748 research outputs found

    Perception for mobile robot navigation: A survey of the state of the art

    Get PDF
    In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task

    RoboCup@Home: Analysis and results of evolving competitions for domestic and service robots

    Get PDF
    Scientific competitions are becoming more common in many research areas of artificial intelligence and robotics, since they provide a shared testbed for comparing different solutions and enable the exchange of research results. Moreover, they are interesting for general audiences and industries. Currently, many major research areas in artificial intelligence and robotics are organizing multiple-year competitions that are typically associated with scientific conferences. One important aspect of such competitions is that they are organized for many years. This introduces a temporal evolution that is interesting to analyze. However, the problem of evaluating a competition over many years remains unaddressed. We believe that this issue is critical to properly fuel changes over the years and measure the results of these decisions. Therefore, this article focuses on the analysis and the results of evolving competitions. In this article, we present the RoboCup@Home competition, which is the largest worldwide competition for domestic service robots, and evaluate its progress over the past seven years. We show how the definition of a proper scoring system allows for desired functionalities to be related to tasks and how the resulting analysis fuels subsequent changes to achieve general and robust solutions implemented by the teams. Our results show not only the steadily increasing complexity of the tasks that RoboCup@Home robots can solve but also the increased performance for all of the functionalities addressed in the competition. We believe that the methodology used in RoboCup@Home for evaluating competition advances and for stimulating changes can be applied and extended to other robotic competitions as well as to multi-year research projects involving Artificial Intelligence and Robotics

    Multi-Agent Task Allocation for Robot Soccer

    Get PDF
    This is the published version. Copyright De GruyterThis paper models and analyzes task allocation methodologies for multiagent systems. The evaluation process was implemented as a collection of simulated soccer matches. A soccer-simulation software package was used as the test-bed as it provided the necessary features for implementing and testing the methodologies. The methodologies were tested through competitions with a number of available soccer strategies. Soccer game scores, communication, robustness, fault-tolerance, and replanning capabilities were the parameters used as the evaluation criteria for the mul1i-agent systems

    Visual Attention in Dynamic Environments and its Application to Playing Online Games

    Get PDF
    Abstract In this thesis we present a prototype of Cognitive Programs (CPs) - an executive controller built on top of Selective Tuning (ST) model of attention. CPs enable top-down control of visual system and interaction between the low-level vision and higher-level task demands. Abstract We implement a subset of CPs for playing online video games in real time using only visual input. Two commercial closed-source games - Canabalt and Robot Unicorn Attack - are used for evaluation. Their simple gameplay and minimal controls put the emphasis on reaction speed and attention over planning. Abstract Our implementation of Cognitive Programs plays both games at human expert level, which experimentally proves the validity of the concept. Additionally we resolved multiple theoretical and engineering issues, e.g. extending the CPs to dynamic environments, finding suitable data structures for describing the task and information flow within the network and determining the correct timing for each process

    Systematic mapping literature review of mobile robotics competitions

    Get PDF
    This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.info:eu-repo/semantics/publishedVersio

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    A Survey on Human-aware Robot Navigation

    Full text link
    Intelligent systems are increasingly part of our everyday lives and have been integrated seamlessly to the point where it is difficult to imagine a world without them. Physical manifestations of those systems on the other hand, in the form of embodied agents or robots, have so far been used only for specific applications and are often limited to functional roles (e.g. in the industry, entertainment and military fields). Given the current growth and innovation in the research communities concerned with the topics of robot navigation, human-robot-interaction and human activity recognition, it seems like this might soon change. Robots are increasingly easy to obtain and use and the acceptance of them in general is growing. However, the design of a socially compliant robot that can function as a companion needs to take various areas of research into account. This paper is concerned with the navigation aspect of a socially-compliant robot and provides a survey of existing solutions for the relevant areas of research as well as an outlook on possible future directions.Comment: Robotics and Autonomous Systems, 202
    • …
    corecore