69,968 research outputs found

    Recent developments in the application of risk analysis to waste technologies.

    Get PDF
    The European waste sector is undergoing a period of unprecedented change driven by business consolidation, new legislation and heightened public and government scrutiny. One feature is the transition of the sector towards a process industry with increased pre-treatment of wastes prior to the disposal of residues and the co-location of technologies at single sites, often also for resource recovery and residuals management. Waste technologies such as in-vessel composting, the thermal treatment of clinical waste, the stabilisation of hazardous wastes, biomass gasification, sludge combustion and the use of wastes as fuel, present operators and regulators with new challenges as to their safe and environmentally responsible operation. A second feature of recent change is an increased regulatory emphasis on public and ecosystem health and the need for assessments of risk to and from waste installations. Public confidence in waste management, secured in part through enforcement of the planning and permitting regimes and sound operational performance, is central to establishing the infrastructure of new waste technologies. Well-informed risk management plays a critical role. We discuss recent developments in risk analysis within the sector and the future needs of risk analysis that are required to respond to the new waste and resource management agenda

    Part 3: Systemic risk in ecology and engineering

    Get PDF
    The Federal Reserve Bank of New York released a report -- New Directions for Understanding Systemic Risk -- that presents key findings from a cross-disciplinary conference that it cosponsored in May 2006 with the National Academy of Sciences' Board on Mathematical Sciences and Their Applications. ; The pace of financial innovation over the past decade has increased the complexity and interconnectedness of the financial system. This development is important to central banks, such as the Federal Reserve, because of their traditional role in addressing systemic risks to the financial system. ; To encourage innovative thinking about systemic issues, the New York Fed partnered with the National Academy of Sciences to bring together more than 100 experts on systemic risk from 22 countries to compare cross-disciplinary perspectives on monitoring, addressing and preventing this type of risk. ; This report, released as part of the Bank's Economic Policy Review series, outlines some of the key points concerning systemic risk made by the various disciplines represented - including economic research, ecology, physics and engineering - as well as presentations on market-oriented models of financial crises, and systemic risk in the payments system and the interbank funds market. The report concludes with observations gathered from the sessions and a discussion of potential applications to policy. ; The three papers presented in this conference session highlighted the positive feedback effects that produce herdlike behavior in markets, and the subsequent discussion focused in part on means of encouraging heterogeneous investment strategies to counter such behavior. Participants in the session also discussed the types of models used to study systemic risk and commented on the challenges and trade-offs researchers face in developing their models.Financial risk management ; Financial markets ; Financial stability ; Financial crises

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    A Survey of Brain Inspired Technologies for Engineering

    Full text link
    Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines

    The impact of synthetic biology in chemical engineering - Educational issues

    Get PDF
    This paper describes the development of syntheticbiology as a distinct entity from current industrial biotechnology and the implications for a future based on its concepts. The role of the engineering design cycle, in syntheticbiology is established and the difficulties in making and exact analogy between the two emphasised. It is suggested that process engineers can offer experience in the application of syntheticbiology to the manufacture of products which should influence the approach of the synthetic biologist. The style of teaching for syntheticbiology appears to offer a new approach at undergraduate level and the challenges to the education of process engineers in this technology are raised. Possible routes to the development of syntheticbiology teaching are suggested

    Space station advanced automation

    Get PDF
    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software
    • …
    corecore