114 research outputs found

    Integrated battery charger for electric scooter

    Get PDF
    The paper deals with a battery charger integrated into the traction hardware of an electric scooter, for recharging the scooter batteries by means of a single-phase AC source. A mechanical switch and a rectifier bridge are the only additional components required to transform the electric scooter powetrain into a PFC battery charger, suitable for current-controlled or voltage-controlled recharge. The AC current is controlled at unitary power factor with no harmonic distortion. Switching harmonics are also drastically reduced by means of phase-interleaving. The battery charge is regulated according to the requests of the Battery Monitor System (BMS) that is embedded into the battery packs. The effectiveness of the integrated battery charger is demonstrated here on an electric scooter with high voltage Li-Ion battery (260V) and DC/DC/AC power conversion scheme. The integrated PFC charger concept is also valid for electric vehicles with AC traction drives based on a direct DC/AC conversion scheme, as demonstrated throughout the paper

    Integrated battery charger for electric scooter

    Get PDF
    The paper deals with a battery charger integrated into the traction hardware of an electric scooter, for recharging the scooter batteries by means of a single-phase AC source. A mechanical switch and a rectifier bridge are the only additional components required to transform the electric scooter powetrain into a PFC battery charger, suitable for current-controlled or voltage-controlled recharge. The AC current is controlled at unitary power factor with no harmonic distortion. Switching harmonics are also drastically reduced by means of phase-interleaving. The battery charge is regulated according to the requests of the Battery Monitor System (BMS) that is embedded into the battery packs. The effectiveness of the integrated battery charger is demonstrated here on an electric scooter with high voltage Li-Ion battery (260V) and DC/DC/AC power conversion scheme. The integrated PFC charger concept is also valid for electric vehicles with AC traction drives based on a direct DC/AC conversion scheme, as demonstrated throughout the paper

    A fast on-board integrated battery charger for four-motor EVs

    Get PDF
    A novel type of fast on-board battery charger, applicable for four-motor electric vehicles (EVs), is presented in the paper. The charger consists exclusively of components that are already present on-board the vehicle. Having no new elements, it has a positive impact on the cost, weight and space saving in the vehicle. A three-phase grid is directly attached to the neutral points of three propulsion machines, so that hardware reconfiguration with respect to the propulsion mode of operation is not required. The charger operates with unity power factor and both charging and vehicle-to-grid (V2G) modes are feasible. The torque is not produced in the machines during the charging/V2G process. The charger is particularly suited for the interleaving process, which is used to improve the quality of the current that is taken/injected into the grid. A complete control algorithm for the charging/V2G operation is given, and performance of the charger, including torque-free operation feature, is validated by simulations

    Integrated Isolated OBC for EVs with 6-phase Traction Motor Drives

    Get PDF
    This work deals with a new topology of on-board integrated battery charger intended for road electric vehicles equipped with a 6-phase traction motor drive. The proposed OBC topology deeply integrates the battery charger within the e-drive powertrain, thus reducing cost and volume of the charger respect to non-integrated solutions. Moreover, galvanic insulation is provided, differently from all fully integrated charger in the literature. Finally, the charger has embedded PFC capability, so the AC grid current is absorbed at unitary power factor and low THD. Extensive simulation results show the feasibility of the proposed solution

    A V2G Integrated Battery Charger Based on an Open End Winding Multilevel Configuration

    Get PDF
    A new approach to obtain an integrated battery charger is described in this paper, based on the Asymmetrical Hybrid Multilevel Converter topology. Such a particular open-end winding motor configuration, which has proved to be more efficient than conventional inverter topologies in EV motor drive applications, can be turned in an on-board battery charger only by acting on the control system. Thus, no circuit reconfiguration through electro-mechanical switches is required. Moreover, by introducing a single extra power switch, a bilateral power flow can be managed enabling vehicle to grid operations. The obtained integrated battery charger can be supplied either by a standard ac single-phase grid, either by a dc power source for direct connection to domestic energy resources. The proposed approach enables a new remarkable function to the asymmetrical hybrid multilevel converter at a marginal extra cost, thus mitigating the larger complexity and cost of such an inverter if compared with conventional topologies

    Onboard Integrated Battery Charger for EVs Using an Asymmetrical Nine-Phase Machine

    Get PDF
    This paper considers an integrated onboard charger for electric vehicles that incorporates an asymmetrical nine-phase machine and an inverter into the charging process. The charging is from three-phase mains, and it employs exclusively the power electronic components that already exist on board the vehicle and that are mandatory for the propulsion. No new elements are introduced. Moreover, the charging is achieved without any hardware reconfiguration since the existing elements and their connections are not altered during the transfer from propulsion to the charging mode. Instead, the operating principle is based on additional degrees of freedom that exist in nine-phase machines. These degrees of freedom are employed to avoid electromagnetic torque production in the machine during the charging process, although currents flow through its stator windings. The configuration operates with a unity power factor and is capable of vehicle to grid (V2G) operation as well. A detailed theoretical analysis is given, and the control for the charging/V2G and propulsion modes is discussed. Theoretical analysis is validated by experiments for charging, V2G, and propulsion operating regimes

    An Integral Battery Charger with Power Factor Correction for Electric Scooter

    Get PDF
    This paper presents an integral battery charger for an electric scooter with high voltage batteries and interior-permanent-magnet motor traction drive. The battery charger is derived from the power hardware of the scooter, with the ac motor drive that operates as three-phase boost rectifier with power factor correction capability. The control of the charger is also integrated into the scooter control firmware that is implemented on a fixed-point DSP controller. Current-controlled or voltage-controlled charge modes are actuated according to the requirements of the battery management system, that is embedded into the battery pack. With respect to previous integrated chargers, the ac current is absorbed at unitary power factor with no harmonic distortion. Moreover, no additional filtering is needed since the pulsewidth modulation ripple is minimized by means of phase interleaving. The feasibility of the integral charger with different ac motors (induction motor, surface-mounted phase modulation motor) is also discussed, by means of a general model purposely developed for three-phase ac machines. The effectiveness of the proposed battery charger is experimentally demonstrated on a prototype electric scooter, equipped with two Li-ion battery packs rated 260 V, 20 A

    Integrated on-board EV battery chargers: New perspectives and challenges for safety improvement

    Get PDF
    Thanks to the heavy reduction of cost and volume, integrated On-Board Chargers (OBCs) represent an effective solution to provide a versatile and powerful charging system on board of electric and plug-in electric vehicles, combining the charging function with the traction drivetrain. Such integration foresees the use of the traction motor windings as reactive elements and the traction inverter as AC/DC converter. However, this integration brings several challenges on the table. At first, shaft torque production must be avoided to reduce the losses and mechanical stress. A second challenge is to improve the filtering capability of the motor windings in order to meet the grid standards in terms of current distortion and power factor correction. At last, the most critical issue is to meet the safety standards in terms of leakage current, since it represents a risk to human operators and could also hamper the smooth operation of the charger. Therefore, this paper aims at giving a comprehensive review of the challenges in designing integrated chargers. After reviewing the architectures available in literature, an exemplifying structure of integrated OBC will be analysed in terms of leakage current generation and compliance with the relevant standards, along with an introduction to those solutions which use the machine as isolation transformer. Conclusions are given on the prospect for making integrated on-board chargers safer and more reliable

    PV Based Converter with Integrated Battery Charger for DC Micro-Grid Applications

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This thesis presents a converter topology for photovoltaic panels. This topology minimizes the number of switching devices used, thereby reducing power losses that arise from high frequency switching operations. The control strategy is implemented using a simple micro-controller that implements the proportional plus integral control. All the control loops are closed feedback loops hence minimizing error instantaneously and adjusting efficiently to system variations. The energy management between three components, namely, the photovoltaic panel, a battery and a DC link for a microgrid, is shown distributed over three modes. These modes are dependent on the irradiance from the sunlight. All three modes are simulated. The maximum power point tracking of the system plays a crucial role in this configuration, as it is one of the main challenges tackled by the control system. Various methods of MPPT are discussed, and the Perturb and Observe method is employed and is described in detail. Experimental results are shown for the maximum power point tracking of this system with a scaled down version of the panel's actual capability

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT
    corecore