14 research outputs found

    Fast hardware protection for a series-series compensated inductive power transfer system for electric vehicles

    Get PDF
    The paper proposes a simple solution to a safety problem encountered during the development of a series-series compensated IPT system for electric vehicles. This problem is related to the equivalent current source behavior of the receiver side in presence of an unpredicted load disconnection. A pure analog hardware system able to manage this fault protecting the filtering elements of the system is proposed. The system is investigated by means of a circuit simulation then its physical implementation is presented. The effectiveness of the proposed solution is experimentally proven

    Sensorless control of the charging process of a dynamic inductive power transfer system with interleaved nine-phase boost converter

    Get PDF
    The paper proposes a technique for the control of the charging process in a dynamic inductive power transfer system for automotive applications. This technique is based on an impedance control loop on the receiver side. The proposed control allows to carry out the different phases of the charging process in absence of a communication link between ground and vehicle side. The charging process starts with a sensorless procedure for the identification of the actual presence of the vehicle over the receiver. The same control technique introduces several advantages in terms of interoperability between systems having different requirements in terms of power demand. A 11 kW prototype has been implemented based on a transmitter 1.5 meters long as compromise solution between the long track coil and the lumped one. The power management of the receiver side is provided by a nine-phase interleaved boost converter. The experimental results prove the effectiveness of the proposed control together with a good matching with the developed theoretical equations set for the system description

    Novel Compact and Broadband Frequency-Selectable Rectennas for a Wide Input-Power and Load Impedance Range

    Get PDF
    Wireless power transfer (WPT) and wireless energy harvesting (WEH) using rectennas are becoming an emerging technology. This paper presents a novel design method for a rectenna suitable for a wide range of selectable operating frequency band, input power level, and load impedance. Most importantly, it is realized without using complex impedance matching networks which shows significant advantages over existing rectennas in terms of the structure and cost. A rectenna example has been designed, made, and tested using this novel method. The proposed rectenna has a compact size of 90 × 90 × 1.58 mm 3 and operates at four different frequency bands that are selectable from 1.1 to 2.7 GHz. Over 60% (up to 85%) energy conversion efficiency is achieved for the input power from 0 to 15 dBm and load impedance between 700 and 4500 Ω. The rectenna shows excellent performance for the target applications (WPT and WEH) with a much-simplified structure and reduced cost

    Secondary-Side Control in Dynamic Wireless Power Transfer Systems for Double-Sided Inductor-Capacitor-Capacitor and Series-Series Compensation Topologies

    Get PDF
    Electric Vehicles (EVs) are fast becoming a great alternative as future mode of transportation, due to their promise of low emissions. Nevertheless, EVs suffer from battery related problems such as large size, heavy weight, high price, long charging times and a short driving range. Dynamic wireless power transfer systems (DWPTSs) address the battery issue by providing power to the vehicle while in motion, and eliminate the need of plugging. However, unavoidable load and coupling coefficient variations cause degradation of power delivery and efficiency. Hence, a controller must be added to the dynamic charger for power conditioning and efficiency enhancement. This project is focused on the control stage of the DWPTS adopting a post-regulation scheme as control strategy. It proposes the integration of a secondary-side-only control under double-sided inductor-capacitor-capacitor (LCC) and series-series compensation topologies. A synchronous buck converter is used to step down the voltage to the maximum power transfer efficiency (MPTE) conditions and control the direct current (DC) link by adjusting the duty cycle of the control pulse. Averaged alternating current (AC) modelling is applied for designing the controller to smooth and speed the response of both systems. An estimation equation for coupling coefficient and a controller for the double-sided LCC compensation topology are introduced. A comparison study between these two topologies comprised of their characteristics and response to the controller is carried out

    Wireless Power Transfer System for Battery-Less Body Implantable Devices

    Get PDF
    Department of Electrical EngineeringAs the life expectancy is increased and the welfare is promoted, researches on the body implantable medical devices (BIMD) are actively being carried out, and products providing more various functions are being released. On the other hand, due to these various functions, the power consumption of the BIMD is also increased, so that the primary battery alone cannot provide sufficient power for the devices. The limited capacity and life time of batteries force patients to make an additional payment and suffering for the power supply of the BIMD. Wireless power transfer technology is the technology which has been making remarkable progress mainly in wireless charging for personal portable devices and electric vehicles. Convergence of wireless power transfer technology (WPT) and rechargeable battery can extend the life time of the BIMD and reduce the suffering and the cost for battery replacements. Furthermore, WPT enables the devices which do not need to operate consistently such as body implantable sensor devices to be used without batteries. In this dissertation, techniques to support WPT for BIMD are introduced and proposed. First, basic researches on magnetic coupled WPT are presented. The basics which are important factors to analyze power transmission are introduced. In addition, circuits that make up the WPT system are described. There are three common technical challenges in WPT. Those are efficiency degradation on coil geometry, voltage gain variation with coil geometry, and power losses in WPT. The common challenges are discussed in chapter II. Moreover, additional challenges which are arisen in WPT for BIMD and approaches to resolve the challenges are addressed in chapter II. Then, efficiency improvement techniques and control techniques in WPT are presented in chapter III. The presented techniques to improve efficiency are applied in coil parts and circuit parts. In coil parts, efficiency enhancement technique by geometric variation is proposed. In circuit parts, instantaneous power consuming technique for step-down converter is suggested. Li-ion battery charger is also discussed in chapter III. Additionally, the wireless controlled constant current / constant voltage charging mode and the proposed step charging method are described. After that, WPT system for BIMD is discussed one by one with the proposed techniques for each part in chapter IV. A load transformation is suggested to improve efficiency in weak coupling, and suppress voltage gain variation under coil displacement. Power conversion efficiency improvement techniques for rectifier and converter are also proposed. By using the proposed technique for the converter, we can remove the bootstrap capacitors, and reduce the overall size of power circuits. In conclusion, techniques in coil parts and circuit parts to handle challenges in WPT for BIMD are fully investigated in this thesis in addition to the efficiency improvement and control techniques in common WPT. All the techniques are verified through simulations or experiments. The approaches realized in the thesis can be applied to other applications employing the WPT.clos

    Multiphase wireless dynamic charging systems for electric vehicles

    Get PDF
    PhD ThesisElectric vehicles (EVs) have been intensively developed as an attempt to reduce carbon-dioxide emissions caused by fossil-fuel vehicles. EVs require expensive batteries and power electronics for charging and discharging the battery. Unfortunately, battery technology, such as lithium-ion batteries requires substantial improvements to effectively compete with fossil-fuel cars in price. Also, batteries are usually heavy, take up large space and still have range limitation. Wireless Dynamic Charging (WDC), while the vehicles are in motion, is seen as an alternative to overcome the drawbacks associated with batteries. Due to the continues charging when driving, batteries can become smaller as most of the traction energy comes from the grid directly. WDC is fundamentally developed based on inductive power transfer (IPT) technology, where a time-varying magnetic field is generated by transmitter coils, which are installed underneath the road surface, to wirelessly power receiver coils, that charge the EV’s battery continuously. Presently, there are several technical challenges associated with WDC, which hinders commercialization. The output power fluctuation along the driving direction is one of the most serious problems. These fluctuations cause reduction in constant energy transfer thus requiring larger batteries. Also, batteries lifetime is significantly reduced as a result of increasing internal heating. Several studies attempted to realise constant output power for WDC. However, proposed methods so far, have disadvantages such as high cost, complexity or unable to sustain constant output power throughout the charging process. The work in this thesis proposes a multiphase WDC system to simultaneously achieve constant and high output power for EV applications. The proposed WDC system utilizes multiple primary windings that guarantee a homogeneous mutual magnetic flux for the receiver along the driving direction. This results in a constant induced voltage across the receiver and hence constant output power to charge the EV battery. High output power capability is attained by using multiple transmitter windings arranged in a novel winding method. The effectiveness of the proposed system is analytically described, simulated and demonstrated experimentally using a 3-kW laboratory prototype with the three-phase transmitter. The proposed system requires only simple control, eliminates communications between the primary and secondary sides and delivers 125% higher power transfer capability compared to conventional single-phase WDC systems

    Life Cycle Analysis and Optimization of Wireless Charging Technology to Enhance Sustainability of Electric and Autonomous Vehicle Fleets

    Full text link
    The transportation sector is undergoing a major transformation. Emerging technologies play indispensable roles in driving this mobility shift, including vehicle electrification, connection, and automation. Among them, wireless power transfer (WPT) technology, or commonly known as wireless charging technology, is in the spotlight in recent years for its applicability in charging electric vehicles (EVs). On one hand, WPT for EVs can solve some of the key challenges in EV development, by: (1) reducing range anxiety of EV owners by allowing “charging while driving”; and (2) downsizing the EV battery while still fulfilling the same trip distance. More en-route wireless charging opportunities result in battery downsizing, which reduces the high EV price and vehicle weight and improves fuel economy. On the other hand, WPT infrastructure deployment is expensive and resource-intensive, and results in significant economic, environmental, and energy burdens, which can offset these benefits. This research aims to develop and apply a life cycle analysis and optimization framework to examine the role of wireless charging technology in driving sustainable mobility. This research highlights the technology trade-offs and bridges the gap between technology development and deployment by establishing an integrated life cycle assessment and life cycle cost (LCA-LCC) model framework to characterize and evaluate the economic, environmental, and energy performance of WPT EV systems vs. conventional plug-in charging EV systems. Life cycle optimization (LCO) techniques are used to improve the life cycle performance of WPT EV fleets. Based on case studies, this research draws observations and conditions under which wireless charging technology has potential to improve life cycle environmental, energy, and economic performance of electric vehicle fleets. This study begins with developing LCA-LCC and LCO models to evaluate stationary wireless power transfer (SWPT) for transit bus systems. Based on a case study of Ann Arbor bus systems, the wirelessly charged battery can be downsized to 27–44% of a plug-in charged battery, resulting in vehicle lightweighting and fuel economy improvement in the use phase that cancels out the burdens of large-scale infrastructure. Optimal siting strategies of WPT bus charging stations reduced life cycle costs, greenhouse gases (GHG), and energy by up to 13%, 8%, and 8%, respectively, compared to extreme cases of “no charger at any bus stop” and “chargers at every stop”. Next, the LCA-LCC and LCO model framework is applied to evaluate the economic, energy, and environmental feasibility of dynamic wireless power transfer (DWPT) for charging passenger cars on highways and urban roadways. A case study of Washtenaw County indicates that optimal deployment of DWPT electrifying up to about 3% of total roadway lane-miles reduces life cycle GHG emissions and energy by up to 9.0% and 6.8%, respectively, and enables downsizing of the EV battery capacity by up to 48% compared to the non-DWPT scenarios and boosts EV market penetration to around 50% of all vehicles in 20 years. Finally, synergies of WPT and autonomous driving technologies in enhancing sustainable mobility are demonstrated using the LCA framework. Compared to a plug-in charging battery electric vehicle system, a wireless charging and shared automated battery electric vehicle (W+SABEV) system will pay back GHG emission burdens of additional infrastructure deployment within 5 years if the wireless charging utility factor is above 19%.PHDNatural Resources & EnvironmentUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147602/1/bizc_1.pd

    High Power Capacitive Power Transfer for Electric Vehicle Charging Applications

    Full text link
    Capacitive power transfer (CPT) technology is an effective way to charge electric vehicles, in which electric fields between metal plates are used to transfer power. Compared to the conventional inductive power transfer (IPT) system, a CPT system has three advantages: it does not generate eddy-current loss in nearby metal objects; it can reduce the system weight and cost; it has better misalignment performance. However, the coupling capacitance in a CPT system is usually in the pF range, which limits the CPT system power and efficiency. Through overcoming the limitation of small capacitance in a CPT system, this dissertation has achieved three breakthroughs in CPT technology: the system power is increased from several tens of watts to several kW; the transfer distance is increased from less than 1 mm to hundreds of mm; the transfer efficiency is increased from about 30% to over 90%. A double-sided LCLC compensation circuit has been proposed to realize high-power and long-distance capacitive power transfer. The compensation circuit provides resonances with the coupling capacitance, and increases the voltages on metal plates to kV level to achieve kW power transfer. A prototype has been constructed and validates the proposed circuit. Experimental results show that the prototype realizes 2.4 kW power transfer across an air-gap distance of 150 mm with a dc-dc efficiency of 90.8%. The experiments also show that the CPT system has better misalignment performance than the conventional IPT system. An IPT-CPT combined system has also been proposed to integrate the IPT and CPT technology together. The combination can increase the efficiency of the CPT system, and improve the misalignment performance of the IPT system. A prototype has been constructed to validate the combined idea. Experimental results show that the prototype realizes 2.84 kW power transfer across an air-gap distance of 150 mm with a dc-dc efficiency of 94.4%. Using the designed LCLC compensation circuit, a dynamic CPT system has been proposed to realize power transfer to receivers in moving status. A long-track coupler structure is used to reduce the pulsation of received power. A prototype has been constructed to validate dynamic charging. Experimental results show that the prototype realizes 154W power transfer across an air-gap distance of 50 mm with a dc-dc efficiency of 85.4%. Considering practical applications, the safety issues and foreign object influence have been studied in this dissertation. The high voltage issue can be solved by reliable insulation, and the electric field emissions can be reduced through capacitive coupler structure design. The foreign object, either metallic or dielectric, can influence the coupling capacitances in a CPT system depends on the position and size. The CPT system can also influence the voltage and power loss in the foreign object. To sum up, this dissertation has demonstrated that the CPT technology is a good solution to realize the charging of electric vehicles. In future work, the power density and efficiency of the CPT system will be further improved to make it more competitive with the inductive and conductive charging technology.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138493/1/feilu_1.pd
    corecore