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Summary 

 In the future Universal Mobile Telecommunications System (UMTS) network, 

Quality of Service (QoS) provisioning is a critical issue. In contrast to earlier generations 

of telecommunication systems, the UMTS network can enable a variety of services with 

different QoS requirements within each mobile user simultaneously. Wideband CDMA 

(WCDMA) is chosen as the multiple access technology and the air interface of UMTS. 

This thesis studies the QoS performances in the WCDMA system. Due to the unique 

characteristics of the UMTS network, a complete and detailed QoS architecture is 

proposed to deal with all related topics on QoS provisioning. All services in the UMTS 

network are classified into four classes in the proposed QoS architecture. The services 

consist of the conversational class, streaming class, interactive class and background 

class. These four classes are different in terms of their QoS requirements. Although QoS 

provisioning issues have long attracted a lot of research interests and many discussions 

have been made in this area, no analytical work has been done to solve the QoS 

provisioning problems for all the four UMTS classes. The objective of this thesis is to 

address the packet level QoS issues at the network layer of the WCDMA system with 

deterministic mathematical methods. Besides, it is also our aim to give a QoS-based call 

admission control (CAC) algorithm at the packet level of the network layer and to obtain 

the corresponding feasible admission regions (ARs). In this thesis, we study the wireless 

channel between mobile users and base stations and focus our work on the uplink of the 

WCDMA system. 
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Firstly, this thesis introduces the rudimentary UMTS network and its QoS 

architecture. We develop two system models for analysis based on them. The two system 

models are called single-connection system model and multi-connection system model, 

respectively. Only a single service is permitted within each mobile user in the single-

connection system model, while multi-connection multiclass services are permitted 

within each mobile user in the multi-connection system model. Assuming perfect power 

control, efficient power distribution algorithms are developed in the two system models. 

The Go-Back-N (GBN) automatic retransmission request (ARQ) mechanism is used for 

the services of the interactive and background classes. The effects of the GBN ARQ in 

the WCDMA channel are examined in details. The outage probability of each class is 

formulated for each service in the single-connection and multi-connection system models, 

taking into consideration of the effects of the GBN ARQ.  

Secondly, we present the packet level QoS performances, including packet loss rate 

and average delay, for all services in the WCDMA system. The packet level QoS 

performances are directly associated with the data link layer QoS attributes, such as 

outage probability. Accurate mathematical formulas are developed for the outage 

probabilities, the packet loss rates and the average delays of each service in the two 

system models.  

Lastly, a QoS-based CAC algorithm is given, satisfying the packet level QoS 

requirements of all admitted services. Furthermore, we derive the ARs for the two system 

models based on this CAC scheme and appropriate system parameters. The ARs can 

assure that any admitted service in the WCDMA system is able to achieve its required 

QoS levels. 
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W Spread Spectrum bandwidth chip rate of the WCDMA system. 

 
 



Chapter 1.  Introduction__________________________________________________ 

  

_1

 

 

Chapter 1 

Introduction 

In the past few decades, mobile telecommunications have evolved into multiple 

cellular mobile systems. The first generation systems, such as the Advanced Mobile 

Phone System (AMPS) etc., are based on analog technology. They are only intended to 

carry voice messages between two users. The second generation systems, such as Global 

System for Mobile Communications (GSM), Personal Digital Cellular (PDC) and Interim 

Standard 95 (IS-95), are based on digital technology. They usually serve voice messages 

and sometimes low-bit-rate data communications, such as short messaging service (SMS). 

With the tremendous growth of a variety of traffic, a more advanced telecommunication 

system is needed to satisfy the enormous demand of future communications. Therefore, 

the Third Generation (3G) telecommunication system is proposed and developed. In 

contrast to the first generation and the current second generation telecommunication 

systems, the 3G system experiences many significant changes and improvements. It is 

intended to serve a wide range of multimedia communications and have many more 

advantages. 

The 3G telecommunication system enables high-speed data communications, 

variable bit rate transmissions, a high spectrum efficiency, a good service quality, a 

worldwide roaming capability and multiple connections within a mobile user. 
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In the International Telecommunications Union (ITU), the third generation system is 

called International Mobile Telecommunications-2000 (IMT-2000). Particularly, it is 

named Universal Mobile Telecommunications System (UMTS) in Europe. Besides 

UMTS, the two 3G systems are CDMA2000 and TD-SCDMA. They are proposed in the 

United States and China, respectively. In this thesis, our studies are focused on the 

UMTS network. 

In the UMTS network, the wideband Code Division Multiple Access (WCDMA) is 

commonly referred to as the multiple access technology. WCDMA technology is able to 

support a high bit rate of over 384 kbps in most environments and over 2 Mbps in good 

conditions. Such a high data bit rate facilitates a lot of new applications like audio, video, 

file downloading, and Internet surfing.   

In order to complete the detailed standardization of UMTS, the Third Generation 

Partnership Project (3GPP) is established to produce globally applicable technical 

specifications. At the same time, a lot of efforts are made on developing protocols and 

algorithms to solve various practical problems in the UMTS network. For instance, 

Quality of Service (QoS) provisioning in the UMTS network is a critical area that attracts 

a lot of interests and leaves plenty of room for further studies. The UMTS network 

accommodates many multimedia services that differ a lot in terms of their QoS 

requirements. As an effort to study the area of QoS provisioning, the objective of this 

thesis is to investigate the QoS issues in the UMTS network. In our studies, we will first 

present the issues and problems of QoS in the UMTS network, and then propose 

appropriate system models for the network, and finally analyze the QoS performances of 

various services. In the following sections of this chapter, we introduce the basic Quality 
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of Service issues, the aims of our research, and the organization of the subsequent 

chapters in this thesis. 

1.1 Basic QoS Issues 

QoS indicates the level of the performance that the system needs to guarantee during 

the whole duration of a service in UMTS. The UMTS network can be divided into 

multiple layers, such as the physical layer, the data link layer, the network layer and some 

other higher layers according to the functionalities. Each layer is in charge of some 

functions for a service. These layers jointly fulfill the QoS guarantees in the UMTS 

network. Some QoS parameters are considered to quantify the QoS performances in each 

layer. Thus, the detailed QoS architecture of the UMTS is presented in [12] and the QoS 

provisioning in UMTS is subject to the simultaneous satisfaction of the QoS constraints 

in all layers. 

The QoS parameters at the physical layer include Bit Error Rate (BER) of a service.  

The QoS parameters at the data link layer include signal-to-interference-plus-noise 

ratio (SINR) and the outage probability of a service. 

The QoS provisioning at the network layer mainly includes two parts: call level and 

packet level. The call level QoS parameters usually consist of blocking probabilities of 

new and handoff services and forced termination probability of handoff services. The 

packet level QoS parameters consist of average delays and packet loss rates.  

Furthermore, a call admission control (CAC) algorithm can be developed based on 

QoS provisioning. CAC is a process that decides whether a network can admit a new 

service, while still satisfies the QoS requirements of all existing services in the network. 

CAC is used to determine the admission region (AR) of the network. An efficient CAC 
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algorithm may widen the AR, increase the system capacity and thus maximize the 

operation profit.  

1.2 Previous Works 

The main work of this thesis is to analyze the QoS performances in the uplink of the 

wideband CDMA system in the UMTS network. Many literatures have sufficiently 

introduced the UMTS network and the WCDMA multiple access technology. For 

example, [1-6] give a comprehensive description of the basic principles of UMTS and 

WCDMA. Besides, 3GPP provides detailed standards of the whole UMTS network. 

Compared to the second generation telecommunication systems, the UMTS network 

extends the QoS provisioning of current voice service to multiclass services. WCDMA is 

chosen as the multiple access technology in the wireless channel of the UMTS network.  

Before the emergence of WCDMA, a lot of efforts have been made on studying the 

QoS performances of DS-CDMA systems in the past decades. In [7, 47-50], the delay 

and throughput performance of a DS-CDMA network are analyzed for voice and data 

services. Poisson processes are assumed for both voice and data traffic in [7, 47]. In [48-

50], an exponential on/exponential off process and a Poisson process are assumed for 

voice and data traffic, respectively. In [8], a method is presented to accommodate the 

voice and data services simultaneously. A voice service is modeled as an exponential 

on/exponential off process, while a data service generates a packet randomly in each slot 

with a certain probability in their traffic models. Markov chains are used to solve for the 

average delays and packet loss rates of each service. In [9], a medium access control 

(MAC) layer protocol for a DS-CDMA system is proposed to provide the QoS guarantees 

for multiclass services in a wireless network. For each service, the packet arrival process 
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is Poisson distributed and a Markov chain model is developed to derive the average 

delays. In [10], the author considers a DS-CDMA system that supports multiclass 

services. Forward error correction (FEC) method and automatic retransmission request 

(ARQ) mechanism are implemented to achieve fewer errors. All services are modeled as 

Poisson processes. This paper investigates the SINR, the average delay and the BER 

characteristics of each service.  

In [11], the QoS performances are evaluated in the UMTS network. The authors 

develop a MAC protocol for voice, video and data services in the UMTS network. The 

voice service is modeled as an exponential on/exponential off process, the video service 

is approximated by Maglaris’ model with a one-dimensional Markov chain [13], and the 

data service is modeled as a Poisson process. This paper studies the packet loss rate and 

the average delay for each service in the framework of its MAC protocol. For the voice 

service, analytical results are obtained in terms of average delay and the packet loss rate. 

However, only computer simulation results are available for video and data services in 

terms of average delay and the packet loss rate.  

The above works on QoS usually adopt simple traffic models, such as exponential 

on/exponential off process for voice, one-dimensional Markov chain for video and 

Poisson process for data in [7-11] and [47-50]. At the same time, an infinite buffer is 

implemented for data in [10], which is not a realistic assumption in practice. Besides, no 

analytical results are given for video and data services in [11].  

The call admission control (CAC) issue for DS-CDMA is addressed in [45-46]. 

However, the CAC schemes in [45-46] are simply SINR threshold based and cannot 

guarantee the QoS levels, such as packet loss rate and delay, of all the admitted services. 
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In [67], the system capacity of a DS-CDMA with voice and data services is evaluated on 

the satisfaction of outage probability for voice and delay for data.  However, it only 

considers two classes and adopts simple traffic models by randomly generating voice and 

data packets.  

The main contribution in this thesis is to analyze the QoS performances of four traffic 

classes in the uplink of a multi-cell WCDMA system. Our analysis is based on more 

realistic traffic models and a finite buffer for packet retransmissions. Furthermore, a CAC 

method is described on our QoS analytical platform. This method differs from [67] as we 

extend the CAC scheme by using more realistic traffic models and supporting four 

classes.  

 

1.3 Aims of Thesis 

As we have introduced in section 1.1, the QoS provisioning is jointly fulfilled in 

different layers of the UMTS network. In this thesis, our work is mainly focused on the 

packet level QoS performances at the network layer. Within the whole UMTS network, 

we focus our analysis on the wireless network and the uplink of the WCDMA system. 

The packet level QoS performances, such as the packet loss rate and the average delay, 

are evaluated for multiclass services in the uplink. The following issues are the key 

interests in our studies and presented in greater details. 

• Firstly, we emphasize the analysis of the uplink. The uplink refers to the reverse link 

from the mobile users to the base stations via the wireless channel. The multiple 

access interference (MAI) in the WCDMA system is more severe in the uplink than 
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that in the downlink, which refers to the forward link from the base stations to the 

mobile users. Thus, the uplink is the focus of our analytical emphasis. 

• Outage is an important QoS concept that indicates that the achieved system does not 

achieve the required performance in the data link layer. The outage probability is a 

measurement to define the level of outage and is referred to as the portion of time that 

the achieved SINR is below the SINR requirements or the achieved BER is above the 

BER requirements in the WCDMA system.  

• Delay is a QoS parameter at the packet level in the network layer. A packet is usually 

required to be successfully received by the destination within a certain time. Within 

the WCDMA system, delay refers to the period between the instant when a packet is 

generated and the instant when it is successfully received.   

• Packet loss occurs in the wireless channel between the mobile users and the base 

stations in the WCDMA system. The packet loss rate is a parameter to accurately 

quantify the level of the packet loss.  

Furthermore, the system capacity is also addressed in terms of call admission region 

in this thesis. Our system capacity is based on QoS requirements in terms of the packet 

loss rate and delay. Regarding this issue, the High Data Rate (HDR) algorithm is 

proposed in [66] by Qualcomm as an approach to achieve a high capacity in a CDMA 

system, especially in the downlink. In the HDR algorithm, each mobile user is allowed to 

measure the received SINR from multiple base stations.  The base station with the highest 

SINR is selected so that the interference to the users in other base stations is reduced. In 

addition, error-correcting coding techniques are implemented to data users with low 

SINR to suppress interference but result in longer delay. HDR scheme optimizes the 
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packet transmissions and achieves a high throughput by allocating different delays to 

users with different SINR values and data rates. In [66], the throughput of the HDR 

system is presented by simulations and measurements under particular coding and 

modulation techniques. Similar to other existing papers, SINR is the main factor in 

determining its system capacity. HDR first measures the received SINR and estimates the 

supportable data rates, followed by optimizing the packet transmissions though 

appropriate delay allocation to each user. Because this process involved signaling, 

measurements and prediction, it is not easy to be analyzed. Our thesis has a different 

contribution compared to [66] since we focus more on provisioning of QoS analytically.      

On the other hand, scheduling is a discipline that can allocate resources to different 

connections and decide the service order. It allows connections to share the resources and 

provides performance guarantee. For example, wireless weighted fair queuing (WFQ) 

[63-65] is a scheduling method used in wireless networks. Discussion on scheduling is 

beyond the scope of this thesis.  

1.4 Thesis Organization 

  In my thesis, the packet level QoS performances are investigated. The subsequent 

chapters are organized as follows. 

  Chapter 2 introduces the architecture of the UMTS network. The UMTS network 

can be divided into multiple subsystems. We discuss the functions of each subsystem. 

The UMTS radio access network (UTRAN) is emphasized and wideband CDMA is 

explained. In addition, Chapter 2 also deals with the Quality of Service architecture of the 

UMTS network.  The definitions of the UMTS QoS classes are given. Four different 

classes are classified. Voice, video, web-browsing and data services are chosen as typical 
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examples of these four classes. Furthermore, traffic models are established for each of 

them to proceed with further analyses.  

Chapter 3 explains the Go-Back-N (GBN) automatic retransmission request (ARQ) 

that is used in the WCDMA system. GBN ARQ is used to retransmit erroneous as an 

effort to improve the transmission reliability of the interactive and background classes. 

The QoS performances are analyzed in the GBN ARQ system. The analytical results in 

Chapter 3 are referred to in the subsequent chapters.     

In Chapter 4, we first propose two appropriate system models, which are the single-

connection system model and the multi-connection system model. In the former, each 

mobile user can only have one connection. In the latter, each mobile user can have 

multiple connections within different traffic classes. Then the medium access control 

(MAC) and the radio link control (RLC) methods are introduced. We derive the outage 

probability of each service in the WCDMA system according to the two system models 

and the MAC/RLC schemes 

Chapter 5 evaluates the packet level QoS performances for voice, video, web-

browsing and data services respectively in both system models. The packet loss rate and 

average delay are analyzed and formulated mathematically for each service. 

Chapter 6 provides the numerical results of the QoS performances that are developed 

in both Chapter 4 and Chapter 5 for the two system models. Simulations are used to 

verify the accuracy of the analytical results that are derived. At the same time, a QoS-

based call admission control scheme is described and discussed, and admission regions 

are derived at the packet level of the network layer for the two system models.  

Finally, Chapter 7 concludes the thesis and introduces future works. 
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Chapter 2 

UMTS Networks and QoS Architecture 

As one of the proposals for Third Generation systems, Universal Mobile 

Telecommunications System (UMTS) shows advantages in many aspects. In the scope of 

this chapter, we present a basic overview of UMTS. At the same time, the Quality of 

Service architecture in the UMTS network is introduced in greater details. On the basis of 

the UMTS QoS classes’ classifications, we describe a traffic model for each of them. The 

contents in this chapter are generalized as follows.  

In section 2.1, we give a brief description of the UMTS network and evaluate the 

functions of each subsystem. In section 2.2, we present the main principles of the 

wideband CDMA technology as the air interface of the wireless channel. In section 2.3, 

the QoS classes are classified in the UMTS network. In section 2.4, we define a traffic 

model for each QoS class to facilitate further analyses. In section 2.5, the conclusion is 

given for this chapter. 

2.1 UMTS Framework 
 

UMTS is the European version of the Third Generation (3G) mobile communication 

system. The architecture of the UMTS network is given in [1]. Functionally, the UMTS 

network has three subsystems to address different operations. The subsystems consist of 

UMTS Terrestrial Random Access Network (UTRAN), Core Network (CN) and User 
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Equipment (UE). UTRAN is responsible for all radio access procedures. CN is 

responsible for switching and routing of services and connects external networks. UE 

refers to the user equipment and interfaces with the UTRAN.    

In [1], the system architecture of the UMTS network is illustrated as Figure 2.1: 
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Figure 2.1 UMTS Architecture 

UE contains two parts such as the Mobile Equipment (ME) and the UMTS 

Subscriber Identity Module (USIM) as shown in Figure 2.1. ME is referred to as a mobile 

user. The USIM is referred to as a smart card that stores the identity, authentication, 

encryption keys and other user information of the subscriber. 

UTRAN is the radio access network of UMTS. It consists of Nodes B and radio 

network controllers (RNCs). A Node B is a base station transceiver. It is responsible for 

one or more cells. A Node B exchanges signals with a number of UEs and communicates 

with RNCs. Its functions also include transmitting the system information, making error 

detection and correction, finishing channel coding and performing radio resource 

management, etc. Besides the Nodes B, the RNC is also a controlling element in the 
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UTRAN. Its functions cover the management of the Nodes B, the system information 

control, the scheduling of system information and the call admission control, etc. 

Generally, RNC can control one or a few Nodes B. 

CN is another subsystem of the UMTS network. It contains the Mobile Services 

Switching Center (MSC), Visitor Location Register (VLR), Home Location Register 

(HLR), Gate MSC (GMSC), Serving GPRS (General Packet Radio Service) Support 

Node (SGSN), and Gateway General Packet Radio Service Support Node (GGSN). The 

functions of these entities are given as follows. 

• MSC is operated to serve the circuit-switched data. Its functions include paging, 

dynamic resource allocation and handover management, etc. The MSC serves all 

circuit-switched flows. In the RNC, circuit-switched data streams are forwarded to 

the MSC.  

• VLR cooperates with the MSC. It works as a database and stores information about 

roaming mobile users in the MSC area. One VLR may handle the visitor register of 

several MSC areas.  

• HLR works as a database located in the home system of a subscriber and keeps the 

service profile of the subscriber.  

• SGSN provides the functionality that is similar to the MSC/VLR but the SGSN is 

used for the packet-switched services instead of the circuit-switched services. From 

RNC to CN, all packet-switched data streams are forwarded to SGSN.  

• GMSC refers to a switching gateway that connects the UMTS network to external 

circuit-switched networks. All circuit-switched data streams between external 

networks and internal networks must go through the GMSC. 
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• GGSN is similar to GMSC except that it is a switching gateway that connects the 

UMTS network to external packet-switched networks. Packet-circuit data streams 

between external networks and internal networks must pass through the GGSN. 

External networks are the networks outside the UMTS network. They can be divided 

into two types. The Public Switched Telephone Network (PSTN) is used for the 

transmissions of circuit-switched services, while the Internet Protocol (IP) network is 

used for the transmission of packet-switched services. 

UE, UTRAN and CN cooperate to fulfill the functionality of the UMTS network. The 

three subsystems are connected together with various interfaces. The Iu interface 

connects the CN and the UTRAN in the UMTS network. The Cu interface is an electrical 

interface between the USIM and the ME. The Uu interface is a wideband radio interface, 

through which the UE accesses the UTRAN. Iur interface links two RNCs and permits 

soft handover between RNCs. The Iub interface connects a Node B to the RNC. Thus, we 

can see clearly that we mainly study the QoS performances in the UTRAN and the Uu air 

interface is our subject of interest.  

Through the Uu air interface, WCDMA is chosen as the multiple access technology 

of the UTRAN. In the next section, we introduce the characteristics of the WCDMA 

technology. 

2.2 Wideband CDMA Air Interface 

As a subsystem of the UMTS network, the UTRAN is responsible for wireless access 

and the radio resource management in the UMTS network. The UTRAN encompasses 

two modes: Frequency Division Duplex (FDD) and Time Division Duplex (TDD). In the 

FDD mode, the uplink and the downlink use separate frequency bands and wideband 
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CDMA is selected as the radio access technology. In the TDD mode, both the uplink and 

the downlink use the same frequency band and TD/CDMA is selected as the radio access 

technology. In this thesis, all our studies are based on the FDD mode and the WCDMA 

technology. In the following, we will introduce the principles of WCDMA in four aspects. 

2.2.1 WCDMA Basic Concept 

WCDMA is a wideband Direct Sequence Code Multiple Access (DS-CDMA) 

technology. It is proposed as the multiple access technology in the FDD mode of the 

UTRAN system. 

In comparison with the general DS-CDMA systems that have been deployed in the 

second generation systems, such as IS-95A/B, WCDMA is characterized by a wide 

bandwidth of 5 MHz and a constant high chip rate of 3.84 Mcps. The wideband 

frequency is chosen because it can provide a high data rate of 144 kbps to 384 kbps and 

even 2 Mbps in good conditions. The wide bandwidth of the spread spectrum system 

resolves more multipaths problems and thus improves the system performance. In 

addition, the WCDMA features also include a fast power control in both the uplink and 

the downlink and the capability to vary the data rates and the system parameters during 

the connection time of a service.  

2.2.2 Spreading and Scrambling 

Spreading and scrambling are two important procedures in the WCDMA system. In 

the uplink of the WCDMA system, before the information data is transmitted out from 

mobile users, it must be multiplied with both the spreading codes and the scrambling 

codes. Within a mobile user, a service can be transmitted through a Dedicated Channel 
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(DCH), which is identified by a spreading code. Spreading codes with various spreading 

gains can enable different data rates and separate different DCHs. The chip rate of all 

DCHs is the same through the spreading and is equal to 3.84 Mcps. The signal bandwidth 

is extended to 5 MHz. Next, all services from the same mobile user are multiplied by a 

common code that is called the scrambling code. This process is named as scrambling. 

The scrambling does not change the bit rate of each service and does not increase the 

transmission bandwidth. The usage of the scrambling is to separate different mobile users 

in the uplink. 

Similarly, all services in the downlink also experience both the spreading and the 

scrambling. The spreading provides multiple choices of the data rates for services. All 

services from the same base station are multiplied by a common scrambling code. 

Different from the usage in the uplink, the usage of the scrambling in the downlink is to 

separate signals from different base stations. The spreading and the scrambling are 

illustrated in Figure 2.2.   

Bit Rate Chip Rate Chip Rate

Channelization
Code

Scrambling
Code

Information Data

 

Figure 2.2 Spreading and Scrambling 

The input signals must be correlated with replicas of both the spreading codes and the 

scrambling codes to obtain the desired data information at the receiver of a base station or 

a mobile user.  
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According to [1], the spreading codes in the WCDMA system are based on 

Orthogonal Variable Spreading Factor (OVSF) technique in both the uplink and the 

downlink. The scrambling codes can be a kind of long code that is called the Gold code.  

2.2.3 Modulation and Channel Coding 

A modulation scheme defines how the data bits are mixed with the carrier signals, 

which is usually a sine wave.  Generally, there are three basic ways to modulate a carrier 

signal in a digital sense. They are amplitude shift keying (ASK), frequency shift keying 

(FSK), and phase shift keying (PSK). The Quadrature Phase Shift Keying (QPSK) 

modulation is adopted in the WCDMA system. 

As the wireless transmissions are unreliable, the channel coding is usually 

implemented for a service that is sensitive to errors. The channeling coding is a method 

of adding redundancy to the information signals. The channel coding is to improve the 

quality of reliable communications. When the packets are transmitted over a noisy 

channel to the destination, errors can be checked and corrected through channel coding. 

In [33], two types of channel coding methods are defined for services. The first is 

convolutional coding. The coding gain is selected as either 1
2

 or 1
3

. The other type of 

coding method is Turbo coding. Its coding gain is fixed at 1
3

.  

2.2.4 Radio Resource Management  

Radio Resource Management (RRM) is responsible for the utilization of all radio 

resources in the WCDMA system. The aim of RRM is to guarantee the QoS of each 

service in the system as well as offering high capacity in networks. The functions of 
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RRM cover call admission control (CAC), power control (PC), load control (LC) and 

scheduling. 

The network is supposed to provide a high system capacity and to satisfy the QoS 

requirements of all services in the WCDMA system.  The QoS performances are regarded 

as the criteria for CAC. Therefore, the call admission control is required to determine 

admission of a new call based on QoS satisfactions. An efficient CAC scheme has to 

admit as many mobile users as possible and to guarantee their QoS performances 

simultaneously.  

The performances of the WCDMA system are directly associated with the power 

levels of all mobile users in the system. Therefore, an efficient power control method 

needs to be deployed. The power information of all mobile users should be exchanged 

between users and base stations quickly and the power levels should be adjusted 

dynamically.  

Besides, RRM also includes other areas, such as scheduling, load control (LC). 

Detailed descriptions of these areas are available in [34]. 

2.3 UMTS QoS Class  

Future modern telecommunication networks, such as UMTS, are expected to support 

a wide variety of multimedia services including speech, audio, video, image, text, and 

data. For each multimedia service, the user must specify a set of parameters to 

characterize its service performances that the network is able to provide over the duration 

of the connection. Such parameters are called the Quality of Service (QoS) attributes and 

they quantify the end-to-end network performance for a specific service. Therefore, a 
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major issue in deploying the UMTS network is to guarantee QoS requirements for all 

services simultaneously. 

According to the definition of 3GPP, the network services are based on end-to-end 

connections. A communication is established from an end user to another end user across 

the UE, UTRAN, CN and external networks. An end user may have a certain QoS 

requirements. Based on [1] and [12], the network establishes a bearer service with clearly 

defined characteristics and functionalities for two end users in order to satisfy the 

required QoS levels. A bearer service refers to a basic telecommunication service that 

offers the transmission capability of signals between two end users. A bearer service can 

either be packet-switched or circuit-switched. Its characteristics include the traffic type, 

the transmission information and the supported bit rate. A bearer service covers all 

aspects that are related to the provisioning of QoS. These aspects consist of the signaling 

and the QoS management functionality, etc. 3GPP proposes the architecture of a bearer 

service that can be shown as a tree structure as follows [1]. 
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UMTS Bearer Service External Bearer Service

Radio Access Bearer
Service

Core Network Bearer
Service

Radio Bearer
Service

Iu Bearer
Service

 

Figure 2.3 Architecture of a Bearer Service 
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Multiple sub-bearers may jointly complete the functions of an end-to-end bearer 

service, as illustrated in Figure 2.3. The sub-bearers include the Terminal 

Equipment/Mobile Terminal (TE/MT) local bearer service, the UMTS bearer service and 

external bearer services. Each sub-bearer is responsible for different parts of an end-to-

end network. Since we are studying the QoS performances in the UMTS network, our 

interests are focused on the UMTS bearer service. 

A UMTS bearer service is further composed of two parts: radio access bearer service 

and core network bearer service. The radio access bearer service is based on the radio 

access interface and provides the transport of signaling and the user data between mobile 

users and the UTRAN with adequate QoS levels. The core network bearer service refers 

to the service in the wireline channel of the UMTS network and connects the core 

network with external network with the required QoS constraints.  

In [12], the UMTS QoS classes are defined for all kinds of UMTS bearer services. A 

framework of four traffic classes is established for all UMTS bearer services. The four 

traffic classes are named as conversational class, streaming class, interactive class and 

background class. The characteristics of each class are described in the following [12]. 

2.3.1 Basic Classes 

1. Conversational Class 

The conversational class includes bi-directional, symmetric and real-time services. 

A typical example of this class is telephony voice. With the advent of Internet 

services and IP networks, voice over IP (VoIP) and video conferencing are also 

covered by this class. Real-time services are characterized by a low transfer time 
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of a packet. The maximum transfer delay bound is strictly restricted. Failure to 

satisfy such a bound results in an unacceptable quality.  

2. Streaming Class 

The real-time video service is known as a typical application of this class. It is a 

unidirectional and asymmetric service. The receiver can present a video service to 

a user during the period of transmission. Additionally, the streaming class 

requires a looser transfer delay than that of the conversational class and a limited 

level of packet loss rate. 

3. Interactive Class 

The interactive class is a kind of best effort class and usually refers to the case 

that a user is retrieving data from a remote host. Examples of this class can be 

web- browsing, data retrieval and server access. The interactive class is highly 

asymmetric. Only one direction is used to transmit traffic and the other direction 

is mostly used for signaling. As a non-real-time traffic, the interactive class is not 

sensitive to delay, while it tolerates fewer transmission errors and a lower packet 

loss rate than those from real-time classes.  

4. Background Class 

The background class is also a kind of best effort class and consists of services 

that do not have any precise delay requirements. It is also a non-real-time traffic 

and does not expect to obtain data within a certain time. Similar to the interactive 

class, the background class is very asymmetric. Email, SMS, Multimedia 

Messaging Service (MMS), facsimile and download of files are typical examples 
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of this class. In contrast to other classes, the background class requires the lowest 

packet loss rate during transmission. 

In general, these four classes are distinguished based on their different delay and 

packet loss requirements. The above classes are listed from the most delay-sensitive 

services to the least delay-sensitive services. The conversational class and the streaming 

class are usually regarded as real-time services, which require stringent transfer delay. 

The interactive class and the background class are considered as non-real-time services, 

which have no delay constraints but require strictly low packet loss rates. 

2.3.2 QoS Attributes 

The QoS attributes of a UMTS bearer service describe the QoS parameters provided 

by the UMTS system to the user of the UMTS bearer service. A UE can request specific 

QoS attributes from the network at the establishment of a UMTS bearer service. The QoS 

attributes determine the constraints for all QoS classes. In this thesis, the main QoS 

attributes include BER, delay and packet loss rate of each class. In [12], an introduction 

of the QoS attributes of the four QoS classes is given in greater details. 

2.4 Traffic Models 

In the previous sections, four QoS classes are presented. In order to analyze the QoS 

performances of each class mathematically, traffic models are required to be established 

to characterize these classes. This section deals with the traffic modeling problem. Traffic 

modeling constitutes the important step towards understanding and solving QoS-related 

issues in the UMTS network. The central idea of traffic modeling is to construct 

appropriate traffic models that describe important statistical properties of different classes. 
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Traffic models also influence multiple access control method and resource allocation 

method in the network. As introduced in section 2.3, QoS classes in the UMTS network 

are classified as conversational class, streaming class, interactive class and background 

class. In our analyses, voice, video, web browsing, data services respectively are chosen 

as their typical representatives. In this section, the traffic models are presented and 

analyzed.  

2.4.1 Voice Model 

According to [20], a voice service is usually modeled as an exponential 

on/exponential off process. Packets are transmitted at a fixed rate during the on state, 

while no packet is transmitted during the off state. The Markov chain for such a source is 

illustrated as Figure 2.4.  

off on

1α

1β  

Figure 2.4 Traffic Model of a Voice Service 

1α  means the transition rate from the off state to the on state and 1β means the transition            

rate from the on state to the off state. Let the activity factor, which is the probability that 

a voice service is in the on state, be 1onp  and the following holds. 

                                                            1
1

1 1
onp α

α β
=

+
                                                      (2.1)             
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A single spreading code is assumed to be assigned to a voice service during the on 

period and is assumed to be withdrawn by the base station during the off period in the 

WCDMA system. 

2.4.2 Video Model 

Video is a continuous variable bit rate (VBR) traffic and its rate varies over time. In 

[13], Maglaris proposes a one-dimensional Markov chain to describe a video service. 

According to [13], a video source can be approximated by a number of identical 

exponential on/off minisources. However, this model is usually suitable for a video 

service with a low data rate. In [14], Sen improves the traffic model proposed in [13]. In 

[14], the data rate of video traffic is approximated by the combination of multiple 

identical low-bit-rate on/off minisources and a high-bit-rate on/off minisource. The low-

bit-rate on/off minisources have the same activity factors, which is different from the 

activity factor of the high-bit-rate on/off minisource. As given in [14], a 2-dimensional 

Markov chain is established to approximate the variation of the bit rate as follows.  

. . . (0,M)(0,1)(0,0)

(1,M)(1,1)(1,0)

λ µ µ µλλ

Mα ( 1)M α− α

α( 1)M α−Mα

M β

M β2β

2β

β

β

. . .

 

Figure 2.5 Traffic Model of Video Services 
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Based on Figure 2.3, a number of spreading codes, including one high-bit-rate 

spreading code and M low-bit-rate spreading codes, are assumed to be assigned to a video 

service to satisfy its varying rate requirements in the WCDMA system. When the 

instantaneous bit rate is varying, the number of the required spreading codes is varying 

too. Each low-bit-rate on/off minisource is identified by a low-bit-rate spreading code 

and the high-bit-rate on/off minisource is identified by a high-bit-rate spreading code. 

A low-bit-rate on/off minisource can be modeled as an exponential on/exponential off 

process as shown in Figure 2.6. 

off on

α

β
 

Figure 2.6 Low-bit-rate on/off Minisource of a Video Service 

Let α denote the transition rate from the off state to the on state and let β denote the 

transition rate from the on state to the off state. So the activity factor 2on lp  of a low-bit-

rate on/off minisource is given by equation (2.2).  

            2on lp α
α β

=
+

                                                       (2.2) 

The high-bit-rate on/off minisource can be also modeled as an exponential on/ 

exponential off process as illustrated in Figure 2.7.  
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off on
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µ
 

Figure 2.7 High-bit-rate on/off Minisource of a Video Service 

        Let λ denote the transition rate from the off state to the on state and let µ  denote the 

transition rate from the on state to the off state. So the activity factor 2on hp  of the high-

bit-rate on/off minisource is given by equation (2.3). 

                                                            2on hp λ
λ µ

=
+

                                                       (2.3) 

       Based on the Markov chain in Figure 2.4, suppose that the bit rate state (i, j) indicates 

a bit rate level in which a video service uses j low-bit-rate spreading codes and i high-bit-

rate spreading codes, then the state probability at (i, j) can be expressed as ,i jp .   

1
,

1
( ) (1 ) ( ) (1 )i i j M j

i j

M
p

i j
λ λ α α

λ µ λ µ α β α β
− −   

= − −   + + + +   
                   (2.4) 

2.4.3 Web-Browsing Model 

 Web-browsing is a kind of non-real-time service. According to [68], one web-

browsing service can be modeled as a Pareto on/Pareto off process. Packets are 

transmitted at a fixed rate during the on state, while no packet is transmitted during the 

off state. The on/off process is not Markovian, as the on and off periods are Pareto-

distributed. However, its states and transition rates can be approximately illustrated in 

Figure 2.8. 
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Figure 2.8 Traffic Model of Web-browsing Services 

Let 3α  denote the transition rate from the off state to the on state and let 3β  denote the 

transition rate from the on state to the off state, respectively. For a Pareto on/ Pareto off 

source, the lengths of its on and off states are denoted by 3ont  and 3offt , respectively. The 

probability density function of 3ont  is denoted by 3( )f t  and the mean of 3ont  is denoted by 

3[ ]onE t , which are given by equations (2.5) and (2.6), respectively [19].  

                                          3 3 1
3 3

,on ,onc c
,on 3,on 3,onf ( t ) c a t , t a− −= ≥ ,                                   (2.5) 

where 3,onc is the shape parameter and 3,ona  is the location parameter. 

          3, 3,
3

3 3,

1[ ]
-1

on on
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c a
E t

c
= =

β
                                          (2.6)                 

The length of its off state is denoted by 3offt . We assume that the probability density 

function and the mean of 3offt  are given by 

                                             3 3 1
3 3

,off ,offc c
,off 3,off 3,offg ( t ) c a t , t a− −= ≥ ,                            (2.7) 

where 3,offc is the shape parameter and 3,offa  is the location parameter, 

and                                                     3, 3,
3

3 3,

1[ ]
-1

off off
off

off

c a
E t

c
= =

β
                                       (2.8)                 

       The activity factor of a web-browsing service is denoted by 3onp  and is given by 
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Just like voice services, a single spreading code is assigned to a web-browsing service 

during its on state and is withdrawn during its off state in the WCDMA system. 

2.4.4 Data Model 

Data is also a kind of non-real-time service. Similar to a web-browsing service, one 

data service is modeled as a Pareto on/Pareto off process. The on/off process of data 

service is not Markovian and can be approximately as shown in Figure 2.9.  

off on

4α

4β  

Figure 2.9 Traffic Model of Data Services 

Let 4α  denote the transition rate from the off state to the on state and let 4β  denote the 

transition rate from the on state to the off state, respectively. For a Pareto on/Pareto off 

source, the lengths of its on and off states are denoted by 4ont  and 4offt . The probability 

density function and mean of 4ont  are denoted by 4 ( )f t  and 4[ ]onE t , which are given by 

equation (2.10), and (2.11), respectively [19]. 

    4, 4,- -1
4 4, 4, 4,( ) ,  on onc c

on on onf t c a t t a= ≥                               (2.10) 

where 4,onc  is the shape parameter and 4,ona  is the location parameter. 
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                                      (2.11) 



Chapter 2.  UMTS Networks and QoS Architecture___________________________ 28

The length of its off state is denoted by 4offt . We assume that the probability density 

function and the mean of 4offt  are given by 

        4, 4,- -1
4 4, 4, 4,( ) ,  off offc c

off off offf t c a t t a= ≥                         (2.12) 

where 4,offc  and 4,offa  are the shape parameter and location parameter, 

and                                                     4, 4,
4

4 4,

1[ ]
-1

off off
on

off

c a
E t

c
= =

β
                                     (2.13) 

The activity factor 4onp  of data service is expressed as follows. 
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                                      (2.14) 

Similar to voice and web-browsing service, a single spreading code is assumed to be 

assigned to a data service during its on state and is withdrawn by the base station during 

its off state. 

In summary, the traffic models of all service classes used in this thesis are given. 

Exponential on/exponential off process and two-dimensional Markov chain are used to 

model the voice and video traffic, respectively. These two models are adopted by many 

existing works, such as [14], [20] and [22]. For web-browsing and data, we adopt Pareto 

on/Pareto off model, which is proposed in [68]. Pareto on/Pareto off model is regarded as 

more realistic than exponential on/exponential off model in approximating the statistics 

of web-browsing and data, because these two services have a heavy-tailed probability 

density function for its on and off periods. In the next few chapters, we will obtain the 

QoS attributes using this more realistic traffic model. 
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2.5 Conclusion 

We generalize the UMTS network architecture and the main characteristics of the 

WCDMA technology in this chapter. At the same time, this chapter gives an introduction 

of the QoS architecture in the UMTS network. According to four different QoS traffic 

classes, we select typical applications for these classes and define appropriate traffic 

models for each of them. We will analyze QoS performances based on these traffic 

classes in the following chapters. 
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Chapter 3 

Analysis of Go-Back-N ARQ 

Packets are transmitted from mobile users to base stations over the wireless 

channels in the uplink of a WCDMA system. In contrast to wireline communications, 

wireless communications are not reliable and are prone to fluctuations of the channel 

conditions. Multiple access interference (MAI) deteriorates the packet transmissions 

and destroys the packets in the WCDMA system, even if ideal power control is used 

in the system. The information bits within a packet may become erroneous during the 

transmissions due to MAI. A specific level of bit error rate (BER) requirement is 

defined in 3GPP technical specification [12]. When the achieved BER within a packet 

is above the required level, the corresponding packet is considered as erroneous. With 

regard to the four traffic classes presented in Chapter 2, their erroneous packets are 

treated differently. The base station first checks whether the received packets are 

correct or erroneous in the uplink of a WCDMA system. For real-time classes, such as 

the conversational class and the streaming class, the correct packets are forwarded 

from the base station to their destinations, while the erroneous packets are discarded 

directly as packet loss. Due to the delay-sensitive constraint of real-time classes, no 

automatic retransmission request (ARQ) mechanism is initiated in case of errors. 

Mobile users merely transmit packets to the base stations one by one in an orderly 

manner. Forward Error correction (FEC) schemes are appropriate for real-time traffic. 

However, for non-real-time classes, such as the interactive and the background classes, 

the operations are more complicated. Since non-real-time classes are non-delay-
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sensitive and require much more stringent packet loss rate constraints, an appropriate 

ARQ mechanism is necessary for them. It is necessary that each transmitted packet of 

a non-real-time class is acknowledged by the base station. The erroneous packets are 

required to be retransmitted, which results in the reduction of the packet loss rates. 

There are three main ARQ schemes in a general telecommunication network. 

They are the Stop-and-Wait (SW) ARQ, Go-Back-N (GBN) ARQ and Selective 

Repeat (SR) ARQ, respectively. Stop-and-Wait ARQ is a kind of discontinuous 

retransmission mechanism used for a half-duplex operation. A newly arrived packet is 

transmitted from the sender to the receiver only after its previous packets have been 

positively acknowledged. In [37-39], a detailed description and analysis for Stop-and-

Wait ARQ method is given. The other two methods, Go-Back-N ARQ and Selective 

Repeat ARQ are categorized into the continuous retransmission mechanism for a full-

duplex operation. The difference between them and Stop-and-Wait ARQ is that the 

packet transmissions and the acknowledgement transmissions proceed simultaneously 

with continuous ARQ methods. The sender does not need to receive an 

acknowledgement of a packet before it transmits the subsequent packets. In [16-18, 

40-41], the performances of GBN systems are discussed. General packet arrival and 

Poisson arrival are assumed in [16-18, 40] and [41], respectively. All these papers 

assume that an infinite buffer is used. References [42-44] deal with the performances 

of SR ARQ. In [42-44], it is assumed that finite buffers are used and general packet 

arrival is considered. If we compare GBN ARQ with SR ARQ, GBN ARQ requires 

that both the particular erroneous packet and all its subsequent packets are 

retransmitted, while SR ARQ only requires the erroneous packet to be retransmitted. 

Obviously, Stop-and-Wait ARQ is the simplest among the above three methods 

but it is most inefficient for communication networks. Selective Repeat ARQ is most 
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efficient but is very complicated. In this thesis, we implement Go-Back-N ARQ 

method for non-real-time classes, such as the interactive and background classes, in 

the WCDMA system. 

In the subsequent sections of this chapter, the performances of Go-Back-N ARQ 

are analyzed mathematically with some assumptions and constraints. Section 3.1 

explains the principles of Go-Back-N ARQ and applies the GBN ARQ to a Pareto 

on/Pareto off process. Section 3.2 analyzes the lengthened activity factor of the non-

real-time on/off traffic in the Go-back-N ARQ system. Section 3.3 analyzes the 

packet loss rate performance of the Pareto on/Pareto off traffic in the Go-back-N 

ARQ system. Section 3.4 deals with the average delay performance of the Pareto 

on/Pareto off traffic in the Go-Back-N system. Section 3.5 makes some discussion on 

the analytical work. Finally, section 3.6 concludes this chapter. 

3.1 Go-Back-N ARQ Introduction 

Go-Back-N (GBN) ARQ is a kind of continuous ARQ method and error control 

mechanism employed in the data communication networks. In a WCDMA system, 

due to the nature of non-real-time traffic and the requirement of high reliability, the 

interactive and background classes are implemented with GBN ARQ. Compared to 

the other ARQ methods, GBN is particularly attractive because of its simplicity and 

efficiency. It enables the newly arrived packets to be sent continuously regardless of 

the acknowledgements of the previous packets. When a negative acknowledgement is 

received by the sender, both the corresponding packet and its subsequent packets are 

continuously retransmitted. The operation of GBN ARQ can be explained jointly 

through the operation of the mobile users (the senders) and the base stations (the 

receivers) as follows. 



Chapter 3.  Analysis of Go-back-NARQ___________________________________ 33

At the sender, a finite buffer is equipped to accommodate the newly arrived 

packets. The sender transmits the packet at the head of the buffer to the receiver over 

the WCDMA channel. Before the sender obtains an acknowledgement of that packet 

from the receiver, the subsequent packets are sent out sequentially. The receiver sends 

a positive or negative acknowledgement back to the sender for each packet. If a 

positive acknowledgement (ACK) is sent back, the sender realizes a particular packet 

is correctly received and thus removes that packet from the head of the buffer. The 

next packet will occupy this position. If a negative acknowledgement (NACK) is sent 

back, both the particular packet and all its subsequent packets are retransmitted 

sequentially. A maximum number of retransmissions is defined for any erroneous 

packet. When a packet is retransmitted for the maximum times and is still erroneous, 

it is removed from the buffer and discarded. All packets are served with the First 

Come First Serve (FCFS) policy in the buffer.   

An ACK is returned to the sender at the receiver in the case of correct 

transmissions. If an erroneous packet is received, the receiver sends a NACK to the 

sender and requires the sender to retransmit the relevant packets. The receiver 

guarantees that the NACK is not sent for more than the maximum number of 

retransmissions for a particular packet. The Go-Back-N ARQ method is illustrated in 

Figure 3.1. 



Chapter 3.  Analysis of Go-back-NARQ___________________________________ 34

1 432 4654343 5465 6 5 62 2

1st Retransmission of
packet 2

...
.

Solid Line: ACK
Dash Line: NACK

Mth Retransmission of
packet 2

.... Mobile Station
(Sender)

Base Station
(Receiver)

1st Retransmission of
packet 4

3rd Retransmission of
packet 4

1 2

Accepted

Discarded

2

Discarded

3

Accepted

4

Discarded

4

 

Figure 3.1 Go-Back-N ARQ Illustrations 

Non-real-time classes, such as the interactive and background classes, are both 

modeled as Pareto on/Pareto off processes in the UMTS network. As we have 

discussed in Chapter 2, Pareto on/Pareto off process is a kind of on/off process in 

which the length of the on and off period are Pareto distributed. The source traffic 

alternates between the on state and the off state. Packets are generated continuously in 

the on state, while no packet is generated in the off state. In order to be transmitted 

into the channel, the packets from a non-real-time service are first stored in a finite 

buffer. Then, each packet in the buffer is sent to a WCDMA channel. The 

transmission operation of all packets fulfills the Go-Back-N ARQ method. Since the 

GBN ARQ is a continuous ARQ, the traffic is still an on/off process in the WCDMA 

channel. However, due to the retransmissions of the packets during the on period, the 

length of the on period in the WCDMA channel is longer than that of the on period in 

the source traffic. The procedure can be illustrated in Figure 3.2. 
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Figure 3.2 Lengthening of on Period in WCDMA Channel 

According to Figure 3.2, the traffic in the WCDMA channel is still an on/off 

process but the on period is lengthened due to the retransmissions. Accordingly, the 

Pareto distributed off period is reduced, since the summation of average on period and 

average off period is unchanged. Thus, the lengthened on period results in a 

lengthened activity factor in the WCDMA channel.  

The buffer will overflow if there are many retransmissions, as a finite buffer is 

used for each non-real-time service. The buffer overflow results in packet loss. 

Besides this buffer overflow, the packets that are unsuccessfully retransmitted up to 

the maximum times are also discarded as packet loss. Thus, a non-real-time service 

may experience packet loss from both buffer overflow and erroneous transmissions in 

the WCDMA channel. With regard to delay, any newly arrived packet experiences 

queuing time, transmission time, retransmission time and acknowledgement time 

from its arrival to its removal from buffer. The period between the arrival of a packet 

and the removal of the packet is referred to as the delay of a particular packet.  

In the following sections, we will discuss the lengthened activity factor in 

WCDMA channel, the packet loss rate and the average delay. First, we list out all 

necessary assumptions and system parameters before proceeding with further analysis. 

Assumptions 

1. All ACK/NACK messages are correctly received by the sender. 
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2. The buffer at the receiver is finite. The buffer size in terms of packets is no less 

than the number of packets that can be transmitted in the acknowledgement time. 

This is because this assumption can guarantee that a non-real-time service is still 

an on/off traffic in the WCDMA channel. If this assumption is not satisfied, the 

transmission of the on state in the WCDMA channel will become discontinuous 

and thus the traffic will not be an on/off process any more in the channel. 

3. The off period is long enough that the buffer is empty with the arrival of each new 

on period. This assumption is critical for our analysis in this chapter. In section 

3.5, this assumption will be explained in greater details.  

System Parameters 

1. The buffer size is B in terms of number of packets. 

2. Each on period contains l packets and l is a random variable. 

3. Packet error probability is defined as rep  . rep  indicates the probability that a 

packet becomes erroneous in the system. 

4. Let the maximum number of retransmissions be reM .  

5. Suppose the on state in source traffic is denoted by ont  and the off period in source 

traffic is denoted by offt . The activity factor in the source traffic is denoted by onp . 

6. Suppose the on period in the WCDMA channel is denoted by ,on ct and the off 

period in the WCDMA channel is denoted by ,off ct . The activity factor in the 

WCDMA channel is denoted by ,on cp . 

7. Each on period is made up of a number of packets with the same size. Suppose the 

packets are generated continuously during the on period and thus there is no 

overlapping interval between two consecutive packets. The packet duration is 

denoted as T . 
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8.  When a packet is transmitted from a mobile user to the base station, the sender 

needs to wait for an acknowledgement from the receiver. Suppose the 

acknowledgement is aT . Assume that the ratio of aT  to T  is an integer s. (e.g., 

aTs
T

= ). According to the second assumption, B s≥  holds. 

9. If there are l packets during an on period, then let the overflowed packets be 

( )ofN l , which is a random variable related to l. 

10. The probability density function (PDF) of ont  and offt  are given by 

- -1( ) ,  0on onc c
on on on on on onf t c a t t a= ≥ >  and - -1( ) ,  0off offc c

off off off off off offf t c a t t a= ≥ > . 

The cumulative distribution function (CDF) of ont  and offt  are given by 

( ) 1 on onc c
on on onF t a t −= −  and ( ) 1 off offc c

off off offF t a t −= − . Thus, [ ]onE t  is 
1

on on

on

c a
c −

 and 

[ ]offE t  is 
1

off off

off

c a
c −

. In the following, its PDF and CDF are shown in Figures 3.3 and 

3.4, respectively.                        
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Figure 3.3 Probability Density Function of Pareto Distribution (a=0.5, c=1.1) 
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Figure 3.4 Cumulative Distribution Function of Pareto Distribution (a=0.5, c=1.1) 

3.2 Analysis of the Lengthened Activity Factor 

If the GBN ARQ is implemented for a Pareto on/Pareto off traffic, the average on 

period in the WCDMA channel will be lengthened. Packets are generated and then 

queued into the buffer sequentially. Since the buffer size is finite, the buffer may be 

full when a new packet arrives. In this case, the newly arrived packet is not 

transmitted into the WCDMA channel at all and is dropped directly as an overflowed 

packet. For those packets that enter the buffer, each packet in the buffer is 

continuously transmitted until it is correctly received or it is unsuccessfully 

retransmitted for reM  times. Thus, it is clear that the on period in the WCDMA 

channel is only influenced by those packets that enter buffer and are transmitted in the 

channel. Thus, the lengthened on period should be a function of the packet error 

probability rep , the buffer size B, the maximum number of retransmissions reM  and 

( ( )ofl-N l ). 
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Let k be equal to ( )ofl-N l . Thus, ,k ( )k l≤ , is a random variable and denotes the 

number of packets that can be transmitted into the channel within an on period, if 

there are l packets during this on period. As the packets are transmitted sequentially in 

the GBN ARQ system, the packets in the buffer are transmitted in the channel 

according to the arriving sequences. Suppose among the k packets in the on period, 

the retransmission number of the ith ( 1 i k≤ ≤ ) packet is denoted by im  

( 0 i rem M≤ ≤ ). im  is a random variable and is associated with the packet error 

probability rep . For each packet, im  is independent and has the same distribution as 

follows. 
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                        (3.1) 

The above equation (3.1) is straightforward for n=1, 2, …, 1reM − .  In the last 

expression of equation (3.1), (1 ) reM
re rep p−  denotes the probability that this packet is 

successfully transmitted in the last retransmission, while 1reM
rep +  denotes the 

probability that this packet is unsuccessfully retransmitted for all the reM  

retransmissions and the packet is discarded by the system. With equation (3.1), the 

mean of retransmissions for the ith is given by    
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Based on the GBN ARQ, the retransmissions of an erroneous packet not only 

influence the corresponding packet, but also result in the retransmissions of its 

succeeding packets during the period of the acknowledgement time. As stated in the 

system parameters, the acknowledgement time in the GBN ARQ system is supposed 

to be equal to the length of s packets. That is, an unsuccessful transmission may cause 

the corresponding packet and the succeeding s packets to be retransmitted. Before all 

previous packets in the buffer have been transmitted, the newly arrived packets have 

to be stored and queued in the buffer. Figure 3.5 shows the operation of the packet 

arrivals, the packet transmissions and the packet removals during an on period.  

1 132 54343213

1+s

Transmission
time of packet 1

Transmission time of
packet 2

Transmission time of
packet 3

546

Transmission time of
packet 4

6

Transmission time of
packet 5

Transmission Beginning time of packet
1 2 3                4         5     6                7

Transmission time of
packet 6

2

s

2 3 4 5 54 6 7 5 6 7 k6 7 8

Solid Arrow        :ACK
Dashed Arrow        :NACK

......

 

Figure 3.5 Packet Transmission Operations in the Go-Back-N ARQ System 

In Figure 3.5, the packets that are transmitted in the WCDMA channel are 

numbered from 1 to k according to their sequence of entering the buffer. The 

lengthened on period in the WCDMA channel is equal to the interval between the 

beginning transmission time of the first packet and the finishing transmission time of 

the kth packet.  
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From Figure 3.5, the acknowledgement time aT  is equal to sT. Among all the k 

packets in an on period, the beginning transmission time of the first 1+s packets are 

the same as their arrival times. For example, if the arrival time of the first packet is 

arrivalt , the beginning transmission time of the first packet is also arrivalt . The beginning 

transmission time of the second packet is arrivalt T+ . The beginning transmission time 

of the (1+s)th packet is arrivalt sT+ . From the (s+2)th packet and the succeeding 

packets, their beginning transmission times are determined by the retransmissions of 

all previous packets. For example, the beginning transmission time of the (s+2)th 

packet is 1{ [1 (1 )]}arrivalt s m s T+ + + + . The beginning transmission time of the (s+3)th 

is 1 2{ [1 (1 )] [1 (1 )]}arrivalt s m s m s T+ + + + + + + . Similarly, the beginning transmission 

time of the kth packet is 
1

1
{ [1 (1 )]}

k s

arrival q
q

t s m s T
− −

=

+ + + +∑ . 

Considering the first packet, its total retransmissions are caused by the 

unsuccessful retransmissions of itself and the retransmission number is expressed by 

1m . Thus, the total transmission time of the first packet is [1+ 1m (1+s)]T . For the 

second packet, its total retransmissions are caused by both itself and the first packet. 

Thus the total retransmission number is equal to 1+ 1m + 2m  and its total transmission 

time is 1 2[1 ( )(1 )]m m s T+ + + . For the (1+s)th packet, its total retransmissions are 

caused by both itself and its previous s packets. Thus the total retransmission number 

is equal to 
1

1

s

q
q

m
+

=
∑  and the total transmission time of the (1+s)th packet is 

1

1
[1 (1 )]

s

q
q

m s T
+

=

+ +∑ . Furthermore, for the (2+s)th packet and all the succeeding packet, 

their cases are similar to the (1+s)th packet. Similarly, the total retransmissions of the 

kth packet, ( )k l≤ , are determined by itself and its previous s packets. The total 
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retransmission number is equal to 
k

q
q k s

m
= −
∑  and thus its retransmission time is 

expressed as [1 (1 ) )]
k

q
q k s

s m T
= −

+ + ∑ .  

Suppose arrivalt  is the arrival time of the first packet during the on period. Suppose 

,begin it  denote the beginning transmission time of the ith packet during the on period. 

Suppose ,tr it  denote the total transmission time of the ith packet during the on period. 

In the following Table 3.1, we generalize ,begin it and ,tr it  for all k packets, ( )k l≤ , that 

are transmitted in the WCDMA channel during an on period.   

Table 3.1 Packet Beginning Transmission Time and Transmission Time in the 

WCDMA Channel 

 
The ith packet 

 
Beginning transmission time begin,it  

 
Transmission time ,tr it  

1 arrivalt  [1+(1+s)] (
1

1
q

q
m

=
∑ )]T  

2 arrivalt +T  [1+(1+s)(
2

1
q

q
m

=
∑ )]T  

. 

. 
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. 

. 

. 

. 

. 

. 

s+1 arrivalt + sT  [1+(1+s)(
1

1

s

q
q

m
+

=
∑ )] T  

s+2 arrivalt +{s+[1+ 1m (1+s)]}T  [1+(1+s)(
2

2

s

q
q

m
+

=
∑ )]T  

. 

. 

. 
 

. 

. 

. 

. 

. 

. 

k 
1

1
{ [1 (1 )]}

k s

arrival q
q

t s m s T
− −

=

+ + + +∑ . [1+(1 )( )]
k

q
q k s

s m T
= −

+ ∑  
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In Table 3.1, we give the beginning transmission time and the transmission time of 

each packet. We have assumed that if there are l packets during an on period of the 

source, k packets, ( )k l≤ , during the on period are transmitted in the WCDMA 

channel. Therefore, the lengthened on period can be formulated as a function of k. As 

Go-Back-N ARQ is a kind of continuous ARQ, it guarantees that the traffic in the 

channel is an on/off process. The lengthened on period in the WCDMA channel is the 

period from the beginning transmission time of the first packet to the finishing 

transmission time of the kth packet. 

Suppose ,finish it denote the finishing transmission time of the ith (1 i k≤ ≤ ) packet.  

,finish it  can be given by 

                                                       , , ,finish i begin i tr it t t= + .                                             (3.3)           

,finish it  is a finite variable. This is because ,begin it  ( 1 i k≤ ≤ ) is a finite value that 

denotes the beginning transmission time of ith packet in on period with l packets, and 

we assume a maximum number of retransmissions ( reM ), which makes ,tr it  also finite. 

The finishing transmission time of the kth packet is given by  

                                                   , , ,finish k begin k tr kt t t= +             (3.4) 

Accordingly, the lengthened on period in the WCDMA channel is defined as ,on ct , 

which is given as follows.    

                  

, , ,1

, , ,1

1

1

1

+[1+(1 ) ] { [1 (1 )]}

[ (1 )( )]

on c finish k begin

begin k tr k begin

k k s

arrival i i arrival
i k s i

k

i
i

t t t

t t t

t s m T s m s T t

k s m T

− −

= − =

=

= −

= + −

= + + + + + −

= + +

∑ ∑

∑

            (3.5) 
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As explained in section 3.1, the off period of the source traffic is Pareto distributed 

and independent of the on period. Thus, the distribution and average length of the off 

period in the WCDMA channel is reduced due to the lengthening of the on period. 

The summation of the on and of period in the WCDMA channel should be the same 

as the summation of the on and off periods in the source. Therefore, suppose that the 

off period in the WCDMA channel is defined as ,off ct . The following equation holds.                                 

                                            , ,[ ] [ ] [ ] [ ]on c off c on offE t E t E t E t+ = +                              (3.6) 

Thus, based on equations (3.5) and (3.6), the lengthened activity factor of the 

on/off process in the WCDMA channel is given by  

                                                ,
,

, ,

[ ]
[ ] [ ]

on c
on c

on c off c

E t
p

E t E t
=

+
.                                       (3.7)  

From equation (3.7), the lengthened activity factor in the WCDMA channel ,on cp  

is a function of k, ( )k l≤ , which is a random variable and is associated with the buffer 

size B, the packet error probability rep  and the maximum number of retransmissions 

reM . Clearly, in order to obtain ,on cp  with equations (3.57), it is necessary to calculate 

the mean of k, which is denoted by [ ]E k . 

Conditioned on that there are l packets in the on period, we assume that i packets 

have been removed from buffer when the lth packet arrives. If the ith ( 0 i k≤ ≤ ) 

packet finishes its transmission at ,finish it , According to Go-Back-N ARQ mechanism, 

it is removed from the buffer at ,removal it , which is given by 

                                                      , ,

,

removal i finish i a

finish i

t t T

t sT

= +

= +
                                               (3.8) 

Figure 3.6 illustrates the above procedures. 
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Figure 3.6 Packet Removal Operations in the Go-Back-N ARQ System 

As we assumed that i packets are removed from the buffer before the lth packet 

arrives, the following equations are satisfied based on equation (3.8) and Table 3.1. 

                           , ,
1

[ (1 ) ] ( 1)
i

removal i finish i q
q

t t sT i m s s T l T
=

= + = + + + ≤ −∑                     (3.9) 

                        
1

, 1 , 1
1

[ 1 (1 ) ] ( 1)
i

removal i finish i q
q

t t sT i m s s T l T
+

+ +
=

= + = + + + + ≥ −∑            (3.10)         

Because qm  ranges from zero to reM , the following equations (3.11) and (3.12) are 

satisfied, when qm  is equal to zero and reM , respectively. 

                                                     1i l s≤ − −                                                      (3.11) 

                                                1max{ 1,0}
1 (1 ) re

l si
s M

− −
≥ −

+ +
                                    (3.12) 

Therefore, the following equation (3.13) is derived to express the range of the variable 

i. 

                                   ( 1 )max{ 1,0} 1
1 (1 ) re

l s i l s
s M

− −
− ≤ ≤ − −

+ +
                            (3.13) 
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Among the i (1 i k≤ ≤ ) packets that have been removed from the buffer before the 

lth packet arrives, suppose j (1 j i≤ ≤ ) packets are correctly received by the receiver. 

Thus, i-j packets are unsuccessfully retransmitted for reM  times and are discarded by 

the receiver as packet loss. Therefore, the retransmission number ranges between 0 

and reM  for any correct packet, while the retransmission is obviously reM  for any 

discarded packet. Therefore, in the following we will present the possible range of j.       

From equation (3.9), the following two inequalities are obtained, when qm  of the j 

successful packets is equal to 0 and qm  of the (i-j) unsuccessful packets is equal to 

reM . 

( ) (1 ) 1rei i j M s s l
j i
+ − + + ≤ −

 ≤
 

Thus, the range of j is given by 

                                                  1
(1 ) re

l s ii j i
s M

− − −
− ≤ ≤

+
.                                        (3.14)  

      In the Go-Back-N ARQ system, the total number of transmissions of a particular 

packet is not only caused by itself but also caused by its previous s packets. For 

example, the total number of transmissions for the ith packet is equal to 1
i

q
q i s

m
= −

+ ∑ . 

The first
1i

q
q i s

m
−

= −
∑ transmissions are caused by the erroneous transmissions of its 

previous s packets ([16], [40], [41]) and the final 1 im+  transmissions are caused by 

the ith packet itself. Thus, the first
1i

q
q i s

m
−

= −
∑ transmissions of the ith packet do not 

influence whether the ith packet can be removed from the buffer or not. For the ith 

packet, only the final 1 im+ transmissions can determine whether it can be removed 
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from the buffer. Therefore, for all the i packets that are removed from the buffer 

before the lth arrives, the sum of transmissions of all the i packets, which are caused 

by themselves, is denoted by trn . With rearrangements of equation (3.9), trn is given 

by 

                                                
1

1(1 )
1

i

tr q
q

l s in m i
s=

− − −
= + ≤ +

+∑ .                             (3.15) 

      When the lth packet during the on period arrives, i packets have finished their 

transmissions and have been removed from the buffer, and the finite buffer can store a 

maximum of B packets. Then, l i B− − denotes the number of overflowed packets in 

all the l packets. 1 1(1 ) ( )re reM Mj i j
re re

i
p p

j
+ + − 

− 
 

denotes the probability that j packets are 

correctly received out of all the i removed packets before the lth packet during the on 

period arrives. (1 ) trn jtr j
re re

n
p p

j
− 

− 
 

denotes the probability that before the lth packet 

in the on period arrives, there are j correct transmissions in all the trn transmissions. 

     From equations (3.13), (3.14), and (3.15), the mean of ( )ofN l  in the on period is 

denoted by [ ( )]ofE N l  and can be formulated by 
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min min

max

min min

1 1

1 1
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tr re re

tr re re
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n j M Mtr j j i j

re re re re
i i j j

i i
n j M Mtr j j i j

re re re re
i i j j
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n i
p p p p max l i B

jj
n i

p p p p
jj

− + + −

= =

− + + −

= =

=

   
− − − −   

  
   

− −   
  

∑ ∑

∑ ∑

, (3.16)    

where 

 min
1max{ 1,0}

1 (1 ) re

l si
s M

− −
= −

+ +
, 

max 1i l s= − − , 
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and 

min
1

(1 ) re

l s ij i
s M

− − −
= −

+
. 

Furthermore, as the on period is Pareto distributed, the probability that an on 

period has l packet, denoted by ( )p l , is approximately given by. 

                                   
( 1) - -1( ) Pr{ } ,  on on
l T c c

on onlT
p l t lT c a t dt t a

+
= = = ≥∫                       (3.17)            

From equations (3.16) and (3.17), the mean of k, [ ]E k , is given by  

                                          
/

[ ] { ( )( [ ( )])}.
on

of
l a T

E k p l l E N l
∞

=

= −∑                                  (3.18)           

Therefore, the mean of the lengthened on period in the WCDMA channel can be 

formulated from equation (3.5) and (3.18), and is given by 

                            
1

,
/

( )(1 )[ ] { ( )[1 ] [ ] }
1

reM
re re

on c
l a T re

p p sE t p l E k T
p

+∞

=

− +
= +

−∑ .                   (3.19) 

Therefore, with the packet error probability as rep , the lengthened activity factor 

in the WCDMA channel, ,on cp , is formulated based on equations (3.7), (3.16), (3.18) 

and (3.19) and is given as follows. 

( )(1 ){ ( )[ ] [ ] }

[ ] [ ]

reM +1
re re

l=a/T re
on,c

on off

p -p +sp l 1+ E k T
1-pp =

E t + E t

∞

∑
 

In order to facilitate further analysis in subsequent chapters, based on equations 

(3.7) and (3.19), we simplify the lengthened activity factor in the WCDMA channel, 

,on cp , as a function, ( , , , , , , , , )a on on off off re reAfFun T T B c a c a p M , which is given by 

                                      , ( , , , , , , , , )on c a on on off off re rep AfFun T T B c a c a p M= .              (3.20) 
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3.3 Analysis of Packet Loss Rate 

      In the Go-Back-N system, the packet loss is due to two sources. The first source is 

unsuccessful retransmissions. If a packet is retransmitted for reM  times and is still 

erroneous, it is discarded as packet loss. The second source is the finite buffer 

overflow. As the Go-Back-N system implements a finite buffer, the arriving packets 

may be dropped, if the buffer becomes full during the transmissions. Therefore, the 

total packet loss is the sum of the unsuccessful packets and the overflowed packets. In 

the following, we first calculate the packet loss during the on period that contains l 

packets. As the length of the on period is Pareto distributed and l is a random variable, 

we next calculate the average packet loss rate over time by summing up all possible 

packet loss rates with the corresponding probabilities.  

Equation (3.16) gives the average number of overflowed packet, [ ( )]ofE N l , on the 

condition that the on period contains l packets and the packet error probability is rep . 

Then, the number of unsuccessful packets due to erroneous retransmissions is defined 

to be ( )errorN l . The mean of ( )errorN l is given by 

                                              1[ ( )] { [ ( )]} reM
error of reE N l l E N l p += − .                          (3.21)            

Therefore, with the packet error probability rep  and the on period containing l 

packets, the packet loss number is denoted by ( )lossN l . The mean of ( )lossN l  is given 

by  

[ ( )] [ ( )] [ ( )]loss error ofE N l E N l E N l= + .                          (3.22) 

Then, conditioned on that there are l packets in the on period, the packet loss rate is 

given by              

                                                        ( ) [ ( )] /loss lossP l E N l l= .                                     (3.23)      
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To derive the average packet loss rate over time, we need to sum up all 

probabilistic packet loss rates. According to equations (3.17) and (3.23), the average 

packet loss rate in the WCDMA channel is lossP , which is given by 

                                                
/

[ ( ) ( )]loss loss
l a T

P P l p l
∞

=

= ∑ .                                      (3.24) 

In order to facilitate the analysis in the subsequent chapters, we simplify the 

average packet loss rate in the WCDMA channel as a function, 

( , , , , , , , , )a on on off off re rePlossFun T T B c a c a p M , which is given by            

                                    ( , , , , , , , , )loss a on on off off re reP PlossFun T T B c a c a p M= .            (3.25)                      

3.4 Analysis of Delay 

In the Go-Back-N ARQ system, the packet delay is defined as the whole period 

between the arrival and the removal of a packet. Packet delay is further comprised of 

three parts: queuing delay, transmission delay and acknowledgement delay. Firstly, 

the queuing delay of a packet is due to the waiting period from the arrival time to the 

beginning transmission time of that packet. In the GBN ARQ system, when packets 

are generated, they are queued in the buffer and served on the FCFS policy. Secondly, 

the transmission delay of a packet refers to the period between the beginning 

transmission time and the finishing transmission time. According to our assumption, 

the transmission delay is restricted by the maximum number of retransmissions, reM . 

Thirdly, as a correctly transmitted packet has to wait for an additional aT  time to 

receive an ACK from the receiver before it can be removed from the buffer, the 

acknowledgement time, aT , is also part of the packet delay. The packet delay is 

illustrated in Figure 3.7. 
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Figure 3.7 Packet Delay Illustration in the WCDMA Channel 

In the assumptions in section 3.1, we assume that each new on period arrives with 

an empty buffer. If an on period contains l packets, the buffer length is increasing 

with the arrivals of these packets. The number of packets in the buffer may reach a 

maximum value during the on period in the WCDMA channel and stay at this state 

until the lth packet arrives. After the arrival of the lth packet, no new packet is 

generated in the on period. Thus, the number of packets in the buffer then decreases 

from the maximum value to zero. The on period in the WCDMA channel ends when 

all packets finishes transmissions. After that, the off period in the WCDMA channel 

starts. The buffer is empty from the removal of the last packet in the buffer until the 

arrival of the next on period. In each on/off cycles, the buffer length is varying 

similarly. Thus, we can investigate the number of packets in the buffer on conditioned 

on that there are l packets during an on period as follows. 
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                                                                                                                                 (3.26) 

In equation (3.26), ( | )lengthB t l  is the number of packets in the buffer if an on 

period has l packets. From (3.26), the mean of ( | )lengthB t l  over time can be expressed 

as ( )lengthB l
−

, which is given by 

( ) { { } { } { }

{ } [ ( )] { } [

removal,1 removal,2 removal,i

removal,1 removal,i-1

removal,i

t t t
-1 -(i-1)

T T T-

length
t tj=1 j= j= -(i-2)

T T
l-i-1

removal,i+1 remo

t
j= -(i-1)

T

B l E min j,B + min j,B +...... min j,B

t t
+ min j,B + - l-1 min k-i,B

T

=

+

∑ ∑ ∑

∑ ] { ( ) }

{ }[ ] { }( ) ( )}, (3.27)

val,i+2 removal,i+1

on,c off,cremoval,k-1 removal,k-2 removal,k removal,k-1

t
min k- i+1 ,B

T

t +tt -t t -t
+......+min 2,B +min 1,B /      

T T T

−

which can be solved with equation (3.8) and Table 3.1.             
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     Furthermore, if the on period has l packets, the average arrival rate is assumed to 

be ( )lλ . 
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 Based on equation (3.28), the average packet arrival over the time, denoted by λ , 

is given by 

                                                      
/
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l p lλ λ
∞

=
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Similarly, the average buffer length B over the time is based on equation (3.27) 

and is roughly given by 

                                               
/
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l a T

B B l p l
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=
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According to Little’s theory, the average delay of a packet, D, can be obtained by 

the ratio of the average number of packets in the buffer to the average arrival rate of 

packets. D  can be given by 

                                                          /D B= λ .                                                 (3.31) 

In order to facilitate further analysis in the subsequent chapters, we simplify the 

average packet delay in the WCDMA channel as a function, 

( , , , , , , , , )a on on off off re reDelayFun T T B c a c a p M , which is given by 

                        ( , , , , , , , , )a on on off off re reD DelayFun T T B c a c a p M= .                    (3.32) 

3.5 Discussions 

In the above analyses of the packet loss rate, average delay and lengthened 

activity factor, the third assumption in section 3.1 is a very critical condition. 

According to the third assumption in section 3.1, it must be guaranteed that the off 
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period offt  in the source traffic is long enough and each newly arrived on period 

encounters an empty buffer. This assumption is made because our analysis is based on 

the probabilistic sum of the analysis in each individual on period. That is, we 

generalize the parameters, such as packet loss rate, delay and lengthened activity 

factor, for each possible on period and then obtain the average of these parameters 

over time. Thereby, each on period is investigated independently to simplify our 

analytical work. However, this assumption results in some constraints of our approach. 

Strictly, it is possible that the new on period is coming before the former on period 

has finished, if there are too many retransmission occurrences. Thus, in this case, the 

newly arrived on period may encounter a non-empty buffer and the assumption 3 in 

section 3.1 is violated.  

Fortunately, a practical system commonly has a low packet error probability in 

terms of a few percents and the lengthening of on periods in the channel is not 

significant, compared to the off period. For instance, offt  for interactive and 

background classes is usually larger than a few seconds, while ont  is only lengthened 

by a few hundreds milliseconds in the channel.  Thus, offt  is long enough so that the 

probability that a newly arrived on period encounters a non-empty buffer is negligible. 

Hence, the third assumption in section 3.1 is reasonable.  

3.6 Conclusion 

This chapter mainly studies the Go-Back-N ARQ mechanism in the WCDMA system. 

The Pareto on/Pareto off process is assumed to approximate the source traffic of a 

non-real-time service. A finite buffer is provided to each non-real-time service. The 

Go-back-N ARQ results in the lengthening of the activity factor of the traffic in the 

WCDMA channel. We calculate the lengthened activity factor and address the 
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analyses of the QoS performances, including the packet loss rate and the average 

delay, in the Go-Back-N ARQ system. The results obtained from this chapter provide 

a basis for the QoS analysis of non-real-time services in the WCDMA system and will 

be referred to in subsequent chapters.  
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Chapter 4 

Analysis of Outage Probability 

In this chapter, we address the data link layer QoS issue by investigating the outage 

probabilities for multiclass services in the uplink of the WCDMA cellular mobile 

network. The data link layer is the second layer of the WCDMA system and is directly 

related to the packet level QoS in the network layer. The main measurement of the data 

link layer QoS refers to the outage probability. 

In this chapter, we consider a cellular system with multiple cells. Each cell serves a 

number of mobile users. The received signal at the base station in the reference cell is 

interfered by both mobile users in its own cell and mobile users in other neighbouring 

cells. When the interference in a cell exceeds a predetermined level, or the SINR of 

received signal is below a predefined level, the link layer QoS performance is not 

tolerable any more and outage occurs. Our objective in this chapter is to analyze the 

outage probability in the uplink. Since we have assumed in Chapter 2 that voice, video, 

web-browsing and data services exist in the system, we give mathematical formulas of 

outage probabilities for these services. This chapter is organized as follows. 

• Before we investigate the outage probability performance, we propose two system 

models that contain a variety of services in the WCDMA system in section 4.1. One 

of them is a single-connection system model in which each mobile user supports only 

one connection of service. Different classes of services are served within different 
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mobile users. Therefore, a service is interfered by all other services in the system. The 

other model is a multi-connection system model in which one mobile user can 

support multi-connection multiclass services simultaneously. In this model, a service 

is only interfered by services of other mobile users, not including the other services 

within the same mobile user. This is because synchronous orthogonal spreading codes 

are used for services in the same mobile user. We study and generalize the distinct 

approaches used for these two system models.  

• In section 4.2, we describe a medium access control/radio link control (MAC/RLC) 

method in the WCDMA system. The MAC/RLC method is responsible for resource 

allocation, spreading code assignment, packet access and transmission mode in the 

WCDMA system. 

• In section 4.3, an efficient power distribution algorithm is designed. With this 

algorithm, perfect power control is assumed in the system. We calculate the desired 

received power of each traffic class in both system models. 

• In section 4.4, the analytical expressions of outage probabilities are derived for each 

traffic class in both system models. 

• In section 4.5, we evaluate the characteristics of the on/off processes in the WCDMA 

channel for web-browsing and data services. Because web-browsing and data are both 

considered as non-real-time services, Go-Back-N ARQ is implemented in case of 

transmission errors. The Go-Back-N ARQ lengthens the on period of web-browsing 

and data services in the WCDMA channel.  The lengthened on period increases the 

activity factors of web-browsing and data services. In section 4.5, we derived the 

lengthened activity factors of web-browsing and data services, and formulate the 
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outage probabilities of all traffic classes as a function of the lengthened activity 

factors in both system models. Furthermore, since the lengthened activity factors and 

the outage probabilities are intertwined, an iteration method is proposed to solve for 

the outage probabilities and the activity factors in the WCDMA channel.  

• We conclude this chapter in section 4.6. 

4.1. System Model 

A cellular network consists of a number of cells and mobile users. We assume that 

each cell serves the same number of mobile users and services. Mobile users are 

uniformly located in each cell and are served by a base station that is situated in the 

center of the cell. Mobile users and base stations can communicate via the WCDMA 

channels. Here, we only consider the uplink of the WCDMA system. Mobile users 

transmit signals to their own base stations in the uplink. The system permits the 

transmissions of multiclass services simultaneously in the WCDMA system. Each mobile 

user can support a single-connection service or multi-connection services simultaneously. 

As given in Chapter 3, voice, video, web-browsing, and data are chosen as 

representatives of the four different QoS traffic classes. When a service within a mobile 

user is transmitting packets to the base station in a cell, other mobile users in the same 

cell and neighbouring cells contribute interference to the system and decrease the QoS 

performance of that particular service. In this section, we propose two system models to 

describe the network. The former is a single-connection system model and the latter is a 

multi-connection system model. The common assumptions are given in the followings.  

Assumptions 

• All mobile users are uniformly located in each cell. 
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• An Additive White Guassian Noise (AWGN) channel is assumed. 

• Perfect power control is implemented for each service and the desired received 

powers are achieved at the base station. 

• Convolutional coding is used for each class as the method of error correction.  

• Both the ETSI [20] and 3GPP [62] specifications adopt the square cell (Manhattan) 

model in their simulations. Hence, in this thesis, the square cell model, which is also 

commonly being adopted in the literature [58-61], is used.  

4.1.1 Single-Connection System Model 

In this model, there are a number of mobile users in a cell. We assume that each 

mobile user only supports a single-connection service. All mobile users share the uplink 

channel to the base station and thus interfere with each other. As given in Chapter 2, we 

assume that each voice, web-browsing or data service reserves a single spreading code. 

On the other hand, a video service reserves a high-bit-rate spreading code and M low-bit-

rate spreading codes. Additionally, when signals are transmitted from mobile users to the 

base station using spreading codes, perfect power control is assumed in each code 

channel. That is, the transmit power of each service is adjusted dynamically against the 

effect of the variation of the channel. Wherever a mobile user is in a cell, the transmit 

powers of its traffic classes are changed quickly to maintain the received powers at a 

desired level. Additive White Guassian Noise (AWGN) channel is assumed in the system. 

The four classes also differ in their bit error rate (BER) and signal-to-interference- plus-

noise ratio (SINR) requirements, which are specified for each class.  

Only one service is transmitted within each mobile user in the single-connection 

system model. A service in the mobile user is first spread with spreading code, then is 
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scrambled with a scrambling code, and finally is transmitted over the AWGN channel. 

Figure 4.1 illustrates the procedures of transmissions within the mobile users. 

Voice, Web-browsing
or Data Service
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+
AWGN Channel

Low-Bit-Rate Spreading Code 1

.

.
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Low-Bit-Rate Spreading Code M
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Scrambling Code
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Figure 4.1 Spreading and Scrambling for the Single-Connection System Model 

 
The following are system parameters for the single-connection system model. 

System Parameters   

1. kG , *
kBER , *

kγ  and kS , {1,2 ,2 ,3,4}k l h∈ , denote the spreading gains, BER 

requirements, SINR requirements and desired received power levels of voice, video 

using low-bit-rate spreading code, video using high-bit-rate spreading code, web-

browsing and data services during the on period, respectively. 

2. η denotes the average power of AWGN. 

3. int ercellI denotes the intercell interference in the system. 
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4. N denotes the number of mobile users in a cell. Within the N mobile users, 

1N , 2N , 3N and 4N denote the number of voice, video, web-browsing and data services 

in a cell, respectively.  

6. 1onp , 2on lp , 2on hp , 3onp  and 4onp  denote the activity factors of voice, video using low-

bit-rate spreading code, video using high-bit-rate spreading code, web-browsing and 

data services, respectively in their source traffic. 3,on cp  and 4,on cp  denote the activity 

factors of web-browsing and data services, respectively in the WCDMA channel.  

7. kl , {1,2 ,2 ,3,4}k l h∈ , denote the instantaneous number of active spreading codes 

used by all voice services, by all low-bit-rate video services, by all high-bit-rate video 

services, by all web-browsing services and by all data services, respectively. 

( 1 10 l N≤ ≤ , 2 20 ll MN≤ ≤ , 2 20 l N≤ ≤ , 3 30 l N≤ ≤ , 4 40 l N≤ ≤ ) 

8. ,1jψ , ,2j lψ , ,2j hψ , ,3jψ  and ,4jψ  denote the instantaneous number of active spreading 

codes used by the jth voice service, active low-bit-rate spreading codes used by the 

jth video service, active high-bit-rate spreading codes used by the jth video service, 

active spreading codes used by the jth web-browsing service and active spreading 

codes used by the jth data service, respectively. ( ,10 1jψ≤ ≤ , ,20 j l Mψ≤ ≤ , 

,20 1j hψ≤ ≤ , ,30 1jψ≤ ≤ , ,40 1jψ≤ ≤ ) 

9. ,out kP , {1,2 ,2 ,3,4}k l h∈ , denote the outage probabilities of voice, video using low-

bit-rate spreading code, video using high-bit-rate spreading code, web-browsing and 

data services, respectively. 
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4.1.2 Multi-Connection System Model 

In general, the multi-connection system model is similar to the single-connection 

system model described in section 4.1.1, but it makes improvement in some aspects. In 

contrast to the single-connection system model, the multi-connection system model is 

able to support multi-connection multiclass services within each mobile user. That is, 

each mobile user can have multiple connections to serve more than one traffic class. 

Obviously, since the transmissions within a mobile user are completely orthogonal, a 

service is not interfered by the other services of the same mobile user. Comparatively, a 

service in single-connection system model is interfered by all other services in cells, as 

one mobile user only supports one service. As each mobile user serves different 

combination of classes and experiences different amount of interference, the same class 

of services within different mobile users needs different power levels to satisfy the SINR 

requirements, depending on the other services that the individual mobile user serves.  

Similar to the single-connection system model, before all services within the same 

mobile user are sent out, they are first spread with the corresponding spreading codes, 

then are scrambled with a common scrambling code and finally are transmitted over the 

AWGN channel, which is assumed in the multi-connection system model. The Figure 4.2 

illustrates the procedures of transmissions within the mobile users. 
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Figure 4.2 Spreading and Scrambling for the Multi-Connection System Model 

The followings are the system parameters in the multi-connection system model. 

System Parameters 

1.  Refer to the system parameters 1-5 in the single-connection system model.  

2.  N  denotes the number of mobile users in a cell.  
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3. ,1in , ,2in , ,3in  and ,4in denote the number of voice, video, web-browsing and data   

services within the ith mobile user in a cell. 

4.  1onp , 2on lp , 2on hp , 3onp  and 4onp denote the activity factors of voice, video using low-

bit-rate spreading code, video using high-bit-rate spreading code, web-browsing and 

data services, respectively in their source traffic. 3, ,on i cp  and 4, ,on i cp  denote the 

activity factors of web-browsing and data services, respectively in the WCDMA 

channel within the ith mobile user. 

5. ,i kS , {1,2 ,2 ,3,4}k l h∈ , denote the desired received powers of voice, video using low-

bit-rate spreading code, video using high-bit-rate spreading code, web-browsing and 

data services within the ith mobile user.  

6.  ,i kl , {1,2 ,2 ,3,4}k l h∈ , denotes the instantaneous number of active spreading codes 

used by all voice services, low-bit-rate video services, high-bit-rate video services, 

web-browsing services and data services within the ith mobile user, respectively 

( ,1 ,10 i il n≤ ≤ , ,2 ,20 i l il Mn≤ ≤ , ,2 ,20 i h il n≤ ≤ , ,3 ,30 i il n≤ ≤ , ,4 ,40 i il n≤ ≤ ). 

5. , ,1i jψ , , ,2i j lψ , , ,2i j hψ , , ,3i jψ  and , ,4i jψ  denote the instantaneous number of active 

spreading codes used by the jth ( ,10 ij n≤ ≤ ) voice service, active low-bit-rate 

spreading  codes used by the jth ( ,21 ij n≤ ≤ ) video service, active high-bit-rate 

spreading codes used by the jth ( ,21 ij n≤ ≤ ) video service, active spreading codes 

used by the jth ( ,31 ij n≤ ≤ ) web-browsing service and active spreading codes used by 

the jth ( ,41 ij n≤ ≤ ) data service within the ith (1 i N≤ ≤ ) mobile user. ( , ,10 1i jψ≤ ≤ , 

, ,20 i j l Mψ≤ ≤ , , ,20 1i j hψ≤ ≤ , , ,30 1i jψ≤ ≤ , , ,40 1i jψ≤ ≤ ) 
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6. , ,out i kP , {1,2 ,2 ,3,4}k l h∈ , denote the outage probabilities for voice, video using a 

low-bit-rate spreading code, video using a high-bit-rate spreading code, web-

browsing and data services respectively within the ith mobile user. 

4.2 MAC/RLC Method 

 Medium access control (MAC) and radio link control (RLC) are two sub-layers of 

data link layer. The functions of MAC include selection of appropriate spreading code to 

each service, handling of services with different priorities; service access procedures in 

the WCDMA system and supporting multiple connections within one mobile user. The 

task of RLC focuses on the reliable transfer of signals over the wireless interface. It is 

achieved through an automatic retransmission request (ARQ) method. There are many 

studies in the literature on concrete MAC/RLC protocol for WCDMA interface, such as 

[25-28, 51-53]. 

In this section, we introduce a simple MAC/RLC method implemented in our system. 

In Chapter 3, voice, video, web-browsing and data are representative applications of 

conversational class, streaming class, interactive class and background class, respectively. 

According to their traffic models, voice, web-browsing and data services are on/off 

processes. Since the transmission rate during the on period is a constant, the MAC layer 

assigns a single spreading code to each voice, web-browsing or data service. In this 

chapter, we assume all services are transmitted to the base station through Dedicated 

Channel (DCH), which is identified by a spreading code. In order to utilize spreading 

code resources in the system efficiently, a DCH is assigned to a voice, web-browsing or 

data service at the start of each on period and is released and withdrawn by the base 

station at the end of each on period. On the other hand, a video service is a kind of VBR 
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traffic. Based on the proposed MAC protocol, at the beginning of a video service, a set of 

spreading codes, which is comprised of a high-bit-rate spreading code and M low-bit-rate 

spreading codes, is assigned to a video service. Since the instantaneous bit rate of the 

video service is varying, the MAC layer is in charge of selecting a particular combination 

of these spreading codes to satisfy the rate level. When the service ends, the set of 

spreading codes are released by the base station. 

RLC layer is responsible for the reliable transmissions of signals. The quality of a 

wireless communication link is highly unstable and is influenced by the multiple access 

interference (MAI) of the WCDMA system. MAI causes transmission errors to the 

packets over the wireless channel from mobile users to the base station. In order to 

guarantee reliable transmissions and protect the information bits from errors, RLC layer 

provides two schemes to fulfill this function. The first is known as forward error 

correction (FEC). A FEC scheme inserts redundant bits into a packet and makes it 

possible to correct at least some of the detected erroneous information bits during the 

transmissions. Besides FEC, another error correction scheme is called automatic repeat 

request (ARQ). If the receiver at the base station detects the bit error rate of a received 

packet is above the required level, it asks for a retransmission of the corresponding 

packet from the mobile user. As we have discussed in Chapter 3, we choose Go-Back-N 

ARQ in our analysis as it is commonly implemented. 

Obviously, ARQ results in a longer transfer delay of a service. Consequently, as  

delay-sensitive real-time services, voice and video only implement FEC mechanism. In 

comparison, as delay-insensitive non-real-time services, web-browsing and data 

implement both FEC and ARQ methods.  
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4.3 Power Distribution Algorithm 

The system capacity in the WCDMA network and the QoS performances are directly 

associated with multiple access interference (MAI) which is contributed by interfering 

mobile users. Therefore, signal-to-interference-plus-noise ratio (SINR) is an important 

attribute at the data link layer. SINR is a function of the received powers at the base 

station, the spreading gains of all services and the number of active spreading codes. 

Thus, SINR is fluctuating over time. To attain good performance at the data link layer, it 

is necessary that the average SINR of each service should be maintained at a required 

level. Furthermore, we assume that perfect power control in the WCDMA system is 

adopted so that the desired received powers of each service are achieved at the receiver of 

the base station. In the following, the power distribution schemes are designed in the two 

system models described in sections 4.1.1 and 4.1.2, respectively.  

4.3.1 Power Distribution for Single-Connection System Model 

Each mobile user has only a single connection in the single-connection system model. 

The same class of services requires the same amount received power in the system. 

Therefore, power assignment is performed based on each class. As the WCDMA system 

needs to guarantee that the average received SINR of each class exceeds the SINR 

requirements of each class of service, the following equations have to be satisfied in the 

WCDMA channel. 



Chapter 4.  Analysis of Outage Probability___________________________________ 68

1 1

1 1 1 2 2 2 2 2 2 3, 3 3 4, 4 4

*
1

( 1) [ ]

                                                                                                                       
on on l l on h h on c on c intercell

S G
p N S p MN S p N S p N S p N S E I η

γ

− + + + + + +

=           (4.1)

2 2

1 1 1 2 2 2 2 2 2 3, 3 3 4, 4 4

*
2

      
( 1) ( 1) [ ]

                                                                                                          

l l

on on l l on h h on c on c intercell

l

S G
p N S p M N S p N S p N S p N S E I η

γ

+ − + − + + + +

=                       (4.2)

2 2

1 1 1 2 2 2 2 2 2 3, 3 3 4, 4 4

*
2

      
( 1) ( 1) [ ]

                                                                                                          

h h

on on l l on h h on c on c intercell

h

S G
p N S p M N S p N S p N S p N S E I η

γ

+ − + − + + + +

=                       (4.3)
3 3

1 1 1 2 2 2 2 2 2 3, 3 3 4, 4 4

*
3

( 1) [ ]     

                                                                                                                   
on on l l on h h on c on c intercell

S G
p N S p MN S p N S p N S p N S E I η

γ

+ + + − + + +

=                           (4.4)   

4 4

1 1 1 2 2 2 2 2 2 3, 3 3 4, 4 4

*
4

( 1) [ ]  

                                                                                                                      
on on l l on h h on c on c intercell

S G
p N S p MN S p N S p N S p N S E I η

γ

+ + + + − + +

=             (4.5)
  

 In the above equations, the first five terms in the denominator of each equation denote 

the intracell interference of voice service, video service using low-bit-rate spreading gain, 

video service using high-bit-rate spreading code, web-browsing service and data service, 

respectively. The sixth term denotes the total intercell interference of voice service, video 

service using low-bit-rate spreading gain, video service using high-bit-rate spreading 

code, web-browsing service and data services. The last term is the average background 

noise power of the AWGN. 

From equations (4.1)-(4.5), the desired received power levels 1S , 2lS , 2hS , 3S  and 

4S  can be obtained. After some algebraic rearrangements of equations (4.1)-(4.5), the 

following equations are derived. 
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where  {3,4}k ∈ . 

In the right hand side of equations (4.6)-(4.9), intercellI  is the total intercell interference. 

[ ]intercellE I  and [ ]intercellVar I  are the mean and variance of the intercell interference, 

respectively. In the Appendix, [ ]intercellE I  and [ ]intercellVar I  can be shown to be given by 

the following. 
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and 
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In equations (4.10) and (4.11), mr  denotes the distance between an intercell mobile 

user and its own base station; dr  denotes the distance between an intercell mobile user 

and the intracell base station; mε and dε are two independent Guassian random variables 

with 2σ  variance and zero mean; A denotes the area of a cell. 

The power vector S  is defined as 1 2 2 3 4[ , , , , ]l hS S S S S . Therefore, we can clearly see 

that the objective of the power distribution is to derive a positive solution for the vector S . 

Supposeε  is a real number. Based on equation (4.12), we define ε  as follows.         
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According to [29-31], for the linear equations (4.6)-(4.9), if and only if 0 1ε≤ ≤  is 

satisfied, S  has a positive solution. The solution can be easily given by  
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S Gp

η

ε
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=
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Accordingly, if the condition 0 1ε≤ ≤  holds, equations (4.15)-(4.19) satisfy the SINR 

requirements in equations (4.1)-(4.5). Similar to the single-connection system model, 

equations (4.15)-(4.19) gives the minimum power target of each service in the system. 

From equations (4.1)-(4.5), it is obvious that if all positive received powers are increased 

by the same ratio, the achieved SINR will exceed the corresponding SINR requirements 

as AWGN can be overcome, and the data link layer QoS of the system is improved.  

Therefore, in our calculation of outage probability, the positive power solutions of all 

services obtained from equations (4.15)-(4.19) are multiplied by a common factor, θ  

( 1θ > ), to attain better QoS performance.  

4.3.2 Power Distribution for Multi-Connection System Model 

Each mobile user may transmit multi-connection multiclass services in the multi-

connection system model. The same class of services within different mobile users needs 

different power levels to satisfy the SINR requirements in the case of the multi-

connection system model. The power distribution in the multi-connection system model 

assigns the received power targets to each connection of all mobile users. In [54], we 

propose a new power distribution scheme to allocate powers to different services of each 
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mobile user. According to our method in [54], the average SINR of each class of services 

are expressed as follows based on the system parameters within the ith mobile user. 

For the voice service within the ith mobile user, the average SINR is given by        

,

,1 1 ,1 ,2 2 ,2 ,2 2 ,2 ,3 3, , ,3 ,4 4, , ,4
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i k k
N

j on j j l on l j j h on h j j on i c j j on i c j intercell
j j i

S G

S p n S p Mn S p n S p n S p n E I η

γ
= ≠

+ + + + + +

=

∑

                                             (4.20)
       
where 

{ }k 1,2l,2h,3,4∈  

In equation (4.20), the first term in the denominator refers to the average intracell 

interference; the second term in the denominator refers to average intercell interference; 

and the third term in the denominator refers to the background noise. Note that different 

connections of services for the same mobile user do not interfere each other since short 

orthogonal codes are used for spreading. Thus, different services in the same mobile user 

experience the same amount of interference. Equation (4.20) differs from the SINR 

equations (4.1)-(4.5), which only investigates the case that each mobile user supports a 

single connection. In the case of multi-connection multiclass services, the same class of 

services within different mobile users needs different power levels to satisfy the SINR 

requirements. In the following, we will present how the desired received powers can be 

solved.  

In order to solve equation (4.20), we first define 
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and     
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With the algebraic manipulations that we develop in [54], equation (4.20) is 

transformed into the following equation. 
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intercellI  denotes the intercell interference. [ ]intercellE I  denotes the mean of the intercell 

interference. The mean and variance of the total intercell interference can be given by 

(See Appendix)                       
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In equations (4.24) and (4.25), the definitions of ( )m

d

rf
r

, ( )m

d

rg
r

, mr and dr  are as the 

same as those in the single-connection system model.  

Thus, equation (4.23) is algebraically rearranged as follows based on equation (4.24).                  
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The power vector iS  is defined as ,1 ,2 ,2 ,3 ,4[ , , , , ]i i l i h i iS S S S S . Therefore, we can clearly see 

that the objective of the power distribution is to derive a positive solution for the 

vector iS , 0 ≤ ≤i N .  Suppose  
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According to theorems given by [29-31], for the linear equation (4.26), if and only if 

0 1ε≤ ≤  is satisfied, iS
−

has a positive solution. The solution can be easily given by  

                                                            
(1 )

i
i

i

S η
ε

−

=
Γ
+ Γ

.                                                   (4.28) 

Otherwise, it is impossible to find a positive solution to satisfy equation (4.20). From the 

definition of iS
−

, if a positive iS
−

is available, the positive power vector iS  exists and the 

desired received powers within the ith mobile user are formulated for each type of 

services. Thus, we have                         

                                          
*

, (1 )
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i j
i j

S
G

ηγ
ε

=
+ Γ

, {1,2 ,2 ,3,4}j l h= .                                  (4.29) 

Equation (4.29) gives the minimum power target of each service in the system to 

satisfy the SINR requirements. In order to make power distribution, equation (4.27) is 

first checked. If the condition 0 1ε≤ ≤ holds, equation (4.29) is solved. According to 

equation (4.20), if all positive received powers are increased by the same ratio, the 

AWGN is less important, which obviously makes the achieved SINR exceed the 



Chapter 4.  Analysis of Outage Probability___________________________________ 75

corresponding SINR requirements and the data link layer QoS of the system better.  

Therefore, the positive power solutions obtained from equation (4.29) are usually 

multiplied by a common factor, θ  ( 1θ > ), in distributing received power targets to attain 

better QoS performance.  

4.4 Outage Probability 
 
      Generally, in telecommunication systems, outage is a kind of service condition in 

which a system parameter is below a predefined threshold. This threshold is called the 

outage threshold. It indicates the minimum performance level that is needed in the system. 

BER requirement or SINR requirement of each class in the WCDMA system is regarded 

as the outage threshold. According to 3GPP Technical Specification, each QoS traffic 

class may tolerate a specific level of BER. If the BER is less than the BER requirement, 

the receiver considers a packet to be correctly received. Otherwise, the receiver will 

either discard the packets of voice and video services directly or require the mobile user 

to retransmit the packets of web-browsing and data services. 

Accordingly, the outage probability in a WCDMA system is defined as the 

probability that the achieved SINR is below the SINR requirement or the achieved BER 

is above the BER requirement. In [15,21-22], Wong et al. analyze the outage probabilities 

for on/off multiclass services, variable bit rate multiclass services and video multiclass 

services in DS-CDMA systems, respectively. However, these analyses do not consider 

retransmissions of services. Thus, we will extend the formulation of the outage 

probabilities in the Go-Back-N ARQ system.     

As defined in the system models in sections 4.1.1 and 4.1.2, *
kBER  and *

kγ , 

{ }k 1,2l,2h,3,4∈ , denote the BER and SINR requirements for voice service, video service 
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using low-bit-rate spreading codes, video service using high rate spreading codes, web-

browsing service and data service, respectively. According to sections 4.1.1 and 4.1.2, we 

will present the outage probability for the two system models. 

4.4.1 Outage Probability for Single-Connection System Model 

In our multi-cell cellular mobile networks, the total interference includes intracell 

interference and intercell interference. The intracell interference is a function of the 

number of active spreading codes in the intracell and the desired received powers of all 

classes.  The intercell interference is influenced by the shadowing effect and mobile user 

distribution. According to our assumptions, all mobile users are assumed uniformly 

distributed in each cell. The fluctuation of the intercell interference is usually assumed to 

be a lognormal shadowing. Furthermore, due to the large number of mobile user in the 

system, the total intercell interference is approximated to be a Guassian random variable, 

with a mean and a variance given by [ ]intercellE I and [ ]intercellVar I . Equations (4.1)–(4.5) 

express the average SINR for each class. Actually, the instantaneous SINR in networks is 

varying over the time. When the number of active spreading codes in the intracell is 

specified, the instantaneous outage probability of each class is determined by Guassian 

distributed intercell interference and thus is fluctuating. As the number of active 

spreading codes can be approximated by binomial distribution, we can sum up all 

instantaneous outage probability with the binomial state probabilities to obtain the 

average outage probability for each class. Let kBER  and kγ , {1,2 ,2 ,3,4}k l h∈ , be the 

actual achieved BER and SINR of voice, video using low-bit-rate spreading code, video 

using high-bit-rate spreading code, web-browsing and data services, respectively, at the 

receiver of the base station.  
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      For voice, low-bit-rate video, high-bit-rate video, web-browsing and data services, the 

average outage probabilities are given by equation (4.30), for k=1, 2l, 2h, 3 and 4, 

respectively. For {1,3,4}k = , let ' 1,  
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In equation (4.30), we can see that when the active spreading codes used by each 

service are given, the instantaneous outage probability of a service is the probability that 

the total intercell interference is above a specific level. Since the total intercell 

interference is approximately Guassian distributed, the instantaneous outage probabilities 

can be given by a Q(x) function. Then, equation (4.30) can be transformed into  
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where 
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                        1 2 2 2 2 3 3 4 4( ) [ ]k l l h h intercelll l S l S l S l S E Iµ η= + + + + + , (4.33) 
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2x-

2

x

1Q(x)= e dx
2π

∞

∫ ,                                                  (4.35) 

and 

                                                     {1,2 ,2 ,3,4}k l h∈ .     (4.36) 

In the above expressions of the outage probabilities, [ ]intercellE I and [ ]intercellVar I  are 

given in equations (4.10) and (4.11).         

4.4.2 Outage Probability for Multi-Connection System Models 

Each mobile user in the multi-connection system model can support multi-connection 

multiclass services simultaneously, which is different from the single-connection system 

model. That is, each mobile user can have multiple connections to serve more than one 

traffic class. Since the power distribution algorithms are deigned for both the two system 

models in section 4.3, the outage probabilities are different in the two models. Let i,kBER  

and i,kγ , {1,2 ,2 ,3,4}k l h∈ , be the actual achieved BER and SINR of voice, video using 

low-bit-rate spreading code, video using high-bit-rate spreading code, web-browsing and 

data services, respectively, within the ith mobile user at the receiver of the base station. 

Since the number of active spreading codes used by services is varying, the instantaneous 

outage probabilities are fluctuating over time. The average outage probability of each 

service can be obtained by calculating the probabilistic sum of all possible instantaneous 

outage probabilities.  
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Accordingly, we will generalize outage probabilities for each of the services within 

each mobile user. As assumed in the section 4.1, the outage probabilities within the ith 

mobile user for voice, video using a low-bit-rate spreading code, video using a high-bit-

rate spreading code, web-browsing and data services are expressed as , ,out i kP , 

{1,2 ,2 ,3,4}∈k l h , respectively and given by  
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   (4.37) 

where                                          

{1,2 ,2 ,3,4}∈k l h . 

The difference in calculating the average outage probability in the multi-connection 

system model is that the possible combinations of the number of active spreading codes 

are more than those in the single-connection system model. The instantaneous outage 

probability is also denoted by the variation of the intercell interference. As int ercellI  is a 

Guassian random variable, the instantaneous outage probability can be formulated by a 

Q(x) function shown in equation (4.35). Thus, equation (4.37) can be given by 
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and                                            2 [ ]i intercellVar Iσ = ,                                          (4.41) 

 In the expressions of the above outage probabilities, [ ]intercellE I and [ ]intercellVar I  are 

given by equations (4.24) and (4.25). 

4.5 Lengthened Activity Factor 

As stated in Chapter 3, the Go-Back-N ARQ is implemented for the transmissions of 

non-real-time services, such as web-browsing and data. Both of them are Pareto on/ 

Pareto off processes in their source model. As Go-Back-N ARQ is a kind of continuous 

ARQ, it guarantees their traffic to be still on/off process in the WCDMA channel. 

However, the packet retransmissions result in the lengthening of the on period in the 

WCDMA channel as well as the activity factors for both web-browsing and data services. 
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Thus, we define 3,on cp  and 4,on cp  as the lengthened activity factors of web-browsing and 

data services in the single-connection system model, while define 3, ,on i cp  and 4, ,on i cp  as 

the lengthened activity factors of web-browsing and data services within the ith 

(1 )i N≤ ≤  mobile user in the multi-connection system model. The objective of this 

section is to calculate the lengthened activity factors in both system models. 

As explained in Chapter 3, the retransmission probability is required to address the 

lengthened activity factors in GBN ARQ system. In the WCDMA system, non-real-time 

services, including web-browsing and data, are retransmitted in case of outage. That is, 

when an outage occurs to these two services, the mobile user retransmits the web-

browsing packet and the data packet with the Go-Back-N ARQ scheme. Thus, the 

retransmission probabilities of the two services are equal to the respective outage 

probabilities for them. Since the outage probability of each class is fluctuating over time, 

it is necessary to obtain the instantaneous lengthened activity factors of web-browsing 

and data services first, and then to sum up all possible instantaneous lengthened activity 

factors to derive the average lengthened activity factors for both system models. In order 

to obtain 3,on cp , 4,on cp , 3, ,on i cp  and 4, ,on i cp , the necessary parameters are listed in the 

following.  

• Let 3B and 4B be the buffer sizes of web-browsing and data services expressed in 

terms of the number of packets, respectively. 

• Let 3T and 4T be the packet duration of web-browsing and data services, respectively. 

• Let 3aT and 4aT be the packet acknowledgement time of web-browsing and data 

services, respectively. 
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• Let 3reM and 4reM be the maximum number of retransmissions for web-browsing and 

data services, respectively. 

• As given in Chapter 2, 3, 3, 1
3 3, 3, 3,( ) ,  on onc c

on on onf t c a t t a− −= ≥  and 

4, 4, 1
4 4, 4, 4,( ) ,  on onc c

on on onf t c a t t a− −= ≥  are probability function of the Pareto on period of 

web-browsing service and data service, respectively, while 

3, 3, 1
3 3, 3, 3,( ) ,  off offc c

off off offg t c a t t a− −= ≥  and 4, 4, 1
4 4, 4, 4,( ) ,  off offc c

off off offg t c a t t a− −= ≥  are 

probability density functions of the Pareto off period of web-browsing and data 

services, respectively.                                   

4.5.1 Lengthened Activity Factor in Single-Connection System Model 

The average lengthened activity factors of the web-browsing and data services in the 

single-connection system model are 3on ,cp  and 4on ,cp , respectively. In Chapter 3, we have 

generalized the expression of the lengthened activity factors in the WCDMA channel for 

a non-real-time service, as in equation (3.20). When the instantaneous outage probability 

is varying, we can formulate the average lengthened activity factors of web-browsing and 

data services in the WCDMA channel of the single-connection system model by 

equations (4.42) and (4.43). ` 
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where the definitions of 3δ , 3µ , 3σ , 4δ , 4µ  and 4σ  are given by equations (4.32)-(4.35). 

4.5.2 Lengthened Activity Factor in Multi-Connection System Model 

The case in the multi-connection system model is different from that in the single-

connection system model. The average lengthened activity factors of web-browsing and 

data services are different within different mobile users. We define the lengthened 

activity factors within the ith mobile user as 3on ,i ,cp  and 4on ,i ,cp , respectively. We have 

generalized the expression of the lengthened activity factors with equation (3.20). When 

the instantaneous outage probability is varying, we can formulate the average lengthened 

activity factors of the web-browsing and data services by equations (4.44) and (4.45). 
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where ,3iδ , ,4iδ , iµ  and 2

iσ  are given by equations (4.39)-(4.41). 

4.5.3 Iteration Method  

In equations (4.15-4.19) and (4.29), the desired received power levels are given, 

based on the proposed power distribution scheme. Additionally, we generalize the outage 

probabilities with equations (4.31) and (4.38), and calculate the lengthened activity 

factors of web-browsing and data in the WCDMA channel with equations (4.42-4.45). 

We can clearly see that the received power levels, lengthened activity factors and outage 

probabilities of all service are intertwined.  

Therefore, an iteration method is developed to obtain the feasible received power 

levels ( kS , {1,2 ,2 ,3,4}k l h∈ ), outage probabilities ( ,out kP , {1,2 ,2 ,3,4}k l h∈ ) and 

lengthened activity factors ( 3,on cp , 4,on cp ) in the single-connection system model, as well 

as the feasible received power levels ( ,i kS , 1 i N≤ ≤ , {1,2 ,2 ,3,4}k l h∈ ), outage 

probabilities ( , ,out i kP , 1 i N≤ ≤ , {1,2 ,2 ,3,4}k l h∈ ) and lengthened activity factors ( 3, ,on i cp , 

4, ,on i cp , 1 i N≤ ≤ ) in the multi-connection system model, satisfying equations (4.15-4.19), 

(4.29), (4.31), (4.38) and (4.42-4.45) simultaneously. 
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The following steps are given to derive the feasible kS , ,out kP , 3,on cp  and 4,on cp , 

{1,2 ,2 ,3,4}k l h∈ , in the single-connection system model. 

1. Set initial 3,on cp  and 4,on cp to be 3, 3on c onp p=  and 4, 4on c onp p= . Compute the 

received power levels, kS , with equation (4.15-4.19). 

2. Calculate ,out kP  with equations (4.31) and calculate the lengthened 3,on cp  and 

4,on cp  with equations (4.42-4.43). 

3. The power levels kS  and outage probabilities ,out kP  are recalculated again using 

the lengthened 3,on cp  and 4,on cp  derived by Step 2. 

4. Iterate Step 2-3 until 3,on cp , 4,on cp , kS  and ,out kP  converge. Then, the feasible kS , 

,out kP , 3,on cp  and 4,on cp  are derived. 

Similarly, the following are steps derive , ,out i kP  and 3, ,on i cp  and 4, ,on i cp , 

{1,2 ,2 ,3,4}k l h∈ , 1 i N≤ ≤  , in the multi-connection system model. 

1. Set initial 3, ,on i cp and 4, ,on i cp  to be 3, , 3on i c onp p=  and 4, , 4on i c onp p= . Compute the 

received power levels, ,i kS , with equations (4.29). 

2. Calculate , ,out i kP  with the derived ,i kS  and equation (4.38), and calculate the 

lengthened 3, ,on i cp  and 4, ,on i cp  using equations (4.44-4.45).  

3. Based on the lengthened 3, ,on i cp  and 4, ,on i cp , the power levels ,i kS  and outage 

probabilities , ,out i kP  are calculated again.  

4. Repeat Step 2-3 until ,i kS , 3, ,on i cp , 4, ,4on ip  and , ,out i kP  converge. 
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The above iteration procedures are used to solve the received power levels, outage 

probabilities and lengthened activity factors in both single-connection and multi-

connection system models. 

4.6 Conclusion 

This chapter studies the data link layer QoS performances in the WCDMA system. 

We first proposed two system models, which are the single-connection and multi-

connection system models. Then, power distribution algorithms that satisfy the SINR 

requirements of all services in the WCDMA system are developed for both system 

models. Next, we formulate the expressions of the outage probabilities for all traffic 

classes in both system models. At the same time, the lengthened activity factors of web-

browsing and data services are given. Because the outage probabilities of all traffic 

classes and the lengthened activity factors of web-browsing and data services are 

intertwined, an iteration method is presented to address the stable outage probabilities of 

all traffic classes and the average lengthened activity factors of web-browsing and data 

services in the two system models. In Chapter 5, the packet level QoS attributes, such as 

the packet loss rate and average delay, will be presented based on the results of Chapters 

3 and 4. 



Chapter 5.  Analysis of Packet Level QoS____________________________________ 87

 

Chapter 5 

Analysis of Packet Level QoS 

The packet level is part of the network layer in the WCDMA system. The issues of 

packet level QoS are mainly about the performances of the individual packets in a data 

flow and are usually evaluated in terms of average delay and packet loss rate.  

As described in 3GPP, the conversational and streaming classes require real-time 

delivery of packets and a limited level of packet loss rate. In contrast, the interactive and 

background classes do not require a delay bound but need a much stringent packet loss 

rate. In the single-connection and multi-connection system models, we develop different 

mathematical formulas for theoretical predictions of average delay and packet loss rate 

for each traffic class in the WCDMA system. This chapter is organized as follows. 

In section 5.1, the packet loss rate performance is analyzed for each traffic class in 

the two system models. In section 5.2, the average delay performance is analyzed for 

each traffic class in two the system models. Finally, section 5.3 concludes this chapter. 

5.1 Packet Loss Rate Performance  

Packet loss rate is one of the main concerns at the packet level. Each class is subject 

to a specific packet loss rate requirement given by [12].  

In the WCDMA system, multiple access interference in the network may result in bit 

errors in packet transmissions. If the detected BER at the base station exceeds the 
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predetermined level, outage occurs. Since outage is caused by the fluctuation of the 

interference, we assumed that the intracell interference and lognormal distributed 

intercell interference are both slow fading so that the interference level remains nearly 

unchanged over the duration of a packet length. Under this assumption, we can roughly 

approximate the packet error rate by the outage probability.  

For voice and video services, since they are real-time traffic, the erroneous packets 

are directly discarded and no retransmission is needed. Hence, their packet loss rate is 

approximately equal to the outage probabilities. 

For web-browsing and data services, they are non-real-time traffic and should be 

treated differently. When a packet received at the base station is erroneous due to outage, 

the base station sends a negative acknowledgement (NACK) back to the mobile user and 

requires a retransmission. As we have assumed in previous chapters, Go-Back-N ARQ 

scheme is implemented, which is studied in greater details in Chapter 3. As both web-

browsing and data services have a finite buffer, retransmissions may result in buffer 

overflow. Besides, an erroneous packet that is unsuccessfully retransmitted for a 

predefined maximum times is also discarded as packet loss. Therefore, the packet loss 

rate of web-browsing and data is due to either outage or buffer overflow.  

In the following, we will formulate the packet loss rate for all traffic classes in the 

two different system models.  

5.1.1 Packet Loss Rate in the Single-Connection System Model 

The packet loss rates for voice, video using low-bit-rate spreading code, video using 

high-bit-rate spreading code, web-browsing and data services in single-connection system 

model are denoted by ,1lossP , ,2loss lP , ,2loss hP , ,3lossP  and ,4lossP , respectively.  
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1. Packet loss rate of voice service 

As we mentioned in section 5.1, the packet loss rate of voice is approximately equal 

to its outage probability given by equation (4.31). The ,1lossP  is given by 

                                                             ,1 ,1loss outP P= .                                                        (5.1) 

2. Packet loss rate of video service 

Just like voice service, the packet loss rate of video is also roughly equal to its outage 

probability. Thus, the packet loss rates of a video service using low-bit-rate spreading 

code and a video service using high-bit-rate spreading coded are given by equation (4.31).  

                                                             ,2 ,2loss l out lP P= ,                                                     (5.2) 

                                                             ,2 ,2loss l out lP P= .                                                     (5.3)              

3. Packet loss rate of web-browsing service 

For web browsing service, Go-Back-N ARQ scheme is used to retransmit erroneous 

packets. An erroneous packet is retransmitted until it is correctly received or the 

maximum number of retransmissions is reached. Thereby, its packet loss results from 

either finite buffer overflow or outage. In Chapter 3, the packet loss rate performance in 

the Go-Back-N ARQ system is presented. Additionally, Chapter 4 analyzes the outage 

probability of web-browsing service in the WCDMA channel, which is fluctuating over 

time. Thus, in order to calculate the average packet loss rate, it is necessary to compute 

the instantaneous packet loss rate and to sum up all instantaneous packet loss rates to 

obtain the average packet loss rate. Equation (3.25) gives the packet loss rate with an 

instantaneous outage probability. Based on equations (3.25) and (4.31), the average 

packet loss rate of web-browsing service is given by  
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   (5.4) 

where 3δ , 3µ  and 3σ  are given by equations (4.32)-(4.36). 

4. Packet loss rate of data service 

Just like web-browsing service, the packet loss rate of data is due to either outage or 

buffer overflow. Based on equations (3.25) and (4.31), the average packet loss rate of 

data service is given by 
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 (5.5) 

where 4δ , 4µ  and 4σ  are given by equations (4.32)-(4.36). 

5.1.2 Packet Loss Rate in the Multi-Connection System Model 

We need calculate the packet loss rate for each traffic class within each mobile user in 

the multi-connection system model. Within the ith mobile user, let the packet loss rates 

for voice, video using low-bit-rate spreading code, video using high-bit-rate spreading 
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code, web-browsing, and data services be denoted by , ,1loss iP , {1,2 ,2 ,3,4}k l h= , 

respectively. 

1. Packet loss rate of voice service within the ith mobile user 

      As real-time service, the packet loss rate of voice service is equal to the outage 

probability given by equation (4.38). Thus, , ,1loss iP  is given by                        

                                                            , ,1 , ,1loss i out iP P= .                                                      (5.6)                           

2. Packet loss rate of video service within the ith mobiles user 

The packet loss rate of video service is also equal to the outage probability given by 

equation (4.38).  

                                                           , ,2 , ,2loss i l out i lP P= ,                                                     (5.7) 

                                                           , ,2 , ,2loss i h out i hP P= .                                                    (5.8) 

3. Packet loss rate of web-browsing service within the ith mobile user 

Similar to the analysis in the single-connection system model, the average packet loss 

rate of web-browsing service is due to either outage or buffer overflow, and can be 

calculated with equations (3.25) and (4.38). Hence, , ,3loss iP  is given by  
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where ,3iδ , ,3iµ  and ,3iσ are given by equation (4.39)-(4.41). 

4. Packet loss rate of data service within the ith mobiles user 

With a similar method, the packet loss rate of data service is based on equations (3.25) 

and (4.38). , ,4loss iP  is given by    
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where ,4iδ , ,4iµ  and ,4iσ are given by equation (4.39)-(4.41). 

5.2 Delay Performance 

 Based on technical specifications of 3GPP, each QoS class has its own delay 

requirement. Since voice service and video service are delay-sensitive real-time traffic, 
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they thus do not use ARQ mechanism and their delay are equal to their transmission 

times. Comparatively, because web-browsing and data services are delay-insensitive non-

real-time traffic, they implement Go-Back-N ARQ mechanism and finite buffer. Thus, 

the delay of web-browsing and data include queuing delay and transmission delay and 

acknowledgement delay. In the following, we will present the delay performance for each 

traffic class in both system models. Let kL , { }k 1,2,3,4∈ denote the packet sizes of a 

voice packet, a video packet, a web-browsing packet, and a data packet respectively and 

kT , { }k 1,2l,2h,3,4∈ denote the packet duration of a voice packet, a video packet using 

low-bit-rate spreading code, a video packet using high-bit-rate spreading code, a web-

browsing packet and a data packet, respectively. 

5.2.1 Delay Performance in Single-Connection System Model 

The average delay for voice, video using low-bit-rate spreading code, video using 

high-bit-rate spreading code, web-browsing, and data service in single-connection system 

model are denoted by kD , {1,2 ,2 ,3,4}k l h= , respectively.  

1. Delay of voice services 

      Because the voice delay is equal to its transmission time, 1D  is given by  

1 1
1 1

L GD T
W

= = .                                                 (5.11) 

2.  Delay of video services 

The delay of a video packet is also equal to its transmission time. As a video service 

uses M low-bit-rate spreading codes and one high-bit-rate spreading code for 

transmissions, a video packet is either transmitted using a low-bit-rate spreading code or 

using a high-bit-rate spreading code. Therefore, the delay of a video packet is equal to the 
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transmission time either at low-bit-rate code channel or at high-bit-rate code channel. 

Thus, let 2lD  and 2hD  denote the video delay using low- and high-bit-rate spreading code, 

respectively. They are given by                                                          

                                                     2 2
2 2

l
l l

L GD T
W

= = ,                                               (5.12) 

and 

                                                            2 2
2 2

h
h h

L GD T
W

= = .                                             (5.13) 

 

3. Delay of web-browsing services 

Web-browsing services implement the finite buffer and Go-Back-N ARQ method. 

The delay of a web-browsing service includes queuing delay, retransmission delay and 

acknowledgement delay. Chapter 3 studies the delay performance in the Go-Back-N 

ARQ system. The retransmission probability of a web-browsing service is determined by 

the instantaneous outage probability and varies over time. Thus, the average delay of a 

web-browsing service can be calculated by summing up all possible instantaneous delay. 

Equation (3.32) formulates the delay with an instantaneous outage probability. Based on 

equations (3.32) and (4.31), the average delay of a web-browsing service, 3D , is given by 
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(5.14) 
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where 3δ , 3µ  and 3σ  are given by equations (4.32)-(4.36). 

 

4.  Delay of data services 

The delay analysis of the data service is similar to that of the web-browsing service. 

Thus, based on equations (3.32) and (4.31), the average delay of data, 4D , is given by 
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where 4δ , 4µ  and 4σ  are given by equations (4.32)-(4.36). 

5.2.2 Delay Performance in Multi-Connection System Model 

The delay performances in the multi-connection system model should be analyzed for 

each class within each mobile user. Thus, the average delay for voice, video using low-

bit-rate spreading code, video using high-bit-rate spreading code, web-browsing, and data 

service within the ith mobile user are denoted by ,i kD , {1,2 ,2 ,3,4}k l h= , respectively.  

1. Delay of voice services 

      The voice delay in the multi-connection system model is the same as that in the 

single-connection system model, because voice service does not use ARQ mechanism. 

The delay of voice service, ,1iD , within the ith mobile station is given by 

                                                                 ,1 1iD D= .                                                       (5.16) 
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2. Delay of video services 

      The analysis of the video delay in the multi-connection system model is the same as 

that in the single-connection system model, as video services do not use ARQ mechanism. 

The delay of video service using low- and high-bit-rate spreading code within the ith 

mobile user are denoted by ,2i lD  and ,2i hD , which are given by 

                                                                   ,2 2i l lD D= ,                                                  (5.17) 

and 

                                                                   ,2 2i h hD D= .                                                 (5.18) 

3. Delay of web-browsing services 

Similar to the single-connection system model, the delay of a web-browsing service 

in the multi-connection system model is based on the Go-back-N ARQ and the outage 

probability. As we know, the outage probability in the multi-connection system model is 

different from that in the single-connection system model. With equations (3.32) and 

(4.38), within the ith mobile station, the average delay of a web-browsing service, ,3iD , is 

given by 
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where ,3iδ , ,3iµ  and ,3iσ are given by equations (4.39)-(4.41). 
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4. Delay of data services 

Similarly, the average delay of a data service is based on the outage probability and 

the Go-back-N ARQ. From equations (3.32) and (4.38), the average delay of a data 

service, ,4iD , within the ith mobile user is given by  
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where ,4iδ , ,4iµ  and ,4iσ are given by equation (4.39)-(4.41). 

5.3. Conclusion 

This chapter analyzes the performances of the packet level QoS attributes, such as the 

packet loss rate and the average delay, at the network layer. Under our assumption of 

slow fading, the packet loss of voice and video are totally equal to their respective outage 

probabilities in the single-connection and multi-connection system models. The average 

delay of voice and video are just equal to their packet duration times. On the other hand, 

non-real-time web-browsing and data services use Go-back-N ARQ in their transmissions, 

which result in lower packet loss rates and longer delays. Based on the analytical results 

in Chapter 3 and 4, the packet loss rate and average delay performances are analyzed for 

web-browsing and data services in both system models.  
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Chapter 6 

Numerical Results  

In Chapters 4 and 5, the QoS performances at the data link layer and the network 

layer (packet level) are studied, respectively. The issues in these two chapters consist 

of the outage probability, the packet loss rate, the average delay and the lengthened 

activity factors in the WCDMA channel. Mathematical formulas are developed for all 

traffic classes in both the single-connection and the multi-connection system models. 

In order to examine the accuracy of the proposed analytical methods, computer 

simulations are performed in this chapter. The simulation results and analytical results 

will be presented and compared with graphs. The comparisons prove that our 

mathematical predictions can approximate the simulation results under light or 

medium load and the assumptions made in the analysis are reasonable. 

In this chapter, the simulation model is presented in section 6.1. In the simulation 

model, the system parameters are specified and the assumptions are given. In section 

6.2, we will present the simulation results to verify that the number of active 

spreading codes for a non-real-time service, such as web-browsing or data, can be 

approximated by the binomial distribution given a set of traffic parameters. In section 

6.3 and section 6.4, we provide the simulation results for the packet loss rates, the 

delay, the outage probabilities and the lengthened activity factors for the traffic 

classes in the single-connection and multi-connection system models, respectively. In 

section 6.5, we discuss the characteristics of achieved numerical results in the 

WCDMA system. In section 6.6, a call admission control method is described on the 
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QoS analytical platform and the corresponding admission regions are obtained for 

both system models, satisfying the QoS requirements at the packet level of the 

network layer. Finally, section 6.7 concludes this chapter. 

6.1 Simulation Model Specifications 

A UMTS cellular mobile network including multiple cells is studied in our 

simulation model. Each cell is square-shaped and has the same area. Figure 6.1 

illustrates the supposed cellular network. All the simulations and analyses are based 

on this network. 

Intracell
Base Station

.

.

Intercell
Base Station

Intracell
Mobile User

Intercell
Mobile User

 
Figure 6.1 Cellular Mobile Network Model 

As shown in Figure 6.1, our simulated cellular network consists of nine cells. One 

base station is located at the center of each cell. We assume that the number of mobile 

users is the same within each cell and all mobile users are uniformly located in each 

cell. We make the cell in the middle as the reference cell (intracell). The eight 
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neighbouring cells around the reference cell are considered as intercells. The QoS 

performances of the mobile users in the intracell are studied. Each mobile user in the 

intracell is interfered by all other mobile users both in the same cell and in the 

intercells. We assume that perfect power control is used in each cell such that the 

desired power levels of all traffic classes in a cell are achieved at their own base 

stations. We assume that the system is simulated with a constant chip rate of 3.84 

Mcps and a bandwidth of 5 MHz based on 3GPP, which are specified in [1]. The 

simulations are conducted on the SMPL platform [55]. 

It is assumed that each cell accommodates a number of mobile users, which can 

serve services such as voice, video, web-browsing and data. Each mobile user in the 

single-connection system model supports only one service, while each mobile user in 

the multi-connection system model supports multi-connection multiclass services 

simultaneously. In the section 4.1 of Chapter 4, the assumptions and system 

parameters are defined in greater details. 

Before we perform the simulation and mathematical analysis, the QoS attributes 

and requirements of all traffic classes are specified in Table 6.1 based on [12].  

Table 6.1 QoS Attributes 

Real-Time Services Non-Real-Time Service 
QoS Requirements 

Voice Video Web-
browsing Data 

Delay Requirement 
(ms) 80 250 Nil Nil 

Packet Loss Rate 
Requirement 

210−  210−  310−  310−  

BER Requirement 210−  210−  310−  310−  

SINR Requirement 
(dB) 2 2 3 3 
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Besides, the system parameters are configured in Table 6.2, based on [1, 36].  

Table 6.2 System Parameters 

Parameter Type Voice Video Web-browsing Data 

Spreading Gain 64 
128 (Low-bit-rate) 

64 (High-bit-rate) 
32 16 

Number of 

Spreading codes 
1 

8 (Low-bit-rate) 

1 (High-bit-rate) 
1 1 

Convolution Rate 1/2 1/2 1/2 1/2 

Buffer Size 0 0 200 400 

Shadowing Mean µ  0 

Shadowing Variance 2σ  6dBσ =  

Path Loss Attenuation 

Constant 
4 

Number of Cells, n 9 

Power of Thermal Noise 

Power η  
-103.2dBm ( 144 8 10. Watt−× ) 

Increased Ratio 

of Received Powers θ  
100 

Modulation Scheme QPSK 

 

In Chapter 2, the traffic models are given to approximate all traffic classes. 

According to [23-24], a set of traffic parameters for each service is presented in Table 

6.3. 
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Table 6.3 Traffic Parameters 

Real-Time Services Non-Real-Time Service Traffic 

Parameter Type Voice Video Web-browsing Data 

Ave. On Period 

(second) 
1 

0.418 (Low) 

1.5 (High) 
1.6 2.937 

Ave. Off Period 

(second) 
1.5 

0.663 (Low) 

1.5 (High) 
12 25.643 

Activity Factor 0.4 
0.3867 (Low) 

0.5 (High) 
0.1176 0.1028 

Ave. Rate 

(kbps) 
24 122.3 14.1 22.8 

Channel Rate 

(kbps) 
60 

30 (Low) 

60 (High) 
120 240 

Packet Size 

(bits) 
1200 1800 2400 4800 

 

In generating the traffic for the four different classes, each voice service is 

generated as exponential on/exponential off process; each video service is generated 

as M low-bit-rate exponential on/exponential off processes and one high-bit-rate 

exponential on/exponential off process; each web-browsing or data service is 

generated as a Pareto on/Pareto off process. According to the traffic models in 

Chapter 2, the parameters used in the traffic generation are given by the following. 

For the traffic model of a voice service given by equation (2.1), 1α  is 0.667 and 

1β  is 1.0.   

For the traffic model of a video service given by equations (2.2) and (2.3), α  is 

1.5 and β  is 2.4.  λ  is 1.5 and µ  is 1.5.   

For the traffic model of a web-browsing service given by equations (2.5) and (2.7), 

3,onc  is 1.1 and 3,ona  is 0.1455. 3,offc  is 1.1 and 3,offa  is 1.1. 
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For the traffic model of a data service given by equations (2.10) and (2.12), 4,onc is 

1.1 and 4,ona  is 0.268. 4,offc  is 1.1 and 4,offa  is 2.33. 

6.2 Statistical Characteristics of Pareto on/ Pareto off Process 

In equations (4.31) and (4.38), the number of active sources for each traffic class 

is assumed to follow binomial distribution. Generally, this assumption is valid for 

exponential on/exponential off services, such as voice and video, while it is not valid 

for Pareto on/Pareto off services, such as web-browsing and data. Therefore, the 

binomial distribution is only an approximation to simplify the calculation of the 

outage probabilities. In this section, simulation is performed to examine the accuracy 

of this approximation under a set of given traffic parameters in Table 6.4. 

Table 6.4 Traffic Parameters in Binomial Assumption 

Service Type 
3,onc  

( 4,onc ) 

3,ona  

 ( 4,ona ) 

3,offc   

( 4,offc ) 

3,offa  

 ( 4,offa ) 

,3onp  

( ,4onp ) 

Web-browsing (1) 1.1 0.10 1.1 1.1 0.084 

Web-browsing (2) 1.1 0.15 1.1 1.1 0.117 

Web-browsing (3) 1.1 0.25 1.1 1.1 0.186 

Web-browsing (4) 1.1 0.5 1.1 1.1 0.314 

Web-browsing (5) 1.1 0.8 1.1 1.1 0.423 

Data (1) 1.1 0.15 1.1 2.33 0.052 

Data (2) 1.1 0.27 1.1 2.33 0.108 

Data (3) 1.1 0.50 1.1 2.33 0.155 

Data (4) 1.1 1.00 1.1 2.33 0.268 

Data (5) 1.1 1.80 1.1 2.33 0.398 
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According to the binomial distribution, if there are userN  independent Pareto 

on/Pareto off services and activity factor is onp , the probability that i services are in 

active state is given by ( )Pr i . 

1 useriuser N i
on on

N
Pr( i ) p ( p )

i
− 

= − 
 

 

We assume there are ten ( userN =10) web-browsing (data) services in the system. 

onp  is 3onp  ( 4onp ) for the web-browsing (data) services. For web-browsing (data) 

services, the number of active services is denoted by i (0 10)i≤ ≤ . The theoretical 

probabilities that there are i (0 10)i≤ ≤  active web-browsing (data) services in the 

system are calculated with the above equation. Strictly, the activity factor and on/off 

traffic in the WCDMA channel are different from those in the source traffic and thus 

the following figures for on/off traffic in the source traffic cannot describe the 

binomial distribution of the active services in the WCDMA channel very accurately. 

However, because the difference between the source traffic and the traffic in the 

WCDMA channel is actually not significant, the binomial distribution can approximately 

represent the number of active web-browsing (data) services in the channel.  

In our simulation, we independently generate 10 Pareto on/Pareto off traffic for a 

given set of traffic parameters (see Table 6.4) for a very long period of time. Statistics 

on the number of active sources, i (0 10)i≤ ≤ , are collected. The theoretical and 

simulation results are compared and illustrated in Figure 6.2 and Figure 6.3.  



Chapter 6.  Numerical Results___________________________________________ 105

    

Figure 6.2 Probability Distribution for the Number of Active Spreading Codes Used 

by Web-browsing Services 

 
Figure 6.3 Probability Distribution of the Number of Active Spreading Codes Used by 

Data Services 

In Figure 6.2 and Figure 6.3, the distribution of the active web-browsing and data 

sources are presented, respectively. According to Table 6.4, we fix 3,onc  ( 4,onc ), 3,offc   
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( 4,offc ) and 3,offa  ( 4,offa ) values, and change 3,ona  ( 4,ona ) to be five different values so 

that the activity factors of the web-browsing and data services vary accordingly. Thus, 

five curves corresponding to the five sets of parameters given in Table 6.4 are plotted 

for web-browsing and data services. These simulations prove that binomial 

assumption is suitable to approximate the number of active Pareto on/Pareto off 

sources for these sets of traffic parameters. The subsequent numerical computation in 

this chapter will be using these sets of values.  

 

6.3 Numerical Results in the Single-Connection System Model 

Each mobile user only transmits one service in the single-connection system 

model. Among the N mobile users in a cell, we assume there are 1N  voice services, 

2N  video services, 3N  web browsing services and 4N  data services. All the 

parameters are defined by the system model in Section 4.1.1. The following Table 6.5 

gives the number of services in a cell.  

Table 6.5 Number of Services in the Single-Connection System Model 

1N   2N  3N  4N  

11~30 4 4 4 

 

We vary the number of voice services from 11 to 30 in this simulation, and obtain 

the QoS performances, such as the packet loss rate, the average delay, the outage 

probability and the lengthened activity factors, of the services in the system. 
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6.3.1 Quality of Service for Voice Services 

 
Figure 6.4 Packet Loss Rate/Outage Probability of Voice Services (in the Single-

Connection System Model) 

As given by Figure 6.4, when the number of voice services is varying from eleven 

to thirty, packet loss rate and outage probability of voice increases. 
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6.3.2 Quality of Service for Video Services 

 
Figure 6.5 Packet Loss Rate / Outage Probability of Video Services (in the Single-

Connection System Model) 

In Figure 6.5, as we have assumed SINR requirements, BER requirements and 

packet loss rate requirements are the same for both video services using both low- and 

high-bit-rate spreading codes, the achieved outage probability and packet loss rate are 

thus the same for low-bit-rate and high-bit-rate video services.  
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6.3.3 Quality of Service for Web-browsing Services 

 

Figure 6.6 Lengthened Activity Factor of Web-browsing Services (in the Single-

Connection System Model) 

 
Figure 6.7 Outage Probability of Web-browsing Services (in the Single-Connection 

System Model) 
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Figure 6.8 Packet Loss Rate of Web-browsing Services (in the Single-Connection 

System Model) 

 

Figure 6.9 Average Delay of Web-browsing Services (in the Single-Connection 

System Model) 
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Figure 6.10 Average Number of Web-browsing Packets in the Buffer (in the 

Single-Connection System Model) 

From Figures 6.6 to 6.10, QoS performances of web-browsing services are shown. 

As web-browsing services implement Go-Back-N ARQ mechanism, the activity 

factor of a web-browsing service is lengthened shown in Figure 6.6. At the same time, 

the packet loss rate can be reduced and is lower than its outage probability, as 

illustrated in Figure 6.7 and 6.8. However, Go-Back-N ARQ will result in a longer 

delay in Figure 6.9.     
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6.3.4 Quality of Service for Data Services 

 

Figure 6.11 Lengthened Activity Factor of Data Services (in the Single-Connection 

System Model) 

 
Figure 6.12 Outage Probability of Data Services (in the Single-Connection System 

Model) 
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Figure 6.13 Packet Loss Rate of Data Services (in the Single-Connection System 

Model) 

 

Figure 6.14 Average Delay of Data Services (in Single-Connection System Model) 
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Figure 6.15 Average Number of Data packets in the Buffer (in the Single-

Connection System Model) 

From Figures 6.11 to 6.15, the QoS performances of data services are shown. Data 

services are generally similar to web-browsing services. Go-Back-N ARQ is 

implemented and this leads to a lengthened activity factor, a lower packet loss rate 

and a longer delay.  

6.4 Numerical Results in the Multi-Connection System Model 

Multi-connection multiclass services in the multi-connection system model can be 

transmitted within each mobile station. Among the N mobile users in a cell, each user 

can support different combination of services. In order to simplify the analysis, we 

can divide all mobile users into four groups. In the following, Table 6.6 lists the 

service combination and the number of mobile users within each group. 
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Table 6.6 Number of Mobile Users and Services in the Multi-Connection System 

Model 

Group Index Group 1 Group 2 Group 3 Group 4 

Num. of Mobile Users 5 ~ 23 2 2 5 

Num. of Voice Services / Mobile User 1 0 1 0 

Num. of Video Services / Mobile User 0 1 1 0 

Num. of Web Services / Mobile User 0 0 0 1 

Num. of Data Services / Mobile User 0 0 0 1 

6.4.1 Quality of Service Performances in Group One 

Since each mobile user only serves one voice service, the packet loss rate and 

outage probability of voice services in group one are same and shown in Figure 6.16. 

 
Figure 6.16 Packet Loss Rate/Outage Probability of Voice Services (Group 1, in the 

Multi-Connection System Model) 
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6.4.2 Quality of Service Performances in Group Two 

Each mobile user only serves one video service. Thus, the packet loss rate and 

outage probability of video services in group two are same and are given by Figure 

6.17. 

 
Figure 6.17 Packet Loss Rate/Outage Probability of Video Services (Group 2, in the 

Multi-Connection System Model) 

6.4.3 Quality of Service Performances in Group Three 

Each mobile user in group three contains one voice and one video service. Packet 

loss rate/outage probability of voice and video services are given by Figures 6.18 and 

6.19, respectively. 
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Figure 6.18 Packet Loss Rate/Outage Probability of Voice Services (Group 3, in the 

Multi-Connection System Model) 

 

Figure 6.19 Packet Loss Rate/Outage Probability of Video Services (Group 3, in the 

Multi-Connection System Model) 
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6.4.4 Quality of Service Performances in Group Four 

Each mobile user in group four serves one web-browsing and one data service. 

Thus, their lengthened activity factors, outage probabilities, packet loss rates, delays, 

average number of packets in the buffer are presented by the following figures. From 

Figures 6.21, 6.22, 6.26 and 6.27, we can see that the achieved packet loss rate of a 

web-browsing or data service is much lower than its corresponding outage probability. 

This advantage is due to the Go-Back-N ARQ mechanism and the finite buffer used in 

their transmissions. However, the buffer results in a longer average delay for these 

two services, which is shown in Figures 6.23 and 6.28. 

1. Web-browsing Services 

 

Figure 6.20 Lengthened Activity Factor of Web-browsing Services (Group 4, in the 

Multi-Connection System Model) 
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Figure 6.21 Outage Probability of Web-browsing Services (Group 4, in the Multi-

Connection System Model) 

 

 

Figure 6.22 Packet Loss Rate of Web-browsing Services (Group 4, in the Multi-

Connection System Model) 
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Figure 6.23 Average Delay of Web-browsing Services (Group 4, in the Multi-

Connection System Model) 

 

Figure 6.24 Average Number of Web-browsing Packets in the Buffer (Group 4, 

Multi-Connection System Model) 

2. Data Services 
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Figure 6.25 Lengthened Activity Factor of Data Services (Group 4, in the Multi-

Connection System Model) 

 
Figure 6.26 Outage Probability of Data Services (Group 4, Multi-Connection System 

Model) 
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Figure 6.27 Packet Loss Rate of Data Services (Group 4, in the Multi-Connection 

System Model) 

 

 

Figure 6.28 Average Delay of Data Services (Group 4, in the Multi-Connection 

System Model) 
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Figure 6.29 Average Number of Data Packets in the Buffer (Group 4, in the Multi-

Connection System Model) 

6.5 Discussion of Numerical Results 

From the numerical results obtained for single- and multi-connection systems, we 

are able to generalize the following points.  

Firstly, we can clearly observe that all analytical results, for examples, the packet 

loss rates given in Figures 6.4, 6.5, 6.8 and 6.13, and the delays given in Figures 6.9 

and 6.14 in the single-connection system, show a better agreement when the systems 

are in light and medium load than when they are in heavy load. The deviation during 

heavy load, i.e., when there are more users in the system, can be explained as follows. 

The outage becomes more severe and thus retransmissions occur more frequently 

during heavy load. As we mentioned in Chapter 3, our Go-Back-N ARQ analysis is 

accurate only when the retransmissions occur less frequently and the packet error rate 

is low. Thus, the average outage probabilities of the web-browsing and data services 

should be no more than around 5% as shown in Figures 6.7 and 6.12, which is within 
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the range of light and medium load. If a lot of retransmissions happen, the on periods 

of web-browsing or data services in the WCDMA channel may overlap, which 

influences the computation of their lengthened activity factors, outage probabilities, 

packet loss rates and delays. As all classes in a WCDMA system are intertwined to 

each other, the QoS performances, such as packet loss rates, delays and outage 

probabilities, of all classes, are therefore affected and deviate from simulation results. 

Thus, our analytical formulation is only suitable for light and medium load when the 

throughput of the system is below or around 1.2 Mbps. At higher load, 50%-150% 

deviation is observed for the packet loss rates shown in Figures 6.8 and 6.13, etc.  

 Secondly, we are able to achieve a desired feasible region for a given set of QoS 

requirements. For example, Figures 6.4, 6.5, 6.8, 6.9, 6.13 and 6.14 give the packet 

loss rate and average delay performances in the single-connection system model.  For 

a given combination of the four groups of users ( 1N = 18, 2N  = 4, 3N =4 and 4N =4),   

we can see that the QoS requirement for group 1 user can be satisfied from Figure. 6.4. 

Similarly, from Figure 6.5, 6.8, 6.9 and 6.13 and 6.14, the packet loss rate of delay 

requirements for group 2, 3, 4, respectively, can be satisfied also. Hence we know that 

this combination of users ( 1N = 18, 2N  = 4, 3N =4 and 4N =4) is within the admission 

region.  

Thirdly, we also have some comments on the complexity of the analysis. Our final 

analytical expressions are rather complex since all the equations consist of multiple 

summations. This is due to the fact that we jointly consider more realistic traffic 

models, Go-Back-N ARQ, multi-cell network and four traffic classes. This therefore 

complicates the analysis, especially in a large system. Despite this, the analysis still 

takes much shorter time to work out the results than using simulation. For example, it 

takes about 12 hours to obtain the simulation results in the multi-connection system, 
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while the analytical results can be computed in less than one hour. The analysis and 

simulation programs are both written in C language.  

6.6. QoS-Based Call Admission Control and Admission Regions 

Based on the results given in sections 6.3 and 6.4, it is demonstrated that our 

analytical results in Chapter 3 to Chapter 5 are able to approximate the predictions of 

the QoS performances in the WCDMA system under low and medium load conditions. 

Here, we propose an analytical platform for a QoS-based call admission control (CAC) 

scheme, which is extended from [67]. The admission region obtained using this CAC 

scheme can satisfy the QoS requirements of all the four classes of admitted mobile 

users. The procedure to obtain the admission region is shown in Figure 6.30. Let 

*
loss,kP  and *

loss,kD denote the packet loss rate and delay requirements of voice, video, 

web-browsing and data services, respectively when {1, 2,3, 4}k∈ . The conditions of 

the CAC are *
loss,k loss,kP P≤  and *

loss,k loss,kD D≤ , {1, 2,3, 4}k∈  for the single-connection 

model and *
loss,k,i loss,kP P≤  and *

loss,k,i loss,kD D≤ , { }i 1,2,...,N∈ , {1, 2,3, 4}k∈  for the 

multi-connection model. 
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Figure 6.30 Call Admission Control Procedures 

The power distribution scheme described in Chapter 4 is used in this CAC process. 

As shown in the Figure 6.30, the power distribution in Chapter 4 is used with the 

following steps in the CAC scheme. 

[1]. The activity factors of web-browsing and data services in their sources are first 

used to calculate the received power levels of all classes in the system. This step can 

be done with equations (4.15)-(4.19) and (4.29). 
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[2]. With the obtained power levels, the outage probabilities of all classes are 

computed with equations (4.31) and (4.38). 

[3]. With the obtained outage probabilities, the lengthened activity factors of web-

browsing and data services are calculated with (4.42-4.45). Based on the lengthened 

activity factors, the power distribution scheme is performed again to calculate the 

received power levels, as stated in step [1]. From equations (4.15-19), (4.29), (4.31), 

(4.38) and (4.42)-(4.45), the power distribution scheme, outage probabilities and 

lengthened activity factors are intertwined. Therefore, step [1]-[3] are iterated until 

the derived values converge.  

[4]. When the converged power levels, outage probabilities and activity factors are 

obtained, the delays and packet loss rates of all classes can be calculated, based on 

equations (5.1-5.20).  

[5]. According to the derived delays and packet loss rates, CAC is able to determine 

whether these mobile users should be admitted or rejected. Admission regions can be 

achieved by computing all possible combination of mobile users with the satisfied 

QoS requirements and be presented in tables. 

In the following, we give examples of admission regions for the single-connection 

and multi-connection system models, respectively. 

6.6.1 Admission Region for the Single-Connection System Model 

The single-connection system model only enables one connection within each 

mobile user. Using the parameters in Table 6.5, the AR is given by Figure 6.31. Note 

that the number of video services is set to be zero so that a 3-dimensinal AR can be 

presented. The admission region is the space on or under the shown surface.  
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Figure 6.31 Admission Region of Single-Connection System Model (Number of 

Video Services = 0) 

6.6.2 Admission Region for the Multi-Connection System Model 

The multi-connection system model only enables multi-connection multiclass 

services within each mobile user. Using the parameters in Table 6.6, the AR is given 

by Figure 6.32. The number of users in Group two is fixed to be zero so as to present 

a 3-dimensional admission region. The space on or under the surface refers to the 

admission region. Any set of mobile users in the admission region can be guaranteed 

the satisfactory QoS performances. 
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Figure 6.32 Admission Region for Multi-Connection System Model (Number of 

Mobile Users in Group 2 = 0) 

From the above Figure 6.31 and Figure 6.32, we can see clearly that the system 

capacity in the single-connection system model is larger than that in the multi-

connection system model in terms of the number of admitted mobile users. This is 

because each mobile user in the multi-connection system model supports more 

connections of services than each mobile user in the single-connection system model. 

However, the multi-connection system model is more realistic, since the WCDMA 

system enables a mobile user to provide multiservice capability. The system capacity 

of a multi-connection system model should be larger in terms of the total data rate, 

since the services within the same mobile user do not interfere with each other. Please 

note that we suppose the number of mobile users in group two is equal to zero, by 

which three-dimensional figures can be visually displayed. The call admission region 

for all the four groups of mobile users can also be shown in a table.  
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6.7 Conclusions 

In this chapter, computer simulations are performed to verify the mathematical 

formulations of the QoS attributes in the WCDMA system, including outage 

probabilities, packet loss rates and delay, etc. The simulation and analytical results 

prove to be very close. Thus, the mathematical methods can be considered as reliable 

predictions of the QoS performances in the WCDMA system for the parameters 

chosen. In addition, we give a QoS-based call admission control scheme in this 

chapter. From this CAC scheme, 3-dimensional admission regions are derived in the 

two different system models.  
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Chapter 7 

Conclusion and Future Works 

7.1 Conclusion 

In this thesis, we present an analytical framework to investigate the Quality of Service 

issue of the uplink of wideband CDMA cellular mobile networks. Our analysis is based 

on four QoS traffic classes, including voice, video, web-browsing and data services. 

These four classes differ in their traffic characteristics and their QoS requirements, such 

as packet loss rate and delay. Previous literatures have not provided a complete analytical 

solution to the QoS performances of the four classes in a WCDMA system. Our work 

focuses on providing an approximate method to calculate the QoS attributes of all these 

classes.  

In order to proceed with the analytical work, we first define appropriate traffic models 

for these classes. Compared to existing works in the literature, our traffic models are 

more realistic. For example, we adopt a two-dimensional, continuous-time, discrete-state 

Sen’s Markov model to approximate the VBR video sources. At the same time, we use 

heavy-tailed Pareto on/Pareto off process for both the web-browsing and data services. 

These models are definitely more appropriate than other models such as Poisson process 

used in some existing literatures.  
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Based on the Pareto on/Pareto off model, we investigate a Go-Back-N ARQ scheme 

with limited number of retransmissions and with a finite buffer size. These assumptions 

are more realistic as compared to some existing works which commonly assume 

unlimited number of retransmissions and with an infinite buffer size.  This Go-Back-N 

scheme is analyzed in terms of the packet loss rates, delays and lengthened activity 

factors. The results obtained are new and have not been addressed before in the literature. 

We obtain an expression to estimate these attributes for the Pareto on/Pareto off process 

in the Go-Back-N channel. The shortcoming of our analytical model is that light or 

medium load is assumed. 

We also present two different types of system models, including the single-

connection and multi-connection models, of WCDMA cellular mobile networks. These 

two system models can serve a single service and multiclass services, respectively, to 

each user. A power distribution scheme is developed to allocate the required received 

power levels to all classes if the perfect power control is assumed, while satisfying the 

required SINR levels at the data link layer. This power distribution scheme is useful in 

evaluating the system capacity and calculating QoS performances. 

Furthermore, we generalize an analytical expression of the outage probabilities for all 

traffic classes. At the same time, we study the lengthening of the activity factors of web-

browsing and data services in the WCDMA channel. The lengthened activity factors, 

received power levels and outage probabilities are intertwined to each other. A simple 

iteration method is suggested to compute the convergent outage probabilities, lengthened 

activity factors and received power levels. Based on the outage probabilities and Go-

Back-N ARQ analysis, we analyze the packet loss rate and delay for each class. From the 
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numerical results obtained, our analysis can predict the QoS performances under light or 

medium traffic load rather well. Hence, our analytical approach can be used to determine 

the admission region.  

7.2 Future Work 

In this thesis, we only investigate the QoS performances in the uplink of the 

WCDMA system. Actually, the QoS issues in the downlink are also very critical. In the 

WCDMA system, since the uplink communication is asynchronous and experiences more 

interference, the QoS analysis of the downlink differs much from the work in this thesis. 

Additionally, the assignment of spreading codes in the downlink is another problem. That 

is because the code resources in the downlink are relatively scarce and thus an efficient 

allocation scheme is required for the spreading codes. These issues leave much room for 

further analyses. 

Besides, the CAC at the base station of the WCDMA system is supposed to be 

performed based on satisfying the QoS requirements at different layers of the system. 

Therefore, the admission regions should be provided by the physical layer, the data link 

layer and network layer jointly. Therefore, our analytical work in this thesis has to be 

extended to the QoS provisioning/optimizing with the other layers. Thus, the intersection 

of the admission regions at all these layers is the final desired feasible admission region 

in the WCDMA system. 
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Appendix 

Intercell Interference Analysis  

In a multi-cell UMTS cellular mobile network, a type of service in the WCDMA 

channel experiences interference both from intracell services within the same cell and 

from the intercell services within the neighbouring cells. In this thesis, we assume that 

our cellular system is made up of a number of square cells. Mobile users are assumed to 

be uniformly distributed in each cell. In the following, we will analyze the statistical 

characteristics of the intercell interference in both the single-connection system model 

and the multi-connection system model.  

1. Intercell Interference for the Single-Connection System Model 

Based on the single-connection system model given in section 4.1.1 and the analytical 

work given in [21, 22, 32], the intercell interference-to-signal ratio of a service can be 

formulated by equation (A.1), taking the path loss and lognormal shadowing into 

consideration. 
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where iI  and iS  are the intercell interference and the received power of a voice service, a 

video service using a low-bit-rate spreading code, a video service using a high-bit-rate 

spreading code, a web-browsing service and a data service, when {1,2 ,2 ,3,4}i l h∈ , 

respectively. In equation (A.1), mε  and dε  are two independent Guassian random 

variables with zero mean and 2σ  variance. Let us suppose that mr  denotes the distance 
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between an intercell service and the intercell base station suppose dr  denotes the distance 

between an intercell service and the intracell base station. The mean and variance of the 

intercell interference-to-signal ratio are given by 
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 are given by [21-22], [33] and [54]. 
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Then, the mean and variance of the total intercell interference can be expressed as 
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2. Intercell Interference for the Multi-Connection System Model              

Based on the multi-connection system model given in section 4.1.2 and the analytical 

work given in [21, 22, 32], the intercell interference-to-signal ratio of a service within the 

ith mobile user can be formulated by equation (A.8), taking the path loss and lognormal 

shadowing into consideration. 
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where ,i jI  and ,i jS  are the intercell interference and the received power of a voice, a 

video service using a low-bit-rate spreading code, a video service using a high-bit-rate 

spreading code, a web-browsing service and a data service within the ith mobile user  

when {1,2 ,2 ,3,4}j l h∈ , respectively. 

In equation (A.8), mε  and dε  are two independent Guassian random variables with 

zero mean and 2σ  variance. Let us suppose that mr  denotes the distance between an 

intercell service and the intercell base station. Furthermore, let us suppose that dr  denotes 

the distance between an intercell service and the intracell base station. With ( )m
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 defined by (A.4) and (A.5). The mean and variance of the intercell interference-to-

signal of the ith mobile user are given by 
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and  
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Then, the mean and variance of the total intercell interference can be expressed as 
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