1,060 research outputs found

    Parallel Ant Colony Algorithm for Shortest Path Problem

    Get PDF
    During travelling, more and more information must be taken into account, and travelers have to make several complex decisions. In order to support these decisions, IT solutions are unavoidable, and as the computational demand is constantly growing, the examination of state-of-the-art methodologies is necessary. In our research, a parallelized Ant Colony algorithm was investigated, and a parameter study on a real network has been made. The aim was to inspect the sensibility of the method and to demonstrate its applicability in a multi-threaded system (e.g. Cloud-based systems). Based on the research, increased effectiveness can be reached by using more threads. The novelty of the paper is the usage of the processors’ parallel computing capability for routing with the Ant Colony algorithm

    A Big-Data-Analytics Framework for Supporting Logistics Problems in Smart-City Environments

    Get PDF
    Abstract Containers delivery management is a problem widely studied. Typically, it concerns the container movement on a truck from ships to factories or wholesalers and vice-versa. As there is an increasing interest in shipping goods by container, and that delivery points can be far from railways in various areas of interest, it is important to evaluate techniques for managing container transport that involves several days. The time horizon considered is a whole working week, rather than a single day as in classical drayage problems. Truck fleet management companies are typically interested in such optimization, as they plan how to match their truck to the incoming transportation order. This planning is a relevant both for strategical consideration and operational ones, as prices of transportation orders strictly depends on how they are fulfilled. It is worth noting that, from a mathematical point of view, this is an NP-Hard problem. In this paper, a Decision Support System for managing the tasks to be assigned to each truck of a fleet is presented, in order to optimize the number of transportation order fulfilled in a week. The proposed system implements a hybrid optimization algorithm capable of improving the performances typically presented in literature. The proposed heuristic implements an hybrid genetic algorithm that generate chains of consecutive orders that can be executed by a truck. Moreover, it uses an assignment algorithm based to evaluate the optimal solution on the selected order chains

    Solution Approaches to the Three-index Assignment Problem

    Get PDF
    This thesis explores the axial Three-Index Assignment Problem (3IAP), also called the Multidimensional Assignment Problem. The problem consists in allocating n jobs to n machines in n factories, such that exactly one job is executed by one machine in one factory at a minimum total cost. The 3IAP is an extension of the classical two-dimensional assignment problem. This combinatorial optimisation problem has been the subject of numerous research endeavours, and proven NP-hard due to its inextricable nature. The study adopts an algorithmic approach to develop swift and e ective methods for solving the problem, focusing on balancing computational e ciency and solution accuracy. The Greedy-Style Procedure (GSP) is a novel heuristic algorithm for solving the 3IAP, guaranteeing feasible solutions in polynomial time. Speci c arrangements of cost matrices can lead to the generation of higher-quality feasible solutions. In addressing the 3IAP, analysing the tie-cases and the matrix ordering led to new variants. Further exploration of cost matrix characteristics has allowed two new heuristic classes to be devised for solving 3IAP. The approach focuses on selecting the best solution within each class, resulting in an optimal or a high-quality approximate solution. Numerical experiments con rm the e ciency of these heuristics, consistently delivering quality feasible solutions in competitive computational times. Moreover, by employing diverse optimisation solvers, we propose and implement two e ective methods to achieve optimal solutions for 3IAP in good CPU times. The study introduces two local search methods based on evolutionary algorithms to solve 3IAP. These approaches explore the solution space through random permutations and the Hungarian method. Building on this, a hybrid genetic algorithm that integrates these local search strategies has been proposed for solving the 3IAP. Implementing the Hybrid Genetic Algorithm (HGA) produces high-quality solutions with reduced computational time, surpassing traditional deterministic approaches. The e ciency of the HGA is demonstrated through experimental results and comparative analyses. On medium to large 3IAP instances, our method delivers comparable or better solutions within a competitive computational time frame. Two potential future developments and expected applications are proposed at the end of this project. The rst extension will examine the correlation between cost matrices and the optimal total cost of the assignment and will investigate the dependence structure of matrices and its inuence on optimal solutions. Copula theory and Sklar's theorem can help with this analysis. The focus will be on understanding the stochastic dependence of cost matrices and their multivariate properties. Furthermore, the impact of variations in cost distributions, is often modelled based on economic sectors. The second extension involves integrating variable costs de ned by speci c probability distributions, enhancing the comprehensive analysis of economic scenarios and their impact on the assignment problem. The study considers various well-de ned probability distributions and highlights more practical applications of the assignment problem in real-world economics. The project's original contribution lies in its algorithmic approach to investigating the 3IAP, which has led to the development of new, fast, and e cient heuristic methods that strategically balance computational speed and the accuracy of the solutions achieved

    Mobile robotic network deployment for intruder detection and tracking

    Get PDF
    This thesis investigates the problem of intruder detection and tracking using mobile robotic networks. In the first part of the thesis, we consider the problem of seeking an electromagnetic source using a team of robots that measure the local intensity of the emitted signal. We propose a planner for a team of robots based on Particle Swarm Optimization (PSO) which is a population based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this thesis. Our results are also validated on an experimental testbed. In the second part, we present a game theoretic framework for visibility-based target tracking in multi-robot teams. A team of observers (pursuers) and a team of targets (evaders) are present in an environment with obstacles. The objective of the team of observers is to track the team of targets for the maximum possible time. While the objective of the team of targets is to escape (break line-of-sight) in the minimum time. We decompose the problem into two layers. At the upper level, each pursuer is allocated to an evader through a minimum cost allocation strategy based on the risk of each evader, thereby, decomposing the agents into multiple single pursuer-single evader pairs. Two decentralized allocation strategies are proposed and implemented in this thesis. At the lower level, each pursuer computes its strategy based on the results of the single pursuer-single evader target-tracking problem. We initially address this problem in an environment containing a semi-infinite obstacle with one corner. The pursuer\u27s optimal tracking strategy is obtained regardless of the evader\u27s strategy using techniques from optimal control theory and differential games. Next, we extend the result to an environment containing multiple polygonal obstacles. We construct a pursuit field to provide a guiding vector for the pursuer which is a weighted sum of several component vectors. The performance of different combinations of component vectors is investigated. Finally, we extend our work to address the case when the obstacles are not polygonal, and the observers have constraints in motion

    Implementação e Teste de Algoritmos de Planeamento e Escalonamento para Frotas AGV

    Get PDF
    Os Automatic Guided Vehicles (AGV) são veículos de transporte sem condutor e a sua incorporação nas empresas, para transporte de materiais e apoio à produção, está a ser cada vez mais frequente, pois cada vez mais se pretende ter eficácia e eficiência na logística das fábricas e na entrega da quantidade necessária de materiais na produção, na altura certa e pela ordem correta, obtendo-se maiores lucros e rendimentos de produção nas indústrias. Recorrendo apenas a colaboradores e transportadores, como empilhadores, ´e provocado na fábrica bastante tráfego e muitas das vezes ocorrem velocidades elevadas dos transportadores. Isto pode causar problemas, tais como, danificação de materiais (levando a desperdício e à necessidade de produzir novos materiais) e acidentes. Recorrendo aos AGV é possível evitar estes problemas, uma vez que conseguem transportar os materiais com fiabilidade, trabalhar junto dos colaboradores em segurança e, ainda, garantir uma cadência de ritmo das suas tarefas. O objetivo deste trabalho foi implementar e testar algoritmos de planeamento de trajetórias e escalonamento de tarefas para frotas de AGV. Neste sentido, foram criados layouts fabris onde os AGV percorrem caminhos com menor custo realizam as tarefas pretendidas. Os vários modelos foram analisados e foram também apresentadas as características de cada um. Este projeto proporcionou a oportunidade de aprofundar conhecimentos na área da modelação e simulação de AGV, e em algoritmos de planeamento de trajetórias e escalonamento de tarefas.AGV are driverless vehicles for transportation and their incorporation in companies, for transportation of materials and production support, is becoming more frequent, because more and more is intended to have effectiveness and efficiency in the factory logistics and the delivery of the quantity of materials in production, at the right time and in the right order, resulting in higher profits and production yields for industrial companies. Thus, using only employees and transportation vehicles, such as forklifts, there is a lot of traffic in the factory floor and many times high vehicles speeds. This can cause problems, such as, damage to materials (leading to waste and the need to produce new materials) and accidents. Using AGV, is possible to avoid these problems, since they can transport the materials with reliability, work safely with the employees and still ensure a cadence of their tasks. The objective of this work was the development and testing of models that simulate factory layouts with AGV fleets. For that purpose were implemented planning and scheduling algorithms for controlling the displacement and task allocation for the different vehicles. The implemented models were analyzed and its main characteristics were also presented. This project provided the opportunity to deepen knowledge in the area of AGV modeling and simulation, and in trajectory planning and scheduling algorithms

    Improving group role assignment problem by incremental assignment algorithm

    Get PDF
    The Assignment Problem is a basic combinatorial optimization problem. In a weighted bipartite graph, the Assignment Problem is to find a largest sum of weights matching. The Hungarian method is a well-known algorithm which is combinatorial optimization. Adding a new row and a new column to a weighted bipartite graph is called the Incremental Assignment Problem (IAP). The maximum weighted matching (the optimal solution) of the weighted bipartite graph has been given. The algorithm of the Incremental Assignment Problem utilizes the given optimal solution (the maximum weighted matching) and the dual variables to solve the matrix after extended bipartite graph. This thesis proposes an improvement of the Incremental Assignment Algorithm (IAA), named the Improved Incremental Assignment Algorithm. The improved algorithm will save the operation time and operation space to find the optimal solution (the maximum weighted matching) of the bipartite graph. We also present the definition of the Incremental Group Role Assignment Problem that based on the Group Role Assignment Problem (GRAP) and Incremental Assignment Problem (IAP). A solution has been designed to solve it by using the Improved Incremental Assignment Algorithm (IIAA). In this thesis, simulation results are presented. We utilize the tests to compare the algorithm of the Incremental Assignment Problem and the Improved Incremental Assignment Algorithm (IIAA) to show the advantages of IIAA.Master of Science (MSc) in Computational Science

    Control of free-ranging automated guided vehicles in container terminals

    Get PDF
    Container terminal automation has come to the fore during the last 20 years to improve their efficiency. Whereas a high level of automation has already been achieved in vertical handling operations (stacking cranes), horizontal container transport still has disincentives to the adoption of automated guided vehicles (AGVs) due to a high degree of operational complexity of vehicles. This feature has led to the employment of simple AGV control techniques while hindering the vehicles to utilise their maximum operational capability. In AGV dispatching, vehicles cannot amend ongoing delivery assignments although they have yet to receive the corresponding containers. Therefore, better AGV allocation plans would be discarded that can only be achieved by task reassignment. Also, because of the adoption of predetermined guide paths, AGVs are forced to deploy a highly limited range of their movement abilities while increasing required travel distances for handling container delivery jobs. To handle the two main issues, an AGV dispatching model and a fleet trajectory planning algorithm are proposed. The dispatcher achieves job assignment flexibility by allowing AGVs towards to container origins to abandon their current duty and receive new tasks. The trajectory planner advances Dubins curves to suggest diverse optional paths per origin-destination pair. It also amends vehicular acceleration rates for resolving conflicts between AGVs. In both of the models, the framework of simulated annealing was applied to resolve inherent time complexity. To test and evaluate the sophisticated AGV control models for vehicle dispatching and fleet trajectory planning, a bespoke simulation model is also proposed. A series of simulation tests were performed based on a real container terminal with several performance indicators, and it is identified that the presented dispatcher outperforms conventional vehicle dispatching heuristics in AGV arrival delay time and setup travel time, and the fleet trajectory planner can suggest shorter paths than the corresponding Manhattan distances, especially with fewer AGVs.Open Acces

    Cooperation of Combinatorial Solvers for Air Traffic Management and Control

    Get PDF
    In the context of the SESAR project, Air Traffic Control (ATC) and Management (ATM) in Europe is undergoing a paradigm shift to be able to accommodate the current traffic growth forecast: many expert-based systems will be enhanced by optimization software to improve the decisionmaking process and regulation planning. Current state-of-the-art combinatorial optimization techniques that are applied to ATC and ATM include approximation algorithms like metaheuristics (e.g. Genetic Algorithm, Tabu Search, Simulated Annealing, etc.) and complete algorithms like Constraint Programming (CP) and Mixed Integer Programming. However, the large scale of the considered instances and the handling of their inherent uncertainties result in very hard problems, which can hinder or even defeat either of the previously mentioned optimization methods alone. To overcome these difficulties and improve the resolution efficiency of standard algorithms, we propose to study the generic cooperation of any set of combinatorial solvers by sharing solutions, optimization bounds and possibly other information in order to speed up the overall process. In this thesis, we have specified and implemented a distributed system which is able to integrate any combinatorial solver with the suitable interface, adapt existing solvers to take into account and provide information on the state of the search from and to other solvers, and applied this framework to two ATC and ATM problems: the en-route conflict resolution problem and the Gate Allocation Problem (GAP). For the first one, we have presented a new generic framework for the modeling and resolution of en-route conflicts in three dimensions as well as a large set of realistic instances, which have been solved with the cooperation of a Memetic Algorithm and Integer Linear Programming (ILP) solver. For the GAP, we have presented a new CP model, as well as new optimization constraints to maximize the robustness of the schedule, and search strategies together with their parallel cooperation. The solver, implemented with the FaCiLe CP library, outperforms a state-of-the-art ILP solver on real instances
    corecore