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Abstract

In this thesis we present a prototype of Cognitive Programs (CPs) - an executive

controller built on top of Selective Tuning (ST) model of attention. CPs enable top-down

control of visual system and interaction between the low-level vision and higher-level task

demands.

We implement a subset of CPs for playing online video games in real time using only

visual input. Two commercial closed-source games - Canabalt and Robot Unicorn Attack

- are used for evaluation. Their simple gameplay and minimal controls put the emphasis

on reaction speed and attention over planning.

Our implementation of Cognitive Programs plays both games at human expert level,

which experimentally proves the validity of the concept. Additionally we resolved multiple

theoretical and engineering issues, e.g. extending the CPs to dynamic environments,

�nding suitable data structures for describing the task and information �ow within the

network and determining the correct timing for each process.
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1 Introduction

1.1 Motivation

The main goal for this thesis was to develop a working prototype for Cognitive Programs

(CPs) [85] - an executive controller built on top of the model of visual attention enabling

it to perform non-trivial dynamic visually guided tasks. CPs are inspired by the concept of

Ullman's Visual Routines [86] combined with recent �ndings about the neurophysiology of

visual attention. The visual attention module is based on Selective Tuning (ST) [84] - a bi-

ologically plausible model of visual attention, which has been successfully implemented and

whose predictions were strongly supported by experimental data. Its complex hierarchical sys-

tem mimics human vision and allows for both top-down and bottom-up processes to in�uence

visual processing. The purpose of Cognitive Programs is to control the execution of ST by

modifying the way it treats inputs based on the current visual task and directing outputs to

appropriate parts of the framework. Selective Tuning and Cognitive Programs are designed to

handle a broad range of visual inputs. In order to demonstrate the capabilities of Cognitive

Programs we implemented parts of it needed for playing video games. The reasons for choos-

ing this particular task are twofold: 1) playing a game requires a signi�cant amount of visual

analysis, for instance visual search, tracking, object localization, recognition and classi�cation,

etc., 2) modern video games provide a controlled and visually rich environment for testing the

new system.

(a) Canabalt (b) Robot Unicorn Attack

Figure 1: Screenshots of the games
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Two games selected for the purposes of this demonstration were Canabalt and Robot

Unicorn Attack (Figure 1). Both are among the most played representatives of a new sub-

genre of platform games called endless scrollers, and have many characteristics which make

them suitable for testing a dynamic model of attention. The maps for games of this type

are procedurally generated making every new session di�erent from the previous one. The

objective is to run for as long as possible while avoiding various obstacles. Both games have

simple controls: in Canabalt the character jumps over an obstacle when the 'X' key is pressed,

while in Robot Unicorn Attack pressing 'X' or 'Z' makes the character jump or dash through

the obstacle respectively. The map scrolls forward automatically. The score depends on the

distance traveled and sometimes can be increased by collecting special objects. Typically, the

speed of the games gradually increases, making quick reaction, attention and precision more

important than planning.

Both of these games are commercial and no source code or API is available, hence, two

additional problems had to be addressed. First, no direct access to noise-free information

from the game engine was possible. This meant that all decisions must be made based only on

what is visible on the screen. Second, since the games cannot be arti�cially slowed down, all

processing must be done in real time. These characteristics, though challenging, make these

games an ideal test for our models.

Using games as a visual input is not a new idea and �rst such attempts were made in the

1980s. They were not very successful due to the inadequate computing resources available

at that time for the amount of processing required to accomplish such tasks. Another issue

was in the selection of the games for research. Many authors favored the exploration type

games, that required a player to interact with various objects on the screen and solve puzzles.

The demand for interaction with multiple objects shifted the focus from vision to developing

complex gameplay strategies and resolving semantic problems. We tried to avoid some of these

issues by selecting games with fewer objects and simple gameplay. By doing so we focused

more on visual attention and thus the feasibility of the CPs concept. Finally, designing an

algorithm for playing games in real time not only demonstrates the importance of optimization
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for visual tasks, but also utilizes recent advances in general purpose GPU programming.

1.2 Outline

The second chapter of this thesis provides an overview of research background. Build-

ing an algorithm to visually play video games requires developments from disparate areas of

research: computer vision, visual attention, cognitive architectures, game AI and GPU com-

puting. We �rst give a short overview of how sensory input is handled in the established

cognitive architectures, followed by a discussion of various visual attention models based on

visual routines. We then introduce Cognitive Programs as a controller for a modern model of

visual attention and �nally review some relevant works in the area of game AI for platform

games.

The third chapter contains the technical details of the elements of Cognitive Programs

for the task of playing online games and discusses modi�cations that are necessary to enable

real-time performance. Here we also examine practical issues stemming from working with

real-time data. Finally we review tools used for learning game physics, visual debugging and

gathering statistics about the games.

Chapter four evaluates the performance of the visual system and overall performance

of the framework. To our knowledge no other software agent can play our games or similar

games in real time based on vision alone, therefore we only compare our results with those

of human expert players. Since both games used in this research have a large number of

followers, numerous recorded scores are available online. We also discuss di�erent aspects of

the algorithm a�ecting the �nal game score, e.g. the accuracy of speed estimation and object

detection.

Finally, in chapter �ve we give a summary of the thesis along with what was learned and

suggestions for future research.
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2 Related research

Playing video games in real time using only visual input requires developments from several

areas of research: computer vision, visual attention, cognitive architecture design, game AI

and general purpose GPU programming. Unfortunately, these �elds, although conceptually

tightly related, in practice do not intersect much. Most cognitive architectures focus on high

cognitive functions and either avoid the perceptual side of human cognition or place their

agents in simulated worlds. On the other hand, visual attention research predominantly uses

real-world data to build models, which are often limited in scope to explaining separate stages

of visual processing and leave higher order processes out.

Another aspect of visual processing is attention. Even when not explicitly stated, some

elements of attention are commonly used to reduce the computational load, e.g. selection of

areas of interest or feature selection. Attentional top-down guidance has only been imple-

mented for a few relatively simple visual operations like visual search. Cognitive Programs is

a framework, which provides a mechanism to extend top-down control and tuning of visual

system to more general visual tasks. An approach like this could be useful to achieve attentive

perception within cognitive architectures.

2.1 Vision in Cognitive Architectures

Traditionally, cognitive architectures study higher cognitive functions, such as planning,

reasoning, grammar comprehension, etc. These processes are sequential in nature and rely on

symbolic manipulation and complex knowledge structures. Motor control, perception, memory

retrieval and other lower cognitive functions, although acknowledged by many researchers as

being equally important, are often not a focus of research. For instance, out of 31 established

cognitive architectures listed on cogarch.org and bicasociety.org two thirds focus on higher-

level cognition and either do not accept any perceptual input at all or work only in simulated

environments (Table 1).

Architectures that do not implement perception usually focus on general cognitive abilities,

4

http://cogarch.org/index.php/Guide_to_Individual_Architectures
http://bicasociety.org/cogarch/architectures.htm


knowledge representation, memory organization, learning and complex planning of several con-

current tasks. Typical applications of such systems are playing turn-based games (ticktacktoe,

chess, etc.), solving puzzles, developing battle�eld strategies, categorical reasoning, etc. On

the other hand, nearly all cognitive architectures that use the real sensory data, are designed

to perform tasks, which do not require a lot of symbolic processing, such as navigation, object

recognition, object tracking, and visual search.

Years active Name Perception References

1979-present 4D-RCS real [2, 3]
1982-2007* CAPS no perception [34]
1983-2003 AIS simulation and real [29]
1983-present Soar simulation [91]
1985-present Subsumption real [9]
1988-1991* RALPH simulation [54, 73]
1988-1997 Prodigy no perception [89]
1988-2010* Disciple no perception [79, 80]
1990-1991* Homer simulation [90]
1990-1991* Teton no perception [88]
1990-1992* ERE no perception [15]
1991-1992* ATLANTIS simulation [?]
1992-present Chrest no perception [40]
1993-present GLAIR simulation and real [76]
1993-present ACT-R simulation [4]
1994-present FORR no perception [?]
1996-2013* CLARION simulation [78]
1996-2014* LEABRA real [56]
1997-2011* ICARUS simulation [42, 41]
1997-present EPIC simulation [37]
2001-2008* REM no perception [52, 51]
2002-2006* Polyscheme real [12, 11]
2004-2012* Companion no perception [20]
2005-2010* GMU BICA no perception [74]
2005-present NuPIC no perception [28]
2006-present LIDA simulation [22, 21]
2008-present OpenCogPrime simulation and real [25]
2008-present BECCA real [69, 68]
2009-present CERA-CRANIUM simulation and real [5]
2009-present CoJACK simulation [16]
2010-2013* ADAPT real [6, 45]

Table 1: List of cognitive architectures in chronological order. * marks the year of the latest
activity (paper publication or code update). Architectures implementing perception of real
world data are highlighted.
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Existing systems can be split into three groups based on how they treat perceptual input:

1) architectures built around perception; 2) architectures using sensory data directly; and 3)

architectures treating perception as a �black box�. Below we discuss these groups in more

detail.

First group includes architectures capable of autonomous operation in real environments.

As a result, these systems can e�ciently process real-world data at real-time, but are very

limited in their cognitive ability and application. Since the perceptual component is domi-

nant, the rest of the components are built around it. For example, consider two cognitive

architectures of this type: RCS ([3, 2]) and ADAPT ([6, 45]).

RCS is designed for autonomous driving and implements a layered architecture. The lowest

level performs re�ex actions (e.g. stop if you hit an object) and is directly connected to the

physical sensors. Higher levels of the hierarchy work with more abstract data derived from

the sensor readings, such as various maps and features. Finally, at the top level the global

planning occurs. An approach like this avoids the problem of translating sensory information

to the symbolic domain, but makes it harder to do general reasoning.

ADAPT architecture enables autonomous navigation for the mobile robot. This system

follows a di�erent path of integrating sensing into cognition. It creates a simulated copy of

the world and at every cognitive cycle focuses on the discrepancies between the new sensory

data and the internal model. The properties of the objects can be obtained from the internal

model and passed to the traditional cognitive architecture - Soar [91] in this case. ADAPT

uses OpenCV and Kinect for visual processing. It also builds a 3D model of the environment

using an open-source graphics engine Ogre3D. Finally, the NVIDIA PhysX SDK is applied to

model the physics of the scene. Since maintaining a detailed consistent internal model is com-

putationally expensive, active vision and visual attention mechanisms (e.g. limiting processing

to regions with the higher uncertainty) are employed to limit the amount of processing. It is

especially important for quick action in dynamic scenarios (e.g. tracking and intercepting fast

moving objects).

Cognitive architectures in the second group use sensory information directly. For example,
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in Subsumption architecture [9] raw sensor output was connected directly to actions without

any internal world representation. Even though it led to a range of interesting complex behav-

iors, it is a general consensus that architectures based on this idea are not suitable for most

activities involving planning or reasoning.

More recent architectures of this kind use neural networks to mimic the structure of the

human brain. For example, LEABRA [56] is based on the anatomy of the ventral pathway

of the brain (V1, V2/V4, IT) and implements it as a hierarchy of �lters. The responses at

the highest level are connected to semantic concepts and the whole system can be used for

object recognition. Another example, BECCA ([68, 69]), also uses a hierarchy of �lters to build

features and then applies reinforcement learning to �nd actions (associated with features) that

give the highest reward for a particular task (e.g. recognition, focusing on particular objects

in the scene).

Although these approaches are conceptually simple and biologically plausible, it is harder

to extend them to perform complex actions compared to symbolic systems. So far systems

using direct perception are limited to tasks like recognition or visual tracking and work only

with low-resolution synthetic data.

Finally, a third group of architectures treats perception as an isolated module responsible

for translation of incoming sensory data into symbols required for higher cognitive functions.

This approach is typical for architectures operating in simulated environments. As we have

already seen from architectures in the �rst group, in order to work with complex real-world

data, perception must be tightly integrated with the rest of the system. This means that

moving an architecture from a simulated domain to a real world environment is likely more

involved than replacing one 'black box' with a more sophisticated one.

A common workaround to this problem is to use a set of independent modules to process the

same sensory data using di�erent methods in parallel and then combine the results to increase

robustness to noise. For example, the Polyscheme [12, 11] architecture splits cognition into a

prede�ned number of separate modules called specialists, where each analyzes incoming data

independently using arbitrary algorithms and data structures. At each cognitive cycle, all
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specialists transform their data to a single common language, which is then used for more

general reasoning. As a result, embodied Polyscheme agents can follow a bright object in the

scene by applying standard vision techniques (color segmentation, stereo vision and optical

�ow).

The main problem of all systems described above is noise both from the sensors and from

the changes in the environment. One way to address it is to work in non-cluttered, high-

contrast environments with simple objects. For example, ADAPT relies on edge detection

and thresholding in order to detect a bright colored ball bouncing o� a wall and makes an

assumption that similar features detected in a di�erent frame belong to the same object.

However, a small change in the illumination conditions is likely to break this system because

it does not have any adaptation mechanisms to compensate for dynamic conditions.

Architectures like RCS and Polyscheme attempt to resolve the problem of noisy data by

accumulating information from many di�erent types of sensors (e.g. vision, sonars, lasers, etc).

Biologically inspired architectures such as BECCA and LEABRA by design have the ability

to adapt and learn, however, their performance has been only shown on synthetic data.

Besides noise, the volume of data incoming through sensors can also pose a serious prob-

lem, especially for time critical applications like autonomous driving or object tracking. The

common approach to reducing the amount of data is to limit it to a certain area (region of

interest) or range (thresholding).

2.2 Ullman's Visual Routines

The theory of Visual Routines (VR) [86] introduced by Ullman in 1984 conceptualizes

visual perception of spatial properties and relations between objects as a complex hierarchy of

processes rather than immediate result of a single operation. He suggests that vision could be

reduced to a series of atomic context-independent operations assembled for a particular task.

In�uenced by Marr's theory of vision [46] he describes vision as a two-stage process. First, the

base representation is created from the incoming data in a bottom-up fashion. Second, various

operations are applied sequentially to the base representation to solve a particular task. These

8



operations are called visual routines.

In order to implement visual routines as outlined in the paper the following components

are required:

� Base representation is a result of the bottom-up processing of the data (primal sketch and

21/2-D sketch in Marr's terms). This representation has the following characteristics: it

is unarticulated, viewer-centered, uniform and bottom-up driven. It also contains local

descriptions of depth, orientation, color and direction of motion at a point.

� Incremental representations are the results of applying visual routines to the base represen-

tation.

� Atomic operations are the most general operations, which can be applied to any location

within the base or intermediate representations. Possible candidates include shift of pro-

cessing focus, indexing (de�ning next targets for focusing), marking (memorizing locations

for future use), boundary tracing and determining inside/outside relations.

� Assembly, execution, and storage of visual routines. Visual routines for common tasks (e.g.

object recognition) should be stored in a skeleton form and parametrized during runtime.

Some goals may require assembly of the routine from scratch. Execution of the routines

relies on visual attention, however, particular implementation is not discussed.

Since the exact mechanics of these elements in human visual system are not known, the

biological plausibility of the algorithms implementing them is not important as long as the

�nal result is the same.

An ability to control the focus of attention is essential for a functional system of visual

routines. Shift of focus allows the application of the same routines to di�erent locations and

limits the processing to a small region of space. This shift operation depends on indexing,

which marks conspicuous locations by an indexable property, usually a combination of features

computed in the early stages, such as color, motion, orientation, disparity, etc. A hierarchical

network with connections between di�erent layers and elements within individual layers is

suggested as a possible implementation of execution and control of attention. Additionally,

tasks like counting and visual search cannot be done without a map, where salient and al-
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ready visited locations would be saved and masked to prevent the system from counting some

elements twice.

Ullman cites many psychophysiological and neurophysiological studies to support validity

of visual routines. In the past three decades our understanding of how brain works has

seen signi�cant changes, but the core concept of visual routines has not been disproved. For

example, [67] provides evidence from neurophysiological studies that serial cognitive tasks may

be implemented by networks of neurons spanning several areas of the cerebral cortex. Yi and

Ballard [94] test the validity of visual routines by building a simulator to perform visuomotor

tasks of pouring co�ee or making a peanut butter sandwich and comparing it to 3D eye-

tracking data obtained from human subjects. Even though data showed high variability, it

was still possible to express their actions as a chain of subtasks, model it as a Markov process

and �nd correspondence with the simulated results.

Hayhoe [30] examined the phenomenon of �change blindness� and conducted experiments

to prove that the visual system represents only the information, which is necessary for the

immediate visual tasks. In one experiment the subjects were asked to reproduce a pattern

of colored blocks. They made eye movements to the model pattern, sometimes looking at

the same block twice within a short interval, clearly preferring it to using visual memory.

An explanation was o�ered that the �rst saccade was to determine the color and the second

saccade was to �nd the relative location of the block in the pattern.

No prototype of visual routines was provided by Ullman and the original publication was

more of a program paper justifying a need for such system. As a result, every implementation

of the visual routines follows its own interpretation of the theory and �lls in missing elements.

Table 2 provides short descriptions of the projects based on visual routines. Since visual

routines are an intermediate step between the early visual representations and higher level

components of the visual system, they can be used even in simulated environments. For

example, an algorithm called Pengi [1] applies visual routines to play the popular SEGA game

Pengo (Figure 2a), which involves navigation of a penguin in a 2D maze populated with killer

bees and ice cubes. Since coordinates and properties of all objects in the screen are readily
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Pengi (1987) [1]
Task: playing SEGA video game Pengo
Base representation: game simulator state
Atomic operations: N/A
Visual routines: updating locations of enemies; checking
whether a kicked wall block will collide with anything
Execution: prede�ned

VR Framework (1988) [71, 70]
Task: reason about properties of simple 2D shapes
Base representation: color channel map, edge map,
disparity map
Atomic operations: register I/O operations, spreading
activation
Visual routines: inside, outside, connected, part of,
is-vertical, is-closed, is-concave, is-triangle, is-dot, etc.
Execution: Triggered by evaluating a VRL query

Sonja (1990) [13]
Task: playing computer game Amazon
Base representation: game simulator state
Atomic operations: N/A
Visual routines: measuring distances, directions and angles;
tracking; coloring; edge following
Execution: emergent

ALIVE (1993) [32, 33]
Task: �nd left and right hand on a silhouette of a human
Base representation: segmentation map, top edges, bottom
edges, right edges, left edges
Atomic operations: N/A
Visual routines: add and subtract points, �nd-bottom-edge,
�nd-top-edge, leftmost-point, average-point
Execution: genetic programming

SKETCHY (1995) [61]
Task: reasoning about graphs
Base representation: simulator state
Atomic operations: N/A
Visual routines: examine label, coordinate-at-point,
is-right-of, is-left-of, is-above, is-below, intersects, touches
Execution: prede�ned

Active vision (1995)[64]
Task: identify and locate 3D objects in a real environment
Base representations: multi-scale steerable Gaussian �lter
responses
Atomic operations: I/O operations, disparity calculation
Visual routines: computing and comparing �zip-codes� for
objects, object identi�cation and localization
Execution: prede�ned

Jeeves (1995) [31]
Task: spatial reasoning about colored cubes

Base representation: input 64× 29, color, intensity,

temporal and spatial derivatives, Laplacian, edges
Atomic operations: edge detection, �gure-ground and color
segmentation
Visual routines: is-green, is-blue, is-red, is-above, is-below,
vertical, horizontal
Execution: triggered by evaluating user queries

Driving Simulator (1996) [48, 49]
Task: driving a car in a simulated environment
Base representation: simulator state
Atomic operations: N/A
Visual routines: hear-horn, gaze-object, gaze-direction,
gaze-speed, gaze-distance, gaze-color
Execution: reinforcement learning

AV-Shell (1996) [17]
Task: visually controlling robotic arm
Base representation: edges, segmentation, laplacian, depth,
optical �ow
Atomic operations: edge detection, �gure ground
segmentation
Visual routines: active contours (snakes), template
recognition, �xation, pursuit, saccade, focus adjustment,
motion detection
Execution: triggered by evaluating an Robot Schema
expression

Tactical driving (1998) [24]
Task: driving a car in a simulated environment
Base representation: color channels, multi-scale steerable
DoG �lter responses, optical �ow
Atomic operations: N/A
Visual routines: tra�c light detection, stop sign detection,
car following, obstacle avoidance
Execution: prede�ned

VR and Attention (1995)[65]
Task: tracking objects, following directions on where to look
Base representation: Gaussian �lters, optical �ow, color
saliency
Atomic operations: �gure_ground_motion, get_size,
get_orientation, match_regions, select_color,
select_motion
Visual routines: �nd human, �nd human arm, select region
in the scene, track object, wait for object
Execution: emergent

Tekkotsu and AIBO (2000) [26, 83]
Task: playing tic-tac-toe
Base representation: image from the camera
Atomic operations: morphological operations, connected
components, region �lling, boundary calculation
Visual routines: �nd board lines, �nd board boundaries, �nd
cells, determine cell occupancy

Execution: prede�ned

Table 2: A chronological list of past projects implementing visual routines
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available from the simulator, the atomic operations simply retrieve this data and use it for

spatial reasoning (measuring angles, distances, directions and ray-following).

One of the earliest and most complete implementations of visual routines is VR Framework

[71, 70], which was designed to reason about properties of simple 2D shapes in 32×32 synthetic

grayscale images. The base representation is a set of retinotopic maps with color, edge and

disparity information. A total of 36 visual routines are formulated to cover all possible relations

in a limited environment of 2D shapes, e.g. inside/outside, is-connected, is-part-of, is-vertical,

etc. These routines are composed of atomic operations, most common of which are various

I/O operations on registers, spreading activations over maps, clearing and composing maps.

Appropriate routines are triggered by execution of queries in a specially de�ned Visual Routine

Language, such as 'How many vertical lines are in the image?'.

Rao and Ballard [64] developed an active vision system based on the idea of visual rou-

tines to identify and locate objects. Their setup consists of a binocular head with two color

cameras taking images of size 512× 480 at 30 fps. Their base representation contains results

of convolving the camera image with 9 di�erent 8× 8 discrete Gaussian derivative kernels on

5 scales. It also includes a �gure-ground segmentation map obtained by zero disparity �lter-

ing. Normalized multi-scale �lter response vectors (also called �zip-codes�) are used for object

localization and identi�cation. First, a database of �lter responses for 72 di�erent objects is

created (36 images for each object at 10◦ rotational increments in pose). In order to locate

a particular object its �zip-code� from the database is compared to �zip-codes� of each point

within the area in the camera image masked by the �gure-ground segmentation. Locations

matching the prede�ned object are marked with a cross. Similarly, to identify an unknown

object in the camera, its �zip-code� is compared to the models in the database. The system

performs in real time due to hardware-accelerated convolution and is capable of recognizing

70% of the test cases using only one point at the object centroid and up to 100% when the

number of points is increased to 25.

Another system based on visual routines is developed by Rao [65] to track moving objects

and follow directions on where to look for an object. The particular setup, camera, resolution of
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the images, etc. are not stated. The system works with real images and its base representation

consists of responses to steerable �lters, color maps, blob detector and optical �ow. A large

set of elementary operations is de�ned to establish properties and spatial relations between

the objects in the scene, e.g. �gure_ground_motion, get_size, get_direction, select_color,

select_motion, select_blob, etc.

Typically, when an actual visual input is involved, extra processing is required to com-

pensate for the noise and uncertainty introduced by the sensors. Hence, projects dealing with

real images operate in structured environments with uniquely color-coded objects (e.g. AIBO

playing ticktacktoe [26, 83] shown in Figure 2d or Jeeves [31] reasoning about bright colored

blocks placed on a uniform background). Typically, the base representation includes multiple

color channels, spatial and temporal derivatives, edge maps, optical �ow and segmentation

maps. Elemental operations, such as morphological functions, motion detection, and edge

following are applied to the base representation to solve a task.

The implementations of visual routines so far assumed a �xed set of elementary operations

and prede�ned routines. In fact, having a database of prede�ned visual routines is the most

common approach, albeit labor intensive and not very �exible (in Pengi about 30 visual rou-

tines were implemented in 1000 lines of code and covered only a subset of possible gameplay

situations).

Chapman and Agre propose to avoid the assembly and storage problem by reinterpreting

the term �routine� as an emergent pattern. Their system Sonja [13] plays a computer game

called Amazon (Figure 2b). It has a two-way connection to all visual operators and is respon-

sible for providing them with the arguments, essentially merging late vision with cognition.

Rao [65] follows up on the emergent visual routines and provides data showing the validity

of such approach. He collects traces of the state of his program when observing a falling/bounc-

ing ball and clusters them. He then proposes to average the local spatial contexts of the similar

traces to get a template, in this case for �the ball falling to the right�. However, it is not clear

whether the learned routine actually works, since no demonstration of its performance is pro-

vided. The working examples in Rao's paper are based on prede�ned visual routines (�nding
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(a) Pengo (b) Amazon (c) SKETCHY

(d) AIBO playing Tic-Tac-Toe (left to right: environment, AIBO's view, processing result)

Figure 2: Examples of projects using visual routines

human in the scene and tracking a moving ball as it passes behind an obstacle). Interpretation

of visual routines as emergent patterns is rather uncommon and majority of implementations

treat routines as 'program fragments'.

A di�erent way of solving the assembly problem is to reformulate a vision problem as a

Prolog-like query. When this query is evaluated, each part of the query calls an appropriate

visual routine. For example, in Jeeves [31] this approach is used to compute 2D spatial relations

between colored cubes. The queries are implemented as Horn clauses and the visual system

acts as a simpli�ed Prolog engine. For example, a query '�nd the red cube' is equivalent to

�nding an image region satisfying a conjunction of primitive features 'red' and 'cube', which

have prede�ned visual routines. Initially, all regions satisfying the �rst feature are serially

enumerated and then tested for the other feature. Failure of any test causes backtracking
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implemented as a return inhibition map.

In AV-Shell [18] visual routines are used as the building blocks for vision-based tasks in

situated robotics. Composition of elemental operations into complex activities is achieved by

traversing a parse tree built from an expression in Robot Schemas [44] notation. For example,

pursuit is a continuous perception-action process composed of vergence control, foveal motion

detection and dynamic accommodation; they execute in parallel and are combined, provided

that all complete successfully.

Most researchers acknowledge that prede�ning visual routines for every task is time-

consuming and ine�cient, but very few develop automatic techniques for composing routines.

For example, McCallum applied reinforcement learning (RL) to learn visual routines for the

task of navigating a car between trucks while avoiding collisions [49]. The main obstacle for

learning algorithms is the high dimensionality of the search space, for example with only 5

possible actions and 7 sensor readings the environment has over 21,000 world states and over

2,500 sensor states. With a short-term memory of size 3 an internal agent space grows to

25003 states. Author proposes a new optimization technique called U-Tree [48] to reduce the

search space to 143 states. A U-Tree is built during the training phase: it starts by record-

ing raw data (action-percept-reward triple) and selectively adding branches when additional

distinctions are needed. The leaves of the tree store Q-values of the RL agent. At runtime

when an observation is received, the current internal state can be determined by following

branches starting with the root until a leaf node is reached. Such a structure implements both

feature selection and short-term memory (hidden state). Experiments show that the learned

policy outperforms the random method by 77%. Despite the fact that dimensionality reduc-

tion methods like U-Tree improve the speed and robustness of learning, RL can still be slow

and may not converge to an optimal solution.

In a di�erent project, genetic programming is used to build routines for �nding a left and

a right hand on the image of a human for the augmented reality system ALIVE [32, 33].

Following Koza's genetic programming algorithm [38], the author de�nes a set of terminals

(centroid of the silhouette, bounding box, etc.) and primitive functions (point operators, edge
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detectors). It is assumed that early vision stage outputs are available and noise-free. Evolved

routines achieved mean detection accuracy of 77±21% compared to human performance. The

questions of how a set of elemental operations should be formed, whether it can be learned or

prede�ned and whether it should be �xed or expanded are left unaddressed by the researchers.

In all cases elemental operations are speci�c to the task.

Although attention played a major role in the original formulation of visual routines, very

few projects implemented it. For example, in Jeeves and VR Framework it is represented by

registers for indexing operation and an inhibition-return map for visual search. Majority of

works considered here interpret attention as a selection of region of interest (e.g. Sonja and

AV-Shell) to minimize the amount of processing.

Rao [65] explicitly mentions attention and attention state in his work. Attention state

contains a current object of interest, its attributes, its local context and also a history of

previous attention states. However, functionally his system is not di�erent from the other

systems discussed earlier. In his work focus of attention is a point in the image and saccades

simply change the coordinates of this point. There is no fovea or explicitly de�ned region of

interest around the focus of attention and the size of the local focus is limited by the size of

the largest Gaussian �lter applied at the early visual processing stage.

In conclusion, the implementations of visual routines discussed in this section provide a

computational argument that task-speci�c routines are e�cient and even a small amount of

strategically extracted visual information is su�cient to perform complex visual tasks. The

top-down nature of control for particular tasks and speci�city of visual representations also

has supporting evidence from psychophysics. As an example, experiments by Hayhoe [30]

demonstrate that visual system represents information necessary for the immediate visual

tasks. From a neurophysiological point of view Roelfsema [67] outlines how components of

visual routines (base representation, elemental operators, etc.) could be represented by neurons

in the cerebral cortex.

The previous attempts at implementing visual routines exposed some practical issues not

anticipated in the theoretical formulation. For example, it is not clear what determines the
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size of the attentional 'spotlight' and other parameters of visual attention. Tuning a system

parameters based on an arbitrary task is still an open research problem, as of now suitable

values for parameters are usually hard-coded for each case.

However, even despite the gaps in the theory of visual routines it has been successfully

applied in multiple domains, such as visual search in real and simulated domains, autonomous

driving, playing computer games, etc., and deserves further investigation.

2.3 Cognitive Programs and Selective Tuning

The mainstream models of visual attention can be summarized as the selection of region

of interest, maintaining a list of locations where focus of attention should move next, and

a list of already attended locations to prevent cyclic behavior. An important assumption

is that a complete and constant information about the scene is a product of a single feed-

forward pass within the vision system. In Ullman's paper on visual routines and their multiple

implementations a base representation contains all the knowledge about the scene. This view is

also common in the cognitive research literature, both in architectures designed for simulated

environments (ACT-R [53], EPIC [37], Homer [90], Soar [91]) and in systems, which work with

real environments (RCS [2], Polyscheme [12]). However, advances in the neurophysiology of

vision since the 1980s established that the visual system is likely more complex. For example,

an obvious problem with the idea of completeness of the base representation is a non-uniform

distribution of receptors in the human retina. Consequently, the acuity of vision is greater

in the center �eld of vision (2◦ of visual �eld) compared to the periphery. The hierarchical

organization of human vision also does not agree with the idea of immediate availability and

constant nature of base representations, since computation of some features may be a�ected

by both feedback and lateral connections within the hierarchy. These are just a few examples

demonstrating a need for a more complex model of visual attention that could accommodate

new �ndings about the human visual system. A more detailed discussion of this subject is

beyond the scope of this thesis and can be found in [39].
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(a) Detailed diagram of Cognitive Programs

(b) High level diagram showing connections between major components of CPs

Figure 3: Cognitive Programs (images adopted from [85])
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The concept of Cognitive Programs (CPs) [85] is an updated version of visual routines as

a theory of executive controller for Selective Tuning (ST) [84] model of attention. A detailed

diagram of CPs is shown in Figure 3a and high level connections between major parts of the

system are outlined in Figure 3b.

ST is represented by a Visual Hierarchy (VH) box in the diagram. VH models a set of

neurons organized as a hierarchy of layers, where connections exist between neurons within

the same layer and layers above and below. Selection of the required feature or location

within each level of the pyramid is done via the Θ-WTA 1 (winner-takes-all) algorithm. In the

diagram several consecutive stages of processing are shown: a) hierarchy, primed for the target

to appear in the center of the image (bottom plane), b) feedforward pass, c) recurrent top-

down localization suppressing close neighborhood of the target location, and d) feedforward

pass with suppressed units. Not all stages are necessary for every visual task, for example

discrimination and categorization would stop after the feedforward pass b). Straight lines

within the pyramid in the diagram show the current focus of attention (FOA). All information

in the current FOA, including selected features, �xation location and other parameters, is

called an attentional sample. The attentional sample is only roughly analogical to the common

notion of 'spotlight' of attention, since its functions go beyond selection of region of interest.

When attention is shifted to a new location, a new attentional sample may be generated

and saved in visual working memory blackboard (vWM in the diagram) to be used by other

processes. The shape and the size of the attentional sample depends on the parameter Θ in

WTA. This parameter can be modi�ed depending on the task. Since ST hierarchy contains

several types of neurons, it allows priming not only for spatial locations where the target is

likely to appear, but also for particular features (color, motion, etc.).

The rest of the diagram contains the mechanisms for tuning and controlling the execution

of ST. Fixation Control (FC), as its name suggests, is responsible for gaze change. It takes

into account saliency of the peripheral visual �eld (> 10◦ in the early layers) represented

1Classic WTA ensures that a neuron with the highest activation within a layer stays active, while all others
are suppressed. Θ-WTA relaxes this requirement, so that several neurons with �ring rates within Θ of one
another can be active at the same time.
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by the Peripheral Priority Map (PPM), which is built using a bottom-up saliency algorithm

called Attention based on Information Maximization (AIM) [10]. History Biased Priority Map

(HBPM) combines the most salient items of the PPM with the focus of attention from the

central visual �eld (cFOA), which is the result of processing by the visual hierarchy. The next

�xation can be selected either from the items in the central visual �eld (and would not require

movement of the eye) or from the peripheral �xation items depending on the task.

Setting the parameters of the Visual Hierarchy and gaze control are done via cognitive

programs, which are composed of various operations or other CPs and can be of two types

- methods and scripts. This is di�erent from the distinction made in [86] between universal

(applied to any part of the image) and regular (applied to the result of universal or another

regular routine). In CPs methods are blueprints of the operations, specifying parameters and

general �ow of computation. Scripts are methods with particular values for parameters in

place and ready for execution. For example, a method for visual search would require a target

to be speci�ed. Speci�c operations and parameters would depend solely on parameters of

visual and control system to be tuned.

Also note that visual routines were originally described as chains of functions, where the

input of one function was the output of the previous function in the chain. Consequently,

no mechanism for storing intermediate results was provided and elemental operations do not

include I/O functions. This problem was acknowledged by the successive implementations of

visual routines. All of them allocated registers for saving the indexed locations or intermediate

results of computations, although none of them related this to a concept of visual memory.

Cognitive Programs employ several types of memory to store and manage cognitive pro-

grams: long term memory, visual working memory and task working memory. Generic methods

are stored in the Long Term Memory for Methods (mLTM). At this point methods are pre-

de�ned or learned by the system external to CPs. Visual Working Memory (vWM) contains

the history of previous �xations - Fixation History Map (FHM). It is primarily used to bias

against revisiting previously seen locations but can also be overridden by the demands of the

task. Blackboard (BB) is also a part of vWM, which makes the attentional sample accessible
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by all other components. Task Working Memory (tWM) saves information about the scripts

in progress in the Active Script NotePad. It has access to the contents of current focus of

attention (FOA) and blackboard (BB) with previous attentional samples from visual working

memory.

The Visual Attention Executive (vAE) includes a Cycle Controller, which initiates and

terminates each stage of Selective Tuning. It runs in the background until the visual Task

Executive (vTE) sends a command that a task is �nished.

The Visual Task Executive (vTE) receives a task description, selects appropriate methods,

tunes them into scripts and runs them using the data stored in Active Script NotePad.

The Selective Tuning model has been in development for over two decades. Parts of it,

Visual Hierarchy and Fixation Control have been implemented using the TarzaNN neural

network simulator. Most recent results can be found in [92, 72]. Components required for

retrieving, tuning and controlling the execution of Cognitive Programs have been hypothesized.

This thesis is a �rst attempt at testing components of the new structure. The test domain is

the task of playing a video game.

2.4 Game AI for platform games

Some of the earliest examples of game AI can be found in the single-player games like Pac-

Man (1980) [47]. The �rst AI agents were designed as a set of hard-coded rules. Eventually

many new genres were introduced making video games a challenging environment for research

in general AI. Currently, game AI research focuses on both designing arti�cial opponents to the

human players and imitating the human style of playing using classic AI tools (path-planning,

�nite state machines) as well as machine learning techniques.

Since the mid-2000s various game AI challenges became a noticeable part of the AI re-

search, many of them run by universities and as part of conferences. For example, the IEEE

Conference on Computational Intelligence and Games hosted six game AI competitions in

2015. Traditionally, the game AI research focused on a particular game or genre, and only

recently initiatives like the General Video Game AI Competition began exploring the problem
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(a) Ping Pong (b) Space Invaders (c) Breakout

(d) Beamrider (e) Seaquest (f) Enduro

Figure 4: Screenshots of the popular Atari 2600 games (source: atarimania.com)

of creating controllers capable of playing multiple games. Performance-wise the most success-

ful attempt to date was a deep neural network trained via reinforcement learning to play 61

Atari games without parameter adjustment [50]. The system could play more than half of

these games better than the human expert players. Although it is rather impressive that a

non-trivial sequence of commands for games representing a wide range of genres can be learned

from the raw screenshots, this model provides little insight about the cognitive processes that

led to this performance. Even though it is possible to visualize hidden layers of the network

and associate particular parts with certain games, it does not help to understand why Pin-

ball is the easiest game to play (4500% better than human performance) and Montezuma's

Revenge is the hardest (cannot be played at all by the model).

Overall, machine learning based solutions for a single game are almost universally outper-

formed by agents based on heuristics (Table 3), classic AI (Finite State Automata, behavior

trees, A*) and combinations of the two, especially when complete noise-free information about

the environment is given. For example, in the MarioAI competition the organizers were forced

to put restrictions on the time and amount of information available from the simulator after
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A*-based agents achieved the highest scores for several years in a row. In the Angry Birds AI

competition the runner-up algorithm based on Bayesian Ensemble Regression scored only half

of the points that the �rst place algorithm earned. In Geometry Friends, A* and Q-Learning

algorithm placed second with 1/4 of the leader's points. In GVG-AI the runner-up algorithm

based on a combination of o�ine and online learning techniques scored only 8 points less than

a leader.

A large study on general Atari game playing (featuring 61 games) by Hausknecht et al.

[27] compares the performances of various neuroevolution algorithms depending on what kind

of game state representation is provided: raw pixel (downsampled screenshots), object (by

template matching) or noise-screen (randomly selected points). Noise-screen representation

was used as a baseline to determine the learning capabilities of the algorithms. Raw pixel

representation did not lead to good performance and a large amount of data was required

for training. Object representation signi�cantly outperformed other representations for all

learning algorithms, but presented a few issues: templates had to be extracted beforehand

and neural networks had to be con�gured for a particular number of objects. As a result,

never before seen objects were assigned a label of the most similarly looking known class.

There is a general agreement that interaction with computer games is similar to the inter-

action with the physical world, albeit in a simpli�ed and controlled environment. However,

the problem of uncertain and noisy perceptual information is still rarely addressed. Most AI

research is conducted on simulators of games. One notable exception is the Angry Birds AI,

where locations of various objects on the screen are found using color segmentation from the

screenshots of the Angry Birds running in a browser window. However, both vision and physics

modules are provided as part of the competition software and participants are not expected to

improve them. Sometimes noise is arti�cially added to the simulated sensor readings to make

it more realistic, like in the case of Simulated Car Racing Championship. In all other cases

the information about the world is complete and correct.

Game AI for platform games (platformers) deserves a more detailed discussion as the most

relevant to our work, particularly, Super Mario Bros. as one of the most representative games of
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Competition name Task/Winner
The General Video Game AI
Competition

2005-present

Task: Playing multiple games of various genres (puzzle, strategy and 2D platform
games)

Winner: An agent using Open Loop Expectimax Tree Search [60]

Simulated Car Racing
Championship

2007-present

Task: Design the best autonomous car controller to win a car racing game

Winner: GRN Driver agent using a Gene Regulatory Network evolved with

Genetic Programming to control car steering and throttle [75]

The 2K Bot Prize

2008-present

Task: Imitate human player in �rst-person shooter game Unreal Tournament 2004

Winner: MirrorBot agent, which switches between default behavior (graph-based

planning) and mirroring behavior (recording and playing back actions of another

player) [62]

AI Challenge

2009-2011

Task: Write an algorithm to play a chosen game against an opponent

Winner: Agent xathis for game Ants won in 2011 using a combination of classic

AI planning and heuristics

Mario AI Championship
2009-2013

Platformer AI Competition

2013-present

Task: Playing In�nite Mario Bros.

Winner: REALM agent with hybrid architecture, where A* is used to �nd the

best actions evolved by genetic programming [7]

IEEE CIG StarCraft AI
Competition

2010-present

Task: Compete with other bots 1 vs 1 in a full game of StarCraft in the
round-robin format

Winner: ZZZBot acts according to a set of prede�ned rules

AIIDE StarCraft AI
Competition

2010-present

Task: Compete with other bots 1 vs 1 in a full game of StarCraft in the
round-robin format

Winner: AIUR 2.2 bot selects a random behavior from a prede�ned list and

records the runtime statistics to update the probability distribution for future

behavior selection [55]

Ms Pac-Man vs Ghosts
League

2011-2014

Task: Develop AI controllers for the classical arcade game Ms Pac-Man

Winner: ICEP_IDDFS based on iterative deepening depth-�rst search [59]

Angry Birds AI Challenge

2012-present

Task: Build an AI player that can play new game levels as good or better than the
best human players

Winner: DataLab (2015 winner) with agent selecting a strategy from a list of

prede�ned strategies [66]

Geometry Friends AI
Competition

2013-present

Task: Play as one or both characters in the puzzle game Geometry Friends.

Winner: CIBot using Monte-Carlo Tree Search with Directed Graph

Representation[63]

Fighting Game AI
Competition

2013-present

Task: Build controller for Java based �ghting game FightingICE

Winner: Agent called Machete following prede�ned rules

2048 Controller Competition

2015

Task: Learn an evaluation function for 2048 - single-player, non-deterministic,
online puzzle game

Winner:Agent IeorIITB2048 using cross-entropy method [35]

Table 3: Chronological list of popular game AI competitions. The most recent winning algo-
rithms using machine learning methods are highlighted.
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the genre. Majority of the research on Super Mario comes from the MarioAI Championship,

which ran from 2009 to 2012 [82]. Its most valuable outcome was the reinterpretation of

platform game playing as a planning problem. In platform games score depends both on time

it takes to clear a level and bonuses collected in the process. Thus, playing the game can be

viewed as �nding an optimal path through the environment. Classic A* search [58] then can

be applied to �nd the best solution. A* is a graph search algorithm, which �nds the path

with the lowest cost between the start node and one or many goal nodes. Using prede�ned

heuristics the cost of each path is estimated and a decision is made whether to add the node

to the �nal sequence or not.

In the case of Mario Bros. each node is a current world-state de�ned by the position, speed

and state of Mario, his enemies, bonus items and immobile objects. Possible next states are

determined by the avatar's actions - jumping, moving to the left or right, ducking or �ring,

and can be computed precisely by accessing the physics engine to simulate the next step. The

scope of the available information and hence the number of steps to plan ahead is limited by

what is visible on the screen. The 40 ms time limit before the game is updated in most cases

is not enough to �nd an optimal solution.

The algorithms submitted for the Mario AI championship can be split into three groups:

classic search algorithms (A*), rule-based and learning-based (neural nets, genetic program-

ming and imitation learning). Top results were achieved by A*-based or hand-coded rule-based

algorithms. All solutions based on various learning algorithms performed signi�cantly worse,

in fact none of them surpassed the score of the baseline ForwardJumpingAgent supplied as

part of the competition software.

As has been mentioned, additional restrictions such as limited scope and dead ends were

introduced to make the use of A* impractical. Subsequently, none of the submitted controllers

were able to clear all levels without losing and those based purely on A* were not the front

runners anymore [36]. For instance, the winning hybrid agent called REALM [7] uses genetic

programming to evolve a set of rules from a smaller initial set of hard-coded rules. Then at

each point it evaluates the current state of the game and picks an appropriate rule from the
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set or a default action (move forward). After that it uses A* to �nd an optimal path through

the environment.

Overall, only A*-based agents were able to play Super Mario Bros. perfectly, given that

the input to the algorithm was noise-free and there was enough time for computation, while

all machine learning controllers were signi�cantly worse. The purely rule-based agent for the

Super Mario performed at ∼ 75% of the top score, but was more than 100 times faster. This

also holds for the games of other genres (see Table 3), where machine learning is outperformed

by the classic AI and heuristic based algorithms for playing a single game.

2.5 Summary

In this chapter we placed Cognitive Programs within a context of other relevant areas of

research, namely the cognitive architecture design and top-down control of visual attention.

We showed that the problem of connecting sensory data to higher order cognitive functions is

still largely unresolved. There are architectures like RCS, which excel at combining informa-

tion from multiple sensors and resolving multiple issues caused by the noise and dynamically

changing environments, but they are designed to perform very particular tasks. On the other

hand, established architectures like Soar and ACT-R apply their high order reasoning only in

simulated environments.

Although elements of top-down control like region of interest selection or feature selection

are very common in practical applications, there are few models that try to solve this problem

in general. One of them, called Visual Routines, we described in more detail. Ullman's idea

to represent vision as modular process led to a string of successful implementations, but also

revealed practical issues not anticipated in the theoretical formulation. CPs follow a similar

approach in design of executive for visual attention and utilizes a more modern understanding

of vision and computational resources not available in the 1980s, when the �rst paper on visual

routines was published.

In order to design a part of CPs which control the visual task of playing a computer game,

we also reviewed current approaches to designing AI agents for games similar to ours.
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3 Problem Statement and Implementation

3.1 Problem Statement

The main goal of this thesis is to test aspects of the Cognitive Programs concept by applying

it to the task of playing a computer game using only visual input. Since most of the control

system has been developed only theoretically, we are hoping that our attempt would provide a

practical justi�cation for the system as well as reveal possible design �aws to facilitate further

development.

(a) rocks and debris after the robotic drill drops down (b) �ocks of birds

(c) shards of glass (d) collapsing building

Figure 5: Screenshots from Canabalt demonstrating various visual distractions typical for the
game

We propose to use two modern browser games for a real-time system of visual attention

based on the theory of Cognitive Programs. Unlike similar projects from the past that also

applied the concept of visual routines to computer games, our algorithm has no access to

the game engine, works on a full-resolution screenshots and does all processing in real-time.

Additionally computer graphics has evolved since the 1990s and as a result even simple browser

games can present a challenge for the current state-of-the-art vision algorithms.

Although not as complex as real images, the visual environment of modern computer games

is nontrivial, dynamic and requires more sophisticated computer vision techniques than tem-

plate matching and color segmentation. Besides being graphically interesting, many popular
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modern games have a minimalist gameplay. This avoids the problem that some of the past

projects experienced, where the game was too complex, had unclear objectives and too many

items/enemies.

Canabalt (2009) and its clone Robot Unicorn Attack (2010) are the �rst endless scrollers

featuring an in�nite procedurally generated environment. The objective of both games is to

run as far as possible, jumping over the gaps and avoiding hitting objects, which emphasizes

reaction speed and attention over planning. Since the games run in a browser window, the

algorithm playing it has the same amount of information as the human player would have (the

games also provide sound clues to warn about obstacles ahead, but they are ignored). Lastly,

the game cannot be stopped or slowed down, meaning that all decision making has to be done

in real-time.

3.2 Modi�cations to Cognitive Programs

The task of playing the games can be formulated as follows: for each frame decide whether

to press/release the button given the world state (edges of the buildings, locations and types

of objects and motion properties).

Figure 6 shows the parts of Cognitive Programs in our implementation which di�er from

the original formulation. Both Visual Hierarchy and Fixation Control exist as standalone

applications, but they do not run in real-time. For our project both components were reim-

plemented on GPU from scratch with some changes and optimizations. For instance, because

of the time constraint, only the bottom level of the pyramid is used for computations. The

tasks originally performed in a serial manner are done in parallel on GPU, e.g. recognition.

The localization step is done by the mean-shift algorithm [23]. Spatial priming is performed

when searching for the character, since its approximate location is known. Another instance

of spatial priming is for the objects, in this case we use the fact that objects are located on

top of the platform.

The primary role of FC is to plan the next move while taking into account the salient objects

in the peripheral priority map (PPM) computed using the bottom-up saliency algorithm AIM
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[10]. However, in our case the next �xation is always determined by the gameplay requirements

(e.g. track the obstacle or follow the edge of the rooftop). We originally ran tests to determine

if early detection of obstacles via PPM would improve results, but found that moving gaze

horizontally along the current platform perform better, which was also suggested by eye-

tracking data from human subjects. This part of the code is not used in the �nal version of

the algorithm.

Figure 6: Cognitive Programs diagram with modi�cations

The visual attention executive (vAE) now mainly serves for task priming and controlling

the contents of the visual working memory (vWM). The vWM contains a Fixation History

Map, which saves �xations in the previous frames and also a Blackboard (BB), where locations

of all objects and lines in the current frame are saved and made available for all other elements
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in the diagram (they represent an attentional sample for the current frame). Task Working

Memory (tWM) reads locations of the objects and lines from the Blackboard and stores them

in the Active Script NotePad.

The Visual Task Executive (vTE) is responsible for coordinating all these modules. In our

case the cognitive programs are hard-coded and there is no need for composing scripts and

tuning them. Therefore we did not implement the Script Constructor. The Script Monitor

has access to Active Script NotePad, which contains all information relevant for the execution

of the scripts (e.g. coordinates of objects in the current and several past frames, variables and

timer for a button press). The vTE also calls external functions to measure the speed of the

game, compute jump trajectory and determine the duration of button press.

Keyboard input is required to control the character on the screen, however, the original

diagram of CPs in [85] does not specify how it interacts with motor functions. Therefore, we

assume that keyboard calls can be done through vTE.

3.3 Work�ow of the Model

In this section we describe technical details of implementing concepts of Cognitive Pro-

grams. In our implementation the vTE acts as a rule-based game AI. In order to develop a set

of rules we analyzed recordings of the eye movements of several human players while they were

playing Canabalt and Robot Unicorn Attack. In section 3.3.1 we describe the pilot study and

give qualitative analysis of the results. In the following sections we discuss how these rules are

implemented for the two games and also outline steps of the vision processing and algorithms

applied.
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3.3.1 Eye-tracking pilot study

We conducted a small experiment where we asked 3 subjects2 to play several sessions of

Canabalt while tracking their eye movements with the Pupil eye-tracker 3. Some examples

are shown in the Figure 7. Our analysis of the data was limited to �nding patterns in the eye

movements, which would be helpful in developing the game playing logic for the game.

Here are the main observations :

� all eye-movements were made horizontally along the tops of the rooftops, rarely looking

below or above;

� since the game scrolls automatically, there is no need to control the character while it is

running on the top of the platform. Consequently, players occasionally look back at the

character and immediately do a horizontal scan until an obstacle (gap, crate or robotic

drill) is found (keyframes 1-3 in Figure 7);

� once an obstacle is seen, it is tracked until a decision to jump is made (keyframes 3-5 and 9-

10 in Figure 7 show tracking of the gap between the platforms, keyframes 7-8 show tracking

of the robotic drill);

� �nally, when the decision to jump is made, the gaze is moved to the right towards the next

closest obstacle (keyframes 5-6 in Figure 7).

In Canabalt rarely more than one obstacle is placed on a single platform, therefore all decisions

about the obstacles are made in FIFO order one at a time. For example, if there is a gap

followed by a box on the next rooftop, �rst the gap will be tracked and only once the jump is

made, the gaze would move on to the next rooftop and only then to the box on top of it.

We did not continue with a full study of eye-motion with naive participants. The pilot

study was conducted in order to �nd out if any useful strategy for playing the game can be

extracted from the eye-tracking data.

2Our subjects were one female (the author) and two males, all members of Tsotsos lab. The author was the
only expert player of the game, both other subjects played the game for the �rst time. Participants were not
paid for their time.

3https://pupil-labs.com/pupil/
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Figure 7: Recording of eye movements of the author playing a session of Canabalt game.
Figure shows keyframes from approx. 100 frame sequence with �xations shown as red dots.
Here we can observe searching for the next obstacle (1-3, 5-6, 8-10) and tracking an obstacle
(3-5, 7-8). Note that all �xations are distributed horizontally along the top of the platform.

3.3.2 System setup

The code for this thesis was written mostly in C. Small parts were implemented in other

languages: OpenCL 1.2 was used for all visual processing and OpenGL 4.3 with GLSL 4.2

for visualization. No multi-threading was used. In addition MATLAB scripts were written

for training convolutional networks, gathering and analyzing various game-related data (game

over screenshots, jump trajectories, image patches with di�erent objects in the game, etc.).
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All experiments were conducted on a desktop with the following speci�cations:

� CPU: Intel Core i7-3820 @ 3.60GHz with 8 cores

� RAM: 16 GB DDR3

� GPU: two AMD FirePro W7000 (Pitcairn XT GL) video cards with 4GB DDR5 RAM

� OS: Ubuntu 12.04.5 LTS

3.3.3 Canabalt

We applied the observations made from human player data to the design of the Cognitive

Programs for playing Canabalt. Figure 9 shows a diagram with a high level description of

methods (e.g. �nd a running man) and what actions within the CPs framework are required

to execute them. Finally, each path within a diagram also represents a method in the CPs

terminology. In our implementation the vTE acts as a rule-based game AI.

A high level description of the strategy to play the game amounts to a few simple rules:

look at the character, scan to the right until the �rst obstacle is found, track the obstacle until

a jump can be safely made and immediately start looking for the next obstacle to the right.

At the low level, when the game is started, all parameters of the system are reset to the

default values, the visual hierarchy is primed to look for the character in the left half of the

screen, and the gaze location is moved to the left. When the �rst screenshot of the browser

window is taken and loaded into the visual system, it is foveated and �ltered to �nd edges

and salient regions. Randomly selected points within salient regions are passed through a

convolutional neural network (CNN) [43] for recognition. Finally, localization of recognized

objects within fovea is done via mean-shift [23]. All detected edges and objects are saved in the

visual working memory (vWM). Active Script NotePad in the task working memory (tWM)

contains all data related to the current task, i.e. gaze location, platform coordinates, current

and previous speed estimates, parameters of the button press, jump trajectory, distances to

the objects, etc.

The vTE controls the execution of the task based on the rules and the information within

the visual working memory and task working memory. For example, to check if the character
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(a) Image pyramid

(b) Foveated screenshot

Figure 8

is found in the image, the vTE examines the contents of the Active Script NotePad. If the

character is not found and its previous location is not within the current fovea, it means

that the system is currently tracking an obstacle or looking for the end of a rooftop. In this

case the location of the character is assumed to be unchanged and the new frame is loaded.

Otherwise, if the runner is found within the fovea and is not performing a jump ('is runner

on the rooftop?'), then we check for obstacle locations recorded in tWM. If nothing is found

within the fovea and the rooftop extends beyond it, then the gaze is moved to the right along

the current rooftop and the next frame is loaded. When an obstacle is su�ciently close to

the character (the distance depends on the current framerate and speed), a decision is made

to jump. The vTE calls an external function to compute the trajectory of the jump and the

duration of the button press and then sets the timer and a �ag for the button pressed in tWM

to true and loads the new frame.

Below we describe the processing and algorithms required to implement the elements in

the diagram.

START. When the new game is started, all variables in the game are reset to defaults.

Since we expect the character to always be in the left 1/3 of the screen, we set the gaze location
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at (12h,
1
3w), where w and h are width and height of the frame. This way the vision system will

have a chance to recognize and localize a character and most of the scene will also be visible.

LOAD NEW FRAME. A screenshot of the rectangular area within the browser window

is taken via Xlib, then a resulting image bu�er is converted from XImage to image2d_t

format (unsigned char array) and resized from 320×920 to 256×1024 pixels to improve GPU

processing.

Next, the image is foveated using the current gaze location (Figure 8b). Our implemen-

tation of foveation process is based on the BlurredMipmapDemo from Matlab Psychophysics

Toolbox [8]. First, we build a Gaussian pyramid (without scaling), combine levels of the pyra-

mid so that the fovea contains pixels from the �rst (not blurred) level, and copy rest of the

pixels from the di�erent levels of the pyramid depending on the distance from the center.

Foveation is a computationally expensive operation, therefore it is done on GPU. Since

OpenCL 1.2 does not have a built-in function to create image pyramids, we implemented it

ourselves. For performance reasons all levels of the pyramid are computed in a single bu�er

(Figure 8a). Instead of building a Gaussian pyramid explicitly by �ltering (which requires

two passes per level), we can exploit the built-in image sampler. The result is equivalent to

applying a box �lter. Linear interpolation is implemented in the hardware on most modern

video cards and is extremely fast. Using this technique the pyramid on GPU can be created by

repeatedly resizing the original image with linear interpolation sampler and then combining

blurred versions in another kernel call. In our implementation the pyramid has 6 levels and

requires 7 kernel calls.

Following [77] the fovea diameter is set to 2°. If the distance from the player to the monitor

is 57cm (22.44 in), pixel density (ppi) of the monitor is given by

PPI =
dp
di

=

√
w2
p + h2p

di
=

√
19202 + 10802

23
= 95.7786

where wp add hp are the dimensions of the screen in pixels and di is the diagonal of the screen

in inches. Using simple trigonometry the radius of the fovea in pixels can be calculated as
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Code Listing 1

/ / OpenCL pseudocode f o r res i ze kerne l
/ / one thread per p i x e l i n output image
/ / dimensions o f output image are h a l f o f the i npu t
/ / ke rne l runs f o r each laye r i n the pyramid
x_ in = x_out / wid th_out

/ / i n t e r p o l a t i o n step
y_ in = y_out / he igh t_out p i x e l = image [ x_in , y_ in ]
image [ x_out , y_out ] = p i x e l

Code Listing 2

/ / foveate kerne l ( runs once a l l l aye rs are computed )
/ / one thread per p i x e l i n foveated image
/ / gaze_pos i s passed as an argument
/ / lod ( l e v e l o f d e t a i l ) i s the l e v e l o f pyramid
/ / where p i x e l should be copied from

/ / 0.02665 = 1/37.5172 , where 37.51 i s the rad ius o f the fovea
l od = max(0 , log2 ( d is tance ( gaze_pos , ( x , y ) ) * 0 . 0 2 6 6 5 ) )

/ / i f lod i s a f r a c t i o n , then i n t e r p o l a t i o n i s needed
l e v e l 1 = max(0 , f l o o r ( lod ) )
l e v e l 2 = min ( c e i l ( lod ) , 5 ) )
l 1 = 1 << l e v e l 1 l 2 = 1 << l e v e l 2

/ / pyramid can be 2D or 3D image i f the video card supports i t
m = lod − l e v e l 1 p ix1 = image [ l1 , x , y ]

/ / i n t e r p o l a t e between two l e v e l s
pix2 = image [ l2 , x , y ] fov_image [ x , y ] = p ix1 (1 − m) + pix2 *m

ds · tan(1) · PPI = 22.44 · 0.017 · 95.77 = 37.51

where ds is the distance from the screen.
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Figure 9: Diagram of Cognitive Programs for the game playing task. The game playing
logic is implemented as a decision tree: white boxes show methods and yellow boxes show
actions (pressing a button, changing gaze, etc.). Small text next to the white boxes describes
operations within CPs framework required to implement a given method.
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VISUAL PROCESSING. The feed-forward pass in VH computes line segments and

recognizes salient objects. Localization is simulated by the mean-shift algorithm [23].

Edges are detected by �ltering the foveated image with 3× 3 Sobel operator. To �nd line

segments we use the fast Hough transform optimized for GPU [87]. In the naive implemen-

tation the kernel is started with one thread per pixel. If the pixel value is non-zero, the vote

is placed in the Hough space for each possible angle. Since edge pixels normally take up less

than 5% of the image, very few threads will be performing a large number of operations to

the matrix serially. Thus to better utilize capabilities of the GPU two kernels are needed: one

builds an array of the coordinates of edge pixels and the second populates a matrix of votes in

the Hough space. The trick with two kernels signi�cantly improves performance by e�ciently

distributing the work between threads for the second more computationally expensive kernel.

Since all lines in the game are either vertical or horizontal, we further reduce the amount of

work by computing the Hough transform for few degrees around 0◦ and 90◦. The line segment

endpoints are computed on CPU. As a result, for each frame at most 10 lines with lengths

of 100 or more pixels are detected. If the total length of gaps is more than 15% of the line

length, it is discarded.

In order to �nd regions of interest in the image we use a bottom-up saliency algorithm

AIM. This algorithm assigns higher saliency to image patches that are unexpected given their

context. Computation of saliency map consists of several steps: �rst, a set of independent

basis functions is learned from multiple examples. Next, a patch around each pixel in the

image is multiplied with each basis function resulting in array of responses. These responses

yield a distribution of values for each coe�cient in a form of histogram. A probability of each

value then can be calculated. A product of all individual probabilities corresponding to a

particular patch represents the joint likelihood, which is translated into Shannon's measure of

Self-information by −log(p(x)). Finally, the saliency map is normalized to range[0, 1].

We ported the original Matlab code for AIM to OpenCL. It is split into 5 kernels calls:

1. project_into_basis - image is convolved with each �lter from the basis;

2. min_max_reduce - compute min and max value among projection results for all features;
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Code Listing 3

/ / OpenCL pseudocode f o r Hough a lgo r i t hm
/ / c o l l e c t s coord ina tes f o r a l l non−zero p i x e l s i n the image
/ / each group c o l l e c t s coord ina tes i n l o c a l memory and
/ / then copies them to the g loba l a r ray
__ loca l i n t coords [256 ]
i f image [ x , y ] > 0 {

coord = ( x << 16) + y
/ / increment index a t o m i c a l l y to avoid threads
/ / o v e r w r i t i n g each others r e s u l t s
idx_ = atomic_ inc (& idx )
coords [ idx_ ] = coord

}
/ / f i n d index i n the g loba l a r ray f o r t h i s workgroup
s t a r t = atomic_add ( g l o b a l _ o f f s e t , i dx )
/ / w r i t e to g loba l a r ray
output [ s t a r t + th read_ id ] = coords [ th read_ id ]

/ / hough_count ( b u i l d s mat r i x o f votes i n Hough space )
y = coords [ g l ob a l _ i d ] & 0x0000FFFF
x = ( coords [ g l ob a l _ i d ] >> 16) & 0x0000FFFF
for t he ta =0:180 {

rho = y * s in ( the ta ) + x * cos ( the ta )
rho_indx = round ( rho − f i r s t R h o )
/ / atomic increment the output
/ / a t t h i s the ta and rho
atomic_ inc ( output [ theta , rho_index ] )

}

3. histogram - rescale the projection result for all features to be between [0, 1] using min/max

values computed in the previous step and build 256-bin histogram of the rescaled values;

4. sum_partial_histograms - for performance reasons histogram is computed in two stages;

5. compute_saliency - �nal step of the computation which outputs a single saliency image.

Next we select at most 100 salient points4 in AIM saliency map on CPU as follows:

� starting from the top-left corner �nd a local maxima above the threshold (approx. half of

the max saliency value);

4Since recognition is performed on the GPU, the structure holding local maxima cannot be dynamically
allocated. Therefore, we gathered statistic over several thousand frames from the game and determined that
majority of frames contain only a few objects, however frames with �ocks of birds can have up to 50. In order
to ensure that every local maxima is processed, we doubled that number.
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Code Listing 4

/ / OpenCL pseudocode f o r AIM
/ / p r o j e c t _ i n t o _ b a s i s ( one thread per p i x e l )
for f =0:NUM_AIM_FEATURES {

o f f s e t _ x = −AIM_PATCH_RADIUS:AIM_PATCH_RADIUS {
o f f s e t _ y = −AIM_PATCH_RADIUS:AIM_PATCH_RADIUS {

va l += image [ x+o f f se t_x , y+ o f f s e t _ y ] * bas is
}

}
/ / save output f o r each fea tu re
output [ f , x , y ] = va l
}

/ / h istogram (256 bins per fea tu re )
/ / each workgroup b u i l d s histogram f o r p o r t i o n o f the image
for f = 0 :NUM_AIM_FEATURES {

/ / max and min va ls across fea tu res
p i x e l = ( i npu t [ f , x , y ] − min_val ) / ( max_val−min_val )
/ / save resca led i npu t to a g loba l a r ray
scaled_output [ f , x , y ] = p i x e l
/ / update histogram
atomic_ inc ( p a r t i a l _ h i s t o g r a m [ f , p i x e l *NUM_HISTOGRAM_BINS ] )

}

/ / sum_par t ia l_h is tograms
for f = 0 :NUM_AIM_FEATURES {

h i s t [ th read_ id ] = p a r t _ h i s t [ f , th read_ id ]
for i = 1 : num_work_groups {

/ / sum up a l l p a r t i a l h istograms
/ / i n l o c a l memory f o r e f f i c i e n c y
tmp_his t [ th read_ id ] += p a r t _ h i s t [ f , i dx + th read_ id ]
i dx += NUM_HIST_BINS

}
/ / w r i t e to the g loba l a r ray
h i s t [ f , th read_ id ] = tmp_his t [ th read_ id ]

}

/ / compute_sal iency
/ / one thread per output p i x e l
for f = 0 :NUM_AIM_FEATURES {

idx = round ( i npu t [ f , x , y ] * NUM_HIST_BINS)
temp −= log ( h i s t [ f , i dx ] / ( img_w* img_h ) + 0.000001 f )

}
output [ x , y ] = temp
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Figure 10: Objects in Canabalt: top row shows several key-frames from character animation,
bottom row shows various non-lethal objects, robot drill is shown on the right.

� inhibit 20× 20 area around the local maximum to avoid selecting too many points close to

one another;

� repeat the process until 100 points are found or no values above threshold are left.

Around each local maximum 50 normally distributed points are sampled (coordinates are

precomputed on CPU since GPU does not support random number generation). These random

points are the centers of 30 × 30 image patches, which are passed to a convolutional neural

network (CNN). The GPU implementation of CNN is based on the DeepLearnToolbox [57].

Only the CNN classi�er part of the code actually runs on GPU, while training is done in

Matlab o�ine on CPU. CNN must be able to distinguish patches of 4 classes: runner, non-

lethal obstacles (crates), lethal obstacle (drill) and everything else (Figure 10).

Each class has considerable amount of variation. For example, runner's animation is com-

posed of 38 di�erent frames, and sometimes could be confused with shards of glass and �ocks

of birds. There are also 7 types of non-lethal obstacles - crates, boxes and o�ce furniture.

Robotic drills are the least varied in appearance, but they also produce a lot of �ying debris,

which do not a�ect the runner but occlude the view of the drill itself and nearby objects.

Since template matching and SVMs were not very good at separating these classes, CNN is

used instead [43].

An architecture for the network was derived experimentally and has 4 layers - 2 convolution

and 2 subsampling (Figure 11). The network was trained for 400 epochs with alpha set to 1.0

and batch size of 50. The training data contained 15000 samples for �other� class and 5000
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for each of the runner/crate/drill classes. The �nal network accuracy was 98%.

Figure 11: Convolutional Neural Network used for object classi�cation

In general, the best performance on GPU is achieved when the dimensions of arrays are

multiples of 32, 64 or 128, which optimizes memory accesses. However, in our case the 16Ö16

patch is not large enough to discriminate between objects in the game and 32 × 32 captures

too much of the background. As a result, we use patches of size 30Ö30 pixels, which is optimal

for recognition, but not optimal for performance.

Since a full feed-forward pass through CNN can not be done e�ciently in a single kernel

on GPU, the computation is split into 3 kernels:

cnnff1 - computes layer 1 by convolution of every 30Ö30 patch with �ve 5Ö5 kernels;

cnnff2 - computes layer 2 by downsampling patches in layer 1 with no interpolation;

cnnff3 - computes layer 3 by convolving smaller patches from layer 2 with four 4Ö4 kernels,

also computes layer 4 by downsampling layer 3 result with no interpolation.

For each sample all elements of layer 4 are concatenated in one row to compute feedforward

pass into output perceptrons, which gives 4 �oat values representing probability of the patch

belonging to each of the classes. The class for each sample is assigned based on the index of

the largest of four probabilities.

Finally, we cluster all points with the same class labels using mean shift [23]. This step is

needed because AIM maxima do not necessarily correspond to the centroid of a salient object,

besides, objects larger than 30×30 (e.g. drills) may produce several salient points. Clustering
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is performed on CPU for each class separately with bandwidth of 20 pixels. Clusters containing

more than half of points of �other� class are ignored.

All discovered line segments and centroids of objects are then saved in the Blackboard.

EXTERNAL FUNCTIONS. External functions are called by vTE to eliminate the

false detections for objects, �nd current rooftops and estimate speed.

The starting point is the location of the runner, since its location is the most constrained

(movement is vertical with slow drift towards the center of the screen as the speed of the game

increases, but at most 200 pixels from the left edge). The longest edge directly below the

runner is assumed to be the current platform. If there are any objects on the screen, they are

used as additional evidence. If the current platform does not extend beyond the right edge of

the frame, we look for lines that begin after the current rooftop ends and select the top one.

Matching detected objects and �nding displacement is done simultaneously. Since many

of the obstacles are visually identical, the only way to distinguish between them is by their

coordinates. We compute pairwise displacements between all detected objects in the current

and previous frames and select globally the most consistent one (or a minimum value if all dis-

placements are unique). The fact that the game scrolls from right to left is an extra constraint

used to eliminate incorrect displacements. We also check that the motion of the rooftops is

consistent with the object displacements. The speed is estimated using displacements from

the past 15 frames.

3.3.4 Robot Unicorn Attack

The only di�erence in visual processing required for Robot Unicorn Attack is the addition of

curve approximation algorithm, since the shape of platforms is more complex than in Canabalt

(Figure 12). A sketch of the curve tracing procedure in Cognitive Programs is outlined in [85],

however, it was not possible to implement it in real time within our system. In order to �nd

the platform boundaries the following processing steps are taken:

� the original frame is thresholded at 60% of the intensity and resized to 64× 64

� connected components are computed using the optimized two-pass method described in [93].
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Figure 12: Examples of curved platforms in Robot Unicorn Attack

(a) (b)

Figure 13: a) Screenshot from the Robot Unicorn Attack with contour points (green) detected
by the OpenCVBlobsLib, coarse Douglas-Peucker approximation of the surface (red circles),
and b) screenshot with detected top of the platform (dotted red line)

� contour points of blobs with area of > 20 pixels are found using the open source library

OpenCVBlobsLib5

� a coarser polygonal approximation of the blob is obtained by using Douglas-Peucker algo-

rithm [14] (Figure 13a), which depending on the shape and size of the platform, reduces the

5Source code available at http://opencvblobslib.github.io/opencvblobslib/.
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Figure 14: Objects in Robot Unicorn Attack: top row shows several key frames from the
unicorn animation, bottom row shows fairies and dolphins (visual distractions, cannot be
interacted with), and star is shown on the left.

set of contour points by a factor of 15

� for the remaining contour points the top of the platform is assumed to be the path from the

leftmost to the rightmost point (Figure 13b)

� all coordinates are rescaled to the original window size of 512× 512.

For the classi�cation step we follow the same steps as in Canabalt. CNN parameters

remained the same and the network was retrained on the new set of patches representing

objects in the Robot Unicorn Attack (Figure 14). The bandwidth for mean shift is set to 50

to accommodate for larger size of objects.

3.3.5 GPU Performance

Our algorithm largely relies on GPU programming to achieve real-time performance. For

example, code written purely in C takes ∼ 1 second per frame without the CNN and saliency

map construction - two most computationally expensive parts of the algorithm. Our imple-

mentation is single-threaded, however, multi-threading on a CPU likely would not achieve a

required framerate, hence most time consuming parts of the code were ported to a GPU.

Two AMD FirePro W7000 graphics cards were used to run this algorithm. One was

fully dedicated for visual processing and another one was driving the monitor and outputting
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Image loading 3.39ms
CPU time 1.2ms

Total GPU time 5.6ms
GPU overhead 1.8ms

Total 11.84

Table 4: Processing times per frame

debugging information in the OpenGL window. Since memory was virtually unlimited for our

purposes (W7000 has 4 GB of GDDR5), we only optimized the code to reduce overhead time,

limit to a minimum data transfers between CPU and GPU, and increase the performance of

each kernel. Although OpenCL has become more popular in the past few years, not many

usable libraries are available for visual processing. This dictates the need for implementing

all required kernels from scratch and optimizing for the available hardware until satisfactory

speed of processing is achieved.

Overall, the algorithm spends ∼ 12 msec processing each frame, i.e. the average frame rate

is approximately 84 fps (the rate is not �xed and �uctuates between 70 and 90 depending on

the frame complexity). About 1/3 of this time is spent on loading a screenshot via XLib. The

Hough transform takes about 1 msec on average, most of it spent on sorting indices. Game AI,

�nding local maxima, mean-shift and other operations take negligible amount of time. The

GPU overhead is estimated to be ∼ 15% of the overall processing time.

Often when evaluating the performance of a GPU program, only the actual kernel time

is reported, ignoring the fact that running every kernel requires memory allocation, memory

transfers, splitting the work among the threads, etc. This time depends on the system (OS,

driver version and the video card itself), and may be even longer than the computation itself.

In general, a lot of experiments are required to �nd an optimal way of splitting the work

between kernels to minimize the overhead time and fully utilizing available GPU resources.

In our case we reduced the number of kernels from 27 kernels to 21, cutting down the

overhead from 25% to 15% of the total processing time. Still, the majority of the kernels

perform very simple operations, such as sum reduction or �nding min/max in a large array.

Although these operations are usually easier to implement on CPU, the overhead from moving
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data between CPU and GPU makes it ine�cient.

3.4 Game-speci�c details and helper scripts

3.4.1 Speed estimation

Speed of the game is one of the components required for planning a jump. In both games

we measure the speed of the environment, since the character's horizontal coordinate is more

or less �xed in the left part of the screen (it drifts very slowly towards the center with time)

and only its vertical coordinate varies. In our case the correct speed estimation in online games

is complicated by three factors: parallax scrolling, asynchronous sampling and rasterization.

Parallax scrolling creates an illusion of depth in 2D scenes by making the background move

slower than the foreground. In Canabalt and many other 2D games parallax scrolling is used

to add visual interest to the scene, however, it can also a�ect accuracy of speed estimation.

The problem is in determining the background and eliminating it, so that it does not interfere

with the processing.

Figure 15: The plot demonstrates asynchronous sampling of the Canabalt game screen by
the algorithm. Since Canabalt runs at 60 fps, the screen is updated every 1/60 sec, this is
represented by the green dots. Red dots show the times when the algorithm makes a screenshot
of the game.

In Robot Unicorn Attack the background is very distinct and can be easily removed by

thresholding. Canabalt is a monochromatic game with little variation in color and complex

background with several layers moving at di�erent speeds. In this case simple techniques like

thresholding do not apply. Instead, we use landmarks, such as the ends of the rooftops or

crates stored in task working memory, to �nd displacements between the consecutive frames.

When the rooftop extends beyond the limits of the screen on both sides and there are no

obstacles visible, the speed cannot be determined. In our case it does not cause issues, since
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no action would be required on an empty rooftop anyway, therefore we assume that the speed

has not changed. When an object or the end of the platform comes into view, the speed is

updated as usual.

Another problem, which causes problems for speed estimation is the asynchronous sampling

of the game screen. For instance, Canabalt runs at 60 fps and our algorithm takes screenshots

at 70 − 90 fps, but the speed of processing depends on the complexity of the frame and may

reduce the framerate to 50 fps for short periods of time (Figure 15). One solution is to �x

the processing time for each frame to a certain value. However, in our case it is not optimal.

Those parts of vision processing that run on GPU cannot be terminated early, so the time

limit would have to be set high to accommodate for the occasional hard frames, which would

unnecessarily slow down the algorithm.

Figure 16: Speed approximation by two-step averaging. The �rst step is computing the mean
instantaneous velocity for each frame based on the 15 previous displacements (blue line). The
result of running average (window size 10) applied to the mean instantaneous velocity is shown
in red.

A common method of determining speed from the video is by �nding instantaneous veloc-

ities at n points on the object of interest and averaging them [81]:

v =
1

n

n∑
vi.

48



The instantaneous velocity is expressed as

vi =
∆p

∆t
,

where ∆p is the spatial displacement of the 2D point during the time interval ∆t. As a

preprocessing step, the velocity samples, that are more than one standard deviation away

from the population mean, are removed. Since sampling interval ∆t is not constant, applying

this method directly to the displacements between frames produces large �uctuations in speed

estimation.

On the other hand, the displacement term, ∆p, is a�ected by the rasterization of game

graphics, a process of converting vector shapes into a pixel form. Even though the speed of

the game increases continuously, rasterization causes displacement values to be rounded to the

nearest integer. To reduce the short-term �uctuations we apply a simple moving average over

the k speed estimates (in our algorithm we set k = 10). Results are shown in Figure 16.

3.4.2 Jump physics

Jumping is the only action available and the �nal game score largely depends on the ability

of the player to make timely and precise jumps. The best strategy is to plan the jump so that

the landing spot is as close to the beginning of the next rooftop as possible, because it leaves

additional time to react to falling drills and other obstacles. The trajectory of the jump is

determined by the initial speed, the amount of time the button was pressed, the location of

the runner and the size of the obstacle.

Unfortunately, reverse engineering game physics is not common in the game AI research.

Typically, the future state is obtained by running the game engine one or more steps forward.

Both games we use are commercial and no source code is available for them, therefore we had

to �nd a way to learn physics from the available data. Conveniently, the physics of Canabalt is

not very complex. As we found out from data collected during runtime, when `X' is pressed, the

runner's vertical acceleration is set to a constant value, which does not change for some time
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Figure 17: Fitting a parabola to a jump trajectory. Blue line represents collected samples and
red line is the �tted curve.

and is then decremented at regular intervals by another constant. We found that a parabola

is a good approximation for the trajectory (Figure 17). Holding the button pressed maintains

vertical acceleration, and the higher the speed, the higher the jumps become. Pressing the

button for more than 350 msec will have no additional e�ect. Also, consecutive jumps or

jumps that immediately follow hitting a crate, are usually lower.

In order to learn how a button press a�ects the trajectory of the jump we gathered runtime

statistics on hundreds of jumps (raw coordinates of the runner in the frame, time stamps for

each frame, whether the button was pressed, parameters of the parabola �t to the raw data

and speed) and looked for signi�cant correlations between di�erent types of data. We found

a 95% correlation between the height of the jump and the duration of the button press and

97% correlation between the speed and maximum height of the jump. The y-component of

the jump can be written as

y = a · x2target + b · xtarget, (1)
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where a and b are the parabola parameters and t is the time. This function reaches its

maximum when

xmax = − b

2a
(2)

The value of acan be derived from the current speed from collected jump trajectories:

a = A1 · current_speed2 + A2 · current_speed + A3 (3)

where A1,2,3 are parameters found by �tting a polynomial to the distribution. Then we com-

pute

b =
(ytarget − a · x2target)

xtarget
(4)

and plug in values of a and b in (2) to �nd height at xmax. Once the height is found, we

check if this height can be reached at current speed. If yes, the button press time is returned,

if not, it usually means that the jump was planned too early. In this case, if the runner is still

far from the obstacle, the function returns 0 and attempts to jump later. Otherwise, if the

obstacle is too close, the biggest possible jump is performed.

We apply a similar technique to learn jump parameters for Robot Unicorn Attack. Unlike

Canabalt, it is rendered in a square window and since the lookahead is much smaller, most

of the jumps are made when the next platform is not visible. To handle such situations the

button is pressed when the unicorn is close to the edge of the platform and held until the

next platform appears in the �eld of view. Once it appears, for each successive frame we use

learned jump parameters to estimate whether the platform can be reached if the button is

released immediately.

3.4.3 Collecting jump trajectories

To collect jump samples for training we save each frame as a png �le and record runtime

statistics (the coordinates of objects, current speed, displacement, time stamps, whether the

button was pressed, whether the character is on the platform, etc.). A MATLAB script is
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used to compute displacements between consecutive frames and identify sequences of frames

containing a jump. The sequence starts when a jump button is �rst pressed and ends when

the character lands on the next platform. For each jump sequence we recover the true jump

trajectory by combining the character's coordinates and displacements and �t a parabola

to the vertical component of the trajectory using RANSAC [19]. As a result each jump

is characterized by 2 parabola parameters, the duration of the button press and max height.

Series with less than 10 frames are discarded, since the noise in the data becomes prevalent and

makes �tting a parabola impossible. Regression analysis is also used to �nd the dependency

between max height and button press and between the speed and parameters of the trajectories.

After a batch of 50-70 frames is added to the database, we run regression on the data and

update jump parameters of the AI code, which is then recompiled.

Because of the random nature of the game and the fact that jumps are infrequent events

(on average about 10 jumps are made per 1000m), it was hard to get enough representative

samples for a possible range of speed values and button press values.

3.4.4 Game Over detection

GAME OVER screen contains the score and reason for the current session ending, so it is

necessary to detect and save the statistics for future analysis. Most games, including the ones

we use, do not start a new session automatically after the previous one ended, and require a

player to click on the screen or press a button. Having a detection mechanism for the GAME

OVER condition allows to run multiple experiments without having to manually start the new

session and reset the algorithm parameters. Canabalt also can be paused, at which time the

screen is partially covered by a text message and cannot be processed.

Canabalt

Since it is necessary to check for the GAME OVER and PAUSE conditions at each frame,

the detection method should be as e�cient as possible. In our case the decision is based on

the number of white pixels in the frame, since this quantity is computed as part of early visual

processing. Frames with more than 30K white pixels are assumed to be GAME OVER, frames
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(a)

(b)

(c)

(d)

Figure 18: Screenshots of the paused game (a) and �nal screens with various reasons for
losing(b,c,d)
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with more than 12K pixels are PAUSE (Figure 18a) and the rest should be processed fully.

After the �rst GAME OVER frame is detected, all parameters of the algorithm are reset, the

screenshot of the last frame is saved and the game is restarted by pressing the `X' button.

When the game is paused the algorithm stays idle.

Saved GAME OVER screenshots are later parsed by a MATLAB script to extract the score

and the reason for losing: falling from the rooftop, hitting a wall or crashing into a robotic drill

(Figure 18). First, connected components are computed for white pixels in the frame. The

largest components are assumed to be the letters of GAME OVER and smaller components

directly below are presumed to contain the �nal score. Finally, each 15× 15 patch around the

centroids of the small connected components is parsed using CNN.

Robot Unicorn Attack

The game cannot be paused once it has started. As in Canabalt the game is over when the

player-controlled character hits a fatal obstacle (bump on the platform or a star) or falls into

the gap between platforms. In Robot Unicorn Attack a player has three attempts and the �nal

score is a sum of the scores from three runs. When the game is running, between one and three

silhouettes of unicorn are visible to indicate the number of lives remaining (Figure 19). In

order to �nd out whether the game has ended we simply check for white pixels in the top-left

corner of the screen.

3.4.5 Debugging

Most of the debugging is done o�ine using the saved frames, however, saving png �les for

every frame slows the algorithm down to about 30-40 fps and a�ects its behavior. In order to

observe the algorithms performance in real-time a small OpenGL application runs alongside

the browser window and outputs the image of the screenshot with the following information:

colored dots at the locations where patches were collected for CNN classi�cation, centroids of

objects marked by color-coded crosses, lines for detected rooftops (green for the rooftop under

the runner, yellow - next rooftop to land on, blue - all other lines), current speed estimate

and frame rate. Dots and crosses representing classi�cation results are color-coded: green for
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Figure 19: Screenshots of Robot Unicorn Attack with di�erent number of �lives� left shown in
the top-left corner

runner/unicorn, red for fatal obstacles (robotic drills or stars), blue for non-fatal obstacles

(crates, boxes and fairies) and yellow for the patches identi�ed as background. A pink cross

appears at the top left corner when the control button is pressed.

Figure 20: Debugging window showing the algorithm information in real time

Additional GPU-CPU transfers required for updating OpenGL window account for ap-

proximately 5% of processing time per frame, but it does not a�ect the overall performance

in terms of the �nal game score.
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4 Evaluation

Playing video games has many subjective aspects, for example, style, strategy and enter-

tainment value, which are hard to quantify, but are important factors when judging perfor-

mance. To our knowledge, there is no software that can play our games, nor can other existing

game playing algorithms be easily adopted to our task. Therefore, we use the �nal score as

our main evaluation metric and measure the performance of the vision module separately.

4.1 Canabalt

Objects and obstacles detection/recognition are crucial for proper functioning of the game

logic module. We used 5000 frames from several recorded games with ground truth data

generated by hand with locations of runner/crates/robots/rooftops and displacements between

neighboring frames.

The runner is correctly detected in 98% frames. The ground truth marks the middle of

the character as its location. We consider detection successful if the di�erence between the

runner coordinate determined by the algorithm is within 5 pixel circle centered at the middle

of the character (which is about 1/4 of its height). For crates and robot drills the detection

rate is also high at ∼ 97%, detection is considered successful if it is within the object contour.

Most of the mis-detections are caused by sudden shakes of the game screen when a robotic

drill falls on the rooftop or a rocket passes in the background (Figure 21).

To measure the baseline performance we modi�ed the algorithm to press the button be-

tween 0.05 and 0.35 sec at random intervals (up to 3 seconds) regardless of the current state

and recorded 100 games. The average score with this strategy is 151.21m (minimum 101m

and maximum 437m).

On average a normal game lasts 48 seconds (approximately 4, 000 frames). Most of the

time the runner stays on top of the roof or in the air and does not require any guidance. Only

15− 20% of frames are critical for successfully playing the game: 10− 15 frames before each

obstacle to determine the speed correctly and have enough time to press the jump button.
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Figure 21: The e�ect of the fallen robotic drill shown in three consecutive frames. When the
drill lands on the platform the image within the game screen starts moving up and down (black
is the background of the window). Notice the signi�cant change in the horizontal coordinates
of the platform in every screenshot.

However, the algorithm still must be stable enough to identify and track multiple objects for

several thousands of frames.

This project would be incomplete without discussing the actual game playing skills of the

algorithm. Since it is based on a model of human visual attention, it makes sense to compare

it to human players.

Canabalt was released in 2009 and remains popular, with versions for browsers, iOS, An-

droid and BlackBerry available. Each version has slight di�erences from the original browser

game.There are di�erences in input method (touch screen or keyboard) and the size of the

screen (on mobile devices game runs at a higher resolution so there is less vertical panning and
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Figure 22: Scores for games played with random action selection strategy

more lookahead). There is no o�cial leaderboard, instead mobile versions of Canabalt allow

users to post their scores via Twitter. For example, this uno�cial scoreboard contains 57907

scores submitted in 2009-2010 (peak of the game's popularity). The average run was 4037m

and the top score was 41785m. Another analysis of the Twitter-submitted scores up to 2011

looks at the best platform to achieve high score and the top reasons for losing (see Figure 23).

It shows that the highest score of > 40000m and also the highest average and median scores

were reached on iPad. The most common reason for losing was missing a window.

More recent statistics from the browser version of Canabalt are available at kongregate.

com, which is what we use for evaluation. The all-time highest score reported there is 30700m.

Statistics are updated daily and only 100 top scores (one for each user) are displayed. All

scores are reset at the end of the week. Because of this the average �uctuates from week to

week, but is usually around 2500m. It can be concluded from this statistics that an expert

player should be able to score at least 10000m.

We collected statistical data on thousands of games played by our algorithm, including the

�nal score and a reason for failing (in browser version it can be either one of three: hitting

a wall, falling into a gap or hitting a robot drill). Mean score of the last 1000 games was

> 3000 and top score was 25, 254m, making it #18 in the all-time best ranking posted on

kongregate.com. The most common reason for failing was hitting a wall due to the mistakes

while jumping. As mentioned before, jumping is the essential part and our algorithm has

much better control over the keyboard than a human player. It is tuned to select the smallest
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Figure 23: Distribution of scores for Canabalt games played online

parabola to land close to the edge of the rooftop and even several milliseconds of delay can

have a signi�cant e�ect. Figure 24 shows the distributions of button press times for the human

player (myself) and the algorithm: on a physical keyboard the average press time is 180 msec,

while the mean for the algorithm is 92 msec.

4.2 Robot Unicorn Attack

Robot Unicorn Attack is visually simpler than Canabalt: the camera movement is smooth,

there are only 3 types of objects distinct from the background and fewer distractors. The

detection accuracy for the unicorn is at 95% based on 5000 frames collected from several

games (if the cluster center is within 7 pixel radius (1/4 of its height) from the center of

the unicorn's torso). The mis-detections mostly happen when the unicorn is dashing and

temporarily disappears behind the explosion, however, it does not a�ect the performance

since the controls are inactive at this time.

The �nal score in Robot Unicorn Attack depends on the time spent playing and also on
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Figure 24: The histogram of button press times (100 games each)

Figure 25: Screenshots showing changes in appearance of the unicorn when dashing through
the star

the bonus points from collecting fairies and dashing through the stars. The �rst star is worth

100 points and every next star increments the amount by 100 points. If one star is missed, the

next bonus will be again 100. Points for fairies are assigned similarly, except the counter starts

at 10 and is incremented by 10 every time a next fairy is collected. The points for simply

staying alive amount to approximately 1000 points per 10 seconds of gameplay. Obviously,

collecting all stars and fairies without breaking the sequence while staying alive as long as

possible would bring the most points. However, the stars may be placed on the island above

or below the unicorn and may not be accessible.

The easiest and safest strategy is based on following the fairies, which indicate the safest

trajectory for jumping between the platforms. When the star is on the same level as the
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Figure 26: An example of a platform with several layers in Robot Unicorn Attack

unicorn, dash through it, otherwise it is safer to ignore it.

This game had over 32, 000, 000 plays on the popular gaming site adultswim.com since

its release in 2010. Unfortunately, the o�cial scoreboard has recently been removed by the

maintainers of the game. Due to the game's popularity there exist many ways of tampering

with the game allowing any user to submit an arbitrary �nal score, meaning that the data found

on other score aggregators is generally not reliable (e.g. scores of several billion's of points).

However, based on the interview with the game's creator6, videos of expert players posted

online and our own experience it is safe to assume that top players are able to achieve around

100, 000 points per run and close to 300, 000 for a game. Expert players get approximately

80, 000− 100, 000 points for a game.

We did not spend as much time tuning the algorithm to improve its score as we did for

Canabalt and stopped once it was able to reach more than 30, 000 points in a single run. We

believe that the results can be further improved by fully utilizing the control mechanisms in

the game, for example, a double jump (i.e. jump again in the air to correct the trajectory).

By adding a second game of similar genre we were able to test the �exibility of the Cognitive

Programs. Few changes were required in order to make the system play a new game. Namely,

the addition of visual processing routines to handle curved platforms, retraining CNN for

di�erent types of objects and changes in the control function to add an extra key for dashing.

6http://gfbrobot.com/2011/06/22/designing-robot-unicorn-attack-an-interview-with-scott-stoddard/
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5 Discussion and Suggestions for Future Work

The main goal for this thesis was to demonstrate that the Cognitive Programs framework

would be su�cient for complex visual tasks. Since building a whole system was not feasible

given the time and resources available, we decided to implement only a subset of CPs needed

to perform a single non-trivial task. The task was playing an online video game with minimal

controls, where visual processing plays a crucial role. The game we trained our algorithm to

play is called Canabalt. It is an endless scroller, where environment is randomly generated

for every session. Later we extended our algorithm to play another game of the same genre -

Robot Unicorn Attack.

We came across multiple theoretical and engineering issues in the process of implementing

Cognitive Programs and while studying extensive literature on cognitive architectures and

past projects related to visual routines.

One of the �rst problems we had to address was extending the Cognitive Programs to work

in dynamic environments. The original concept of CPs (Figure 3a) was designed primarily

for static stimuli. We had to �nd a way of representing motion �ow and matching recognized

objects between the frames within the existing framework. In our implementation all elements

critical for gameplay (object locations, speed, etc.) are placed into vWM and tWM and later

retrieved by external methods to compute displacement between the frames or match objects

between frames. It demonstrates the functional importance of working memory, which is

prominent in the human visual system and was also re�ected in the past implementations of

visual routines. However, a more biologically plausible solution for this problem is needed.

Timing of various processes is another important problem not outlined in the initial con-

cept. It is assumed that some of the components of CPs run in parallel, mimicking the human

visual system, but the diagram only shows the connections between elements and direction

of the information �ow. We had engineering issues while trying to use GPU programming

in a multi-threaded context, therefore our program runs on a single thread. This avoids the

issue for now, but any future implementation of Cognitive Programs would have to address
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the synchronization of various concurrent processes.

The problem of �nding data structures for describing the task and passing information

within the framework also remains open-ended. To the best of our knowledge this problem is

still largely unresolved in the literature and hardcoding the solution is the only viable route

at present. Finding a suitable representation is tied to another open research area of learning

how to combine and tune these representations for various tasks. Past research demonstrates

that learning a sequence of visual routines is a hard problem even in the simplest cases with

a handful of parameters. For Cognitive Programs this task becomes much more complicated,

because every method can be parameterized during runtime depending both on the task and

changes in the environment. For example, for our algorithm we had to tune more than 20

parameters by hand, including various thresholds for visual processing, parameters of CNN

and AIM, gameplay and game physics variables.

Apart from conceptual problems we had an additional requirement of realtime performance.

The task of playing an online game puts an upper bound on a computation of 20 ms per frame.

The only way to achieve this is to move as much processing as possible to a GPU, which in turn

introduces a number of restrictions. For instance, some parameters of GPU kernels cannot

be changed during runtime. In our case computing saliency using AIM and recognition with

CNN both rely on local memory, which has to be allocated at compile time. So the sizes and

the number of �lters for AIM and CNN cannot be changed on the �y without recompiling the

kernel. Besides, there are limitations on the amount of memory available and memory accesses

(e.g. images cannot be changed in place), recursion is not allowed, for e�ciency some of the

serial operations must be done in parallel (e.g. overt changes of attention to analyze various

objects in the fovea), etc. These requirements forced deviations from the original concept of

Cognitive Programs. With better hardware and drivers it would be conceivable to implement

it fully. On the other hand, these are the issues that must be solved by any real-time biological

implementation.

Most of the past research on visual routines worked in simulated or controlled environments,

only a few projects attempted explicit visual processing. We originally planned to use a camera
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to take an image of the computer screen instead of programmatically capturing screenshots.

Figure 27 shows an example of a screenshot taken with a camera. The issues with using

the camera input were motion blur and artifacts introduced by pixels on the screen, uneven

illumination and distortions from camera lens. Motion blur becomes less prominent when the

frame rate is high enough (our camera could output 60 fps at 1024 × 256), possibly with a

better and faster camera it can be somewhat resolved. We plan to return to camera images and

think of what modi�cations to our algorithm would be needed to compensate for additional

noise and artifacts.

Figure 27: An example of a typical image from a camera with added foveation

Although we have a working system capable of playing two games on an expert level, its

performance could be further improved. For example, implementing optical �ow with larger

number of points and adding segmentation of the scene would greatly increase accuracy and

stability of the algorithm. In particular, it could solve one of the issues, that occasionally

causes the algorithm to fail: when falling shards of glass or exhaust from the rocket in the

background are mistakenly identi�ed as part of the rooftop, the displacement between current

and previous frame is wrong and in turn a�ects the estimate for the trajectory of the following

jump.

Overall, we believe that our experience of building a �rst working prototype of Cognitive

Programs is an important step toward a full implementation. Even though our visual executive

is speci�c to playing a particular type of games, the low-level visual operations - edge detection,

clustering, object localization and identi�cation - are general enough to be applied to a broader

range of tasks.
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An algorithm that can visually analyze and play a video game may also bene�t the gaming

AI research. Firstly, there is a lot of interest in developing AI to imitate human performance.

Having a system based on human vision and providing it with the same information available

to a human player may be helpful in achieving this goal. Secondly, much of the game AI

research relies on emulators, clones or open-source games to provide noise-free data for learning

algorithms, meaning that the majority of modern commercial games are not available for

experimentation.

Finally, a framework for performing complex visual tasks has a direct application in mobile

robotics, especially for tasks involving interaction with the environment in real time.
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