70,812 research outputs found

    From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    Full text link
    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure

    Cloud-based manufacturing-as-a-service environment for customized products

    Get PDF
    This paper describes the paradigm of cloud-based services which are used to envisage a new generation of configurable manufacturing systems. Unlike previous approaches to mass customization (that simply reprogram individual machines to produce specific shapes) the system reported here is intended to enable the customized production of technologically complex products by dynamically configuring a manufacturing supply chain. In order to realize such a system, the resources (i.e. production capabilities) have to be designed to support collaboration throughout the whole production network, including their adaption to customer-specific production. The flexible service composition as well as the appropriate IT services required for its realization show many analogies with common cloud computing approaches. For this reason, this paper describes the motivation and challenges that are related to cloud-based manufacturing and illustrates emerging technologies supporting this vision byestablishing an appropriate Manufacturing-as-a-Service environment based on manufacturing service descriptions

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Business integration between manufacturing and transport-logistics firms

    Get PDF
    Purpose - This paper analyses how manufacturers and transport-logistics service providers (TLSPs) work together and integrate their business processes. The information technologies used to support the integration, the processes currently integrated, and the expected future integration, are searched. Design/methodology/approach - Six in-depth case studies were conducted among leading companies in the electrical, electronics, mechanical, food processing, and transport-logistics industries. The data was collected using comprehensive semi-structured interviews. Findings - Most of the firms are coupled electronically through EDI. The current business integration practices are primarily restricted to some sub-processes in three key SC processes: Customer service management, order fulfillment and backwards logistics. In the future the manufacturers want a better integration with the TLSPs, but at the same time, manufacturers would like to have the freedom of breaking the relationship, if the party does not fulfill the requisites and expectations. The future developments associated to the "commoditization" of TLSPs’ services would reinforce this trend. Originality/value - This research has shed light on a relatively unexplored area related to the integration between manufacturers and transport-logistics firms. Our research has highlighted the complexity of the integration between the two echelons, and has helped to the identification of current areas of integration. This research has also contributed to understand how the integration occurs in real contexts, by uncovering with a high degree of detail, what manufactures do to integrate their business with the TLSPsSupply chain management; Business process integration; Information technologies (IT); Standardization; Manufacturers; Transport and Logistics Service Providers (TLSPs)

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    An agile business process improvement methodology

    Get PDF
    Adoption of business process improvement strategies are now a concern of most organisations. Organisations are still facing challenges and finding transient solutions to immediate problems. The misalignment between IT solutions and organisational aspects evolves across space and time showing discrepancies. Unfortunately, existing business process approaches are not according with continuous business process improvement involving business stakeholders. Considering this limitation in well-known Business Process (BP) methodologies, this paper presents a comparative study of some approaches and introduces agility in the Business Process and Practice Alignment Methodology (BPPAM). Our intention is to present observed problems in existing approaches and introduce agility in our proposal to address features, like the alignment between daily work practices and business process descriptions, in a simple and agile way. (C) 2017 The Authors. Published by Elsevier B.V

    Modelling the relationship between planning, control, perception and execution behaviours in interactive worksystems

    Get PDF
    This paper presents a model of planning carried out by interactive worksystems which attempts: 1. To describe the relationship between planning, control, perception and execution behaviours; 2. To make explicit how these may be distributed across the user and physically separate devices. Such a model, it is argued, is more suitable to support HCI design practice than theories of planning in cognitive science which focus on problem-solving methods and representations. To demonstrate the application of the model to work situations, it is illustrated by examples drawn from an observational study of secretarial office administration
    corecore