ub 
z 

summer = 0 , and Q 

lb 
z 

summer = −Q 

ub 
z 

winter 
. 

Both electrical and thermal demand of a campus consisting of

 office buildings of type “OB”, 2 smaller office buildings of type

OBM” (office building modified), and 2 experimental facilities “EF”

re simulated based on Eq. (B.3) and the model parameters dis-

ussed in B.2.1 , see Fig. B.3 . Note that the heating demand is given
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Table B.5 

Example values for efficiency and COP curves of the considered conversion components 

Formula and values Reference 

Boiler i ∈ BOI 
ηheat 

i 
(λi ) = 

21 . 75378 ·λ3 
i 
−7 . 00130 ·λ2 

i 
+1 . 39731 ·λi −0 . 07557 

20 . 66646 ·λ3 
i 
−5 . 34196 ·λ2 

i 
+0 . 67774 ·λi +0 . 03487 

·ηnom , heat 
i 

Voll (2013) based on Fabrizio (2008) 

ηnom , heat 
i 

= 0 . 8 Voll (2013) 

Combined heat and power engine i ∈ CHP 
ηheat 

i 
(λi ) = 

(
−0 . 0768 · λ2 

i 
− 0 . 0199 · λi + 1 . 0960 

)
· ηnom , heat 

i 
( Q nom 

i ) Approx. to producer information 

ηel 
i 
(λi ) = 

(
−0 . 2611 · λ2 

i 
+ 0 . 6743 · λi + 0 . 5868 

)
· ηnom , el 

i 
( Q nom 

i ) Approx. to producer information 

ηnom , heat 
i 

( Q nom 
i ) = −3 . 55 · 10 −5 · Q nom 

i 

1 kW 

+ 0 . 498 Voll (2013) 

ηnom , el 
i 

( Q nom 
i ) = 3 . 55 · 10 −5 · Q nom 

i 

1 kW 

+ 0 . 372 Voll (2013) 

ηnom , tot = 0 . 87 Voll (2013) 

Heat pump i ∈ HP 
ηheat 

i 
(λi ) = 0 . 36 /ηcarnot Approx. to data sheet Dimplex (2019) 

ηcarnot = 1 − T 
T HP 

; T HP = 273 . 15 + 60 K 

Absorption chiller i ∈ AC 
ηcool 

i 
(λi ) = 

λi 

0 . 83330 ·λ2 
i 
−0 . 08330 ·λi +0 . 24999 

·ηnom , cool 
i 

Voll (2013) based on Fabrizio (2008) 

ηnom , cool 
i 

= 0 . 67 Voll (2013) 

Turbo-driven compression chiller chiller i ∈ CC 
ηcool 

i 
(λi ) = 

(
0 . 8615 · λ3 

i 
− 3 . 5494 · λ2 

i 
+ 3 . 6790 · λi + 0 . 0126 

)
· ηnom , cool 

i 
Voll (2013) 

ηnom , cool 
i 

= 5 . 54 Voll (2013) 

Fig. B.3. Aggregated demand data for the different types of buildings and a complete campus 
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E  
by positive thermal demand values and the cooling demand by the

absolute of the negative thermal demand values. 

The aggregated electrical demand profile for the ten buildings

is the sum of 1) three generated demand profiles following the G0

demand profile of BDEW (2019) with Saturdays treated like Sun-

days as well as different offsets and gains for each demand profile

for three OB/OBM buildings; 2) measured data of “OB 1” for the

years 2014 to 2018 which are shifted to start at the same day of

week in order to retrieve five more OB/OBM demand profiles; and

3) measured data of “EF 1” for the years 2017 and 2018 to get two

demand profiles for the EF buildings. 

Weather and demand data (“WeatherAndDemandTime-

Series.csv”) as well as the data shown in Figs. 2 and 3 (“Compar-

isonMeasSimTimeSeries.csv”) are available at https://git.es2050.

org/heci/energy-benchmark in directory “App_Weather_And_

Demand”. 

B3. Conversion components 

The quasi-stationary model for general conversion components 

C = BOI ∪ CHP ∪ HP ∪ AC ∪ CC is given as in

Voll et al. (2013) by 

Q 

out 
i = ηheat / cool 

i 
(λi ) · Q 

in 
i ∀ i ∈ C \ HP , (B.4a)

Q 

out 
i = ηheat 

i (λi ) · P in i ∀ i ∈ HP , (B.4b)

P out 
i = ηel 

i (λi ) · Q 

in 
i ∀ i ∈ CHP , (B.4c)

Q 

out 
i = λi · Q 

nom 

i ∀ i ∈ C , (B.4d)

λmin 
i ≤ λi ≤ 1 ∀ i ∈ C , (B.4e)

Q 

min 
i ≤ Q 

nom 

i ≤ Q 

max 
i ∀ i ∈ C , (B.4f)

with energy balances based on respective efficiencies (B.4a) to

(B.4c) , Eq. (B.4d) determining load fraction λ, bounds (B.4e) and

(B.4f) . Note that η is the efficiency for boilers and CHPs, while it is

the coefficient of performance (COP) for chillers and heat pumps. 

For obtaining a dynamic model, Eq. (B.4a) can be replaced by 

d λi 

dt 
= 

1 

τ i 

·
(

ηheat / cool 
i 

(λi ) ·
Q 

in 
i 

Q 

nom 

i 

− λi 

)
∀ i ∈ C , (B.5)

see Sass and Mitsos (2019) for more details. Note that this dy-

namic model is based on a simplified energy balance that con-

siders heat transfer rates rather than temperatures. Furthermore,

all heat losses are assumed to be proportional to the input heat

transfer rate. 

The efficiency or COP curves η of the respective components

are given in Table B.5 . Note that the given curves are used for both

the quasi-stationary and the dynamic models. Apart from this, all

efficiency and COP curves are assumed to be temperature indepen-

dent, which is reasonable for boilers and CHPs but not necessarily

for chillers and heat pumps ( Augenstein et al., 2005 ). 

B4. Generation components 

In the context of this article, the output of generation compo-

nents is limited by their capacity and the availability of renewable

energy resources, namely solar irradiation and wind. However, the

maximum available power may not be exploited, e.g., if this would

impair grid stability or exceed storage capabilities. 
4.1. Photovoltaic units 

The electrical power P i provided by a photovoltaic (PV) unit i ∈
V is limited by the solar irradiance I , the total area A i of the unit

nd its efficiency ηi via 

 i ≤ A i · ηi · I, i ∈ PV . 

Thereby, I accounts for direct, diffuse, and reflected solar irradi-

nce onto the tilted PV unit’s area. 

Furthermore, the PV unit cannot exceed its nominal capacity 

 i ≤ A i · P nom 

i , i ∈ PV , 

here the nominal capacity depends on the area of the unit as

ell ( Ren et al., 2009 ). 

The average and maximum efficiency of current German PV

echnologies are 17% and larger than 20%, respectively, while the

verage performance ratio ranges from 80 to 90% ( Wirth and

chneider, 2019 ). Thus, we choose efficiency ηi = 0 . 19 and nomi-

al capacity P nom 

i 
= 0 . 171 kWm 

−2 · A i as an example. 

For the case studies, the PV components are virtually installed

n the roofs of the buildings described in B.2 with the parame-

ers given in Table B.2 . To avoid self-shading effects of the pan-

ls, it is assumed that the rows have a minimum distance of

hree times the (projected) height of the units. Thus, for an in-

lination of 30 ◦ the maximum available PV surface area is 42%

f the total roof area, provided that the complete width of the

oof can be used to install the panels. Applying that rule to

he two experimental facility buildings, we have A 

max 
EF ≈ 205 m 

2 .

he PV area for the office buildings is up to 85% of the total

oof surface, i.e. A 

max 
OB ∪ OBM 

≈ 5261 m 

2 , since the inclination is only

0 ◦. The irradiance I is calculated as described in Section B.2.1 .

he data is included in WeatherAndDemandTimeSeries.csv avail-

ble at https://git.es2050.org/heci/energy-benchmark in directory

App_Weather_And_Demand”. 

4.2. Wind turbine 

The maximum power output of a wind turbine is determined

y the wind velocity, which corresponds to the part-load behav-

or of the wind turbine, and its nominal capacity. We introduce

fficiency ηel 
WT (λi ) for the mapping of wind velocity to the power

utput for each wind turbine i ∈ WT and, thus, obtain 

 

out 
i ≤ ηel 

i (λi ) · P nom 

i ∀ i ∈ W T . 

As an example, the efficiency 

el 
i (λi ) = 

{ 

0 ∀ λi ≤ 0 . 33 

1 . 5393 · λi − 0 . 5091 ∀ 0 . 33 ≤ λi ≤ 1 . 00 

1 ∀ λi ≥ 1 . 00 

(B.6)

iven by ENERCON (2015) may be used. Thereby, load fraction λi is

he wind velocity at each time step, normalized by the rated wind

elocity, e.g. 15 m/s. 

5. Storage components 

5.1. TES 

In this article, we only take into account a lumped model of a

ot/cold water storage tank for the thermal energy storage (TES).

ore sophisticated multi-layer tank models are discussed in, e.g.,

teen et al. (2015) ; Schütz et al. (2015) . 

The energy balance based on heat transfer rates of such a sim-

le TES model yields 

dE i 

dt 
= ηin 

i Q 

in 
i − 1 

ηout 
i 

Q 

out 
i − 1 

τ loss 
i 

E i ∀ i ∈ T ES 

 i (0) = E i, 0 ∀ i ∈ T ES . (B.7)

https://git.es2050.org/heci/energy-benchmark
https://git.es2050.org/heci/energy-benchmark
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h  

a

 

l  

c  

F

i

f

i

ith added and withdrawn heat transfer rates Q 

in 
i 

and Q 

out 
i 

, re-

pectively, efficiencies ηin 
i 

and ηout 
i 

as well as self-discharge in de-

endence of the currently stored energy E i with time constant
loss 
i 

. As an example, constant values τ loss 
i 

= 200 h for the time

onstant of the heat loss and ηin 
i 

= 

1 
ηout 

i 

= 0 . 95 for the efficiencies

ay be chosen. If input and output efficiencies coincide 

i := ηin 
i = 

1 

ηout 
i 

, 

s in our example, input and output heat transfer rate can be ag-

regated, e.g., by Q i := Q 

in 
i 

− Q 

out 
i 

. Thus, Eq. B.7 can be reformu-

ated as 

dE i 

dt 
= ηi Q i −

1 

τ loss 
i 

E i ∀ i ∈ T ES (B.8)

With reformulation Eq. (B.8) the number of degrees of free-

om is reduced, since only the total heat transfer rate flowing

hrough the thermal energy storage is considered. Note that the

ynamics in Eq. (B.7) are commonly discretized using the implicit

 Schütz et al., 2017 ) or explicit Euler scheme ( Bahl et al., 2018b ).

owever, in benchmark case study “Operational optimization” we

tick to formulation Eq. (B.8) , since a more sophisticated integra-

ion scheme is incorporated in the dynamic optimization frame-

ork used. Aside from that, binary variables can be introduced to

revent simultaneous charging and discharging, cf. battery model

n Section B.5.2 . The storage tank’s capacity E 

nom 

i serves as an up-

er bound for the TES and presents a design variable determining

ts capacity 

 ≤ E i ≤ E 

nom 

i ∀ i ∈ T ES . (B.9)

In the design optimization, capacity E 

nom 

i is limited by 

 

min 
i ≤ E 

nom 

i ≤ E 

max 
i ∀ i ∈ T ES . (B.10) 

Moreover, the heat transfer rates for charging and discharging

he TES are limited by 

 ≤ Q 

in 
i ≤ 1 

τ in 
E 

nom 

i ∀ i ∈ T ES (B.11)

 ≤ Q 

out 
i ≤ 1 

τout 
E 

nom 

i ∀ i ∈ T ES (B.12)

ith rates 1/ τ in and 1/ τout limiting the charging and discharg-

ng process, respectively. Appropriate values are given by 1 / τ in =
 / τout = 1 h 

−1 , cf. ( Bahl et al., 2018b ). 

5.2. Battery 

A generic model of an electrical battery is given by replacing

he heat transfer rates in Eq. (B.7) by the electrical power applied

o the battery. However, self-discharge is often negligible for (Li-

on) batteries ( Zimmerman, 2004 ). This yields for any battery i ∈
AT 
dE i 

dt 
= ηin 

i P in i + 

1 

ηout 
i 

P out 
i ∀ i ∈ BAT 

 i (0) = E i, 0 ∀ i ∈ BAT . (B.13) 

As an example, we choose values ηin 
i 

= 0 . 920 ≈ ηout 
i 

= 0 . 926

ased on Baumgärtner et al. (2019) and the round-trip efficiency

eported in Tesla (2019) . 

Constraints Eqs. (B.9) to (B.12) apply analogously to the bat-

ery model if heat transfer rate Q is swapped with power P where

pplicable. In contrast to a TES, the charging and discharging

rocess of batteries is typically not limited by rate constraints.

aumgärtner et al. (2019) report time constants τ in = τout = 4 . 2 ·
0 −5 h , which lead to large upper bounds in Eqs. (B.11) and (B.12) .

ote that the constraints implied by underlying power electronics

re usually considerably tighter. 
Similar to the case of TES models, cf. Section B.5.1 , it is quite

ommon to consider the discrete-time counter part of Eq. (B.13) in

cheduling of power systems. To this end, the ODE can be dis-

retized by the forward Euler method considering averaged val-

es of P in ( t ) and P out ( t ) and a constant step width of e.g. 15min.

e remark that the given model does not account for specifics of

ll existing battery technologies. For example, detailed models for

edOx-Flow ( Blanc and Rufer, 2008 ) and other battery types are

eyond the scope of this work. 

In contrast to TES models, a battery cannot be charged and dis-

harged at the same time. Put differently, the battery cannot ac-

ively dissipate energy. Hence, the constraint 

 

in 
i · P out 

i = 0 , ∀ i ∈ BAT 

s added. As this constraint leads to feasible sets with non-

ifferentiable boundaries, it has been suggested to either neglect

t ( Braun et al., 2018 ), or to relax it as follows 

 

in 
i · P out 

i = ε > 0 , ∀ i ∈ BAT , 

ee e.g. Appino et al. (2018) for details. 

Alternatively, one may model the asymmetric charging and

ischarging efficiencies by means of integer decision variables.

urray et al. (2018) proposed a mixed-integer formulation based

n 

 − ηin 
i = 

1 

ηout 
i 

− 1 = ηi ∀ i ∈ BAT , (B.14)

hich is a common assumption for batteries in the literature in

lace of ηin 
i 

= ηout 
i 

. Substitution of (B.14) into (B.13) gives 

dE i 

dt 
= (1 − ηi ) P 

in 
i + (1 + ηi ) P 

out 
i ∀ i ∈ BAT . 

The integer variable z i ∈ {−1 , 1 } allows to discriminate charging

nd discharging. Together with aggregating input and output, the

ollowing mixed-integer formulation 

dE i 

dt 
= (1 + z i ηi ) P i , ∀ z i ∈ {−1 , 1 } , i ∈ BAT 

s obtained. 

6. Grid models 

We consider thermal, electricity, and gas grids as components

nd use simple models. In particular, gas is only a potential energy

esource and the gas grid is approximated as a point source with

 known gas price. 

6.1. Thermal grid 

We do not consider an external thermal grid. Thus, cooling and

eating supply have to match the aggregation of building demands

nd storage capacities. 

According to Mehleri et al. (2012) , an energy balance is formu-

ated for each node j of the thermal grid, comprising generation,

onsumption, storage, and interaction with neighboring nodes l .

or a given energy supply system, this results in ∑ 

 ∈ BOI ∪ CHP ∪ T ES heat 

Q 

heat , out 
i, j 

+ 

∑ 

l 

(
γheat 

l→ j · Q 

heat 
l→ j − Q 

heat 
j→ l 

)
= Q 

heat , dem 

j 
+ 

∑ 

k ∈ AC ∪ T ES heat 

Q 

heat , in 
k, j 

or each node j of the heating grid and ∑ 

 ∈ AC ∪ CC ∪ T ES cool 

Q 

cool , out 
i, j 

+ 

∑ 

l 

(
γcool 

l→ j · Q 

cool 
l→ j − Q 

cool 
j→ l 

)
= Q 

cool , dem 

j 
+ 

∑ 

k ∈ T ES cool 

Q 

cool , in 
k, j 
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Fig. C.1. Piecewise linearization of part-load behavior of component i ∈ U adapted 

from Majewski et al. (2017) 
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for each node j of the cooling grid, where parameter γ is a loss

factor. Mehleri et al. (2012) and Obara (2007) further approximate

the loss factor γ proportional to the distance to the neighboring

node l . 

B6.2. Electricity grid 

A simplified model of a balanced electrical AC (alternating cur-

rent) grid can be given by a lumped-parameter system at steady-

state, which can be described by the triple (N , G, Y ) , where N =
{ 1 , . . . , N} is the set of buses (nodes), G ⊆ N is the non-empty set

of generators, and Y = G + j B ∈ C 

N×N is the bus admittance matrix

( Grainger and Stevenson, 1994 ). The off-diagonal entries of Y can

be written as y li = g li + j b li , whereby g li is the conductance for the

line li , respectively, b li is the line susceptance. The diagonal entries

of Y are y ll = y l + 

∑ 

l  = m 

y li , where y l accounts for linear load con-

nected to bus l . 

For the sake of simplicity, we assume that there is only one

generator per bus (i.e. G ⊆ N ). Thus, at each bus i ∈ N we have 

P i = P dem 

i + P gen 
i 

, 

where by convention P 
gen 
i 

= 0 if i ∈ G. The parameter P dem 

i 
models

the demand of electrical power at node i , it also captures uncon-

trollable renewable generation, e.g., the maximum power output of

PV components. Batteries are considered to be generators. 

To reduce nonconvexities, lossless lines, small phase differences,

and constant voltage magnitudes are commonly assumed. With

these assumptions, the overall active power balance for the grid

reads ∑ 

i ∈N 
P i = 0 . (B.15)

Note that power balance Eq. (B.15) is used in the given bench-

mark case studies. 

A simple expression for the phase angles θ i at each bus is given

by 

P = −
∑ 

i ∈N\{ l} 
b li (θl − θi ) ⇐⇒ P = −B θ , (B.16)

where B is the imaginary part of the bus admittance matrix Y, P is

the vector of electrical powers, and θ is the vector of phase angles.

The above Eqs. (B.16) are the so-called DC (direct current) power

flow equations ( Grainger and Stevenson, 1994 ). 

Appendix C. Linearization scheme 

C1. Linearization of efficiency/COP curves 

In this article, we assume that efficiency or COP ηi is a given,

possibly nonlinear function in dependence of load fraction λi :=
Q 

out 
i 

/ Q 

nom 

i , see Table B.5 . According to Voll et al. (2013) , it is favor-

able to linearize the functional dependency of input heat transfer

rate Q 

in 
i 

on output heat transfer rate Q 

out 
i 

Q 

in 
i = 

Q 

out 
i 

ηi (λi ) 
= 

λi 

ηi (λi ) 
· Q 

nom 

i (C.1)
Table C.1 

Supporting points of part-load behavior 

Components λin 
i, 1 λout 

i, 1 λin 
i, 2 λout 

i, 2 λin 
i, 3 λout 

i, 3 

BOI 0.2 0.22608 1 1 – –

CHP 1 / 2 / 3 (th) 0.5 0.46035 1 1 – –

CHP 1 / 2 / 3 (el) 0.1 0.20251 1 1 – –

AC 0.2 0.25006 0.60778 0.48792 1 1 

CC 0.2 0.31204 0.70497 0.59543 1 1 

HP 0.2 0.21584 1 1 – –

 

E

Q

∀  

a

λ

∀  
ather than linearizing the nonlinear functions ηi for the consid-

red components i ∈ U . Note that we linearize based on normal-

zed variables λi and λin 
i 

:= Q 

in 
i 

· ηnom / Q 

nom 

i . 

We apply a piecewise linearization as depicted in Fig. C.1 . 

In fact, the feasible interval of variable λi ∈ [ λmin 
i , 1] is de-

omposed into 
∣∣J 

λ
∣∣ = n λ intervals with supporting points λmin 

i =
out 
i, 0 < . . . < λout 

i,n λ−1 
< λout 

i,n λ
= 1 , j = 

{
0 , . . . , n λ

}
for any component

 ∈ U . For each time step t ∈ T , the independent variable l i,j in in-

erval j ∈ J 

λ is switched on or off by a binary b λ
i, j 

∈ { 0 , 1 } 
out 
i, j · b λi, j ≤ l i, j ≤ λout 

i, j+1 · b λi, j ∀ j ∈ J 

λ\ {n 

λ
}
, ∀ i ∈ U . 

In this way, at most one interval can be active ∑ 

j∈J λ
b λi, j ≤ 1 ∀ i ∈ U 

nd the resulting load fraction λi is obtained by 

i = 

∑ 

j∈J λ
l i, j ∀ i ∈ U . 

Based on supporting points 

(
λin 

i, j , λ
out 
i, j 

)
, the slope parameter

λ
i, j of the line segments j is given by 

λ
i, j = 

λin 
i, j+1 − λin 

i, j 

λout 
i, j+1 − λout 

i, j 

∀ j ∈ J 

λ, ∀ i ∈ U . 

This yields the piecewise linear formulation 

in 
i = 

∑ 

j∈J λ
b λi, j · λin 

i, j + β
λ
i, j ·

(
l i, j − λout 

i, j · b λi, j 

) ∀ i ∈ U . (C.2)

Note that load fraction l i,j equals 0 if the binaries b λ
i, j 

of all in-

ervals ∀ j ∈ J 

λ are 0. Example values for the linearization of the

unctions given in Table B.5 is given in Table C.1 . 

Inserting the definition of the load fraction λin 
i 

into

q. (C.2) with l i, j = Q 

out 
i, j 

/ Q 

nom 

i gives 

 

in 
i = 

∑ 

j∈J λ
λin 

i, j ·
b λ

i, j 
· Q 

nom 

i 

ηnom 

+ 

β
λ
i, j 

ηnom 

·
(
Q 

out 
i, j − λout 

i, j · b λi, j · Q 

nom 

i 

)
 i ∈ U (C.3)

nd 

out 
i, j · b λi, j · Q 

nom 

i ≤ Q 

out 
i, j ≤ λout 

i, j+1 · b λi, j · Q 

nom 

i 

 j ∈ J 

λ\ {n 

λ
}
, ∀ i ∈ U . (C.4)
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Table C.2 

Supporting points of investment costs 

Comp. Q lb i, 1 CAPEX lb i, 1 Q lb i, 2 CAPEX lb i, 2 Q lb i, 3 CAPEX lb i, 3 Q lb i, 4 CAPEX lb i, 4 

[kW] [ e ] [kW] [ e ] [kW] [ e ] [kW] [ e ] 

BOI 100 27680.7 2000 86955 – – – –

CHP 1 100 138090 1400 436869 – – – –

CHP 2 1400 436869 2300 643716 – – – –

CHP 3 2300 643716 3200 850563 – – – –

AC 100 71404 711 155917.5 2000 243252 – –

CC 400 89006 10000 1572302 – – – –

PV 5 32858.3 55 295651.5 550 2187492 – –

HP 5 5113.7 27 14999.4 83 31260.1 200 55486 

BAT 0 0 40 47323 120 118368 2000 1238006 

T ES cool 0 0 20 14492 1000 35264 25000 543968 

T ES heat 0 0 20 1929 23175 502079 115000 2086885 

 

l

i  

u  

b  

T  

a

Q

λ

∀

Q

a

b

(
i  

v  

E

C

 

c

C

w

C

β

Q

Q

b

w  

c  

.  

u  

c

 

i  

a  

a  

G  

t

A

f

 

d  

s  

p  

f  

f  

c  

c

 

0  

 

c
i 
Due to product b λ
i, j 

· Q 

nom 

i , Eqs. (C.3) and (C.4) give a piecewise

inearization of function Eq. (C.1) only if the nominal capacity Q 

nom 

i 

s fixed. Otherwise, e.g., for design optimization, this bilinear prod-

ct of a binary variable b λ
i, j 

and a continuous variable Q 

nom 

i can

e linearized with the help of Glover’s linearization ( Glover, 1975 ).

hus, we substitute the bilinear product in Eqs. (C.3) and (C.4) with

 new time-dependent variable d i,j and obtain 

 

in 
i = 

∑ 

j∈J λ
λin 

i, j ·
d i, j 

ηnom 

+ 

β
λ
i, j 

ηnom 

·
(
Q 

out 
i, j − λout 

i, j · d i, j 

) ∀ i ∈ U , 

out 
i, j · d i, j ≤ Q 

out 
i, j ≤ λout 

i, j+1 · d i, j 

 j ∈ J 

λ, ∀ i ∈ U . 

Moreover, bounds 

 

min 
i ≤ Q 

nom 

i ≤ Q 

max 
i 

re replaced by 

 

λ
i, j · Q 

min 
i ≤ d i, j ≤ b λi, j · Q 

max 
i (C.5) 

1 − b λi, j 

)
· Q 

min 
i ≤ Q 

nom 

i − d i, j ≤
(
1 − b λi, j 

)
· Q 

max 
i . (C.6) 

On the one hand, Eq. (C.5) guarantees that the new variable d i,j 

s 0 if the corresponding binary b λ
i, j 

equals 0. On the other hand,

ariable d i,j equals capacity Q 

nom 

i if binary b λ
i, j 

equals 1 due to

q. (C.6) . 

2. Linearization of investment costs 

Analogously to C.1 , we can replace the nonlinear investment

osts 

APEX i 

(
Q 

nom 

i 

)
= CAPEX 

0 
i ·

(
Q 

nom 

i 

Q 

0 
i 

)γ6 ,i 

ith 

APEX i 

(
Q 

nom 

i 

)
= 

∑ 

j∈J 
b i, j · CAPEX 

lb 
i, j + β

Q 
i, j ·

(
Q 

nom 

i, j − Q 

lb 
i, j · b i, j 

)

Fig. D.1. Relative efficiency with minimum load fract
Q 
i, j = 

CAPEX 

lb 
i, j+1 − CAPEX 

lb 
i, j 

Q 

lb 
i, j+1 − Q 

lb 
i, j 

∀ j ∈ J 

Q 

 

nom 

i = 

∑ 

j∈J 
Q 

nom 

i, j 

 

lb 
i, j · b Q 

i, j 
≤ Q 

nom 

i, j ≤ Q 

lb 
i, j+1 · b Q 

i, j 
∀ j ∈ J 

Q \{ n 

Q } ∑ 

j∈J Q 
b Q 

i, j 
≤ 1 

 

Q 
i, j 

∈ { 0 , 1 } ∀ j ∈ J 

Q , 

here the feasible interval of variable Q 

nom 

i ∈ 

[
Q 

min 
i , Q 

max 
i 

]
is de-

omposed into 
∣∣J 

Q 
∣∣ = n Q intervals with bounds Q 

min 
i = Q 

lb 
i, 0 <

 . . < Q 

lb 
i,n −1 < Q 

lb 
i,n Q 

= Q 

max 
i , j ∈ J 

Q for any unit i ∈ U . Example val-

es of the supporting points 

(
CAPEX 

lb 
i, j , Q 

lb 
i, j 

)
for the considered

omponents are given in Table C.2 . 

Note that the nonlinear function CAPEX i only depends on the

ndependent variable Q 

nom 

i apart from constant parameter values

nd, thus, is either constant (operational optimization) or univari-

te (design optimization). In contrast to C.1 , the application of

lover’s linearization is therefore not necessary for the lineariza-

ion of the investment costs CAPEX i . 

ppendix D. Smoothing of efficiency regarding minimum load 

raction 

In this section, we include the minimum load fraction into the

ynamic model equations of boiler and CHP, see Section B.3 , to

how the expandability of the presented model equations. More

recisely, the hyperbolic tangent is used as a smooth switching

unction between turned off mode and an operation with a load

raction larger than the minimum load fraction. Thus, no binary

ontrols are introduced and, in particular, we can avoid adding a

ombinatorial complexity to a dynamic model. 

As a complication, the turned off mode with load fraction λi =
 poses a stable point of the dynamics in Eq. (B.5) . In fact, point

( 
d λi 
dt 

, λi ) = (0 , 0) cannot be escaped independent of the chosen

ontrol value Q 

in 
ion λmin 
i , i ∈ BOI ∪ CHP as given in Table B.5 
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H  

 

 

H  
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H  

 

 

 

H  

 

d λi 

dt 
| λi =0 = 

1 

τ i 

·
(

ηheat / cool 
i 

(λi ) | λi =0 ·
Q 

in 
i 

Q 

nom 

i 

− 0 

)

= 

1 

τ i 

·
(

0 · Q 

in 
i 

Q 

nom 

i 

− 0 

)
= 0 ∀ i ∈ C . 

without a binary control turning the boiler or CHP explicitly on.

Therefore, the zero-operation below the minimum load fraction is

replaced by a linear operation with sufficient slope, see Fig. D.1 . As

the result, original efficiency ηheat 
i 

(λi ) , i ∈ BOI ∪ CHP is replaced

by the adapted smooth efficiency (
0 . 5 + 0 . 5 · tanh 

(
γ1 · (λi − λmin 

i ) 
))

· ηheat 
i (λi ) 

+ 

(
0 . 5 − 0 . 5 · tanh 

(
γ1 · (λi − λmin 

i ) 
))

· ( γ2 + γ3 · λi ) , 

in Eq. (B.5) . As an example, parameter values γ1 = 30 , γ3 = 1 . 2 ,

and γ2 = 0 . 0 0 01 are chosen. 
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