9 research outputs found

    An investigation into advance time division multiple access based personal communication networks : this thesis is presented in partial fulfilment of the requirements for the degree of Master of Technology in Production Technology at Massey University

    Get PDF
    This thesis examines and simulates a statistically multiplexed multiple access technique known as Advanced Time Division Multiple Access (ATDMA). The simulations were carried out in a multimedia traffic environment. Parameters that could optimise the network performance in terms of quality, reliability and capacity have been examined using a simulation model. This thesis also examines network architecture and signalling related issues. The simulation results were analysed to propose a suitable ATDMA frame structure in terms of the frame length and the organisation of traffic and reservation slots. The simulation results indicated that the performance of the ATDMA based system can be enhanced when delay insensitive data is transmitted as blocks of packets of a specific size. The simulation results also indicated that the performance of the ATDMA based system can be further enhanced when a video terminal is allocated a single traffic slot as opposed to multiple traffic slots. Further simulations have been carried out to determine the up-link traffic channel capacities and control channel capacities. This thesis also examined aspects that could further enhance the performance of an ATDMA based system

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Packet level quality of service analysis of multiclass services in a WCDMA mobile network

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    ATM optical wireless networks

    Get PDF
    The aim of the research is to propose, design and evaluate a new wireless communication, local area network (LAN). Such a LAN will be able to extend the asynchronous transfer mode (ATM) wireline technology into indoor optical wireless networks

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Dynamic Pricing in Heterogeneous Wireless Cellular Networks

    Get PDF
    Smart communications devices are giving users instant access to applications that consume large amounts of data. These applications have different requirements on the network for delivery of data. In order to support these different applications, operators are required to support multiple service classes. Given the regulatory and technology constraints and the relatively high cost associated with wireless spectrum licensing and utilization, demand will exceed supply leading to congestion and overload conditions. In addition to new broadband radio technologies offering higher data rates, operators are looking at deploying alternate heterogeneous technologies, such as WLAN, to provide additional bandwidth for serving customers. It is expected that this will still fall short of providing enough network resources to meet the ITU requirement for 1% new call blocking probability. An economic mechanism that offers incentives to individuals for rational behavior is required in order in order to reduce the demand for network resources and resolve the congestion problem. The research in this dissertation demonstrates that the integration of a dynamic pricing with connection admission control mechanism for an operator deploying cooperative heterogeneous networks (e.g., LTE and WLAN) offering multiple QoS service classes reduces the new call blocking probability to the required 1% level. The experimental design consisted, first, of an analytical model of the CAC algorithm with dynamic pricing in a heterogeneous environment. The analytical model was subsequently validated through discrete-event simulation using Matlab

    Mobility-based predictive call admission control and resource reservation for next-generation mobile communications networks.

    Get PDF
    Recently, the need for wireless and mobile communications has grown tremendously and it is expected that the number of users to be supported will increase with high rates in the next few years. Not only the number of users, but also the required bandwidth to support each user is supposed to increase especially with the deploying of the multimedia and the real time applications. This makes the researchers in the filed of mobile and wireless communications more interested in finding efficient solutions to solve the limitations of the available natural radio resources. One of the important things to be considered in the wireless mobile environment is that the user can move from one location to another when there is an ingoing call. Resource reservation ( RR ) schemes are used to reserve the bandwidth ( BW ) required for the handoff calls. This will enable the user to continue his/her call while he/she is moving. Also, call admission control ( CAC ) schemes are used as a provisioning strategy to limit the number of call connections into the network in order to reduce the network congestion and the call dropping. The problem of CAC and RR is one of the most challenging problems in the wireless mobile networks. Also, in the fourth generation ( 4G ) of mobile communication networks, many types of different mobile systems such as wireless local area networks ( WLAN s) and cellular networks will be integrated. The 4G mobile networks will support a broad range of multimedia services with high quality of service.New Call demission control and resource reservation techniques are needed to support the new 4G systems. Our research aims to solve the problems of Call Admission Control (CAC), and resource reservation (RR) in next-generation cellular networks and in the fourth generation (4G) wireless heterogeneous networks. In this dissertation, the problem of CAC and RR in wireless mobile networks is addressed in detail for two different architectures of mobile networks: (1) cellular networks, and (2) wireless heterogeneous networks (WHNs) which integrate cellular networks and wireless local area networks (WLANs). We have designed, implemented, and evaluated new mobility-based predictive call admission control and resource reservation techniques for the next-generation cellular networks and for the 4G wireless heterogeneous networks. These techniques are based on generating the mobility models of the mobile users using one-dimensional and multidimensional sequence mining techniques that have been designed for the wireless mobile environment. The main goal of our techniques is to reduce the call dropping probability and the call blocking probability, and to maximize the bandwidth utilization n the mobile networks. By analyzing the previous movements of the mobile users, we generate local and global mobility profiles for the mobile users, which are utilized effectively in prediction of the future path of the mobile user. Extensive simulation was used to analyze and study the performance of these techniques and to compare its performance with other techniques. Simulation results show that the proposed techniques have a significantly enhanced performance which is comparable to the benchmark techniques
    corecore