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Abstract

This thesis explores the axial Three-Index Assignment Problem (3IAP), also called

the Multidimensional Assignment Problem. The problem consists in allocating n

jobs to n machines in n factories, such that exactly one job is executed by one

machine in one factory at a minimum total cost. The 3IAP is an extension of

the classical two-dimensional assignment problem. This combinatorial optimisation

problem has been the subject of numerous research endeavours, and proven NP -hard

due to its inextricable nature.

The study adopts an algorithmic approach to develop swift and e�ective methods

for solving the problem, focusing on balancing computational e�ciency and solu-

tion accuracy. The Greedy-Style Procedure (GSP) is a novel heuristic algorithm

for solving the 3IAP, guaranteeing feasible solutions in polynomial time. Speci�c

arrangements of cost matrices can lead to the generation of higher-quality feasible

solutions. In addressing the 3IAP, analysing the tie-cases and the matrix ordering

led to new variants. Further exploration of cost matrix characteristics has allowed

two new heuristic classes to be devised for solving 3IAP. The approach focuses on

selecting the best solution within each class, resulting in an optimal or a high-quality

approximate solution. Numerical experiments con�rm the e�ciency of these heuris-

tics, consistently delivering quality feasible solutions in competitive computational

times. Moreover, by employing diverse optimisation solvers, we propose and im-

plement two e�ective methods to achieve optimal solutions for 3IAP in good CPU

times.

The study introduces two local search methods based on evolutionary algo-

rithms to solve 3IAP. These approaches explore the solution space through random

permutations and the Hungarian method. Building on this, a hybrid genetic algo-

rithm that integrates these local search strategies has been proposed for solving the

3IAP. Implementing the Hybrid Genetic Algorithm (HGA) produces high-quality

solutions with reduced computational time, surpassing traditional deterministic ap-

proaches. The e�ciency of the HGA is demonstrated through experimental results

and comparative analyses. On medium to large 3IAP instances, our method delivers

comparable or better solutions within a competitive computational time frame.

v



Two potential future developments and expected applications are proposed at

the end of this project. The �rst extension will examine the correlation between cost

matrices and the optimal total cost of the assignment and will investigate the depen-

dence structure of matrices and its in�uence on optimal solutions. Copula theory

and Sklar's theorem can help with this analysis. The focus will be on understanding

the stochastic dependence of cost matrices and their multivariate properties. Fur-

thermore, the impact of variations in cost distributions, is often modelled based on

economic sectors. The second extension involves integrating variable costs de�ned by

speci�c probability distributions, enhancing the comprehensive analysis of economic

scenarios and their impact on the assignment problem. The study considers various

well-de�ned probability distributions and highlights more practical applications of

the assignment problem in real-world economics.

The project's original contribution lies in its algorithmic approach to investigat-

ing the 3IAP, which has led to the development of new, fast, and e�cient heuristic

methods that strategically balance computational speed and the accuracy of the

solutions achieved.
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Chapter 1

Introduction

This research project focuses on an optimisation problem, aiming to identify the

optimal element from a �nite set of candidate solutions. An illustrative example is

the one-to-one task allocation to a team of agents. Assigning agents to tasks incurs

costs, and the primary objective is to minimise the total cost. This problem is well-

known in literature and referred to as the two-dimensional assignment problem or

Linear Assignment Problem (LAP).

LAP stands as a fundamental model in combinatorial optimisation, with theo-

retical signi�cance and broad applicability. Examples of LAP practical utility may

include the optimisation of sta� allocation to enhance performance, allocation of

tasks to machines for maximum productivity, or teacher-class assignments for spe-

ci�c objectives. The problem is pivotal in optimisation, providing valuable solutions

for various real-world scenarios.

Considering further location constraints, resource availability, or timetabling

constraints within assignment problems transforms them into a three-dimensional

assignment problems. The introduction of a third `dimension' makes the problem

harder.

The Multi-Index Assignment Problem (MAP) is a natural extension of LAP.
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2 Chapter 1. Introduction

Despite extensive research conducted over the past �ve decades, MAP remains one

of the most challenging combinatorial problems to solve optimally. Indeed, Karp

(1972) demonstrated that the multi-dimensional assignment problem becomes NP-

hard when the dimension is three or higher.

A polynomial-time algorithm exists for the standard LAP, but MAP remains

intractable. As the problem size increases, execution time for MAP grows exponen-

tially. Consequently, exact solutions are only achievable for smaller MAP instances,

and approximate solutions are expected in a reasonable time-frame for larger in-

stances.

This research project investigates algorithmic approaches for addressing the

Three-Index assignment problem (3IAP), aiming to contribute to its resolution.

The study objective is to devise new e�cient heuristics outperforming traditional

deterministic methods, thereby achieving quality solutions in a reduced computa-

tional time, and the ability to handle larger problem instances using state-of-the-art

optimisation solver. Furthermore, the project introduces a metaheuristic that in-

tegrates the genetic algorithm and a local search method. This approach helps to

achieve optimal or near-optimal solutions for large instances of the problem within

a reasonable timeframe.

The research project conducts a comprehensive review of prominent publica-

tions concerning MAP and subsequently investigates key works on assignment prob-

lems. This literature review o�ers a critical analysis of the primary contributors to

MAP solution procedures and contextualises our study within the ongoing discourse

on these methodologies.

The thesis is structured as follows. Chapter 1 introduces the assignment prob-

lem and de�nes the Three-Index Assignment Problem (3IAP), highlighting its impor-

tance in combinatorial optimisation, linking it to common combinatorial problems

and providing mathematical formulations. Chapter 2 reviews existing approaches

in the literature for solving the 3IAP and presents its wide-ranging applications
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in the real world. It then articulates the motivation behind addressing the 3IAP,

emphasising its critical practical signi�cance.

Chapter 3 proposes the Greedy-Style Procedure and the Diagonals method,

along with their variants. Algorithms are proposed, detailed examples illustrate

these methods and extensive numerical experiments are carried out to demonstrate

their e�ciency. Chapter 4 introduces two innovative heuristic categories for the

3IAP, underpinned by theoretical or empirical validation of their e�cacy. These

heuristic methods generate a spectrum of results, enabling the identi�cation and

selection of the best solutions. The quality of these solutions is computationally

assessed. Additionally, the chapter details the design and implementation of two

programs derived from optimisation solvers, facilitating the attainment of optimal

solutions.

Chapter 5 explores evolutionary algorithms and culminates in a proposal for a

hybrid genetic algorithm tailored to 3IAP. This section provides an in-depth descrip-

tion of the algorithm's design and development processes. Further, it discusses the

implementation and testing phases, with numerical results presented to validate the

hybrid approach performance. Chapter 6 delineates two prospective applications of

the 3IAP within the �eld of economics and suggests potential directions for future

research.

In Chapter 7, the conclusion summarises the thesis's key �ndings and contribu-

tions, emphasising the importance and impact of this research. It provides a concise

overview of each chapter and discusses the practical implications of this research

project and its potential to in�uence future studies in the �eld.

1.1 The Problem Description

This section starts with an introduction to the classical two-dimensional assignment

or linear assignment problem (LAP), and presents its mathematical formulations.
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Subsequently, the connections of LAP with prevalent combinatorial problems will

be elucidated.

1.1.1 Linear Assignment Problem

The classical LAP represents a typical combinatorial optimisation problem with

various real-life applications. It aims to �nd a perfect matching within a complete

bipartite graph G = (U ∪V ;E), where the size of the vertex sets U and V are equal,

denoted by |U | = |V | = n. Given a weight function de�ned on the edge set E. The

objective is to identify a perfect matching with the optimal total weight. The notion

of perfect matching can be formulated by a bijective mapping p between sets U and

V , which can equivalently be interpreted as a permutation (Burkard, Dell' Amico,

and Martello, 2009).

Assuming that n tasks must be completed by n agents, the corresponding as-

signment can be represented by a permutation p of {1, 2, 3, · · · , n}. If j = p(i) and

cip(i) is the cost of allocating task i to agent j, the problem is to �nd a permutation

with the minimum total cost min︸︷︷︸
p∈πn

Z =
∑n

i=1 cip(i), where πn is the set of all permu-

tations of n elements. Note any permutation p corresponds to a unique n×n-matrix

Xp = (xij), de�ned by:

xij =


1, if j = p(i);

0, otherwise.

A permutation matrix has one 1-entry per column and per row at exactly n

non-zero coe�cients.
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subject to



∑n
i=1 xij = 1 for i = 1, 2, . . . , n

∑n
j=1 xij = 1 for j = 1, 2, . . . , n

xij ∈ {0, 1} for i, j = 1, 2, . . . , n

(1.1)

The system of the above linear equations (1.1) is called assignment constraints

and has n! solutions since there are n! permutations of n objects.

The bipartite graph G = (U∪V ;E) below illustrates an assignment of size �ve.

The vertices of the set U correspond to tasks, while those of V represent agents. In

this model, each task is allocated to exactly one agent, based on the permutation

p = (2, 4, 5, 1, 3), ensuring a direct, one-to-one matching between tasks and agents.

The adjacency matrix A of the bipartite graph G = (U ∪ V ;E) is none other than

the matrix associated with the permutation p.

Figure 1.1: Example of a bipartite graph of order 5.

Hitchcock (1941) was the �rst to formulate LAP as an integer linear program

M =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0


M is the adjacency matrix of the
bipartite graph G.



task1 task2 task3 task4 task5
agent1 0 1 0 0 0
agent2 0 0 0 1 0
agent3 0 0 0 0 1
agent4 1 0 0 0 0
agent5 0 0 1 0 0


This matrix represents the permutation p.
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in a comprehensive mathematical formulation.

The decision variable is de�ned by xij = 1 if task j is assigned to agent i and

0 otherwise.

Minimize Z =
n∑

i=1

n∑
j=1

cijxij (1.2)

subject to
n∑

j=1

xij = 1, i = 1, 2, . . . , n (1.2a)

n∑
i=1

xij = 1, j = 1, 2, . . . , n (1.2b)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n (1.2c)

The assignment constraints (1.2a) mean that each task is assigned to exactly

one agent. The system of equations (1.2b) indicates that each agent performs exactly

one task, and the objective function Z (1.2) evaluates the total cost of such an

assignment, where cij is the cost when task j is executed by agent i. Therefore, the

LAP consists of searching for an assignment with minimum total cost. The integer

linear program(1.2)�(1.2c) can be also expressed in matrix form.

Minimize Z = C · x (1.3)

subject to A.x = e (1.3a)

x ∈ {0, 1}n2

(1.3b)

where A represents the 2n × n2 constraint matrix, and the objective function

(1.3) is Z = C · x, where C is the n2-dimensional row-vector with nonnegative
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components. Note that the column-vector e has 2n components, all equal to 1.

Finally, the decision variable x ∈ {0, 1}n2
.

De�nition 1. Given an undirected graph G = (V ;E) not necessarily bipartite, the

incidence matrix A(G) of G is de�ned by |V | rows and |E| columns with all entries

from {0,1}. Each coe�cient ave of A(G) corresponds to a row for vertex v ∈ V , and

a column for edge e ∈ E, with

ave =


1, if v is an endpoint of e;

0, otherwise.

The matrix A(G) represents the vertex-edge incidence modelling the graph

structure. Further, A in (1.3a) is the incidence-matrix of the complete bipartite

graph G = (U ∪ V ;E).

De�nition 2. A matrix A is totally unimodular if every square sub-matrix of A has

its determinant in {-1, 0, 1}.

Theorem 1.1. (Ho�man-Kruskal, 1956)

Let A ∈ Zm×n be a totally unimodular matrix and b a vector of Zm. Then, all basic

solutions of the linear system Ax = b with x ≥ 0, are integer.

Corollary 1. The incidence matrix of a bipartite graph is totally unimodular.

Consequently, LAP retains an integer optimal solution even when the integrity

constraint (1.3b) of the integer linear program (1.3)�(1.3b) is relaxed. This prop-

erty is due to the unique totally unimodular structure of the constraint matrix.

Linear programming has substantially contributed to the development of e�cient

algorithms for solving an important class of combinatorial problems (Dantzig, 1963

and Taha, 2011).
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1.1.2 LAP links with common combinatorial problems

The literature shows a tight connection between the assignment problem and main

combinatorial optimisation problems. For instance, LAP is considered a particular

case of the transportation problem (TP), as depicted below.

1.1.2.1 Transportation Problem

An industrial challenge often encountered involves the e�cient transportation of a

particular product from n warehouses to stores while minimising costs. Let ai de-

note the total supply of the product available at warehouse i, and bj represents the

total demand for the product at store j. The cost associated with transporting one

product unit from warehouse i to store j is cij; ai, bj and cij are assumed positive.

Utilising the nonnegative variable xij to evaluate the quantity of the product trans-

ported from a given warehouse to a speci�c store, a linear programming model for

the transportation, proposed by Monge (1871), is presented below.

Minimize Z =
n∑

i=1

m∑
j=1

cijxij (1.4)

subject to
n∑

j=1

xij ≤ ai, i = 1, 2, . . . , n (1.4a)

n∑
i=1

xij = bj, j = 1, 2, . . . ,m (1.4b)

xij ∈ {0, 1}, i = 1, 2, . . . , n; j = 1, 2, . . . ,m (1.4c)

The TP objective function minimises total transportation cost, subject to con-

straints. The �rst system of inequalities (1.4a) represents supply constraints, ensur-

ing that each warehouse i distribution does not exceed its supply ai. Conversely,

the second system of inequalities (1.4b) represents demand constraints assuring that
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each store j incoming distribution meets at most its demand bj. Both coe�cients

ai and bj are assumed nonnegative. The problem involves allocating resources ef-

�ciently and balancing supply limitations and demand requirements to optimise

overall transportation expenditure.

The TP can be associated with a complete bipartite graph G = (U ∪ V ;E),

where U represents the set of warehouses and V the set of stores. Each variable

xij corresponds to an arc of E from warehouse i to store j. The following linear

program formulates the TP in matrix form, shown below.

Minimize Z = C · x (1.5)

subject to A.x ≥ B (1.5a)

x ≥ 0 (1.5b)

where A is the incidence-matrix of the bipartite graph G = (U ∪ V ;E). Thus,

A is an (m+ n)×m.n matrix, B =

−a
b

 is an (m+ n)-column vector and C is a

(m.n)-row vector. Components of vectors B and C are assumed nonnegative.

In (1.4), summing the n inequalities (1.4a) and the m inequalities (1.4b) result

in:

m∑
j=1

bj ≤
m∑
j=1

n∑
i=1

xij ≤
n∑

i=1

ai. (1.6)

In the conventional transportation problem model, the total supply
∑n

i=1 ai is

assumed to equal to the total demand
∑m

j=1 bj; otherwise, a `dummy' destination

is introduced to absorb the discrepancy, assigning a zero cost for distributions from

warehouses to this dummy. This case maintains the original cost structure. Sub-
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sequently, a feasible TP solution satis�es all inequality constraints with equality,

ensures compliance with conditions (1.4a) and (1.4b) in PL (1.4)�(1.4c), and ful�ls

all general constraints cast as equations.

1.1.2.2 Problem of Maximum Flow

Let G(V,E) be a directed connected graph with V the set of its vertices and E

the set of its edges. Each edge e of E has a nonnegative capacity c(e), if e /∈ E,

then c(e) = 0. In addition, G possesses two distinguished vertices, a source s with

in-degree 0 and a sink t with out-degree 0.

De�nition 3. For any i vertex of V , δ+(i) (or δ−(i)) denotes all edges of E having

their initial (�nal, respectively) node i.

De�nition 4. A �ow is a function f de�ned from set E into R such that:

� 0 ≤ f(e) ≤ c(e), ∀e ∈ E,

� ∀i, j ∈ V, f(i, j) = −f(j, i) skew symmetry, and

�

∑
e∈δ+(i) f(e) =

∑
e∈δ−(i) f(e), ∀i ∈ V \ {s, t} the �ow conservation.

The last equality means that at each vertex i ∈ V \ {s, t}, the quantity of �ow

entering i equals the quantity of �ow exiting it. This condition is usually known as

Kirchho�'s �rst law. The total amount of �ow equals F =
∑

e∈δ+(s) f(e).

The problem is therefore to determine the maximum amount of �ow that can be

shipped from the source s to the sink t. In other words, the objective is to maximise

the out�ow from the source s, i.e., Max(
∑

e∈δ+(s) f(e)) or equally to maximise the

in�ow from the sink t, i.e., Max(
∑

e∈δ−(t) f(e)).

The �ow theory has diverse applications in both combinatorics and operational

research. The problem of the maximum �ow in the graph G can also be formulated

by the following linear program.
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Maximize Z =
∑

e∈δ+(s)

f(e) (1.7)

subject to
∑

e∈δ+(i)

f(e) =
∑

e∈δ−(i)

f(e), ∀i ∈ V \ {s, t} (1.7a)

f(e) ≤ c(e), ∀e ∈ E (1.7b)

f(e) ≥ 0, ∀e ∈ E (1.7c)

Clearly, to any feasible solution of LP (1.7)�(1.7c) corresponds to a feasible

�ow for the graph G.

Ford and Fulkerson (1956) notably contributed to network optimisation by in-

troducing an e�cient algorithm for the maximum �ow problem in a graph. Their

method refers to the concept of augmenting paths from a source s to a sink t and

the dual of the LP (1.7)�(1.7c). Ford and Fulkerson's algorithm demonstrated re-

markable applicability to the TP, extending the principles of the Kuhn-Egervary

(Dantzig, Ford, and Fulkerson, 1956) method to a broader context. Due to the

problem's combinatorial nature, the algorithm again demonstrates the power of lin-

ear programming.

1.1.2.3 Maximum Perfect Matching in a Bipartite Graph.

De�nition 5. Given a bipartite graph G(X ∪ Y,E) with X ∪ Y vertex set and E

edge set,

� A matching is a subset M ⊆ E such that each v ∈ X ∪ Y is an endpoint of at

most one edge in M , and

� A matching M of the bipartite graph G, is said to be perfect if M matches

all vertices of the graph G. In other words, each v ∈ X ∪ Y is an endpoint of

exactly one edge of M .
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Kuhn (1955) developed the Hungarian Method, an e�cient algorithm for solv-

ing the assignment problem, LAP in polynomial time. The method was named in

tribute to Hungarian mathematicians Dénes K®nig and Jen® Egerváry whose ini-

tial work laid the groundwork for Kuhn's algorithm. The Hungarian method is

particularly adept at constructing maximum perfect matchings in bipartite graphs.

Moreover, the Ford and Fulkerson algorithm has proven to be highly e�ective

for �nding maximum perfect matchings in bipartite graphs, a notable parallel to the

capabilities of the Hungarian method.

Later, Munkres (1957) re�ned the Hungarian method by improving its compu-

tational complexity from O(n4) to O(n3). Since then, the Kuhn-Munkres algorithm

has been known as the Hungarian method, a foundational, e�cient algorithm in op-

timisation, preluding many modern methods in combinatorial optimisation (Rajabi-

Alni, 2013).

1.1.2.4 Intersection of Two Matroids

Matroid theory is a branch of combinatorial mathematics that extends linear in-

dependence in vector spaces and graphs to abstract settings. A matroid consists

of a �nite set and a collection of subsets of this set, satisfying speci�c properties

analogous to linear independence in vector spaces. The literature contains an in-

teresting de�nition of LAP in terms of matroid theory, but only a few applications

utilise such a formulation. Although not widespread, this interpretation yields sig-

ni�cant insights, particularly in complex scenarios with matroidal structures. The

matroid-based approach to LAP can provide tools for understanding the properties

of feasible solutions and algorithms for �nding optimal assignments.

De�nition 6. Let E be a �nite non-empty set, called ground set. Let us consider

F a collection of subsets F ⊆ E, called independent sets. The system (E,F) de�nes

a matroid if it satis�es the three following axioms:
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� ∅ ∈ F

� For each F ′ ⊆ F ⊆ E, if F ∈ F , then F ′ ∈ F .

� For any two elements of F (i.e., A and B two subsets of E) with |A| ≤ |B|

there exists an element e of B \ A, such that A ∪ {e} ∈ F .

De�nition 7. Let (E,F) be a matroid. A subset F ⊆ E, is a basis if F is indepen-

dent maximal (for the inclusion). By analogy, the notion of independence of sets is

comparable to that of linear independence of vectors, in linear algebra.

Welsh (1976) published a book o�ering a comprehensive introduction to ma-

troid theory and its diverse applications.

Given a bipartite graph G = (U ∪ V,E). Let F1 be a collection of all subsets

F ⊆ E, such that every vertex of U meets at most one edge of E. Similarly, let

F2 be another collection of all subsets F ⊆ E, such that every vertex of V meets

at most one edge of E. Clearly, the systems (E,F1) and (E,F2) ful�l the above

axioms, and de�ne two matroids.

Both matroids (E,F1) and (E,F2) are de�ned on a common ground set E.

A subset F ⊆ E lies in the intersection of (E,F1) and (E,F2) if F ∈ F1 and

F ∈ F2. Consequently, any matching in the bipartite graph G corresponds to a

set F ∈ F1 ∩ F2; reciprocally, every set F ∈ F1 ∩ F2 corresponds to a matching

of G. Moreover, if U and V are assumed to have the same number of elements n,

then every perfect matching of G is associated uniquely with a set F ∈ F1 ∩ F2,

with |F | = n. Furthermore, assuming every e ∈ E has a cost c(e), the LAP can be

considered as a special matroid intersection problem. LAP becomes a search for a

set F ∈ F1 ∩ F2 with minimum cost i.e., minimum︸ ︷︷ ︸
F∈F1∩F2

∑
e∈F c(e).
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1.1.3 Multi-Index Assignment Problem

The axial Multi-Index (or Multi-Dimensional) Assignment Problem (MAP) gener-

alises the standard LAP, extending it into higher dimensions. The MAP of dimension

k for (k ≥ 3), is de�ned as follows. Let U1, U2, . . . , Uk be k mutually disjoint sets,

each of cardinality n. Let us consider the complete k-partite hypergraph G(V,E)

where V =
⋃k

i=1 Ui denotes the vertex set, and E the edge set. The problem is to

determine n cliques, each of order k, such that every clique intersects every set Ui

(i = 1, 2, . . . , k) exactly at one vertex, in other words, to �nd a perfect matching

in the hypergraph G(V,E). The MAP thus involves partitioning the vertex set V

into n pairwise disjoint cliques. If a cost function c is de�ned on the edge set E, the

objective aims to �nd such a partition of minimum cost. The next section shows

how LAP results are extended to the MAP case.

The research project focuses on studying the axial Three-Index Assignment

Problem (3IAP), a particular case of the MAP of dimension three. Also referred

to as the Three-Dimensional or Solid Assignment Problem, 3IAP aims to minimise

the total cost involved in assigning n jobs (tasks) to n machines (agents) within

n factories (locations). The 3IAP is characterised by three bijections, such that

the formulation ensures that each job is assigned to exactly one machine and each

machine is assigned to one factory. Due to its wide-ranging practical applications,

the 3IAP attracts more research interest than the general MAP.

Pierskalla (1967) is the �rst to introduce the 3IAP as a natural extension of the

classical assignment problem (LAP), drawing inspiration from Haley's research on

the multi-index transportation problem, as outlined by (Schell, 1955) and Haley's

foundational work on the solid Transportation Problem (TP) (Hayley, 1962, 1963,

and 1965). Later, Pierskalla (1968) extended the 3IAP into the broader MAP.

Comprehensive insights into 3IAP are presented in the (Spieksma, 2000) survey,

while Burkard et. al., (2009) provide a detailed exploration of the MAP.



1.1. The Problem Description 15

1.1.4 Mathematical Formulations

The 3IAP is a special form of the assignment problem that extends the traditional

two-dimensional assignment model to three dimensions. In graph theory, the 3IAP

involves a complete tri-partite hypergraph, G = (I ∪ J ∪K,E), consisting of three

mutually disjoint vertex sets I, J , andK each with n vertices. The hypergraph edges

E are represented by triplets (i, j, k) where i ∈ I, j ∈ J , and k ∈ K. The problem

aims to determine a collection of n such triplets, ensuring every vertex from I, J ,

or K is uniquely included in one triplet, constituting n disjoint cliques of size three.

The objective is to minimise the total cost, as dictated by a cost function de�ned

over the edge set. Thus, the 3IAP searches for the minimum perfect matching in

the hypergraph G. Figure 1.2 illustrates a 3IAP example represented by a tripartite

hypergraph of size 5 whose edges are partitioned into �ve three-coloured triangles.

Figure 1.2: Example of a tri-partite graph of size 5.

1.1.4.1 First Formulation

The 3IAP is de�ned in the literature in various ways. Burkard and Çela (1999)

present a combinatorial formulation which involves three sets I, J , and K of n

elements each. The 3IAP can be described using two bijective mappings or per-

mutations (a) p between I and J , and (b) q between J and K. If cijk is the cost
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associated with the triplet (i, j, k) of I×J×K, the 3IAP aims to �nd an assignment

of minimum total cost. The problem seeks two permutations p and q of {1, 2, . . . , n},

realising the minimum total cost, i.e., min︸︷︷︸
p,q∈πn

Z =
∑n

i=1 cip(i)q(i)}.

The axial 3IAP is then de�ned as:

Minimize Z =
n∑

i=1

cip(i)q(i) (1.8a)

subject to p, q two permutations of πn. (1.8b)

where πn is the set of all permutations of n elements.

The �nal section of the current project introduces a new genetic algorithm for

3IAP, heavily based on this formulation.

1.1.4.2 Second Formulation

The earliest mathematical formulation of the axial 3IAP is the following linear

program (Pierskalla, 1967). Given three disjoint sets I, J,K and a cost function

c : I×J ×K 7−→ R+; the decision variable is binary, xijk = 1 if the job i is assigned

to machine j in factory k, and 0 otherwise.

Minimize Z =
∑
i∈I

∑
j∈J

∑
k∈K

cijk.xijk (1.9)

subject to
∑
j=1

∑
k=1

xijk = 1, i ∈ I (1.9a)

∑
i=1

∑
k=1

xijk = 1, j ∈ J (1.9b)

∑
i=1

∑
j=1

xijk = 1, k ∈ K (1.9c)

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K (1.9d)
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Here, the model (1.9)�(1.9d) represents an integer linear program where the

nonnegative coe�cient cijk may represent the cost of assigning job i to machine j

in factory k. If the sets I, J , and K have di�erent cardinalities, the problem is

considered unbalanced, in this case simply add zero cost to the rows and columns as

appropriate to balance the problem. A balanced 3IAP resembles the model (1.9)�

(1.9d) with the supplementary condition on cardinalities |I| = |J | = |K| = n, thus

the following linear program is written.

minimize Z =
n∑

i=1

n∑
j=1

n∑
k=1

cijk.xijk (1.10)

subject to
n∑

j=1

n∑
k=1

xijk = 1, i = 1, 2, . . . , n (1.10a)

n∑
i=1

n∑
k=1

xijk = 1, j = 1, 2, . . . , n (1.10b)

n∑
i=1

n∑
j=1

xijk = 1, k = 1, 2, . . . , n (1.10c)

xijk ∈ {0, 1}, i, j, k = 1, 2, . . . , n (1.10d)

The objective function Z (1.10) of the integer linear program evaluates the

total cost of the assignment. Linear equalities (1.10a)�(1.10c) de�ne the problem

constraints, while (1.10d) speci�es the binary decision variable. If the constraint

(1.10d) is substituted with the inequality:

xijk ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K.

then the above LP model becomes a continuous linear program which consti-

tutes a relaxation of the original problem.
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1.1.4.3 Third Formulation

The formulation of the 3IAP model corresponds to a linear program expressed in

matrix form.

minimize Z = C · x (1.11)

subject to An.x = e (1.11a)

x ∈ {0, 1}n3

(1.11b)

The axial 3IAP is formulated as an integer linear program expressed in matrix

form. Let us assume n ≥ 3, the binary decision variable is a vector of Rn3
, Equa-

tion (1.11b). The objective function is Z = C ·x (1.11), whereC is a n3-dimensional

row-vector with nonnegative components, representing the cost associated with ev-

ery potential triple in the hypergraph. Equation (1.11a) outlines the constraint

matrix An, of rank 3n − 2, which has a speci�c structure of n3 columns and 3n

rows, and all its coe�cients are 0 or 1. The vector e in Equation (1.11a) has all its

components equal to 0 or 1. All 3IAPs of size n share the same constraint matrix

An; distinct 3IAPs di�er only in their objective functions. Investigating the function

objective characteristics for solution approaches would be worthwhile.

The integer linear program (1.11)�(1.11b) holds up to (n!)2 feasible solutions.

This high number of potential solutions re�ects the combinatorial complexity of the

3IAP, especially as the size n increases. Solving such a problem optimally often

requires sophisticated optimisation techniques, especially for larger values of n. The

3IAP remains one of the most exacting combinatorial problems to solve optimally

since Karp (1972) proved that the MAP is NP -hard for any dimension n greater

than or equal to 3.
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1.1.5 3IAP links with common combinatorial problems

The formulation of the axial 3IAP as a linear program underlines its signi�cant

association with major combinatorial optimisation problems. This connection is ev-

idenced by the problem's structure, involving a combination of a linear objective

function, a constraint matrix and binary decision variables, which are the hallmarks

of many classic combinatorial problems. Such formulations are instrumental in solv-

ing complex optimisation problems, often encountered in diverse �elds such as op-

erations research, computer science, applied mathematics, industry, and economics,

highlighting the 3IAP's relevance and applicability in diverse problem-solving con-

texts.

1.1.5.1 Three-Index Transportation Problem

By analogy with LAP, the 3IAP can be regarded as a particular variant of the

Three-Index transportation problem, an extension of the traditional transportation

problem (TP). This similarity is evident when the 3IAP is modi�ed such that the

linear equations (1.10a)�(1.10c) have arbitrary nonnegative values on the right-hand

side and the sets I, J , andK di�er in cardinality. Additionally, relaxing the integrity

constraint (1.10d) transforms the problem into the more general Three-Index trans-

portation problem.

1.1.5.2 Set Partitioning Problem

The Set Partitioning Problem (SPP) is a classic problem in combinatorial optimi-

sation and operations research, which entails dividing items into distinct subsets

to meet speci�c criteria, often for optimising outcomes. SPP extensive application

across multiple sectors, underlines its importance, as evidenced by the substantial

academic literature. An SPP can be stated as follows.
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Figure 1.3: Example of a set partition.

De�nition 8. Let E = {1, 2, . . . n} be a set of items, and S = {S1, S2, . . . , Sm} a

set of subsets of E. Let I be a set of indices {1, 2, . . .m} then I de�nes a partition

of E if and only if:

�

⋃
i∈I Si = E

� Si ∩ Sj = ∅, ∀i, j ∈ I, i ̸= j.

Example: Let E = {1, 2, . . . , 18} be a set of 18 items and S = {S1, S2, . . . , Sm}

a set of subsets of E. Consider P = {1, 2, 3, 4} a subset of {1, 2, . . . , 18}, then

Figure 1.3 shows that P is a partition of E.

If a cost function is de�ned c : S −→ R+, then the sum
∑

i∈P c(Si) equals the

cost of the partition P . The objective of SPP is to �nd the partition P ⋆ of E, of

the minimum cost.

Thus, the 3IAP is also considered a particular case of the SPP, whose mathe-

matical formulation is the following.

Minimize Z = C · x (1.12)

subject to M.x = e (1.12a)

x ∈ {0, 1}n (1.12b)
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whereM is the n×m constraint matrix whose coe�cients are in {0, 1}, and the

column-vector e in (1.12a), has m components all equal to 1. The decision variable

x is a binary vector of dimension n, where each element equals 0 or 1, as displayed

in equation (1.12b).

1.1.5.3 Set Packing Problem

If the equality (1.12a) is replaced by an inequality, the formulation of the Set Packing

Problem results in another mathematical problem that involves �nding the largest

collection of sets that do not overlap. It is a combinatorial optimisation problem

with applications in various �elds such as computer science, operations research,

and logistics.

The Set Packing Problem mathematical formulation is:

Minimize Z = C · x (1.13)

subject to M.x ≤ e (1.13a)

x ∈ {0, 1}n (1.13b)

where the n ×m constraint matrix M in (1.13a), is the same as in SPP and

the column-vector e is similar to that in (1.12a), having m components all smaller

than or equal to 1. The same decision variable x is a binary vector of dimension n,

where all components equal 0 or 1, as shown in equation (1.13b).

1.1.5.4 Set Covering Problem

If the equality (1.12a) is substituted by another inequality, this leads to the Set

Covering Problem, whose mathematical formulation is the following.
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Minimize Z = C · x (1.14)

subject to M.x ≥ e (1.14a)

x ∈ {0, 1}n (1.14b)

Nearly all identical integer linear programs represent these three problems.

The set partitioning problem (1.12)�(1.12b), the set packing problem (1.13)�(1.13b),

and the set covering problem (1.14)�(1.14b) have been extensively investigated, and

useful results have been achieved and published in the literature (Boshetti et al.,

2008).

1.1.5.5 Intersection of Three Matroids

Like LAP, the 3IAP also possesses a matroid-based formulation yet to be appro-

priately explored. A collection F of triplets (i, j, k) from I × J × K de�nes an

assignment if and only if they satisfy the following inequalities.

� |F ∩ {i}| ≥ 1 ∀i ∈ I,

� |F ∩ {j}| ≥ 1 ∀j ∈ J,

� |F ∩ {k}| ≥ 1 ∀k ∈ K.

Let (E,FI) de�ne a partition matroid on the ground set E = I × J ×K where

the family F of collection F triplets such that every element of I appears at least

once in the collection F . Similarly, the matroids (E,FJ) and (E,FK) are de�ned

on the same ground set E. The 3IAP then returns to the search for a subset F ⋆

of minimum cost and cardinality n in the intersection of the three matroids FI ,FJ

and FK , i.e., minimum︸ ︷︷ ︸
F∈FI∩FJ∩FK

∑
e∈F c(e).
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The book `Assignment Problems' by Burkard, Dell' Amico, and Martello (2009)

provides a comprehensive analysis of various assignment problems; it is the sole ref-

erence that delves into the 3IAP using a matroid-based formulation. Given this

unique approach, as future development, there is an opportunity to explore this av-

enue by investigating the insights and methodologies covered in this seminal work to

advance the understanding and problem-solving strategies for the 3IAP applications.





Chapter 2

Literature Review and Applications

This chapter reviews the existing approaches for solving the 3IAP and MAP in

general and illustrates their broad applicability. The following section presents di-

verse real-world applications underscoring the problem's signi�cance across various

domains through an examination of its practical implications.

2.1 Applications

The 3IAP, a principal variant of the MAP, has garnered signi�cant scholarly focus

over the past thirty years. Its applications have expanded into higher dimensions,

notably in multi-target tracking and data association, as exempli�ed in (Vadrevu

and Nagi, 2020), and in addressing distributed multi-object tracking (Chen et al.,

2023). Predominantly, MAP applications cover sectors such as data association, ed-

ucational timetabling, scheduling, satellite-related operations, and biological studies,

as evidenced by extensive literature reviews.

25
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2.1.1 Data Association

MAP applications are most prominent in data association, especially in multi-sensor

data association. Aligning measurements from one or more sensors with the same

object, is a challenge addressed by (Poore, 1994; Andrijich and Caccetta, 2001).

Another application of MAP concerns matching information from multiple sensors

for tracking elementary particle trajectories. The solution complexity and approach

are comparable to those of the �ve-dimensional assignment problem, as discussed in

(Pusztaszeri et al., 1996).

2.1.2 Multi-target Tracking

MAP, with decomposable costs, has been applied to multi-target and multi-sensor

tracking and in-plane tracking (Bandelt et al., 2002). This application is also evident

in plane tracking, as discussed in the works of (Murphey et al., 1998), (Burkard and

Çela 1999), and (Pardalos and Pitsoulis 2000). Comprehensive surveys of assignment

problems in multiple-target tracking were conducted by (Poore and Gadaleta, 2006)

and later by (Tauer and Nagi 2013), providing detailed insights into the evolution

and applications of MAP in these complex tracking scenarios. A recent application

Zhang et al., (2023) proposed a multi-target tracking method based on multi-sensor

labelled multi-Bernoulli �lter in underwater multi-static networks with autonomous

underwater vehicles.

2.1.3 Managing Resources

Pierskalla (1967) introduces an early application of MAP to dynamic facility lo-

cations, demonstrating its utility in scheduling capital investments like warehouses

and factories across di�erent locations and times. Later, Grundel et al., (2004) ex-

pand further the scope of MAP, applying it to production planning and resource
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allocation, illustrating its e�cacy in optimising industrial processes and managing

resources, thus showcasing its versatility in operational planning.

2.1.4 Multi-surveillance

The literature on MAP reveals its diverse applications, ranging from satellite launch-

ing to multi-surveillance (Pierskalla, 1968; Balas and Landweer, 1983). Furthermore,

Grundel et al., (2004) delves into its use in real-time radar surveillance, including

target tracking systems, image recognition, and air tra�c control. Additional ap-

plications are evident in computer vision (Veenman et al., 2003) and circuit board

assembly optimisation (Spieksma, 2000), highlighting MAP's wide-ranging impact

in various advanced technological domains.

2.1.5 Educational Timetabling

MAP has also been e�ectively applied in educational timetabling for assigning teach-

ers to courses and sessions, �rst introduced by (Pierskalla, 1967). Frieze and Yadegar

(1981) extend this application to schedule teacher trainees. In healthcare, MAP has

been employed for scheduling in elderly day-care centres (Lin et al., 2016) and in

broader healthcare sector timetabling (Faudzi et al., 2018). Pérez (2017) investi-

gates MAP in solving school timetabling case studies. More recently, Badoniet al.,

(2023) use a genetic algorithm to tackle university course timetabling, illustrating

MAP's continued evolution and relevance in solving complex scheduling problems.

2.1.6 Applications in Biology

Applications of MAP are also encountered in biology. For instance, Arora (2013)

proposes a 3IAP model to solve the alignment of three protein-interaction networks.

In a recent study, Gabrov²ek et al., (2020) investigate the multi-association of three
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sets of interactions (diseases, drugs, and genes) by formulating the problem as a

3IAP model which they then solved by the multiple Hungarian method.

2.1.7 Applications in Algebra

3IAP has also been applied to solve systems of polynomial equations. Bekker et al.,

(2005) employ the Combinatorial Optimisation Root Selection (CORS) method for

systems with d equations (d ≤ 3) and n solutions (n ≤ 20). They deduce that CORS

could e�ectively handle systems comprising up to 5 equations with as many as 30

solutions. However, they acknowledge a substantial computational burden for larger

systems. Their observation indicates the potential for further research in polynomial

equations with more than 30 roots, expanding the scope of 3IAP applications.

2.1.8 Dynamic Agri-robot

Recent developments have expanded the range of applications for MAP. Bertsekas

(2020) studies the constrained multi-agent rollout of MAP, applying the auction

algorithm to devise strategies for sub-optimally solving constrained deterministic

problems. Lujak et al., (2020) investigate task assignment methods for dynamic agri-

robot �eets, formulating these cases as MAPs. Their research includes reviewing

dynamic coordination techniques, culminating in applying these methods to the

agricultural sector.

2.2 Solution Approaches

Following the de�nition and formulation of the problem assignment, a concise liter-

ature review was compiled, focusing on major solution approaches for the 3IAP to

develop e�cient algorithms for large-size instances. The review encompasses over

150 scholarly references from the last �ve decades, including a mix of methodological



2.2. Solution Approaches 29

and theoretical review papers, books, and theses. Compiled and organised using MS

Access and MindManager, this review facilitated an e�cient and structured analysis,

crucial for identifying future directions in the algorithmic resolution of large-scale

instances of 3IAP.

After compiling pertinent publications, an exhaustive comparative analysis was

performed, focusing on the state-of-the-art in MAP solutions. This critical review

spans various methodologies, evaluating each paper's contribution and acknowl-

edging the in�uence of prominent authors, thereby enriching the understanding of

MAP's evolving landscape.

2.2.1 Relaxation Methods

In integer linear programming, a common technique is to relax the integer con-

straints, transforming the problem into a continuous linear program called LP-

relaxation. The optimal solution of the LP-relaxation serves as a valid lower bound

for the original integer problem. The LP-relaxation and its optimal solution consti-

tute the root node for the branch and bound method (B&B), a widely used integer

linear programming.

2.2.1.1 Integer Linear Programming

Maximize Z =
n∑

i=1

cij.xij (2.1)

subject to
n∑

i=1

aij.xij ≤ bj, j = 1, 2, . . . ,m (2.1a)

xij ∈ N i = 1, 2, . . . , n; j = 1, 2, . . . ,m (2.1b)

The model (2.1)�(2.1b) is an integer linear program of maximising the objective

function Z = C ·x, subject to m inequalities. The variable x takes nonnegative inte-
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ger values. After relaxing the constraints (2.1b) the following problem is obtained.

Maximize Z =
n∑

i=1

cij.xij (2.2)

subject to
n∑

i=1

aij.xij ≤ bj, j = 1, 2, . . . ,m (2.2a)

xij ≥ 0 i = 1, 2, . . . , n; j = 1, 2, . . . ,m; (2.2b)

The program (2.2)�(2.2b) represents an LP-relaxation of the previous model,

with the key di�erence being that the variable x here takes nonnegative real values

(2.2b). Typically, model (2.2)�(2.2b) is referred to the `primal' problem, and it has a

corresponding `dual' problem, which is also a continuous linear program formulated

as follows.

Minimize W =
m∑
j=1

bjyj (2.3)

subject to
m∑
j=1

aij.yj ≥ cij, i = 1, 2, . . . , n (2.3a)

yj ≥ 0 j = 1, 2, . . . ,m (2.3b)

The dual variables of the program (2.3)�(2.3b) directly correspond to the in-

equalities of the primal problem (2.2)�(2.2b). Two critical results emerge from these

formulations, highlighting the fundamental relationship between a primal problem

and its dual in linear programming.

Theorem 2.1. (Weak duality)

If the linear programs (2.2)�(2.2b) and (2.3)�(2.3b) have feasible solutions x̄ and ȳ

respectively, then Z(x̄) = c.x̄ ≤ b.ȳ = W (ȳ).
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This result provides an upper bound for the maximisation problem and a lower

bound for its dual.

Theorem 2.2. (Strong duality)

If the linear programs (2.2)�(2.2b) and (2.3)�(2.3b) have �nite optimal solutions x⋆

and y⋆ respectively, then Z(x⋆) = c.x⋆ = b.y⋆ = W (y⋆).

The latter result derived from duality holds signi�cant practical implications.

It can be used as a criterion for determining the optimality of a solution. This insight

is particularly valuable in linear programming, as it provides a robust method for

assessing whether a proposed solution is optimal under the speci�ed constraints and

objective.

2.2.1.2 Lagrangian Relaxation

Let us consider a problem of minimising a function f(x) subject to x ∈ S and

constraint g(x) ≤ 0, where x is a vector of Rn, S a �nite subset of Rn, f and g are

two functions de�ned respectively from Rn to R, and from Rn to Rm.

Minimize f(x) (2.4)

subject to g(x) ≤ 0 (2.4a)

x ∈ S (2.4b)

Let (P ) denote the problem (2.4)�(2.4b). A vector x ∈ Rn is a feasible solution

for the problem (P ) if x satis�es constraints (2.4a) and (2.4b).

The inequality constraint g(x) ≤ 0 can be associated with a nonnegative vector

λ ∈ Rm (called: Lagrange multiplier), and the Lagrangian function is de�ned by:

L(x, λ) = f(x) + λ.g(x). Hence the problem (P ) can be formulated as:
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Minimize L(x, λ) (2.5)

subject to x ∈ S (2.5a)

In optimisation, relaxation simpli�es problems by removing stringent constraints,

leading to two key observations. First, the feasible region of the original problem

(P ) is a subset of the feasible region of the relaxation, due to fewer constraints

(2.5a). Second, for any feasible solution x of (P ), x always veri�es the inequality

L(x, λ) ≤ f(x). Next, the dual function L is de�ned by: L(λ) = min︸︷︷︸
x∈S

L(x, λ).

As the value of the dual function L(λ) always represents a lower bound for the

problem (P ), the aim is to �nd the best possible relaxation bound for (P ). Usually

the problem (P ) is known as a primal problem while the following problem (D) is

called dual and it satis�es:

Max︸ ︷︷ ︸
λ∈R+

L(λ) = Max︸ ︷︷ ︸
λ∈R+

(min︸︷︷︸
x∈S

L(x, λ)) (D)

The dual problem (D) is crucial for determining the tightest lower bound for

(P ) and has three important properties.

Lower bound. The weak duality principle states that for any nonnegative

feasible solution λ of the dual problem (D) and any feasible solution x of the primal

problem (P ), if L(λ) represents the objective function value of (D), and f(x) repre-

sents the objective function value of (P ), then the inequality L(λ) ≤ f(x) invariably

holds. In other words, the value of the dual problem is always smaller than or equal

to the value of the primal problem for any feasible solution. Conversely, if both

solutions are equal, this signi�es are optimal for their respective problems.
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Concavity.

De�nition 9. A subset S of Rn is convex if for any pair of points (x, y) of S, and

for any t ∈ [0, 1], the combination tx+ (1− t)y is also a point of S.

De�nition 10. A function f : Rn −→ R is convex if its domain is convex, for any

pair of points (x, y) of S, and for any t ∈ [0, 1], f veri�es:

f(tx+ (1− t)y) ≤ t.f(x) + (1− t).f(y).

De�nition 11. A function f : Rn −→ R is concave if and only if the function (−f)

is convex.

Suppose L(λ) represents the value of the objective function of the dual problem

(D) for a given λ, then L(λ) is a concave and piecewise linear function.

Sub-gradients.

De�nition 12. A vector v is a sub-gradient of L at point λ. For every nonnegative

number λ
′
, we have:

L(λ′
) ≤ L(λ) + (λ

′ − λ).v

All sub-gradients of L at point λ form a convex set denoted ∂L(λ) and called

the sub-di�erential of L in λ.

For every λ ≥ 0 , let Y (λ) = {yi ∈ S|f(yi) + λ.g(yi) = L(λ)} then

1. yj ∈ Y (λ) and g(yj) ∈ ∂L(λ) (i.e., sub-gradient of L at λ).

2. For every λ > 0, g(yj) with (yj ∈ Y (λ)) form a generator set of ∂L(λ) (i.e.,

any sub-gradient is a convex linear combination of g(yj) with (yj ∈ Y (λ)).

A sub-gradient method is often used in a Lagrangian relaxation to �nd the

optimum of the dual function L.
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In addressing the 3IAP, the Lagrangian relaxation is a prevalent technique, as

substantiated by various studies (Gauvrit et al., 1997; Poore, 2000; 2006; Zhang,

2018). The method involves selectively incorporating one or two constraint sets

from the 3IAP formulation into the objective function with corresponding multi-

pliers, thereby generating new variants of Lagrangian relaxation. Many possible

constraint combinations have been the object of extensive research on various La-

grangian relaxation heuristics, re�ecting its broad adoption and e�ectiveness in 3IAP

solutions.

In their seminal study on 3IAP, Frieze and Yadegar (1981) develop a heuristic

using Lagrangian relaxation. In their methodology, they relax the �nal constraint

set of the 3IAP formulation, a strategy that proved e�ective in generating a feasible

solution. The Lagrangian relaxation notably facilitates the computation of both

upper and lower bounds for the optimal solution, thereby allowing for a robust

evaluation of solution quality.

Balas and Saltzman (1991) innovatively applied Lagrangian relaxation to the

3IAP, introducing four di�erent variants:

� In the �rst variant, all constraints, barring integrity, are incorporated into the

objective function. The optimal solution for �xed multipliers is determined

by assigning one to each variable with a negative reduced cost and zero to

others. The method focuses on recalibrating the objective function to account

for constraint violations.

� In the second variant, all constraints, except integrity, are merged into the ob-

jective function, replaced by a singular constraint ensuring exactly n variables

are set to one. The optimal solution is achieved by selecting the n variables

with the smallest reduced costs to be one and setting the remainder to zero.

This technique simpli�es the constraint framework while prioritising cost op-

timisation.
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� The third variant of Lagrangian relaxation integrated the last two equation

sets (J and K) into the objective function. The optimal solution is achieved

by assigning one to the variable with the smallest reduced cost for every i of

set I.

� The �nal variant incorporates the �rst equation set associated with I into the

objective function. The relaxed problem is reached by solving an assignment

problem across sets J and K, assigning costs based on the minimum reduced

cost for each pair (j, k) determined from all triplets containing (j, k) across set

I.

Li et al., (2019) explore a novel Lagrangian method for the 3IAP, relaxing

three constraint sets. Their approach established a necessary and su�cient condi-

tion for achieving a zero-duality gap. The authors claim their approach could reach

an optimal solution to the assignment problem with certainty. The method war-

rants detailed examination for its potential as a signi�cant source of inspiration in

optimisation problems.

Developed initially for the 3IAP, certain techniques are later adapted for the

Multidimensional Assignment Problem (MAP). Poore and Rijavec (1994), followed

by Poore and Robertson (1997), introduce a new class of constructive Lagrangian

relaxation algorithms, in solving assignment problems. The authors tackle the d-

dimensional assignment problem through a two-phase approach. Initially, they relax

the problem, then maximise the related Lagrangian multipliers. The process reduces

the problem to a (d−1)-dimensional assignment problem. The algorithm iteratively

repeats this procedure, progressively decreasing the dimension until it simpli�es the

case to a two-dimensional assignment problem, i.e., LAP. In the second phase, the

authors implement a `recovery procedure' to construct a good solution for the original

MAP from the optimal solution of the relaxed problems. Their approach, adept

at procuring near-optimal solutions for target tracking problems, is expanded to

encompass data association across multiple frames (Poore, 2000). Further methods
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are described in (Poore and Gadaleta, 2006).

2.2.2 Exact Algorithms

In combinatorial optimisation, exact algorithms guarantee optimal solutions with

proven optimality. However, their execution times signi�cantly increase as the prob-

lem size grows, limiting their practicality to small or medium-sized instances. For

larger size instances, where optimality must be balanced with runtime, the reliance

shifts towards heuristic methods. Heuristics are preferred for NP -hard problems

because they can produce good solutions within reasonable timeframes.

There is a limited literature covering exact algorithms for MAP. Some of these

methods prioritise optimal solutions in reduced time but they inherently entail ex-

ponential computational complexity, assuming P ̸= NP , as described in (Garey and

Johnson, 1979). Notably, among exponential algorithms, preference leans towards

lower complexity, for example, O(2n) < O(3n) < O(n!).

Most exact solution methods for MAP are initially designed for solving its three-

dimensional version. One of the earliest exact algorithms for MAP was introduced by

(Pierskalla,1968). The method implicitly enumerates all feasible solutions via a tree

structure. The algorithm applies the (B&B) technique and utilises dual subproblems

to generate lower bounds that are straightforward to compute.

Hansen and Kaufman (1973) developed a primal-dual algorithm for solving

the 3IAP, resembling the Hungarian method. Later, Fröhlich (1979) implemented

a (B&B) approach, incorporating Lagrangian relaxation and sub-gradient optimisa-

tion. This method was brie�y documented in (Burkard, 1980).

Following Pierskalla's work, numerous studies in the literature referred to algo-

rithms using the (B&B) technique. These algorithms typically employ a branching

rule that sets single variables to 0 or 1. However, Balas and Saltzman (1991) in-

troduce a new branching strategy, �xing several variables simultaneously at each
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branching node. They then integrate facet inequalities at each node, yielding in

smaller search trees and terminal nodes being LAPs. Balas and Saltzman (1991)

have successfully solved the 3IAP to optimality and tested their algorithm on prob-

lem instances up to size n = 26.

Burkard and Rudolf (1993) investigate various (B&B) schemes for 3IAP. They

experiment with several branching rules, drawing upon insights from (Balas and

Saltzman, 1989) research on the facial structure of the three-index assignment poly-

tope. Later, Pasilioa et al., (2005) develop two distinct (B&B) methods for solving

the MAP, each based on di�erent tree representations. The authors pointed that

their algorithm performance is a�ected by the size and dimension of the problem.

2.2.3 Approximation Algorithms

While approximation algorithms are tailored to speci�c geometric forms of versions

of 3IAP, they have been widely studied, leading to the development of numerous

heuristics. In this context, Spieksma (2000) identi�es two fundamental concepts

that helped comprehend the nature of approximation algorithms.

1. A ρ−approximation algorithm for a minimisation (maximisation) problem P is

a polynomial-time algorithm that, for all instances, generates a solution with a

value at most (at least) respectively, equal to ρ times the value of the optimal

solution of P . Note that for minimisation problems ρ ≥ 1, and maximisation

problems 0 ≤ ρ ≤ 1.

2. A polynomial time approximation scheme for a minimisation (maximisation)

problem is a family of polynomial-time (1+ε)−approximation algorithms ((1−

ε)−approximation algorithms) respectively, for any ε > 0.

Crama and Speiksma (1992) explore special cases of the 3IAP formulated in

terms of graph theory, particularly the case where edge lengths satisfy the triangu-
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lar inequality. They consider the costs of a triangle (3-clique) as either the sum of

all edge lengths (perimeter T∆) or the sum of the two shortest edges (S∆). They

demonstrate that both 3IAP variants are NP -hard. Nevertheless, they devise heuris-

tics that consistently yield feasible solutions, with the objective function values not

exceeding 3/2 (for T∆) or 4/3 (for S∆) of the optimal value. Their empirical exper-

iments on randomly generated instances con�rmed the high performance of these

heuristics.

Later, Bandelt et al., (1994) also consider special cases of the MAP formulated

in terms of graph theory. The function cost in these cases is not arbitrary, but is

based on elementary costs de�ned on the edges of the underlying multi-partite graph

of the assignment problem. The authors de�ne the cost of a clique (i.e., the sum of

the lengths of all edges within the clique). In addition, they consider a tour cost (the

minimum cost of a traveling salesman tour within the clique), a tree cost (i.e., the

minimum cost of a spanning tree in the clique), and a star cost (i.e., minimum length

of a spanning star in the clique). They determine worst-case bounds on the ratio

between the cost of solutions derived from simple heuristics and optimal solutions

for these special cases.

Despite the NP -hard nature of the 3IAP, there are a few special cases that

can be solved using polynomial-time algorithms. Burkard, Klinz, and Rudolf (1996)

identify such cases when cost coe�cients form a `Monge' array, where for each �xed

index i (and similarly for each j or k), we satisfy the following inequality:

cilm + cipq ≤ cilq + cipm for 1 ≤ l ≤ p ≤ n, 1 ≤ m ≤ q ≤ n.

However, Burkard, Rudolf, and Woeginger (1996) examine the case of the as-

signment problem with decomposable costs:

cijk = αi.βj.γk for i, j, k = 1, 2, . . . , n; and αi ≥ 0, βj ≥ 0, γk ≥ 0 for i, j, k =

1, 2, . . . , n.

The authors con�rm that while the minimisation version of the assignment
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problem with decomposable costs is NP -hard, its maximisation counterpart can be

solved in polynomial time. They also identify additional cases of the 3IAP with

decomposable costs that are solvable in polynomial time under tightly restricted

structures.

In the same year, Spieksma and Woeginger (1996) investigate two additional

geometric special cases of the 3IAP. Their study involves three sets I, J , and K, each

containing n points in the Euclidean plane. The objective is to partition I ∪ J ∪K

into n tri-coloured triangles, minimising either the total perimeter or the total area

of all the triangles. Both variants of this problem are proven to be NP -hard.

Later, Johnsson et al., (1998) explore the three-matching problem in the Eu-

clidean plane and identi�ed it as a variant of the geometric case of the 3IAP. As-

suming the problem size equals n a multiple of three (i.e., n = 3p), the authors

searched, in the Euclidean plane, for a partition of the n points into p subsets.

Their study revolves around subsets of three points or triplets (i, j, k). The cost

for each triple is de�ned by the sum of the lengths of the two shortest sides of the

corresponding triangle, and the objective is to minimise the total cost of all triplets.

Initially, the authors attempted to devise approximation algorithms for this prob-

lem but encountered challenges �nding a de�nitive upper bound for computational

complexity. However, they developed alternative heuristics based on tabu-search,

simulated annealing, and genetic algorithms.

A decade later, Kuroki and Matsui (2009) investigate geometric special cases

of the MAP, focusing on the d-dimensional assignment problem. The problem en-

tails partitioning n nodes of a complete d-partite graph into n disjoint d-cliques to

minimise their total weights. The weight of each clique is the sum of the weights of

its edges, where the weight of an edge was de�ned as the square of the Euclidean

distance between its endpoints. The authors devise a polynomial approximation

algorithm, which improves the known approximation ratio from (4− 6
d
) to (5

2
− 3

d
).
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2.2.4 Polyhedral Approach

The polyhedral approach in the axial 3IAP has been widely studied. Notably, Euler

(1987) is the �rst to analyse the structure of the convex hull of feasible solutions for

the 3IAP and the role of odd cycles in a class of facets of the polyhedron.

Balas and Saltzman (1989) extensively investigate the facial structure of the

three-index assignment polytope. They identify several facet classes and developed

an O(n4) separation algorithm to detect violations in clique facets. This brilliant

seminal research inspired numerous researchers. Continuing their exploration, Balas

and Saltzman (1991) develop an exact algorithm to solve the 3IAP, integrating a

class of facet inequalities into a Lagrangian relaxation approach. They successfully

implement their algorithm on problem instances up to n = 26 , marking a signi�cant

achievement in the �eld.

Following their earlier work, Balas and Qi (1993) develop an e�cient O(n3) sep-

aration algorithm for certain facet classes of the 3IAP, including a newly identi�ed

class. Given that the 3IAP requires n3 variables, their algorithm, from a computa-

tional complexity perspective, quali�es as linear time; at that point, it was the most

e�cient. Later, Qi, Balas, and Gwan (1994) advance their work and extend linear

time an O(n3) separation algorithms to additional facet classes, speci�cally those

induced by certain cliques. They then propose a polyhedral approach procedure to

solve the axial 3IAP e�ectively.

Qi and Sun (2000) present an overview summarising the signi�cant advance-

ments in the polyhedral structure analysis of the three-index assignment polytope.

They detail various facet classes and propose corresponding separation algorithms.

In conclusion, Qi and Sun raise an intriguing question: Do facets exist where the

right-hand side of their de�ning inequalities equals 2?

Magos and Mourtos (2009) present a uni�ed framework for analysing clique

facets in axial and planar assignment polytopes. They develop a polyhedral approach-
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based solution method for the 3IAP, integrating a polynomial-time separation pro-

cedure with a class of clique facets from the three-index assignment polytope. This

approach remarkably reduces the solution time for 3IAP instances. While some

clique facets were previously identi�ed by (Balas and Saltzman, 1989), Magos and

Mourtos add improvements to their algorithm.

After reviewing the existing facet classes of the 3IAP, Dokka and Speiksma

(2014) identify a new class of facets. Additionally, they a�rmatively respond to Qi

and Sun's 2000 query by showing that these new facets' de�ning inequalities have a

right-hand side of 2, thereby enriching the polyhedral understanding of the 3IAP.

Kravtsov (2006) investigates the three-index assignment polytope, analysing

its non-integer vertices' structure. The author then characterises these vertices and

examines their combinatorial properties, enriching the study of the polytope.

Before concluding this section, it is pertinent to highlight the work on multi-

index assignment polytopes of higher dimensions. Appa et al., (2004) study the

four-index assignment polytope, introducing a branch and cut algorithm for its

e�ective resolution.

Later, Appa et al., (2006) expand the study to the polytope of the MAP in

a general context. Their work uni�es and generalises earlier results; in particular,

they set the dimensions of both axial and planar MAP polytopes. Furthermore,

they identify a novel class of clique facets for the axial MAP polytopes and establish

a necessary condition for the existence of MAP solutions.

2.2.5 Local search methods

Local search methods are important in discrete optimisation, serving as heuristics

for tackling NP -hard combinatorial optimisation problems. Starting from a feasible

solution, these methods proceed to a neighbouring solution through incremental

local modi�cations. The process iterates, moving to a neighbouring solution if a
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potential improvement is achievable otherwise it terminates after a pre�xed number

of iterations. This iterative approach persists until an optimal solution is found or

the �xed iteration limit is reached.

In optimisation neighbourhood-centred methods operate iteratively by explor-

ing the neighbourhoods of the current solution. Various approaches in the literature

address diverse neighbourhood classes and sizes. The key principle of these methods

is the systematic evaluation of neighbourhoods in a predetermined manner.

Karapetyan and Gutin (2011) distinguish between heuristics construction and

local search, noting that the former develops solutions from the ground up with

quality constraints, while the latter improves existing solutions, and served as useful

post-construction or as part of advanced metaheuristics.

Among the early local search methods for the 3IAP is the variable depth in-

terchange heuristic developed by (Balas and Saltzman, 1991). The method begins

with a feasible solution, methodically evaluates all variable interchanges against the

objective function, and executes changes that improve cost, repeating the process

until no further improvements are possible.

Balas and Saltzman's paper provides detailed analysis and testing of three

heuristics (greedy, reduced cost, and max-regret) on randomly generated instances

sized n = 20 to 70. The results highlight the max-regret method's superiority and

its e�ective combination with variable depth interchange for large 3IAP instances.

Robertson (2001) introduces four greedy randomised adaptive search proce-

dures (GRASP) for MAP, inspired by Balas and Saltzman's 1991 heuristics. These

include two constructive methods (randomised reduced cost greedy, max regret) and

two local searches (two-assignment-exchange, variable depth exchange), tested on

�ve-index assignment problems (n = 25) related to multi-sensor tracking systems,

with detailed explanations but no performance metrics.

Bandelt et al., (2002) investigate decomposable cost MAPs, introducing an
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exponentially sized neighbourhood with polynomial-time optimal solution identi-

�cation, and develop a corresponding local search method. Their algorithm was

empirically tested with constructive heuristics, establishing lower bounds for solu-

tion quality assessment. In contrast, Grundel et al., (2004) analyse the asymptotic

properties of random MAP instance families.

A few years later, Aiex et al., (2005) introduce GRASP variations incorporat-

ing path relinking for the 3IAP, merging a greedy randomised construction process

and local search. This approach is tested on established problem instances, and

demonstrated enhanced solution quality compared to earlier methods (Balas and

Saltzman, 1991), (Burkard et al., 1996), and (Crama and Spieksma, 1992).

2.2.6 Genetic Algorithms

The Genetic Algorithm (GA), inspired by biological evolution and natural selection,

is an approximate approach to solving complex optimisation problems. Applied to

the 3IAP, GA evolves a population of potential solutions across multiple generations.

Combining a local search method with GA leads to enhanced solution quality.

Huang and Lim (2006) develop a new iterative local search procedure for the

3IAP, reducing the problem into a LAP. They then integrate this heuristic within

a genetic algorithm; they are the �rst to use the genetic algorithm to solve 3IAP.

Chapter 5 is exploring this method in more detail. Gutin and Karapetyan (2009)

introduce a `memetic' hybrid algorithm for MAP, merging a genetic algorithm with

a local search. Their paper describes the method without numerical results.

Later, Karapetyan and Gutin (2011a) publish on MAP heuristics, expanding

existing neighbourhoods and introducing new ones. They rigorously evaluate their

local search methods theoretically and empirically then devise an e�cient heuristic

by combining various neighbourhoods to capitalise on their respective strengths.

Karapetyan and Gutin (2011a) propose new instance families for evaluating
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MAP heuristics, with tests indicating a relative error of around 5% in most in-

stances. They conclude that dimensionwise variation heuristics were superior for

MAP. In a subsequent 2011b publication, they develop a memetic algorithm for

3AIP using an adjustable population size, similar to Huang and Lim (2006) ap-

proach. The size is determined by the full algorithm run-time and the average local

search computational time for each speci�c instance.

Kammerdiner (2017) propose a large-scale neighbourhood search for MAP,

while Valencia et al., (2017) recognise Karapetyan and Gutin's (2011b) memetic

algorithm as the best for MAP. They show a basic genetic algorithm with dimen-

sionwise variation heuristic to be e�cient against advanced memetic algorithms.

Pérez (2017) extensively explores MAP, devising a new metaheuristic merging a lo-

cal search with evolutionary algorithms called MAP_Gurobi, for solving 3IAP large

instances. Later, Pal et al., (2018) introduces a MAP heuristic combining genetic

algorithms with particle swarm optimisation, albeit with limited numerical testing.

Vadrevu and Nagi (2020) propose a dual-ascent algorithm for MAP, and apply

it to multi-target tracking. Concurrently, Sumathi et al., (2020) develop a Lexi-

search for 3IAP, �nding feasible solutions through intensive search. Medvedev and

Medvedeva (2019) propose a probabilistic approach for axial 3IAP, enhancing greedy

algorithms with variable randomization. Meanwhile, Sumathi et al., (2020) intro-

duce a robust Bayesian multi-object tracking algorithm for data association. Chen et

al., (2023) propose a clustering-based approach for distributed multi-object tracking

systems in environments with restricted sensor visibility. Their algorithm integrates

kinematic fusion with a speci�c weighted graph fusion technique.

2.2.7 Other methods

Probabilistic approaches were also proposed for solving the axial 3IAP. Medvedev

and Medvedeva (2019), rather than optimise the objective function, minimised its

expectation. On the other hand, Afraimovich and Emelin (2021) combine a pair of



2.2. Solution Approaches 45

feasible solutions attempting to �nd an optimal solution. If the induced graph is

disconnected, their algorithm can �nd a better solution when it exists; otherwise,

there is no improvement. This algorithm can be applied as a supplement to heuristics

for post-processing the 3IAP approximate solutions. Then, Afraimovich and Emelin

(2022) discuss the computational complexity of such combinations.

The current project's contribution lies in its original algorithmic approach.

This study presents two rapid heuristic classes for obtaining high-quality approx-

imate solutions, supported by comprehensive numerical experiments, followed by

implementing two e�cient methods for solving 3IAP optimally. Furthermore, a new

hybrid genetic algorithm is developed to address the 3IAP, e�ectively producing

good, feasible solutions within reasonable computational timeframes.





Chapter 3

Proposed Heuristic Solutions for

3IAP

In the previous chapter, the three-index assignment problem was formulated as an

integer linear program whose constraint matrix An has a particular structure with

all coe�cients in {0, 1}. Furthermore, all 3IAPs of size n share the same constraint

matrix An; two distinct 3IAPs di�er only in their objective functions. This chapter

investigates the attributes of the objective function, seeking to uncover potential

avenues for developing innovative solution approaches for the 3IAP.

The current chapter introduces two novel heuristics for solving the 3IAP. Ini-

tially, an e�cient algorithm is designed to attain feasible solutions rapidly. Subse-

quently, two variants are proposed wherein cost matrices are sorted based on their

diagonals before applying the proposed procedure.

3.1 Greedy-Style Procedure

The Greedy-Style Procedure (GSP), introduced for the �rst time, is a heuristic

method for 3IAP, consistently yielding feasible solutions. The operation mode of

47
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GSP reminds us of the Greedy algorithm (Kruskal, 1956) for the minimum spanning

tree of a graph. GSP plays a pivotal role in this chapter.

LetMn2
denote the set of all n× n�matrices. Let I = J = K = {1, 2, . . . , n}

be, for convenience, three sets of n elements, assuming n ≥ 3. Clearly, the 3IAP

objective function Z can be represented by a sequence of n elements ofMn2
each of

which is associated with a factory, as Table 3.1 shows. Coe�cient cijk for ∀i, j, k =

1, 2, . . . , n is positive real number evaluating the cost of assigning job i to machine

j in factory k.

Table 3.1: Example of 3IAP of size n.

Factories F1 F2 ... Fn

Machines m1 m2 ... mn m1 m2 ... mn ... m1 m2 ... mn

Jobs

j1 c111 c121 ... c1n1 c112 c122 ... c1n2 ... c11n c12n ... c1nn
j2 c211 c221 ... c2n1 c212 c222 ... c2n2 ... c21n c22n ... c2nn
... ... ... ... ... ... ... ...
jn cn11 cn21 ... cnn1 cn12 cn22 ... cnn2 ... cn1n cn2n ... cnnn

The GSP heuristic sequentially processes matrices, starting with C1, the �rst

matrix in the list, applying the Hungarian algorithm to solve the corresponding

LAP. GSP selects the minimal cost cpq1, after Hungarian method application, then

excising row p and column q from other matrices and removing C1 from the sequence.

The GSP systematically reduces the size of the 3IAP by one unit after each

iteration. The process continues until only two (2×2)�matrices remain, as illustrated

in Table 3.2, which are easy to solve. A feasible solution for the original assignment

problem arises by summing all selected minima and retrieving their corresponding

indices.

3.1.1 GSP Algorithm

Below there is the sequence of steps of the algorithm.
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Table 3.2: Example of 3IAP of size 2.

Factories F1 F2

Machines m1 m2 m1 m2

Jobs
j1 c111 c121 c112 c122
j2 c211 c221 c212 c222

Algorithm 1: Greedy-Style Procedure - GSP

Input: A sequence of cost matrices ⟨C1, C2, . . . , Cn⟩

Output: A feasible solution for 3IAP.

1 for k ← n to 2 do

2 while k ≥ 3 do

3 Apply Hungarian method to Ck.

4 From the Hungarian method solution, select the minimum cost, let

say cpqk.

5 Store cpqk and remove matrix Ck.

6 Delete row p and column q from all other matrices.

7 Ck−1 ← Ck

8 end while

9 if k = 2 then

10 Solve the last 3IAP of size 2;

11 end if

12 Retrieve all previous allocations.

13 Sum all selected costs.

14 end for

15 return Solution for 3IAP .

Theorem 13. Given an instance of 3IAP of size n ≥ 2, GSP always returns a

feasible solution for the problem, in polynomial time.

Proof. If n = 2 obvious, see Example 1. Assuming n ≥ 3, at each iteration k =

n, n− 1, . . . , 3; GSP applies the Hungarian method to the �rst matrix in the chosen
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order. From one iteration to the next, GSP reduces the 3IAP size by one unit and

the Hungarian method executes O(n3) operations. As the procedure runs over n−2

iterations, the overall computational complexity is at most O(n4), therefore it is

polynomial time.

Example 1 : 3IAP of size 2.

C1 =


m1 m2

j1 c111 c121

j2 c211 c221

 and C2 =


m1 m2

j1 c112 c122

j2 c212 c222



Let C1 and C2 be two matrices associated respectively with factory 1 and fac-

tory 2; since a job in each factory is performed by one machine, the problem admits

four possible solutions from which the optimal solution derives straightforwardly, of

cost equal to min{c111 + c222, c122 + c211, c121 + c212, c112 + c221}.

3.1.2 GSP Illustration

Example 2 : 3IAP of size 4.

Let C1, C2, C3 and C4 be cost matrices associated with four factories. Rows

correspond to jobs and columns to machines.

C1 =



m1 m2 m3 m4

j1 87 59 83 41

j2 09 47 26 59

j3 20 88 95 10

j4 53 26 14 75


C2 =



m1 m2 m3 m4

j1 66 45 09 51

j2 15 69 100 58

j3 06 84 60 41

j4 13 12 07 05
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C3 =



m1 m2 m3 m4

j1 17 46 34 99

j2 20 62 89 04

j3 27 72 04 100

j4 45 52 67 94


C4 =



m1 m2 m3 m4

j1 96 33 42 08

j2 16 55 99 63

j3 72 60 70 28

j4 36 96 63 24



Clearly the problem requires 64 variables and has up to 576 feasible solutions.

If diagonal elements xiii = 1, for ∀i = 1, 2, 3, 4 and 0 otherwise, it has a trivial

solution, and the value of the objective function Z = 87 + 69 + 4 + 24 = 184 might

constitute an upper bound for the 3IAP optimal solution. For any instance of size n,

the restriction of the problem to one factory, the allocation of n tasks to n machines

within that factory, reduces it to a two-dimensional assignment problem, solvable in

polynomial time.

Let us apply Algorithm 1 to the above example.

Iteration 1. k = 4.

Starting with C1 the �rst matrix, the Hungarian method produces an optimal

solution S1 to LAP related to C1, as shown below.

C1 =



m1 m2 m3 m4

j1 87 59 83 41

j2 09 47 26 59

j3 20 88 95 10

j4 53 26 14 75


⇒ S1 =



m1 m2 m3 m4

j1 − 59 − −

j2 (9) − − −

j3 − − − 10

j4 − − 14 −


S1 represents the Hungarian method solution for C1.

Step 4: The solution S1, comprises four costs, one per column and one per

row, among which choose the minimum cost, 9 corresponding to the coe�cient c211.

Therefore, job 2 will be assigned to the machine 1 in factory 1.
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Step 5 and 6: Next, delete row 2 and column 1 from matrices C2, C3 and C4,

then remove C1. Hence three submatrices are obtained.

C'2 =



m2 m3 m4

j1 45 09 51

j3 84 60 41

j4 12 07 05

 C'3 =



m2 m3 m4

j1 46 34 99

j3 72 04 100

j4 52 67 94

 C'4 =



m2 m3 m4

j1 33 42 08

j3 60 70 28

j4 96 63 24



Iteration 2. k = 3.

Step 3. Applying the Hungarian method to matrix C ′
2.

Step 4 and 5. This results in the LAP optimal assignment associated with

factory 2, whose lowest value equals 9, the cost of assigning job 1 to machine 3 in

factory 2.

S2 =



m2 m3 m4

j1 − (9) −

j3 − − 41

j4 12 − −



The Hungarian method solution S2.

Step 6. Next, delete the �rst row and the middle column from submatrices

C ′
3 and C ′

4, then eliminate C ′
2. Two new submatrices are obtained.

Step 8 and 9. The two submatrices are.

C"3 =


m2 m4

j3 72 100

j4 (52) 94

 and C"4 =


m2 m4

j3 60 (28)

j4 96 24


Minimum assignment related to C"3 and C"4.
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The minimum cost 80 is attained when job 3 is assigned to machine 4 in fac-

tory 4, and job 4 is assigned to machine 2 in factory 3.

Step 10 and 11. A feasible solution is found for the original 3IAP when all

variables xijk = 0, except x132 = x211 = x344 = x423 = 1, with a total cost 98.



m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4

j1 − − − − | − − 9 − | − − − − | − − − −

j2 9 − − − | − − − − | − − − − | − − − −

j3 − − − − | − − − − | − − − − | − − − 28

j4 − − − − | − − − − | − 52 − − | − − − −


The GSP solution for the 3IAP.

Cost matrices are endowed with a particular data structure, and the GSP

heuristic processes them following their entry sequence by the FIFO principle. Re-

versing the sequence in which cost matrices are processed, could really impact so-

lution quality. Applying the GSP heuristic to the same matrices in reverse order,

thereby implementing the LIFO principle, could produce varied results.

Reversing the order of the 3IAP matrices and applying the GSP heuristic can

yield an alternative solution distinct from the initial one. Thus, it is advisable to

experiment with both sequences, as one might be better than the other. The inquiry

examines the e�ects of modifying matrices' order before applying GSP, which could

result in improved solutions.

Let us apply Algorithm 1 to the same example but with the cost matrices

arranged in LIFO order. Commencing with matrix C4, the Hungarian method pro-

duces an optimal solution S4 to LAP related to C4, as illustrated below.

Iteration 1. k = 4.
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C4 =



m1 m2 m3 m4

j1 96 33 42 08

j2 16 55 99 63

j3 72 60 70 28

j4 36 96 63 24


⇒ S4 =



m1 m2 m3 m4

j1 − 33 − −

j2 (16) − − −

j3 − − − 28

j4 − − 63 −



S4 represents the Hungarian method solution for C4.

Step 4: From the solution S4, select the minimum cost, 16 corresponding to

the coe�cient c214. Thus job 2 will be assigned to machine 1 in factory 4.

Step 5 and 6: Next, delete the second row and �rst column from matrices

C3, C2 and C1, then remove C4. Thus three submatrices C
′
3, C

′
2 and C ′

1 result, and

the procedure continues until the last iteration.

When Algorithm 1 terminates, a feasible solution is found for the original 3IAP

where all variables xijk = 0, except x114 = x214 = x323 = x432 = 1, with a total cost

of 73.



m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4

j1 − − − 41 | − − − − | − − − − | − − − −

j2 − − − − | − − − − | − − − − | 16 − − −

j3 − − − − | − − − − | − 4 − − | − − − −

j4 − − − − | − − 12 − | − − − − | − − − −


Another solution for the 3IAP provided by GSP.

The GSP procedure provides two possible solutions for the 3IAP, contingent

upon the cost matrices' order. While the second result may not surpass the quality

of the �rst, it remains a viable alternative and the best solution should be selected

after testing both.
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The next section will explore the e�ect of matrix order alteration on the quality

of solutions generated by the GSP procedure.

3.2 Diagonals Method

Kadhem (2017) studied the 3IAP and introduced an alternative way of sorting cost

matrices called the Diagonals Method (DM). The approach organises the cost ma-

trices in ascending or descending order and the DM heuristic often yields at least

two solutions for the 3IAP.

De�nition 14. Let matrix A be an element of Mn2
. The sum of the diagonal

(anti-diagonal) coe�cients of A is called the `trace' (`anti-trace' respectively)

of A, denoted tr(A) (atr(A) respectively), i.e., tr(A) =
∑n

i=1 aii and atr(A) =∑n
i=1 ai(n+1−i).

De�nition 15. Let matrix A be an element of Mn2
. The `diagonal factor' of

A, denoted df(A), is the maximum of the trace and anti-trace of A , i.e. df(A) =

Max(tr(A), atr(A)).

The diagonal factor of a matrix A, is a new concept introduced for the �rst

time. The diagonal factor plays a pivotal role in the DM heuristic, since it serves to

arrange the cost matrices.

The DM heuristic is designed to solve the 3IAP, and has two phases. The initial

phase involves sorting the cost matrices in ascending or descending order, followed

by a second which invokes the GSP procedure.

3.2.1 DM Illustration

Example 3 : Let us re-examine the previous case of 3IAP of size 4.
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Let C1, C2, C3 and C4 be matrices ofM42 associated with four factories.

C1 =



m1 m2 m3 m4

j1 87 59 83 41

j2 09 47 26 59

j3 20 88 95 10

j4 53 26 14 75


C2 =



m1 m2 m3 m4

j1 66 45 09 51

j2 15 69 100 58

j3 06 84 60 41

j4 13 12 07 05



C3 =



m1 m2 m3 m4

j1 17 46 34 99

j2 20 62 89 04

j3 27 72 04 100

j4 45 52 67 94


C4 =



m1 m2 m3 m4

j1 96 33 42 08

j2 16 55 99 63

j3 72 60 70 28

j4 36 96 63 24


Phase 1.

Compute the diagonal factors of the matrices.

df(C1) = 304, df(C2) = 248, df(C3) = 305 and df(C4) = 245.

The matrices arranged in ascending order of their diagonal factors, are C4, C2, C1,

and C3.

Phase 2.

Iteration 1. k = 4.

Step 3. Starting with C4 the �rst matrix, the Hungarian method produces an

optimal solution S4 to LAP corresponding to C4, as shown below.

C4 =



m1 m2 m3 m4

j1 96 33 42 08

j2 16 55 99 63

j3 72 60 70 28

j4 36 96 63 24


⇒ S4 =



m1 m2 m3 m4

j1 − 33 − −

j2 (16) − − −

j3 − − − 28

j4 − − 63 −
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S4 represents the Hungarian method solution for C4.

Step 4: From the solution S4, select 16 as the minimum cost, corresponding

to the coe�cient c214. Thus job 2 will be assigned to machine 1 in factory 4.

Step 5 and 6: Next, delete row 2 and column 1 from matrices C2, C1 and

C3, then remove C4. Then three submatrices C ′
2, C

′
1 and C ′

3 are obtained, and the

algorithm continues.

Hence, a feasible solution is achieved for the original 3IAP where all variables

are xijk = 0, except x132 = x214 = x341 = x423 = 1, with a total cost of 87.



m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4

j1 − − − − | − − 9 − | − − − − | − − − −

j2 − − − − | − − − − | − − − − | 16 − − −

j3 − − − 10 | − − − − | − − − − | − − − −

j4 − − − − | − − − − | − 52 − − | − − − −



The DM solution for the 3IAP.

Adopting a methodology similar to FIFO and LIFO rules, an alternative so-

lution is anticipated upon reversing the matrices' arrangement or sorting them in

descending order of their diagonal factors. In the following, the problem will be re-

addressed with cost matrices sorted in descending order according to their diagonal

factors, i.e., C3, C1, C2 and C4.

The Hungarian method applied to matrix C3 yields optimal solution S3, high-

lighting a duplicated minimum cost of 4. The case will be discussed later in further

detail. In this iteration, the �rst coe�cient c243, the cost for allocating job 2 to
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machine 4 in factory 3, is selected as shown below.

C3 =



m1 m2 m3 m4

j1 17 46 34 99

j2 20 62 89 04

j3 27 72 04 100

j4 45 52 67 94


⇒ S3 =



m1 m2 m3 m4

j1 17 − − −

j2 − − − (4)

j3 − − 4 −

j4 − 52 − −



The Hungarian method solution S3.

Step 5 and 6. Delete matrix C3, then eliminate row 2 and column 4 from all

other matrices, and continue executing the DM algorithm until only two submatrices

remain.

Therefore, a second feasible solution is yielded for the original 3IAP when all

variables xijk = 0, except x124 = x243 = x312 = x431 = 1, with a total cost of 57, as

displayed below.



m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4

j1 − − − − | − − − − | − − − − | − 33 − −

j2 − − − − | − − − − | − − − 4 | − − − −

j3 − − − − | 6 − − − | − − − − | − − − −

j4 − − 14 − | − − − − | − − − − | − − − −



A second DM solution for the same 3IAP.

DM also provides at least two feasible solutions for 3IAP based on the order

of the cost matrices. The preferable outcome for the assignment problem is the one

with the lowest cost.
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3.2.2 DM and Tie-cases.

De�nition 16. At step 4 of Algorithm 1, if two or more coe�cients are equal to

the minimum cost, the situation is called a `tie-case '.

A tie-case emerges when the �rst iteration of the DM algorithm is applied to

the previous example, with cost matrices sorted in descending order of their diagonal

factors. If the second cost, evaluated at 4 relative to c333 is chosen, then DM will

usually produce an alternative solution.

S3 =



m1 m2 m3 m4

j1 17 − − −

j2 − − − 4

j3 − − (4) −

j4 − 52 − −



S3 is the Hungarian method solution for C3.

After removing matrix C3 and deleting row 3 and column 3 from matrices C1, C2

and C4 the execution of the DM algorithm progresses until another feasible solution

for the original problem is identi�ed. All variables of the solution are xijk = 0,

except x144 = x211 = x333 = x422 = 1, resulting in a total cost of 33.



m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4 | m1 m2 m3 m4

j1 − − − − | − − − − | − − − − | − − − 8

j2 9 − − − | − − − − | − − − − | − − − −

j3 − − − − | − − − − | − − 4 − | − − − −

j4 − − − − | − 12 − − | − − − − | − − − −



Another DM feasible solution for 3IAP.
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In conclusion, �ve feasible solutions for the 3IAP are identi�ed; GSP generates

two with costs of 98 and 73, whereas DM yields three at 87, 57 and 33, with the

latter being optimal.

By rearranging cost matrices in ascending and descending order and then choos-

ing diverse minima in tie-cases, DM reaches several feasible solutions for the same

problem, and the lowest total cost result is selected. Kadhem (2017), however, al-

ways picked the �rst minimum emerging in tie-cases despite the presence of multiple

candidates.

Selecting the �rst minimum in tie-cases does not guarantee the best solution.

Explicitly enumerating all candidates is impractical and expensive. Therefore, ex-

ploring minimum candidates in tie-cases is advised, since the situation generates

various solutions. We propose choosing the �rst, last, or a random candidate in

each iteration, leading to three novel variants of the DM algorithm. When a tie-case

occurs during an iteration, especially with large instances of the 3IAP, at least three

options are available, as illustrated in Figure 3.1.

Figure 3.1: Three types of tie-cases.

The following table summarises the six DM solutions found for the previous

example, the 3IAP instance of size 4.
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Table 3.3: DM solutions for Example 3.

First tie-case Last tie-case Random tie

Sorted in Cost Runtime Cost Runtime CostRuntime

Ascending 87 0.0312722 87 0.020031 87 0.015622
Descending 57 0.0189335 33 0.015576 33 0.019915

Thus, DM and GSP heuristic produce six potential feasible solutions for each

instance by reorganising cost matrices in ascending and descending orders. In cases

where multiple results achieve the same total cost, the solution with the lowest

execution time is selected. In Table 3.3, the running time is given in seconds. For

the previous example, DM reached the minimum cost on two occasions in descending

order, and the optimal solution is underlined and attained by choosing the last tie-

case. The three variants of each method are considered throughout the rest of this

project.

3.2.3 Numerical experiments

Computational tests are conducted on a PC with Intel(R) Core(TM) i5-8265U CPU

@ 1.60GHz, and 8.79 GB of RAM; the algorithms are coded in Python 3.9 and run

on random samples to test the performance of GSP and DM variants.

To evaluate the performance of the GSP and DM variants, numerical experi-

ments are tested on the same dataset as in (Balas and Saltzman, 1991), which will

be referred to as Sample 1 throughout the paper. The random sample consists of 60

instances, generated by the uniform probability distribution from 0 to 100, of size

n = 4, 6, 8, . . . , 26, �ve instances per size. The data and code used in this section are

available online in a Github repository: https://github.com/mmehbali/Three-IAP.

The GSP and DM variants provide six feasible solutions for each instance, as dis-

played in Tables 3.4 and 3.5, respectively; the best solutions found are highlighted.
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Table 3.4: GSP Variants applied to a data sample from Balas and Saltzman, 1991.

FIFO rule LIFO rule
Size | Instance First Tie-case Last Tie-case Random Tie First Tie-case Last Tie-case Random Tie

Cost Runtime Cost Runtime Cost Runtime Cost Runtime Cost Runtime Cost Runtime

4

1 46 0.00210214 46 0.00320339 46 0.01134753 127 0.00369668 127 0.00471401 127 0.00643301

2 89 0.00099730 89 0.00365448 89 0.00510907 73 0.00676274 73 0.00338864 73 0.00595522

3 54 0.00206923 54 0.00194740 54 0.01150131 59 0.00586843 59 0.00860476 59 0.01399684

4 83 0.00200605 83 0.00820732 83 0.00541782 75 0.00362301 99 0.00890183 75 0.01168871

5 50 0.00099754 50 0.00199509 50 0.00624371 77 0.00929666 77 0.00801396 77 0.00879145

6

1 73 0.00567222 73 0.01286340 73 0.01871562 89 0.01606989 89 0.01075602 89 0.00666213

2 51 0.00423217 51 0.00482130 51 0.02397418 70 0.01296616 70 0.00859118 70 0.00562620

3 101 0.00940967 123 0.00693583 101 0.02210855 140 0.01097131 140 0.01231647 140 0.01776171

4 113 0.00232983 113 0.00099707 113 0.01994443 121 0.00728488 121 0.01400566 121 0.00970387

5 73 0.00742221 73 0.00000000 73 0.02569437 88 0.00583696 88 0.01289344 88 0.01687717

8

1 45 0.00316525 45 0.01435137 45 0.01063967 74 0.01742792 74 0.00908208 45 0.03473115

2 95 0.01857448 105 0.00316381 95 0.00973868 120 0.01691484 66 0.00710893 95 0.03704453

3 92 0.02015924 65 0.00099921 65 0.02498555 126 0.01836371 88 0.00699759 46 0.04327226

4 136 0.02007961 136 0.00321698 136 0.01179981 110 0.01602077 113 0.00893974 136 0.04098654

5 34 0.01650405 38 0.00310564 34 0.00715566 90 0.01352477 78 0.00738406 34 0.02911496

10

1 99 0.00819159 75 0.02546334 75 0.00769567 141 0.02088284 113 0.02497864 75 0.04487300

2 93 0.00698781 93 0.00885487 93 0.00899458 38 0.00756812 51 0.01025295 93 0.05185290

3 113 0.01687169 36 0.01908064 114 0.00824904 55 0.01013374 51 0.00806880 36 0.04388738

4 121 0.01907325 55 0.01899695 121 0.00902128 93 0.00838351 58 0.01727176 55 0.05068493

5 93 0.02010012 49 0.02084494 61 0.02093768 112 0.00762677 112 0.01568270 49 0.04832864

12

1 105 0.02376676 47 0.02751851 105 0.01469874 55 0.02929068 123 0.02811289 80 0.04691601

2 77 0.02067423 127 0.01703501 49 0.02922964 105 0.01340675 51 0.01119018 75 0.02392530

3 127 0.02186680 119 0.01912832 58 0.02030206 100 0.02878475 68 0.02491188 68 0.03254795

4 71 0.02586007 76 0.01875687 71 0.04331779 69 0.02734089 69 0.02265501 69 0.03074622

5 24 0.02119994 42 0.01544404 42 0.02831125 86 0.01444960 108 0.02545428 108 0.02379966

14

1 81 0.02422452 81 0.05414796 81 0.04412675 143 0.03010392 155 0.03524613 125 0.03725243

2 74 0.02216458 127 0.03516507 60 0.03278971 57 0.03359890 72 0.02438259 85 0.04099655

3 133 0.02077317 105 0.03572965 97 0.02798080 127 0.03353071 62 0.03149319 67 0.03150654

4 73 0.02979636 53 0.03472590 73 0.03740811 76 0.03250456 76 0.03215122 76 0.03961515

5 125 0.02136493 92 0.04097843 79 0.03310132 131 0.03347325 121 0.01786423 121 0.03305411

16

1 89 0.03656673 137 0.04834127 86 0.03751588 107 0.08001876 22 0.02643538 113 0.03915858

2 97 0.04460144 72 0.04571438 72 0.03697085 100 0.07827020 39 0.03421617 74 0.03585124

3 74 0.03737926 161 0.04288244 151 0.04281712 45 0.08908629 59 0.03306603 59 0.06250024

4 81 0.03455424 83 0.04537630 77 0.04227448 102 0.07774377 105 0.03344488 102 0.03752518

5 121 0.04948711 97 0.04791141 73 0.03916359 122 0.0893116 147 0.05857158 85 0.03489161

18

1 104 0.04776144 68 0.05614901 68 0.06775546 148 0.14999485 171 0.13612795 103 0.04177213

2 46 0.05033851 78 0.05661201 78 0.04489899 105 0.15546775 113 0.13400340 66 0.04912567

3 72 0.03997850 63 0.05366135 97 0.03781700 100 0.14067030 145 0.13385487 65 0.06580114

4 86 0.05907512 88 0.06118488 86 0.08527541 64 0.14927626 84 0.14838052 130 0.06495714

5 144 0.04507351 92 0.05643296 57 0.05199432 118 0.17069912 106 0.13320255 76 0.04738760

20

1 74 0.06464696 147 0.06724644 19 0.06407595 120 0.15980697 96 0.15749955 90 0.07289219

2 47 0.07279825 78 0.06670213 77 0.05179119 120 0.19243956 101 0.22532821 80 0.06860566

3 109 0.07468081 129 0.07346582 76 0.05432439 125 0.16674471 52 0.24699974 45 0.05286050

4 61 0.05321741 113 0.06722021 51 0.06233215 57 0.16668558 64 0.24061966 130 0.05959034

5 106 0.06539440 67 0.06606865 80 0.06512165 57 0.18279243 57 0.24754643 92 0.05673695

22

1 71 0.08430076 144 0.08278370 70 0.09581637 124 0.22371101 160 0.20043278 128 0.08588076

2 79 0.12412429 79 0.08773661 78 0.06870532 45 0.20022154 105 0.21862650 103 0.07362390

3 105 0.07521343 150 0.09098101 74 0.07457423 90 0.21915984 151 0.22094083 98 0.07908177

4 60 0.06681585 47 0.09236598 51 0.06897593 81 0.23369527 133 0.20637774 53 0.06499457

5 85 0.08577561 111 0.09682608 77 0.07283950 88 0.21111965 90 0.18976593 67 0.08724236

24

1 107 0.12582541 54 0.09999275 38 0.09325886 96 0.26368928 87 0.26318669 78 0.16543555

2 87 0.09863520 59 0.09807944 99 0.10334229 54 0.21050763 52 0.23788238 44 0.08496857

3 124 0.09705997 156 0.10035801 46 0.08368397 137 0.26320028 11 0.23239470 53 0.09886575

4 152 0.0918901 109 0.10085797 52 0.08409667 70 0.26605248 103 0.28364468 53 0.09179211

5 126 0.08877373 46 0.09921670 34 0.09209132 78 0.28938794 90 0.24973154 70 0.09796929

26

1 44 0.14825583 60 0.11530089 80 0.11758876 168 0.09892654 77 0.11169004 72 0.11123443

2 66 0.17565107 80 0.12044501 72 0.09850121 146 0.12161875 105 0.12804580 45 0.09843779

3 66 0.18071461 93 0.11276555 64 0.11158848 83 0.10865164 92 0.09544492 71 0.10081863

4 96 0.11376643 99 0.12015939 88 0.09683895 100 0.11655664 51 0.11103368 77 0.10978484

5 126 0.10726023 137 0.11393547 74 0.10103488 97 0.10573244 140 0.10838437 66 0.09597945
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Table 3.5: DM Variants applied to a data sample from Balas and Saltzman, 1991.

in Ascending Order in Descending Order
Size | Instance First Tie-case Last Tie-case Random Tie First Tie-case Last Tie-case Random Tie

Cost Runtime Cost Runtime Cost Runtime Cost Runtime Cost Runtime Cost Runtime

4

1 120 0.0100050 120 0.0089948 120 0.0156214 101 0.01127505 101 0.0220592 101 0.01894830

2 64 0.0069816 64 0.0079827 64 0.0120819 51 0.0199466 51 0.0211554 51 0.01592708

3 59 0.0079789 59 0.0159271 59 0.0197201 59 0.01990939 59 0.0209439 59 0.01396465

4 83 0.0075715 83 0.0069814 83 0.0183339 75 0.0219560 99 0.0211179 75 0.01196718

5 80 0.0069699 80 0.0085332 80 0.0201163 77 0.0214891 77 0.0219414 77 0.01216674

6

1 68 0.0130763 68 0.0304453 68 0.0298064 65 0.0339088 65 0.0316148 65 0.0139606

2 115 0.0101721 115 0.0329139 115 0.0278840 63 0.0406399 63 0.0311301 63 0.0179143

3 54 0.0115078 54 0.0289505 54 0.0279279 113 0.0369959 128 0.0324178 113 0.0228801

4 86 0.0076144 86 0.0339091 86 0.0293858 80 0.0300484 80 0.0309000 80 0.0150967

5 78 0.0000000 109 0.0309138 78 0.0300243 172 0.0337675 172 0.0289574 172 0.0185933

8

1 57 0.0161650 109 0.0423861 57 0.1564496 81 0.0439470 81 0.0466342 81 0.0280113

2 122 0.0156241 77 0.0446448 68 0.1154072 49 0.0495834 87 0.0433650 49 0.0249772

3 63 0.0211608 50 0.0439301 50 0.1348510 84 0.0384920 127 0.0434673 83 0.0317512

4 75 0.0156887 103 0.0458648 75 0.1018567 90 0.0417278 84 0.0412576 68 0.0189126

5 8 0.0155582 148 0.0423026 8 0.1683254 56 0.0436890 78 0.0397818 56 0.0235457

10

1 129 0.0207374 48 0.0621553 66 0.2348409 84 0.0612285 120 0.0650168 84 0.0291278

2 74 0.0184803 74 0.0478046 74 0.2250631 52 0.0640123 53 0.0550895 52 0.0185599

3 107 0.0168028 107 0.0557406 107 0.2193201 87 0.0725200 121 0.0549350 64 0.0249281

4 136 0.0156217 82 0.0606716 82 0.2369609 64 0.0661914 84 0.0640216 64 0.0288825

5 136 0.0156212 104 0.0587394 104 0.2288067 111 0.0539300 113 0.0668213 111 0.0238676

12

1 68 0.0249102 66 0.0990796 64 0.0758309 75 0.0793335 57 0.0907576 57 0.0391731

2 125 0.0230906 122 0.0932608 84 0.0831053 128 0.0953901 77 0.0924416 65 0.0339096

3 98 0.0162509 115 0.0947340 79 0.0843966 112 0.0943108 112 0.0961335 112 0.0218928

4 69 0.0156663 90 0.0980532 69 0.0822625 81 0.0933189 81 0.0928619 81 0.0319502

5 174 0.0312402 76 0.0936139 76 0.0833957 116 0.0904186 101 0.0932014 101 0.0398910

14

1 66 0.0319147 141 0.1309872 35 0.1052270 148 0.1092475 69 0.1226533 69 0.1057429

2 24 0.0275707 114 0.1384912 53 0.0963893 125 0.1075077 113 0.1115911 31 0.1259358

3 111 0.0200613 93 0.1388362 77 0.0976758 104 0.1226351 53 0.1174052 53 0.1195037

4 118 0.0361946 103 0.1445396 50 0.1257784 61 0.1180797 40 0.1215775 40 0.0935991

5 43 0.0324488 172 0.1199877 38 0.1163676 50 0.1126332 96 0.1221256 38 0.0962217

16

1 59 0.0388928 130 0.1778674 52 0.1228278 107 0.1657932 60 0.1739564 40 0.1268768

2 92 0.0388606 119 0.2036905 46 0.1422348 129 0.1772234 86 0.1684265 48 0.1388183

3 90 0.0389342 125 0.1923089 71 0.1347578 23 0.1709454 149 0.1818943 70 0.1187835

4 95 0.0390573 91 0.2071362 74 0.1140461 135 0.1625075 70 0.1704474 63 0.1274412

5 69 0.0397661 96 0.1989081 70 0.1212702 34 0.1775985 61 0.1776381 35 0.1340263

18

1 51 0.0450637 87 0.2627711 43 0.1515684 124 0.2528760 136 0.2504299 50 0.1642561

2 49 0.0458317 71 0.2908456 38 0.1409218 110 0.2543094 70 0.2725921 31 0.1618323

3 142 0.0527828 37 0.2641921 52 0.1567829 114 0.2464047 139 0.2352862 33 0.1620760

4 119 0.0489056 130 0.2554598 78 0.1542656 82 0.2425082 80 0.2451539 55 0.1572001

5 47 0.0526750 84 0.2798693 73 0.1613507 104 0.2343776 114 0.2317057 61 0.1522055

20

1 105 0.0627451 94 0.3496108 47 0.0634198 64 0.3394494 40 0.3405883 26 0.1952128

2 30 0.0549486 82 0.3579905 34 0.0693061 119 0.3286281 49 0.3341446 49 0.2078474

3 122 0.0533302 117 0.3564801 65 0.0708215 94 0.3489153 126 0.3453660 67 0.2066286

4 53 0.0653865 88 0.3614526 60 0.0738537 91 0.3345735 115 0.3355937 56 0.1855583

5 122 0.0502832 90 0.3462441 30 0.0708125 80 0.3105972 76 0.3217070 37 0.1937101

22

1 47 0.0782130 164 0.4508257 47 0.0881426 154 0.4368594 140 0.4384162 51 0.2324278

2 88 0.0697444 175 0.4765818 33 0.0754585 112 0.4382422 102 0.4250071 37 0.2334025

3 75 0.0625374 125 0.4731760 37 0.0791652 108 0.4618361 73 0.4435165 49 0.2347534

4 94 0.0621159 106 0.4753542 71 0.0879195 113 0.4583137 96 0.4565649 47 0.2089188

5 113 0.0863214 46 0.4623990 52 0.0848382 69 0.4483247 116 0.4604309 52 0.2614031

24

1 77 0.0803669 137 0.6145887 41 0.0959871 169 0.5765002 128 0.5605409 59 0.2462826

2 135 0.0945604 145 0.6040702 53 0.0909970 94 0.5608380 159 0.6228988 23 0.2617285

3 65 0.0957706 136 0.6173430 33 0.0960672 102 0.5701540 78 0.6006057 39 0.2665687

4 105 0.0892520 105 0.5927818 51 0.0954394 92 0.5686386 132 0.5602443 45 0.2553465

5 113 0.0896075 90 0.5766120 38 0.0963628 139 0.5742068 94 0.6153796 31 0.2952910

26

1 66 0.1067441 96 0.7707765 46 0.1065700 109 0.7439399 69 0.7319100 39 0.3155532

2 77 0.0983267 64 0.7752740 40 0.1063283 87 0.7136793 97 0.7285006 31 0.3208118

3 88 0.1091614 107 0.7605805 44 0.1111016 112 0.7399192 61 0.7150211 44 0.2938275

4 100 0.0911787 85 0.7670391 49 0.1214638 158 0.7498312 59 0.7476666 48 0.3117094

5 63 0.1003244 84 0.7637739 37 0.1106565 120 0.7235053 50 0.7177529 43 0.3406253
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Analysis of both tables 3.4 and 3.5 in Figure 3.2 shows that GSP's distribution

of best-found solutions across tie-case types is nearly balanced, with a slight prefer-

ence for random tie-cases. In contrast, DM exhibits a clear preference for random

tie-cases. When partitioning the best-found solutions per type of order of cost ma-

trices, the FIFO rule is notably prevalent for GSP, while DM shows some disparity

between the ascending and descending orders.

This examination reveals two key insights; �rst, the e�cacy of random tie-

cases is notable and warrants consideration. Secondly, future implementations will

prioritise the FIFO rule in the GSP heuristic for unsorted cost matrices, henceforth

referred to simply as GSP.

Figure 3.2: The partition of the best solutions found per variant.

The heuristics introduced in this study yield multiple solutions for the 3IAP,

whereas the original version of DM generates merely one or two, focusing solely on

the �rst tie-cases. Our examination indicates that the larger the set of solutions,

the better the quality of the obtained solution. A comparative analysis of the DM

results for the �rst tie-cases in Table 3.5 against the combined GSP and DM variants

outcomes in the last column of Table 3.6 con�rms the primacy of our heuristics for

addressing the 3IAP, underscoring their e�cacy.

Computational tests suggest that developing new variants of GSP and DM

enables achieving feasible solutions, which often outperform those derived from the
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Table 3.6: Summary of the results of GSP and DM methods.

GSP Heuristic DM Method Best solution

Size | Instance Cost | Runtime Tie | Rule Cost | Runtime Tie | Order Cost | Runtime

4

1 46 0.00210214 First Fifo 101 0.01127505 First Desc 46 0.00210214

2 73 0.00338864 Last Lifo 51 0.01592710 Rand Desc 51 0.01592710

3 54 0.00194740 Last Fifo 59 0.01972008 Last Asc 54 0.00194740

4 75 0.00362301 First Lifo 75 0.01196718 Rand Desc 75 0.00362301

5 50 0.00099754 First Fifo 77 0.01216674 Rand Desc 50 0.00099754

6

1 73 0.00567222 First Fifo 65 0.0139606 Rand Desc 65 0.0139606

2 51 0.00423217 First Fifo 63 0.01791430 Rand Desc 51 0.00423217

3 101 0.00940967 First Fifo 54 0.01150788 First Asc 54 0.01150788

4 113 0.00099707 Last Fifo 80 0.01509666 Rand Desc 80 0.01509666

5 73 0.00000000 Last Fifo 78 0.00000000 First Asc 73 0.00000000

8

1 45 0.00316525 First Fifo 57 0.01616502 First Asc 45 0.00316525

2 66 0.00710893 Last Lifo 49 0.02497721 Rand Desc 49 0.02497712

3 46 0.04327226 Rand Lifo 50 0.04393005 Last Asc 46 0.04327226

4 110 0.01602077 First Lifo 68 0.01891255 Rand Desc 68 0.01891255

5 34 0.00715566 Rand Fifo 8 0.01555824 First Asc 8 0.01555824

10

1 75 0.00769567 Rand Fifo 48 0.06215525 Last Asc 48 0.06215525

2 38 0.00756812 First Lifo 52 0.01855993 Rand Desc 38 0.00756812

3 36 0.01908064 Last Fifo 64 0.02492809 Rand Desc 36 0.01908064

4 55 0.01899695 Last Fifo 64 0.02888250 Rand Desc 55 0.01899695

5 49 0.02084494 Last Fifo 104 0.05873942 Last Asc 49 0.02084494

12

1 47 0.02751851 Last Fifo 57 0.03917313 Rand Desc 47 0.02751851

2 49 0.02922964 Rand Fifo 65 0.03390956 Rand Desc 49 0.02922964

3 58 0.02030206 Rand Fifo 79 0.08439660 Rand Asc 58 0.02030206

4 69 0.02265501 Last Lifo 69 0.0156663 First Asc 69 0.01566625

5 24 0.02119994 First Fifo 76 0.08339572 Rand Asc 24 0.02119994

14

1 81 0.02422452 First Fifo 35 0.10522699 Rand Asc 35 0.10522699

2 57 0.03359890 First Lifo 24 0.02757072 First Asc 24 0.02757072

3 62 0.03149319 Last Lifo 53 0.11740518 Last Desc 53 0.11740518

4 53 0.03472590 Last Fifo 40 0.09359908 Rand Desc 40 0.09359908

5 79 0.03310132 Rand Fifo 38 0.09622169 Rand Desc 38 0.09622169

16

1 22 0.02643538 Last Lifo 40 0.12687683 Rand Desc 22 0.02643538

2 39 0.03421617 Last Lifo 46 0.14223480 Rand Asc 39 0.03421617

3 45 0.08908629 First Lifo 23 0.17094541 First Desc 23 0.17094541

4 77 0.04227448 Rand Fifo 63 0.12744117 Rand Desc 63 0.12744117

5 73 0.03916359 Rand Fifo 34 0.17759848 First Desc 34 0.17759848

18

1 68 0.05614901 Last Fifo 43 0.15156841 Rand Asc 43 0.15156841

2 46 0.05033851 First Fifo 31 0.16183233 Rand Desc 31 0.16183233

3 63 0.05366135 Last Fifo 33 0.16207600 Rand Desc 33 0.16207600

4 64 0.14927626 First lifo 55 0.15720010 Rand Desc 55 0.15720010

5 57 0.05199432 Rand Fifo 47 0.05267501 First Asc 47 0.05267501

20

1 19 0.06407595 Rand Fifo 26 0.19521284 Rand Desc 19 0.06407595

2 47 0.07279825 First Fifo 30 0.68915153 First Asc 30 0.68915153

3 45 0.05286050 First Lifo 65 0.07082152 Rand Asc 45 0.05286050

4 51 0.06233215 Rand Fifo 53 0.65729141 First Asc 51 0.06233215

5 57 0.18279243 First Lifo 30 0.07081246 Rand Asc 30 0.07081246

22

1 70 0.09581637 Rand Fifo 47 0.07821298 First Asc 47 0.07821298

2 45 0.20022154 First Lifo 33 0.07545853 Rand Asc 33 0.07545853

3 74 0.07457423 Rand Fifo 37 0.07916522 Rand Asc 37 0.07916522

4 47 0.09236598 Last Fifo 47 0.20891881 Rand Desc 47 0.09236598

5 67 0.08724236 Rand Lifo 46 0.46239901 Last Asc 46 0.46239901

24

1 38 0.09325886 Rand Fifo 41 0.09598708 Rand Asc 38 0.09325886

2 44 0.08496857 Rand Lifo 23 0.26172853 Rand Desc 23 0.26172853

3 11 0.23239470 Last Lifo 33 0.09606719 Rand Asc 11 0.23239470

4 52 0.08409667 Rand Fifo 45 0.25534654 Rand Desc 45 0.25534654

5 34 0.09209132 Rand Fifo 31 0.29529095 Rand Desc 31 0.29529095

26

1 44 0.14825583 First Fifo 39 0.31555319 Rand Desc 39 0.31555319

2 45 0.09843779 Rand Lifo 31 0.32081175 Rand Desc 31 0.32081175

3 64 0.11158848 Rand Fifo 44 0.11110163 Rand Desc 44 0.11110163

4 51 0.11103368 Last Lifo 48 0.31170940 Rand Desc 48 0.31170940

5 66 0.09597945 Rand Lifo 37 0.11065650 Rand Asc 37 0.11065650
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Figure 3.3: Comparison of DM results with the results of GSP and DM variants.

DM simple version, as displayed in Figure 3.3.

DM operates through two phases, the �rst orders the cost matrices, while the

second, GSP, allows us to attain a feasible solution for 3IAP. The results in Table 3.6

indicate that the GSP should be considered because it could lead to better solutions.

The following chapter explores the development of two heuristic classes de-

signed for swift approximation of high-quality solutions for 3IAP, substantiated by

extensive numerical testing. The �rst class relies on statistical measures, while the

second on matrix norms.



Chapter 4

Adavanced Heuristics for 3IAP

The rationale for sorting the cost matrices according to their diagonal factors is omit-

ted in (Kadhem, 2017), a method not previously used or mentioned. This chapter

not only questions the singular use of the diagonals method but also broadens the

scope of strategies for matrices arrangement. The current chapter investigates al-

ternate matrices sorting methodologies, introducing new heuristics aligned with the

DM framework. Exploring the impact of cost matrices arrangements order on so-

lutions is crucial. Applying the GSP heuristic with various matrices arrangements

may lead to interesting results, highlighting how matrices sorting order signi�cantly

in�uences heuristic outcomes.

4.1 Heuristics of Category 1

The inquiry critiques the exclusive reliance on the diagonals method and explores to

di�erent strategies for sorting cost matrices in assignment problems. By analysing

matrix attributes, two novel categories of expedient heuristics have been found to

consistently generate quality feasible solutions. The �rst category of heuristics em-

ploys descriptive statistical measures, while the second refers to matrix norms.

67
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The objective function of 3IAP is de�ned by n positive matrices ofMn2
, each

associated with a factory. Each cost matrix is treated as a one-dimensional vector

of Rn2
. Consequently, vector norms serve as criteria for sorting the cost matrices,

facilitating a systematic method for solving the assignment problem.

Among vector norms de�ned over the vector space Rn, the 1-norm and the

in�nity-norm are considered in the following. Let C be a cost matrix associated

with an arbitrary factory whose coe�cients are all nonnegative, and C is considered

here as a one-dimensional vector of Rn2
,

The 1-norm of C is ∥ C ∥1 =
∑n2

i=1 ci and divided by n2, which equates to

mean(C). This implies that ranking cost matrices by their mean values is equivalent

to sorting them by their 1-norms. Therefore, 3IAP can be e�ectively addressed by

reordering its matrices based on their mean values in ascending or descending order,

supporting a streamlined solution approach.

However, if the costs take extreme values, to prevent the matrices order from

being a�ected by the outliers, it is advisable to sort the matrices based on their

median rather than their mean. Rearranging the matrices according to their median

in either increasing or decreasing order, then applying GSP to obtain a feasible

solution to 3IAP may yield a di�erent solution.

The in�nity-norm, ∥ C ∥∞ is equal to the maximum of the absolute value of

the coe�cients of C. The matrices can be rearranged according to their maximum;

subsequently, they can be sorted according to their coe�cients range. Consequently,

3IAP will have two solutions, one from sorting its cost matrices according to their

maxima and the second achieved after rearranging the matrices according to their

range.

Similarly, the standard deviation, a common measure of dispersion in descrip-

tive statistics, can be considered. Reorganising the matrices based on their standard

deviation, in ascending or descending order, and then applying GSP leads to a fea-
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sible solution for 3IAP.

In summary, the development of �ve novel heuristics, in addition to GSP and

DM, through sorting cost matrices by their mean, median, maximum, range, or

standard deviation, forms a new category designated as Category 1. These heuris-

tics, predicated on statistical sorting criteria, account for ten methodologies in both

ascending and descending orders. Alongside a solution derived from GSP applied

to unsorted matrices, this approach rapidly yields eleven additional feasible solu-

tions for each instance of 3IAP. The best found solution is then selected from these

alternatives.

To apply Category 1 heuristics to 3IAP, let us choose from Sample 1, for

example, instance 3 of size 10. The problem handles 1,000 variables, with 1, 3×1013

potential feasible solutions. The heuristics operate concurrently across the �rst, last,

and random tie cases, resulting in 13 outcomes for each case, the yielded solutions

are presented in Tables 4.1, 4.2, and 4.3, respectively. The best solution found in

each table is underlined. Table 4.4 summarises the experimental results obtained

from the three previous tables.

Table 4.1: Solutions for a 3IAP instance of size 10, selecting the �rst tie-case.

Index Sort Type Order Cost Runtime

1 GSP � 133 0.01562381
2 Diagonals Ascending 107 0.01562095
3 Diagonals Descending 87 0.01701713
4 Maximum Ascending 160 0.01566124
5 Maximum Descending 84 0.03124285
6 Mean Ascending 71 0.01836586
7 Mean Descending 58 0.01920557
8 Median Ascending 165 0.02127552
9 Median Descending 123 0.02434134
10 Range Ascending 72 0.02418661
11 Range Descending 86 0.02154136
12 Std. Deviation Ascending 88 0.01696014
13 Std. Deviation Descending 92 0.01572490

Next, for each instance, these heuristics are run six times, one for each variant

of the tie-cases, multiplied by two for the ascending and descending sorting orders.
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Table 4.2: Solutions for a 3IAP instance of size 10, selecting the last tie-case .

Index Sort Type Order Cost Runtime

1 GSP � 36 0.03793907
2 Diagonals Ascending 107 0.03272176
3 Diagonals Descending 121 0.02891898
4 Maximum Ascending 160 0.02564788
5 Maximum Descending 75 0.02691746
6 Mean Ascending 104 0.02027655
7 Mean Descending 58 0.02844763
8 Median Ascending 165 0.02450919
9 Median Descending 123 0.02194047
10 Range Ascending 72 0.00607562
11 Range Descending 69 0.02133369
12 Std. Deviation Ascending 108 0.02435017
13 Std. Deviation Descending 130 0.03312850

Table 4.3: Solutions for a 3IAP instance of size 10, selecting a tie-case at random.

Index Sort Type Order Cost Runtime

1 GSP � 133 0.02292633
2 Diagonals Ascending 107 0.00855851
3 Diagonals Descending 27 0.03613329
4 Maximum Ascending 160 0.00891209
5 Maximum Descending 75 0.03389192
6 Mean Ascending 104 0.01489067
7 Mean Descending 58 0.01526475
8 Median Ascending 165 0.03229070
9 Median Descending 123 0.02351594
10 Range Ascending 72 0.02376366
11 Range Descending 72 0.02641940
12 Std. Deviation Ascending 79 0.02238274
13 Std. Deviation Descending 126 0.02317810

Table 4.4: Summary of best solutions for a 3IAP instance of size 10.

Case Sort Type Order Cost Runtime

First tie-case Mean Descending 58 0.01920557
Last tie-case GSP � 36 0.03793907
Random tie Diagonals Descending 27 0.03613329
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The program will retain only the best solution obtained for each instance.

To evaluate the e�ciency of Category 1 heuristics, additional tests are con-

ducted on Sample 1 data, with the �ndings summarised in Table 4.5. Each row

represents an instance, highlighting the best solution achieved. It is observed that

of the 60 best solutions identi�ed, only six are yielded by the original DM version

i.e., 10%, while the remaining are generated by Category 1 heuristics.

To summarise, Category 1 heuristics not only provide feasible solutions for

3IAP but they also outperform the DM algorithm. Some solutions are optimal,

and others can serve as e�ective starting points for the B&B method. Typically, the

hybrid heuristics of Category 1 are associated with producing high-quality solutions.

The following section examines the second category of heuristics for 3IAP.

4.2 Heuristics of Category 2

The study proposes a new criterion for reorganising cost matrices using matrix

norms instead of statistical measures. This approach leads to the design of four

novel heuristics, termed Category 2, analogous to the heuristics of Category 1. The

methodology promises enhanced e�cacy in 3IAP solution approaches.

The 3IAP objective function is de�ned by cost matrices, which are two-dimensional

arrays where each coe�cient represents the cost associated with a speci�c row-

column assignment. These matrices are elements ofMn2
; thus, to rearrange them,

it is helpful to refer to matrix norms. There are four common norms de�ned over

the space vectorMn2
.
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Table 4.5: Outcomes of Category 1 heuristics implemented on Sample 1.

First tie-case Last tie-case Random tie-case
Size Instance Type Order Cost Runtime Type Order Cost Runtime Type Order Cost Runtime

4

1 Std. Dev. Asc 46 0.0153406 Unsorted � 46 0.0159895 Maximum Desc 46 0.0079737

2 Diagonals Desc 51 0.0197680 Diagonals Desc 51 0.0256345 Diagonals Desc 51 0.0079789

3 Std. Dev. Desc 54 0.0172117 Unsorted Desc 54 0.0160148 Unsorted � 54 0.0080109

4 Mean Asc 68 0.0279086 Mean Asc 71 0.0256448 Mean Asc 68 0.0089753

5 Mean Desc 42 0.0209127 Std. Dev. Desc 22 0.0269482 Std. Dev. Desc 22 0.0089760

6

1 Std. Dev. Asc 54 0.0382040 Maximum Asc 60 0.0436385 Median Desc 42 0.0119770

2 Unsorted � 51 0.0320008 Unsorted � 51 0.0334609 Unsorted � 51 0.0119681

3 Median Desc 42 0.0349155 Median Desc 42 0.0320060 Median Desc 42 0.0119572

4 Mean Desc 50 0.0255313 Std. Dev. Desc 50 0.0348604 Median Desc 50 0.0119636

5 Range Desc 28 0.0404816 Range Desc 28 0.0426095 Range Desc 28 0.0119267

8

1 Range Desc 37 0.0416465 Median Desc 36 0.0465174 Median Desc 36 0.0510972

2 Maximum Desc 44 0.0426154 Range Asc 55 0.0400841 Maximum Desc 44 0.0510507

3 Std. Dev. Asc 35 0.0463522 Std. Dev. Asc 35 0.0385490 Std. Dev. Asc 35 0.0169549

4 Median Desc 57 0.0424366 Median Asc 56 0.0568943 Median Asc 56 0.0534122

5 Diagonals Asc 8 0.0399439 Range Desc 8 0.0400512 Range Desc 8 0.0486159

10

1 Maximum Desc 37 0.0156262 Maximum Desc 37 0.0561564 Maximum Desc 37 0.0630534

2 Diagonals Desc 52 0.0545759 Range Asc 43 0.0735247 Range Asc 43 0.0711098

3 Mean Des 58 0.01920557 Unsorted � 36 0.03793907 Diagonals Desc 27 0.03613329

4 Median Desc 32 0.0554729 Median Desc 32 0.0626526 Range Desc 32 0.0647616

5 Maximum Desc 43 0.0587294 Median Asc 35 0.0667386 Mean Asc 40 0.0721371

12

1 Median Asc 62 0.0872922 Range Asc 39 0.0839060 Range Asc 75 0.0875769

2 Range Asc 65 0.0816712 Std. Dev. Asc 53 0.0730062 Std. Dev. Asc 53 0.0845430

3 Mean Desc 36 0.0703671 Range Desc 61 0.0726814 Mean Desc 36 0.0831275

4 Range Desc 64 0.0884013 Std Dev. Asc 63 0.0789812 Range Desc 64 0.0755398

5 Unsorted � 24 0.0794580 Unsorted � 42 0.0701621 Mean Desc 37 0.0860555

14

1 Mean Asc 33 0.1059499 Median Desc 49 0.1009805 Maximum Desc 49 0.1198707

2 Diagonals Asc 24 0.1002367 Range Asc 41 0.1020365 Maximum Asc 55 0.1281445

3 Range Asc 28 0.0981150 Mean Desc 31 0.1226015 Median Desc 36 0.1004131

4 Std. Dev. Desc 44 0.0881739 Diagonals Desc 40 0.1018407 Diagonals Desc 40 0.1043491

5 Diagonals Asc 43 0.0979013 Mean Asc 68 0.1243742 Median Desc 62 0.1281118

16

1 Median Desc 47 0.1142566 Maximum Asc 60 0.1084011 Median Desc 47 0.1223409

2 Range Asc 64 0.0952747 Std. Dev. Desc 52 0.1191566 Range Desc 28 0.1472983

3 Diagonals Desc 23 0.1209276 Mean Desc 43 0.1139445 Median Desc 42 0.1242037

4 Mean Asc 52 0.1106885 Maximum Desc 70 0.1087453 Median Desc 32 0.1276939

5 Diagonals Desc 34 0.0470531 Median Desc 41 0.1305757 Mean Asc 43 0.1306794

18

1 Maximum Asc 25 0.0548527 Std. Dev. Asc 40 0.1483743 Range Desc 36 0.1832347

2 Std. Dev. Asc 37 0.0568481 Median Desc 52 0.1427739 Median Desc 32 0.1759551

3 Range Desc 55 0.0588415 Diagonals Asc 37 0.1669588 Std. Dev. Desc 69 0.1584294

4 Mean Asc 43 0.0628331 Std Dev. Asc 51 0.1522281 Range Desc 46 0.1755247

5 Range Desc 31 0.0528653 Mean Asc 54 0.1569455 Range Desc 31 0.1566219

20

1 Std. Dev. Desc 53 0.0698125 Diagonals Desc 40 0.1883280 Maximum Desc 52 0.2294993

2 Maximum Desc 29 0.0802653 Diagonals Desc 49 0.1882982 Std. Dev. Asc 64 0.2192030

3 Median Desc 58 0.0658586 Median Desc 77 0.1917918 Mean Asc 58 0.1976802

4 Diagonals Asc 53 0.0703182 Range Desc 66 0.1934402 Diagonals Asc 47 0.2138100

5 Range Desc 25 0.0678186 Maximum Desc 58 0.1991711 Range Asc 39 0.2129843

22

1 Mean Asc 42 0.0928795 Maximum Asc 30 0.2470129 Maximum Asc 44 0.0967760

2 Maximum Asc 53 0.0837317 Mean Desc 41 0.2319818 Std. Dev. Asc 65 0.2580817

3 Median Desc 39 0.0877655 Range Asc 54 0.2341025 Range Desc 55 0.2452874

4 Mean Desc 43 0.0837760 Mean Desc 26 0.2202597 Mean Asc 53 0.0917525

5 Mean Desc 47 0.0867689 Std. Dev. Asc 39 0.2596839 Std. Dev. Asc 57 0.0907536

24

1 Median Asc 26 0.1042540 Mean Asc 49 0.2847967 Std. Dev. Asc 27 0.1067152

2 Median Desc 55 0.0987363 Median Asc 40 0.2738364 Range Asc 58 0.1057088

3 Range Desc 52 0.0987296 Std. Dev. Asc 34 0.2768462 Std. Dev. Desc 57 0.1056824

4 Median Desc 72 0.1017270 Mean Asc 62 0.2795932 Std. Dev. Desc 27 0.1047204

5 Std Dev. Desc 45 0.1062431 Mean Desc 41 0.2797968 Unsorted Desc 47 0.1082633

26

1 Unsorted � 44 0.1361423 Unsorted � 60 0.3399053 Mean Asc 39 0.1266959

2 Median Desc 32 0.1186829 Maximum Asc 54 0.3262534 Median Asc 64 0.1286516

3 Std. Dev. Asc 62 0.1196902 Maximum Asc 30 0.3403540 Median Asc 52 0.1311564

4 Diagonals Desc 43 0.1216748 Diagonals Desc 59 0.3425541 Mean Asc 68 0.1276686

5 Diagonals Asc 63 0.1216748 Diagonals Desc 50 0.3457615 Std. Dev. Desc 33 0.1206770
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De�nition 17. Let A be an element ofMn2
.

1. Frobenius norm: ∥ A ∥F is equal to the square root of the sum of the squares

of the coe�cients of A. ∥ A ∥F =
√∑n

i=1

∑n
j=1 a

2
ij

2. 1-norm: ∥ A ∥1 equals the maximum of the sum of the absolute values of the

coe�cients of the columns of A. ∥ A ∥1 = max
∥x∥=1

∥ Ax ∥1 = max
1≤j≤n

∑n
i=1 | aij |

3. In�nity norm: ∥ A ∥∞ is the maximum of the sum of the absolute values of

the coe�cients of the rows of A. ∥ A ∥∞ = max
∥x∥=1

∥ Ax ∥∞ = max
1≤i≤n

∑n
j=1 | aij |

4. 2-norm: ∥ A ∥2 is the square root of the dominant eigenvalue of the inner

product of ATA. ∥ A ∥2 = max
∥x∥=1

∥ Ax ∥2 = max
1≤i≤n

√
λi(ATA)

For comparative analysis, Category 2 heuristics are implemented on the same

3IAP instance of size 10, operating across the �rst-tie, last-tie, and random-tie cases.

The implementation results in 11 solutions per case, documented in Tables 4.6,

4.7, and 4.8, respectively. In each row, the best solution found is highlighted by

underlining, showcasing the e�ciency of these heuristics.

Table 4.6: Solutions for a 3IAP instance of size 10, selecting the �rst tie-case.

Index Sort Type Order Cost Runtime

1 Unsorted � 133 0.00423265
2 Diagonals Ascending 107 0.01365447
3 Diagonals Descending 87 0.00911498
4 Frobenius Ascending 71 0.01427603
5 Frobenius Descending 58 0.01166511
6 1-norm Ascending 83 0.01676869
7 1-norm Descending 56 0.00988197
8 In�nity Ascending 83 0.02835202
9 In�nity Descending 69 0.02092838
10 2-norm Ascending 122 0.01850247
11 2-norm Descending 55 0.00955343

Tables 4.6, 4.7, and 4.8 display eight additional solutions from Category 2

heuristics for an instance of size 10, compared with GSP and DM results where

the best solutions are highlighted. Category 2 heuristics outperform the basic DM
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Table 4.7: Solutions for a 3IAP instance of size 10, selecting the last tie-case.

Index Sort Type Order Cost Runtime

1 Unsorted � 36 0.01769304
2 Diagonals Ascending 107 0.02649331
3 Diagonals Descending 121 0.03093147
4 Frobenius Ascending 104 0.02595663
5 Frobenius Descending 58 0.01140642
6 1-norm Ascending 90 0.02021837
7 1-norm Descending 56 0.01440573
8 In�nity Ascending 27 0.02520680
9 In�nity Descending 69 0.01849794
10 2-norm Ascending 92 0.01979470
11 2-norm Descending 54 0.01054478

Table 4.8: Solutions for a 3IAP instance of size 10, selecting a random tie.

Index Sort Type Order Cost Runtime

1 Unsorted � 133 0.01906562
2 Diagonals Ascending 107 0.02649331
3 Diagonals Descending 121 0.03093147
4 Frobenius Ascending 104 0.01951051
5 Frobenius Descending 58 0.01783252
6 1-norm Ascending 166 0.02023554
7 1-norm Descending 56 0.00896358
8 In�nity Ascending 27 0.02271700
9 In�nity Descending 69 0.02086163
10 2-norm Ascending 122 0.02661896
11 2-norm Descending 54 0.02083349
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version, showing improvements in objective function values and computational ef-

�ciency, illustrating the e�ectiveness of these heuristics. Table 4.9 summarises the

best solutions found within the three previous tables.

Table 4.9: Summary of best solutions for a 3IAP instance of size 10.

Case Sort Type Order Cost Runtime

First tie-case 2-Norm Descending 55 0.00955343
Last tie-case In�nity Ascending 27 0.02520680
Random tie In�nity Ascending 27 0.02271700

Table 4.10 presents the results from applying Category 2 heuristics to Sample

1, with computational tests mirroring those in Table 4.5. The best-found solution

for each 3IAP instance is underlined. Out of the 60 premier solutions identi�ed, only

eleven are the outcome of DM, with the remainder arising from Category 2 heuristics.

Combining data from Tables 4.5 and 4.10 yields solutions superior to those achieved

through DM alone. Furthermore, even when cost values are identical for speci�c

instances, solutions obtained by these heuristics feature reduced computational time.

The approach generates two sets of feasible solutions for 3IAP, including those

derived from the DM and GSP. Among 21 feasible solutions, Table 4.11 displays

the best result obtained from both heuristic categories applied to Sample 1. Thus,

for every 3IAP instance within this dataset, a quality solution is achieved within

a competitive timeframe, o�ering a dependable approach to solving the assignment

problem.

Table 4.12 delineates the newly proposed heuristics for 3IAP, and the rear-

ranged cost matrices according to two criteria: statistical measures and matrix

norms.
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Table 4.10: Outcomes of Category 2 Heuristics (best solutions found are underlined).

Size Instance
First tie-case Last tie-case Random tie-case

Type Order Cost Runtime Type Order Cost Runtime Type Order Cost Runtime

4

1 Unsorted � 46 0.0169406 Unsorted � 46 0.0010352 Unsorted � 46 0.0010238

2 Diagonals Desc 51 0.0202684 Diagonals Desc 51 0.0043216 Diagonals Desc 51 0.0033302

3 Unsorted � 54 0.0219405 2-Norm Desc 54 0.0010223 Unsorted � 54 0.0069017

4 Frobenius Asc 68 0.0237219 Frobenius Asc 71 0.0075302 2-Norm Asc 71 0.0081911

5 1-Norm Asc 40 0.0222788 In�nity Asc 22 0.0080113 Frobenius Desc 22 0.0070922

6

1 Diagonals Desc 65 0.0166636 Diagonals Desc 65 0.0103643 Diagonals Desc 65 0.0160758

2 Frobenius Asc 42 0.0190020 Frobenius Asc 42 0.0117474 Frobenius Asc 42 0.0150635

3 Frobenius Desc 48 0.0179522 Frobenius Desc 48 0.0123291 Frobenius Desc 48 0.0146244

4 2-Norm Desc 50 0.0378447 2-Norm Desc 50 0.0109694 2-Norm Desc 50 0.0146244

5 In�nity Asc 45 0.0270686 In�nity Asc 45 0.0120251 In�nity Asc 45 0.0159576

8

1 1-Norm Desc 37 0.0246043 1-Norm Desc 37 0.0139608 1-Norm Desc 37 0.0010242

2 1-Norm Desc 49 0.0176947 1-Norm Desc 49 0.0136608 1-Norm Desc 49 0.0036578

3 In�nity Asc 35 0.02398442 1-Norm Desc 47 0.0139973 Unsorted � 46 0.0143979

4 Frobenius Desc 57 0.0392866 2-Norm Asc 56 0.0042777 2-Norm Asc 56 0.0127425

5 1-Norm Desc 8 0.0116396 1-Norm Desc 8 0.0035248 1-Norm Desc 8 0.0146234

10

1 2-Norm Asc 71 0.0622561 Diagonals Asc 48 0.0169549 2-Norm Asc 71 0.0219409

2 In�nity Desc 40 0.0678885 2-Norm Desc 47 0.0166063 Diagonals Desc 53 0.0188389

3 2-Norm Desc 55 0.00955343 In�nity Asc 27 0.02520680 In�nity Asc 27 0.02271700

4 2-Norm Desc 44 0.0675690 2-Norm Desc 44 0.0169876 2-Norm Desc 44 0.0165770

5 In�nity Desc 79 0.0411978 Unsorted � 49 0.0179517 2-Norm Asc 43 0.0197444

12

1 1-Norm Desc 59 0.0701144 Unsorted � 47 0.0200324 1-Norm Desc 59 0.0356193

2 Unsorted � 77 0.0310483 In�nity Desc 29 0.0189824 Unsorted � 59 0.0249324

3 In�nity Desc 60 0.0712464 Frobenius Asc 28 0.0194366 In�nity Desc 51 0.0110812

4 1-Norm Desc 40 0.0324903 In�nity Asc 56 0.0233817 Frobenius Asc 48 0.0222557

5 Unsorted � 24 0.0301309 Unsorted � 42 0.0203908 2-Norm Desc 37 0.0255072

14

1 Diagonals Asc 66 0.0860665 Frobenius Desc 46 0.0239670 Diagonals Asc 35 0.0315444

2 Diagonals Asc 24 0.0957935 1-Norm Desc 40 0.0209870 2-Norm Desc 39 0.0297997

3 1-Norm Asc 90 0.0504882 2-Norm Desc 42 0.0094311 1-Norm Desc 38 0.0313828

4 Diagonals Desc 61 0.0547142 Diagonals Desc 40 0.0110421 Unsorted � 56 0.0350776

5 In�nity Asc 29 0.0520158 2-Norm Desc 48 0.0216281 Diagonals Desc 45 0.0413561

16

1 In�nity Desc 34 0.064518 Diagonals Desc 60 0.0292914 Diagonals Desc 40 0.0228353

2 In�nity Desc 42 0.0678213 In�nity Desc 34 0.0294390 In�nity Desc 42 0.0267251

3 Diagonals Desc 23 0.0832505 1-Norm Desc 42 0.0248818 Frobenius Asc 68 0.0322201

4 1-Norm Desc 69 0.0899043 Frobenius Desc 66 0.0230651 In�nity Desc 48 0.0317247

5 Diagonals Desc 34 0.0840192 Diagonals Desc 61 0.0298672 In�nity Asc 43 0.0348649

18

1 Diagonals Asc 51 0.0941238 Unsorted � 68 0.0190866 2-Norm Asc 47 0.0378969

2 2-Norm Desc 30 0.0986674 Frobenius Desc 35 0.0347402 Unsorted � 46 0.0349045

3 Frobenius Desc 46 0.1041887 Diagonals Asc 37 0.0251563 Diagonals Desc 33 0.0418868

4 1-Norm Desc 56 0.0944135 1-Norm Desc 62 0.0309236 2-Norm Asc 47 0.0388122

5 Diagonals Asc 47 0.0936954 In�nity Desc 42 0.0311666 Diagonals Desc 53 0.0366027

20

1 Frobenius Desc 18 0.0948539 In�nity Desc 36 0.0369012 2-Norm Desc 26 0.0404551

2 Diagonals Asc 30 0.0942195 Frobenius Asc 33 0.0341244 Diagonals Asc 45 0.0524790

3 2-Norm Asc 57 0.1218150 2-Norm Desc 62 0.0340006 2-Norm Asc 58 0.0468812

4 In�nity Asc 38 0.1433766 2-Norm Desc 47 0.0348995 Unsorted � 51 0.0419254

5 2-Norm Asc 33 0.1541805 Unsorted � 67 0.0359197 Diagonals Desc 64 0.0388210

22

1 Diagonals Asc 47 0.1413312 2-Norm Asc 43 0.0442212 1-Norm Asc 32 0.0522907

2 1-Norm Desc 73 0.1015856 1-Norm Asc 57 0.0418875 Diagonals Desc 42 0.0478554

3 1-Norm Asc 63 0.1750429 In�nity Desc 65 0.0422199 2-Norm Desc 68 0.0506885

4 Frobenius Desc 35 0.1676817 Unsorted � 47 0.04038048 2-Norm Asc 32 0.0519724

5 1-Norm Desc 62 0.1233559 Frobenius Desc 43 0.0414922 1-Norm Desc 44 0.0513620

24

1 2-Norm Desc 54 0.1429453 2-Norm Asc 45 0.0431852 In�nity Asc 36 0.0596867

2 In�nity Asc 41 0.1293378 Unsorted � 59 0.0385926 2-Norm Desc 57 0.0737224

3 In�nity Asc 40 0.1985698 1-Norm Desc 69 0.0513072 Diagonals Asc 57 0.0619988

4 1-Norm Desc 51 0.2304580 2-Norm Desc 67 0.0448926 In�nity Asc 36 0.0613723

5 1-Norm Asc 25 0.2360208 Unsorted � 46 0.0456920 Diagonals Desc 48 0.0615945

26

1 Unsorted � 44 0.1410162 Frobenius Desc 40 0.0498521 In�nity Desc 43 0.0683939

2 Unsorted � 66 0.1382613 2-Norm Desc 60 0.0530870 Frobenius Desc 59 0.0679481

3 1-Norm Desc 60 0.1403570 Frobenius Desc 46 0.0462112 Diagonals Asc 67 0.0696464

4 Diagonals Desc 43 0.1330237 Diagonals Desc 59 0.0493228 Unsorted � 51 0.0611022

5 Frobenius Desc 26 0.1785924 Diagonals Desc 50 0.0518575 Frobenius Desc 37 0.0625734
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Table 4.11: Best solutions from both category heuristics implemented on Sample 1.

Category 1 Category 2
Size Instance Type Order Cost Runtime Tie-case Type Order Cost Runtime Tie-case

4

1 Maximum Desc 46 0.0079737 Rand Unsorted � 46 0.0010238 Rand

2 Diagonals Desc 51 0.0079789 Rand Diagonals Desc 51 0.0079789 Rand

3 Unsorted � 54 0.0080109 Rand 2-Norm Desc 54 0.0010223 Rand

4 Mean Asc 68 0.0089753 Rand Frobenius Asc 68 0.0237219 Rand

5 Std. Dev. Desc 22 0.0089760 Rand Frobenius Desc 22 0.0070922 Rand

6

1 Median Desc 42 0.0119770 Rand Diagonals Desc 65 0.0103643 Last

2 Unsorted � 51 0.0119681 Rand Frobenius Asc 42 0.0117474 Last

3 Median Desc 42 0.0119572 Rand Frobenius Desc 48 0.0123291 Last

4 Median Desc 50 0.0119636 Rand 2-Norm Desc 50 0.0109694 Last

5 Range Desc 28 0.0119267 Rand In�nity Asc 45 0.0120251 Last

8

1 Median Desc 36 0.0465174 Last 1-Norm Desc 37 0.0010242 Rand

2 Maximum Desc 44 0.0426154 First 1-Norm Desc 49 0.0036578 Rand

3 Std Dev. Asc 35 0.0169549 Rand In�nity Asc 35 0.0239842 First

4 Median Asc 56 0.0534122 Rand 2-Norm Asc 56 0.0042777 Last

5 Diagonals Asc 8 0.0399439 First 1-Norm Desc 8 0.0035248 Last

10

1 Maximum Desc 37 0.0479422 First Diagonals Asc 48 0.0169549 Last

2 Range Asc 43 0.0711098 Rand In�nity Desc 40 0.0678885 First

3 Maximum Desc 27 0.0699704 Rand In�nity Asc 27 0.0092754 Rand

4 Median Desc 32 0.0554729 First 2-Norm Desc 44 0.0165770 Rand

5 Median Asc 35 0.0667386 Last 2-Norm Asc 43 0.0197444 Rand

12

1 Range Asc 39 0.0839060 Last Unsorted � 47 0.0200324 Last

2 Std Dev. Asc 53 0.0730062 Last In�nity Desc 29 0.0189824 Last

3 Mean Desc 36 0.0703671 First Frobenius Asc 28 0.0194366 Last

4 Std Dev. Asc 63 0.0789812 Last 1-Norm Desc 40 0.0324903 First

5 Unsorted � 24 0.0794580 First Unsorted � 24 0.0301309 First

14

1 Mean Asc 33 0.1059499 First Diagonals Asc 35 0.0315444 Rand

2 Diagonals Asc 24 0.1002367 First Diagonals Asc 24 0.0957935 First

3 Range Asc 28 0.0981150 First 1-Norm Desc 38 0.0313828 Rand

4 Diagonals Desc 40 0.1018407 Last Diagonals Desc 40 0.0110421 Last

5 Diagonals Asc 43 0.0979013 First In�nity Asc 29 0.0520158 First

16

1 Median Desc 47 0.1142566 First In�nity Desc 34 0.0645180 First

2 Range Desc 28 0.1472983 Rand In�nity Desc 34 0.0294390 Last

3 Diagonals Desc 23 0.1209276 First Diagonals Desc 23 0.0832505 First

4 Median Desc 32 0.1276939 Rand In�nity Desc 48 0.0317247 Last

5 Diagonals Desc 34 0.0470531 First Diagonals Desc 34 0.0840192 First

18

1 Maximum Asc 25 0.0548527 First 2-Norm Asc 47 0.0378969 Rand

2 Median Desc 32 0.1759551 Rand 2-Norm Desc 30 0.0986674 First

3 Diagonals Asc 37 0.1669588 Last Diagonals Desc 33 0.0418868 Rand

4 Mean Asc 43 0.0628331 First 2-Norm Asc 47 0.0388122 Rand

5 Range Desc 31 0.0528653 First In�nity Desc 42 0.0311666 Last

20

1 Diagonals Desc 40 0.1883280 Last Frobenius Desc 18 0.0948539 First

2 Maximum Desc 29 0.0802653 First Diagonals Asc 30 0.0942195 First

3 Median Desc 58 0.0658586 First 2-Norm Asc 57 0.1218150 First

4 Diagonals Asc 47 0.2138100 Rand In�nity Asc 38 0.1433766 First

5 Range Desc 25 0.0678186 First 2-Norm Asc 33 0.1541805 First

22

1 Maximum Asc 30 0.2470129 Last 1-Norm Asc 32 0.0522907 Rand

2 Mean Desc 41 0.2319818 Last Diagonals Desc 42 0.0478554 Rand

3 Median Desc 39 0.0877655 First 1-Norm Asc 63 0.1750429 First

4 Mean Desc 26 0.2202597 Last 2-Norm Asc 32 0.0519724 Rand

5 Std Dev. Asc 39 0.2596839 Last Frobenius Desc 43 0.0414922 Last

24

1 Median Asc 26 0.1042540 First In�nity Asc 36 0.0596867 Rand

2 Median Asc 40 0.2738364 Last In�nity Asc 41 0.1293378 First

3 Std Dev. Asc 34 0.2768462 Last In�nity Asc 40 0.1985698 First

4 Std Dev. Desc 27 0.1047204 Rand In�nity Asc 36 0.0613723 Rand

5 Mean Desc 41 0.2797968 Last 1-Norm Asc 25 0.2360208 First

26

1 Mean Asc 39 0.1266959 Rand Frobenius Desc 40 0.0498521 Last

2 Median Desc 32 0.1186829 First Frobenius Desc 59 0.0679481 Rand

3 Maximum Asc 30 0.3403540 Last Frobenius Desc 46 0.0462112 Last

4 Diagonals Desc 43 0.1216748 First Diagonals Desc 43 0.1330237 First

5 Std Dev. Desc 33 0.1206770 Rand Frobenius Desc 26 0.17859244 First
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The extensive computational tests indicate that the best solutions found are

of good quality compared to DM results. Again, if the found solution is optimal or

near-optimal, it will be accepted; otherwise, it will be used as a warm start for the

B&B to produce a better solution.

Table 4.12: List of proposed heuristics for 3IAP.

DM GSP Category 1 Category 2

Sorting criteria Diagonals � Statistical Matrix norms

Diagonal factor Mean Frobenius
Median 1-norm
Maximum In�nity
Range 2-norm
Std. Deviation

4.3 Exact Solution Approaches

4.3.1 Branch & Bound and Hybrid DM

Heuristics from both Category 1 and Category 2 consistently provide feasible so-

lutions for 3IAP, with a possibility of optimality. When the discrepancy between

the linear program lower bound and its dual upper bound is zero or negligible, the

identi�ed solution is deemed optimal or near-optimal, respectively. In cases where

this gap is wider, the derived solution serves as a warm start for the B&B method.

The integration of DM with B&B leads to optimal or nearly optimal outcomes,

outperforming the standard B&B approach as Table 4.13 demonstrates.

Upon conducting numerical experiments on Sample 1 dataset, Kadhem (2017)

observes that a Hybridised DM reaches optimal costs akin to the B&B method in

signi�cantly reduced computation time, provided the problem size does not exceed

26. The author reported that any attempt to implement B&B on larger instances

has consistently failed, highlighting a limitation in scalability for larger problems.



4.3. Exact Solution Approaches 79

Table 4.13: Computational results of Hybridised DM on Sample 1

Instances B&B DM Hybrid DM

size n Cost Time Cost Time Cost Time

4 49.42 0.2530 94.28 0.0164 49.42 0.0490
6 36.64 0.3290 90.76 0.0128 36.64 0.1893
8 24.42 0.9430 99.00 0.0229 24.42 0.7347
10 20.79 2.5689 112.38 0.0266 20.79 2.2989
12 21.28 7.4436 95.31 0.0315 21.28 7.2635
14 18.05 17.5816 111.58 0.0361 18.05 17.2285
16 19.43 31.2333 105.40 0.0409 19.43 30.6277
18 17.91 126.8548 114.23 0.0347 17.91 121.5693
20 12.74 51.6672 97.32 0.0614 12.74 50.1720
22 13.28 445.9688 151.39 0.0608 13.28 429.8912
24 10.84 1599.6080 125.39 0.1231 10.84 1410.3500
26 11.36 2956.9040 100.29 0.0878 11.36 2894.0040

After developing and implementing heuristic methods for 3IAP that share the

DM structure, it is essential to assess their performance. Their evaluation should

include comparing the heuristic solutions with those generated by exact algorithms

to ascertain their e�ectiveness.

4.3.2 Gurobi Optimizer

For the optimal resolution of 3IAP, a computer program integrating the Gurobi

Optimization solver (Gurobi, 2024) is designed and implemented. The Gurobi Op-

timizer, renowned for its cutting-edge capabilities in mathematical programming,

employs the latest in algorithms and architectures. The program relies on the third

3IAP formulation LP2, implemented through the Python Notebook interface for

Gurobi Optimizer.

The program performance is assessed using Sample 1 as the benchmark dataset.

Table 4.14 presents the outcomes of the Gurobi Optimizer compared to the results

of (Balas and Saltzman 1991). Each table row outlines the average cost and the

average execution time of �ve instances of the same size. The �ndings indicate that

Gurobi achieves optimal solutions comparable to those of Balas and Saltzman but
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with reduced CPU time.

Table 4.14: Comparison of the Gurobi outcomes with Balas and Saltzman's results.

B & S Gurobi

Size Cost CPU Cost CPU

4 42.20 0.03 42.20 0.03671927
6 40.20 0.16 40.20 0.06198630
8 23.80 0.84 23.80 0.16521101
10 19.00 1.36 19.00 0.41342755
12 15.60 2.19 15.60 1.07067790
14 10.00 11.95 10.00 2.65978527
16 10.00 39.90 10.00 5.65702610
18 6.40 55.30 6.40 11.27514129
20 4.80 169.29 4.80 22.13064094
22 4.00 371.52 4.00 38.56125860
24 1.80 514.52 1.80 64.59890308
26 1.30 624.00 1.00 107.41192837

Let Sample 2 be a second random sample generated by the uniform probability

from 0 to 100, of size n = 5, 10, 15, . . . , 40; �ve instances per size, except the �fth

instance from 100 to 999. Numerical experiments are conducted on Sample 2; the

results are presented in Table 4.15.

The performance of the proposed program is evaluated through computational

tests on larger instances, using a random sample of sizes up to 35. The program

attained optimal solutions for these instances, demonstrating e�ciency with a sat-

isfactory runtime. Similar computational testing could be performed on instances

of larger sizes but obviously for a longer execution time.

4.3.3 Python-MIP solver

After implementing and testing a �rst program incorporating the Gurobi Optimizer,

a second was developed for solving optimally 3IAP, using a speci�c package, Python-

MIP, an advanced library for Mixed-Integer Linear Programming problems, facili-

tating their modelling and resolution.
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Table 4.15: Gurobi results using Sample 2

Size Instance Cost Runtime

5

1 53 0.04751706
2 25 0.03941488
3 44 0.06288433
4 22 0.04488349
5 495 0.05727077

10

1 29 0.46303821
2 37 0.41437745
3 29 0.43761158
4 33 0.40377784
5 321 0.45508575

15

1 37 4.10386038
2 23 4.00404882
3 26 4.07738948
4 24 4.12160254
5 276 4.16600680

20

1 23 20.98679924
2 24 21.75483418
3 24 23.07856250
4 23 23.40851784
5 343 23.75501657

25

1 251 81.31217790
2 251 83.30688334
3 250 82.94617462
4 250 93.56074834
5 363 83.23414493

30

1 300 248.29142761
2 300 261.12135029
3 300 256.22693014
4 300 257.87097788
5 362 256.32356429

35

1 350 684.11812282
2 350 878.05114627
3 350 700.88513374
4 350 677.22385907
5 395 699.50055337

40

1 400 1,467.45966268
2 400 1,523.32924628
3 400 1,506.79422569
4 400 1,470.06956792
5 463 1,460.10495377
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Two Brazilian computing researchers (To�olo, T.A.M. and Santos, H.G., 2019)

designed MIP as a fast open source which works with the Gurobi Optimization

solver. Another computing program was proposed to solve 3IAP optimally by adapt-

ing the MIP solver through the Python programming language and using the �rst

mathematical formulation LP1 of 3IAP.

Table 4.16 presents a comparative analysis between the Gurobi Optimizer and

the Python-MIP program, using the same dataset, namely Sample 1. Each row in the

table summarises the average results of �ve instances of the same size. The last col-

umn shows the percentage reduction in CPU time. The MIP program performance

surpasses that of the Gurobi solver, as evidenced by the savings in computational

time.

The MIP program implementation demonstrates excellent outcomes, produc-

ing optimal solutions identical to those generated by Gurobi but with signi�cantly

reduced runtime. Computational tests conducted on Sample 2 are detailed in Ta-

ble 4.17, which compares the results from Gurobi with the MIP program. Figure 4.1

illustrates the average computation times for both Gurobi and MIP across �ve in-

stances of the same size, ranging from n = 5 to 35, indicating an enhanced e�ciency

of the MIP program.

More numerical tests were conducted on random data of Sample 3, which is

Sample 2 extended to the size n = 80. Sample 3 is composed of �ve instances of

size n = 40, 45, . . . , 80, generated by uniform probability between 10 and 999, and

the test results are displayed in Table 4.18. Table 4.19 summarises the algorithms

execution time for di�erent random samples. The MIP performance exceeds that of

the proposed heuristics and Gurobi program, as its execution time is signi�cantly

reduced from 10% to 90%. For example, when running 3IAP instances of size

n = 26 and n = 40, Gurobi takes an average of fewer than 1.5 minutes and 24

minutes, respectively while MIP requires only 0.15 minutes and less than 1 minute,
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Table 4.16: Comparison of Gurobi and MIP performances on Sample 1.

Gurobi MIP

Size Cost Time Cost Time % Saved time

4 42.20 0.03671927 42.20 0.06625228 �
6 40.20 0.06198630 40.20 0.09180932 �
8 23.80 0.16521101 23.80 0.14813294 10%
10 19.00 0.41342755 19.00 0.20423903 51%
12 15.60 1.07067790 15.60 0.29895229 72%
14 10.00 2.65978527 10.00 0.54588880 79%
16 10.00 5.65702610 10.00 0.93958402 83%
18 6.40 11.27514129 6.40 1.48142543 87%
20 4.80 22.13064094 4.80 2.61848969 88%
22 4.00 38.56125860 4.00 4.26741615 89%
24 1.80 64.59890308 1.80 6.88015480 89%
26 1.00 107.41192837 1.00 10.96012244 90%

Figure 4.1: Average runtime of Gurobi and MIP.

equivalent to 90% and 97% reduction in running time, respectively. Hence, when

executing 3IAP instances of size n = 60, the MIP program running time is less than

28 minutes. Further tests are planned for larger instances.

By exploring speci�c features of cost matrices, two new heuristic classes for

solving 3IAP are proposed. The �rst class relies on statistical metrics, and the

second is based on matrix norms. Extensive computational experiments support

their e�ciency, and the heuristics produce, within polynomial time, 21 outcomes

that are optimal or of superior quality.
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Table 4.17: Comparing Gurobi and MIP results using Sample 2 data.

Gurobi MIP

Size Instance Cost Runtime Cost Runtime

5

1 53 0.04751706 53 0.05464196
2 25 0.03941488 25 0.05940747
3 44 0.06288433 44 0.06146312
4 22 0.04488349 22 0.06511664
5 495 0.05727077 495 0.07313919

10

1 29 0.46303821 29 0.16452599
2 37 0.41437745 37 0.11249900
3 29 0.43761158 29 0.10823774
4 33 0.40377784 33 0.11964583
5 321 0.45508575 321 0.10815573

15

1 37 4.10386038 37 0.54287481
2 23 4.00404882 23 0.59983540
3 26 4.07738948 26 0.58981586
4 24 4.12160254 24 0.58864856
5 276 4.16600680 276 0.51120210

20

1 23 20.98679924 23 2.12738681
2 24 21.75483418 24 2.32940912
3 24 23.07856250 24 2.24340868
4 23 23.40851784 23 2.21933031
5 343 23.75501657 343 2.47173333

25

1 251 81.31217790 251 7.36894393
2 251 83.30688334 251 7.20444775
3 250 82.94617462 250 7.28113747
4 250 93.56074834 250 7.40094900
5 363 83.23414493 363 7.16370320

30

1 300 248.29142761 300 19.96155977
2 300 261.12135029 300 19.91077828
3 300 256.22693014 300 20.17518854
4 300 257.87097788 300 20.64884663
5 362 256.32356429 362 19.94497132

35

1 350 684.11812282 350 48.55294108
2 350 878.05114627 350 47.78489661
3 350 700.88513374 350 48.76661682
4 350 677.22385907 350 48.96539617
5 395 699.50055337 395 50.61369872

40

1 400 1,467.45966268 400 104.30422497
2 400 1,523.32924628 400 103.74304414
3 400 1,506.79422569 400 104.40737677
4 400 1,470.06956792 400 106.03453565
5 463 1,460.10495377 463 111.46146727



4.3. Exact Solution Approaches 85

Table 4.18: MIP outcomes using random data of Sample 3.

MIP results using Sample 3.

Size Instance Cost Runtime

40

1 400 104.30422497
2 400 103.74304414
3 400 104.40737677
4 400 106.03453565
5 463 111.46146727

45

1 450 211.84999800
2 450 210.61439395
3 450 210.89135790
4 450 218.12571907
5 489 288.36444283

50

1 500 417.25897503
2 500 445.65421462
3 500 1,141.88306355
4 500 1,121.17579913
5 532 1,474.76695253

55

1 550 930.13321471
2 550 754.00689173
3 550 715.45358729
4 550 708.25755429
5 583 1,013.19422102

60

1 600 1,223.09543967
2 600 1,225.40235543
3 600 1,211.75682592
4 600 1,221.94683933
5 619 3,466.80567312

Table 4.19: Runtime in minutes.

Gurobi MIP

Size Average runtine (in min.) Time saved (%)

Sample 1 26 1.79 0.183 90
Sample 2 40 24.238 1.766 93
Sample 3 60 � 27.830 �
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Finally, two computer programs, Gurobi and Python�MIP, are implemented

for comparison purposes, achieving optimal solutions for large instances in compet-

itive computational time. Both programs produced optimal solutions, compared

with benchmark data and those randomly generated, but the MIP performance far

outstrips that of Gurobi.

The literature indicates that the largest 3IAP instance solved to optimality is

of size n = 26. By implementing Gurobi and MIP programs, we have optimally

solved 3IAP instances of sizes n = 40, n = 60, and potentially higher sizes.

The next chapter investigates evolutionary algorithms, showing the genetic

algorithm capability to solve NP -hard optimisation problems. The study utilises the

problem permutation-based formulation to propose a new hybrid genetic algorithm

tailored to 3IAP.



Chapter 5

Genetic Algorithm

This chapter of the thesis introduces the Genetic Algorithm (GA) which provides

an approximate solution approach deeply rooted in biological evolution and natural

selection principles. GA is an evolutionary algorithm-based strategy for solving com-

plex optimisation problems. GA is applied to 3IAP to �nd optimal or near-optimal

solutions by evolving a population of candidate solutions over multiple generations.

While the basic GA produces results, this study seeks to enhance their quality by

integrating a local search method.

The work presents the genetic algorithm followed by two local search ap-

proaches for 3IAP. The possibility of incorporating a local search method within

the standard GA is discussed in this chapter. Any solution to 3IAP of size n can be

de�ned by three permutations of n elements applied to cost matrices. Their order's

insigni�cance permits their rearrangement, aligning one with the identity permuta-

tion. Consequently, a 3IAP solution can be formulated with only two permutations,

simplifying the representation without compromising solution integrity.

87
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Minimize Z =
n∑

i=1

cip(i)q(i)

subject to p, q two permutations of πn,

where πn is the set of all permutations of n elements.

5.1 Evolutionary Algorithm

Evolutionary algorithms, founded on heuristics, represent an e�ective strategy for

solving NP -Hard problems characterised by their intractable complexity. Genetic

algorithms serve as a preliminary heuristic step when applied independently to

challenging combinatorial problems. Their role is to e�ectively identify a reason-

able starting point, facilitating subsequent algorithms for re�ned exploration. This

strategic combination harnesses the heuristic exploration of genetic algorithms, syn-

ergising with subsequent algorithms to navigate intricate problem spaces e�ciently.

An evolutionary algorithm, rooted in the principles of biological evolution and

natural selection, comprises four pivotal stages: initialisation, selection, genetic op-

erators, and termination. The algorithm allows only �tter individuals to endure

and propagate, while un�t members are discarded, akin to natural selection. The

emulation of evolutionary dynamics signi�es the evolutionary algorithm e�ciency

in navigating complex problem spaces.

5.2 Genetic Algorithm Description

GA is an approximation method based on the principles of biological evolution

and natural selection. Initially introduced by (Holland, 1975), GA has emerged as a

prominent metaheuristic for tackling intricate combinatorial optimisation challenges,
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(Cvetkovic and Parmee, 2002; Kim et al., 2003). GA operates as a metaheuristic

by incorporating evolutionary concepts of natural selection and genetics, simulating

the `survival of the �ttest' principle laid out by Darwin (1859). This approach has

demonstrated remarkable e�cacy across diverse combinatorial optimisation prob-

lems.

Since GAs are optimisation techniques inspired by natural selection, they main-

tain a population of potential solutions and evolve them through genetic operators.

GAs �nd applications in diverse domains, including engineering, operations research,

business, science, learning machine and arti�cial intelligence. The approach emu-

lates natural selection, and GAs are particularly valuable for complex problems

where �nding optimal or near-optimal solutions is otherwise computationally infea-

sible. The interested reader is referred to (Sivanandam and Deepa, 2008).

GA acts as a heuristic search method which does not guarantee a global optimal

solution. Nevertheless, the algorithm e�ciently attains an optimal or a high-quality

approximate solution within a reasonable CPU time. GA operates iteratively, gen-

erating a new solution set with improved solutions from an initial set randomly

generated. The algorithm relies on three genetic operators � selection, crossover,

and mutation. Following each iteration, a new generation of candidate solutions is

reproduced, and the �tness value of each individual is computed.

Despite multiple advantages of GA, like the ability to explore a wider search

space, and to deal with complex �tness functions and multiple local optima, GA

encounters several barriers, such as the possible loss of genetic properties and pre-

mature or slow convergence (Drezner and Misevi£ius, 2013). To mitigate these

drawbacks, researchers have explored strategies such as �ne-tuning the parameters

of GA (Scha�er et al., 1989), altering genetic operators (Drezner and Marcoulides,

2003), (Fox and MacMahon, 1991), (Wu, 2007) and introducing new characteristics

(Misevi£ius, 2008). Others have opted for a hybrid approach by combining GA with

a local search method.
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Figure 5.1: The structure of the Genetic Algorithm.

5.2.1 Genetic Algorithm Overview

GA commences with an initial population of randomly generated feasible solutions,

called `chromosomes ', which are subsequently encoded. A �tness function is de�ned

to assess the �tness value of each chromosome, leading to population sorting based

on �tness. The �tness function can be proportional or reciprocal to the problem

objective function (Wang, 2014).

GA reproduces a new generation of chromosomes from the initial population

following the next steps. Evolution starts by selecting a pair of chromosomes hav-

ing the best �tness function value as parents. Selected parents undergo mating to

generate one or more o�spring. Each chromosome comprises usually several genes,

and each child shares genes from both parents through the crossover operation.

The exclusive use of the crossover operator is insu�cient to generate high-

quality chromosomes in many combinatorial optimisation problems, including 3IAP.

For increasing o�spring quality, the mutation operation introduces stochastic changes

to a few genes, enhancing population diversity and promoting escape from local op-

tima. This random perturbation ensures the exploration of new regions within the

search space, augmenting the algorithm capability to discover optimal solutions.

Thus, the mutation operator ensures the exploration of novel regions within the

search space. The selection operator is set to produce a new generation. Sub-

sequent generations are derived from the o�spring, in combination with parental
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chromosomes. The process iterates over a limited number of generations or until

an acceptable solution is attained, negating further optimisation requirements, as

shown in Algorithm 2.

Algorithm 2: Genetic Algorithm Model.

Input: A sequence of cost matrices ⟨C1, C2, . . . , Cn⟩.

1 - Initialise a random population of size n.

2 - Evaluate �tness of every individual of the population.

Output: A feasible solution for 3IAP.

3 while (termination criteria is not met) do

4 - Select two parents from the population.

5 - Apply crossover operator to two selected parents with probability Pc.

6 - Apply mutation operator to random individuals with probability Pm.

7 - Compute �tness of the new generation.

8 - Replace the population by the new generation.

9 - Select survivors.

10 end while

11 return Best solution found .

5.2.2 Hybrid Genetic Algorithm Review

The simple GA generates o�spring through selection, crossover, and mutation oper-

ators, aiming to enhance the population by replacing some existing members with

improved individuals. In contrast, a Hybrid Genetic Algorithm (HGA) incorporates

a local search into o�spring generated by GA before their insertion into the popu-

lation. Global search algorithms including GA explore new and promising regions

in the solution space, while local search methods focus on re�ning solutions in local

regions. HGAs have demonstrated signi�cant e�ectiveness in the last decades.
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A common strategy involves integrating additional local optimisation tech-

niques to improve GA by re�ning the individuals' �tness. In particular, the re-

semblance between the role of local optimisation in GA and the role of knowledge in

the evolutionary process suggest that local optimisation can function as a learning

process. The primary goal is to enhance the simple GA performance by combining

the exploration and exploitation capabilities with embedded algorithms. This objec-

tive is achieved by striking a balance between global exploration (discovering new,

and more promising regions of the solution space) and local exploitation (focusing

on high-quality solutions in favourable localised regions).

HGAs constitute a comprehensive framework for collaborative optimisation,

where integrated algorithms cooperate with genetic operators. The diverse design

options for speci�c components of the hybrid genetic algorithm o�er numerous op-

portunities for innovation in optimisation strategies, (Drezner and Misevi£ius, 2013).

HGAs are chosen as metaheuristic method for three reasons: (i) they are evolution-

ary, which is mandatory for the algorithm implementation; (ii) they are capable to

tackle complex problems of large size; and (iii) they can reach a solution within an

acceptable computational time (Jih and Hsu, 2004).

5.2.3 HGA Literature Review

In the last two decades, extensive studies have focused on solving challenging combi-

natorial optimisation problems through genetic algorithms. Tailoring hybrid genetic

algorithms to such problems has yielded compelling outcomes, a�rming the e�cacy

of these metaheuristics.

A typical example is the Travelling Salesman Problem (TSP). Given a set

of cities, TSP searches for the shortest route, visiting each city exactly once, and

returning to the starting point. Ahmed (2010, 2014) and Hussain et al., (2017)

developed new crossover operators for a genetic algorithm that generate quality

solutions to solve a variation of the TSP. Buriol and França (2004) used a hybrid
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approach by combining GA with a local search procedure for solving the asymmetric

TSP. Youse�khoshbakht et al., (2016) proposed a hybrid metaheuristic algorithm for

solving the TSP. Mungwattana et al., (2019) hybridised a genetic algorithm with

three search operators for solving the TSP. Ha et al., (2020) investigated the TSP

with drones and proposed a hybrid genetic algorithm for its solution. Multiple-

TSP was also investigated (Groba et al., 2018). Mahmoudinazlou and Kwon (2023)

recently designed a hybrid genetic algorithm to minimise the length of the longest

tour.

Another example is the Vehicle Routing Problem (VRP) de�ned as an exten-

sion of TSP (Mehbali, 1990). However, the application of genetic algorithms to its

resolution remains an area deserving more consideration. Baker and Ayechew (2003)

applied genetic algorithms to tackle VRP. Tasan and Gen (2012) proposed another

genetic algorithm addressing VRP with simultaneous pick-up and deliveries, and

Mohammed et al., (2017) sought to optimise VRP routes using genetic algorithms.

For speci�c assignments, Younas et al., (2018) explored collaborative task as-

signment optimisation through a genetic algorithm. Toroslu and Arslano§lu (2007)

studied the personnel assignment problem with multiple objectives, considering hi-

erarchical and team constraints. A multi-objective evolutionary algorithm was de-

veloped to solve this problem. Liu and Wang (2015) examined the Generalized

Assignment Problem (GAP), proposing a scalable parallel genetic algorithm for its

resolution. Dörterler et al., (2017) introduced a tailored genetic algorithm designed

for a particular case of the GAP.

GA was also proposed to address the Quadratic Assignment Problem (QAP)

(Azarbonyada and Babazadeh, 2014). Misevi£ius and Verené (2021) introduced a

novel hybrid genetic-hierarchical algorithm speci�cally designed for solving the QAP,

leveraging the inherent hierarchical structure of the problem.

Huang and Lim (2006) pioneered resolving the three-index assignment problem

using a genetic algorithm. They presented a new local search heuristic, simplifying
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the problem to the classical two-dimensional assignment problem. Furthermore, they

integrated this heuristic with the genetic algorithm, resulting in a hybrid approach

for the 3IAP solution (Huang and Lim, 2006).

Drawing on this study, Pérez (2017) devised a similar hybrid heuristic to solve

the multi-dimensional assignment problem. He applied his hybrid algorithm to

solve a case study, the school timetabling problem. Recently, Badoni et al., (2023)

examined the university course timetabling problem, employing a genetic algorithm

(GA) to explore the search space and determine a solution within the global optimum

region. They then applied an iterated local search procedure to further re�ne and

enhance the obtained solution.

Based on prior research, this work aims to enhance existing methodologies by

developing a more e�cient hybrid genetic algorithm for solving 3IAP.

5.3 Local Search Methods for 3IAP

Local search methods play an important role in combinatorial optimisation. Several

heuristics are designed to solve NP -hard discrete optimisation problems. From a

feasible solution, a local search method moves to another neighbouring solution,

through small local changes. If a potential improvement is achievable, the procedure

moves to a new neighbouring solution. The local search method is an iterative

procedure that continues running until an optimal solution is achieved or up to a

prede�ned number of iterations.

The so-called neighbourhood-centred methods operate iteratively by exploring

the neighbourhoods of the current solution. The literature includes various local

search methods that consider diverse classes and sizes of neighbourhoods. The prin-

ciple of these methods lies in the evaluation of the neighbourhoods in a prede�ned

way. Karapetyan and Gutin (2011) highlighted the di�erence between construction

heuristics and local search, which can sometimes be critical.
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Among the early local search methods developed for 3IAP is the so-called

variable depth interchange heuristic described in (Balas and Saltzman, 1991). The

method starts with a feasible solution, then evaluates the objective function for all

possible interchanges. An interchange will be performed only if it entails a reduction

in the cost. The method repeats the process until an optimal solution is found, or

no improvement is possible. Two iterative local search procedures for 3IAP are

presented below.

5.3.1 Random Permuted Numbers method

Several local search methods exist in the literature. A �rst local search heuristic,

the `Random Permuted Numbers ' (RPN) method, is proposed in this section. The

RPN method represents an e�cient heuristic for solving 3IAP. Indeed, from an initial

random permutation, the method generates a feasible solution to the problem within

polynomial time.

For solving a 3IAP of size n, the RPN method initiates by selecting a random

permutation p of order n. The heuristic then rearranges the cost matrices based on

p. Next, the method chooses one row from each matrix to construct a new composite

matrix. The Hungarian method is then applied to this composite matrix to address

the resultant two-dimensional assignment problem, e�ciently deriving a feasible so-

lution for the original 3IAP.
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Algorithm 3: Random Permuted Numbers Method.

Input: A sequence of cost matrices ⟨C1, C2, . . . , Cn⟩, and p a random

permutation encoding a chromosome.

Output: A feasible solution of 3IAP.

1 for i← 1 to n do

2 Select row i from Ci to form a new matrix M.

3 end for

4 - Apply Hungarian method to M.

5 - Find q the permutation associated with the Hungarian method solution.

6 return Solution for 3IAP .

To illustrate Algorithm 3, let us solve an example of 3IAP of size n = 4,

using the data of bs_4_3 instance.dat from (Balas and Salzman Dataset, 1991).

Computational experiments were performed using Python, applying a numbering

system for lists or arrays starting with 0 instead of 1. Therefore, this system is

followed throughout this chapter. Given a random permutation p = [3,1,2,0].

C0 =


24 45 78 07

47 15 24 94

61 98 47 79

74 38 47 52

C1 =


09 59 34 14

77 71 44 70

09 96 55 74

57 63 78 18

C2 =


30 28 68 29

56 41 30 44

56 48 60 41

13 25 03 97

C3 =


11 37 64 35

55 35 56 47

16 61 17 55

29 87 83 84



Each matrix is associated with a factory. Rows correspond to jobs and columns

to machines.

In this case, job indices 0, 1, 2, and 3 are allocated to factories 3, 1, 2, and 0,

respectively. The algorithm subsequently selects the �rst row from Factory 3, the

second from Factory 1, the third from Factory 2, and the last from Factory 0. The

selected rows collectively constitute a new matrix M, representing LAP.
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M =



11 37 64 35

77 71 44 70

56 48 60 41

74 38 47 52



The Hungarian method is then applied to M to solve the associated LAP.

M =



(11) 37 64 35

77 71 (44) 70

56 48 60 (41)

74 (38) 47 52



The Hungarian method solution is expressed by coe�cients represented in bold.

C0 =


24 45 78 07

47 15 24 94

61 98 47 79

74 38 47 52

C1 =


09 59 34 14

77 71 44 70

09 96 55 74

57 63 78 18

C2 =


30 28 68 29

56 41 30 44

56 48 60 41

13 25 03 97

C3 =


11 37 64 35

55 35 56 47

16 61 17 55

29 87 83 84



The Hungarian method solution optimises the permutation q=[3,0,1,2] and allocates

machines to factories respectively, leading to a feasible solution to 3IAP at total cost of

134.

5.3.2 Triple Local Search method

Huang and Lim (2006) proposed the Triple Local Search (TLS) method to solve the three-

index assignment problem (3IAP) by reducing it to the classic assignment problem. TLS

procedure has been adapted to the problem. Recall that this method utilises permutations

and applies the Hungarian method iteratively to solve the LAPs. Computational tests run

in Python validated its e�cacy in producing rapid feasible solutions.

The TLS method iterates through a cyclic process involving three distinct steps rep-
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Figure 5.2: One step of TLS.

resenting three parts of one 3IAP solution aligned with the three permutations p, q and the

identity I, each of which can be optimised separately and e�ciently. The procedure keeps

running until it attains an optimal solution or no further improvement can be achieved.

Each step initiates with an input permutation used to construct a matrix. The Hungarian

method is then applied to that matrix, resulting in a feasible solution for 3IAP, and a new

permutation q, necessary for the next step. Figure 5.2 illustrates the execution of one such

step.

The �rst step of the TLS algorithm executes the RPN method. Subsequently, in the

second step matrices are reordered based on the permutation q, followed by the selection

of a column from each matrix to form a new matrix, denoted M1. The Hungarian method

is then applied to solve the associated LAP, yielding another feasible solution for 3IAP

and a new permutation q′. In the third step, matrices are rearranged according to q′,

and speci�c coe�cients are chosen from each matrix to compose another matrix M2. The

Hungarian method is then applied to M2. The iterative process continues within the TLS

method until an optimal solution is attained or further improvement becomes unfeasible.

Figure 5.3 illustrates the cyclic nature of the triple local search method.
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Figure 5.3: Iterative cycle of the TLS method.

Algorithm 4: Triple Local Search Method.

Input: A sequence of cost matrices ⟨C1, C2, . . . , Cn⟩, and p a random

permutation encoding a chromosome.

Output: A feasible solution of 3IAP and a permutation p′.

1 - Initialise a random population p of size n.

2 - Set p1 = p .

3 for j ← 1 to 3 do

4 - Sort cost matrices Ci (i = 1, 2, . . . , n) according to pj .

5 - Select speci�c coe�cients of Ci to form a matrix Mj .

6 - Apply Hungarian method to Mj .

7 - pj+1 the permutation associated with the Hungarian method solution of Mj .

8 end for

9 - p1 ← p4

10 - Record c cost of the �nal solution and the permutation p1.

11 return Solution for 3IAP .

Given a permutation q, the second iteration of For Loop of Algorithm 4, assigns ma-

chines to factories based on q. From the cost matrices sorted according to q, for each index

i = 0, 1, . . . , n − 1, a column is selected from matrix Ci, forming matrix M1 representing

LAP. The Hungarian method is then applied to optimise the permutation q′, which allo-

cates machines to jobs, achieving a feasible solution for 3IAP. Illustrating TLS approach,

the 3IAP example of size four previously examined using the RPN method is revisited

below.



100 Chapter 5. Genetic Algorithm

At the end of the �rst step, a feasible solution is reached at a total cost of 134 and

the resulting permutation q = [3,0,1,2]. To apply the second step of TLS, matrices are

rearranged according to q, and the columns are selected to constitute another matrix M1

shown below.

M1 =



11 45 34 29

55 15 44 44

16 98 55 41

29 38 78 97



M1 =



11 45 (34) 29

55 (15) 44 44

16 98 55 (41)

(29) 38 78 97



The highlighted coe�cients represent the Hungarian method solution of LAP associ-

ated to M1.

The Hungarian method optimises the permutation q′ = [2,1,3,0], allocating machines

to jobs and yielding a better feasible solution for 3IAP with a total cost of 119. In the

third step, matrices are permuted by q′ to construct a third matrix, M2. The coe�cients

in M2 occupy the same positions as in the above Hungarian method solution.

M2 =



78 34 68 64

15 71 41 35

79 74 41 55

74 57 13 29



M2 =



78 (34) 68 64

(15) 71 41 35

79 74 41 (55)

74 57 (13) 29
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Table 5.1: Outcomes of two iterations of TLS method.

Input permutation Solution Cost Output permutation

Iteration 1

p [3, 1, 2, 0] [11, 44, 41, 38] 134 q [3, 0, 1, 2]
q [3, 0, 1, 2] [29, 15, 34, 41] 119 q′ [2, 1, 3, 0]
q′ [2, 1, 3, 0] [34, 15, 55, 13] 117 p [1, 0, 3, 2]

Iteration 2

p [1, 0, 3, 2] [14, 15, 16, 3] 48 q [3, 0, 2, 1]
q [3, 0, 2, 1] [16, 15, 3, 14] 48 q′ [3, 1, 0, 2]
q′ [3, 1, 0, 2] [14, 15, 16, 3] 48 p [1, 0, 3, 2]

The coe�cients in bold represent the Hungarian method solution of LAP associated with

M2.

The Hungarian method optimises the permutation p = [1,0,3,2], allocating jobs to

factories and generating another feasible solution for 3IAP with a total cost of 117. The

second iteration of the algorithm ends with an optimal solution, achieving a total cost of

48, as displayed in Table 5.1.

5.3.3 TLS Numerical Experiments

Computational experiments were conducted on �ve 3IAP instances of size 10, selected

from a random dataset previously de�ned as Sample 2. Each instance undergoes �ve runs,

wherein each run initiates with a random input permutation and proceeds through nine

consecutive iterations. Table 5.2 presents the numerical results. Each table row represents a

run, displaying input permutation, the best solution achieved, and the number of iterations

required to attain that solution.

Each row summarises the execution of the TLS method across multiple iterations.

For example, during the �rst run of Instance 1, the results of nine consecutive iterations

show that the best solution found has a cost of 37, reached at the end the third iteration,

as displayed in Table 5.3
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Table 5.2: Outcomes of TLS application on �ve instances of size 10.

Run Input permutation Iteration Solution Cost

Instance 1

1 [8,0,1,3,7,5,6,2,4,9] 3 [4,6,8,9,2,1,3,1,2,1] 37
2 [8,5,3,9,6,1,2,0,4,7] 6 [7,6,5,3,2,7,2,6,1,1] 40
3 [5,8,4,2,3,0,6,1,7,9] 4 [2,5,2,4,2,1,1,5,4,6] 32
4 [6,3,2,5,8,0,7,9,1,4] 9 [2,6,2,3,3,1,1,5,5,7] 35
5 [1,4,7,5,6,0,9,8,3,2] 5 [2,5,1,17,2,1,7,4,1,1] 41

Instance 2

1 [1,4,5,7,8,2,3,6,0,9] 6 [1,2,1,5,4,16,9,1,6,7] 52
2 [2,5,9,8,1,6,0,4,3,7] 9 [15,2,1,5,3,5,1,7,6,8] 53
3 [7,6,1,8,9,0,5,2,4,3] 4 [1,6,4,12,10,5,1,4,1,9] 53
4 [4,0,5,6,3,8,2,1,9,7] 4 [2,1,8,2,5,8,3,7,11,7] 54
5 [4,2,3,0,5,8,6,1,9,7] 7 [6,1,1,10,5,20,1,3,6,1] 54

Instance 3

1 [9,6,7,1,2,0,4,3,8,5] 6 [4,5,4,6,9,1,2,2,2,5] 40
2 [1,5,0,3,7,6,8,9,4,2] 4 [6,1,9,6,7,11,2,5,4,1] 52
3 [2,7,8,3,9,0,4,1,6,5] 7 [4,5,4,7,6,7,10,3,4,3] 53
4 [4,0,8,2,1,9,5,7,6,3] 8 [4,1,4,8,2,7,8,2,2,1] 39
5 [5,3,2,8,7,9,6,1,4,0] 1 [4,9,3,10,2,15,2,3,6,1] 55

Instance 4

1 [3,8,2,4,5,6,1,0,9,7] 5 [3,1,1,3,2,16,1,3,15,5] 50
2 [1,9,6,3,7,4,2,0,5,8] 6 [3,16,2,6,1,11,1,2,6,6] 54
3 [4,0,3,9,6,7,2,8,1,5] 6 [4,0,3,9,6,7,2,8,1,5] 47
4 [2,3,8,4,1,9,7,6,0,5] 1 [3,1,2,16,2,6,1,2,3,17] 53
5 [9,2,4,5,6,3,8,0,7,1] 5 [3,1,2,11,7,3,5,3,1,10] 46

Instance 5

1 [9,0,8,1,4,6,2,3,7,5] 5 [48,12,37,75,26,63,37,12,31,13] 354
2 [5,8,4,1,9,3,0,7,2,6] 3 [18,12,36,159,34,143,15,23,31,13] 484
3 [0,4,7,3,6,9,5,8,1,2] 9 [56,50,36,82,26,63,15,46,31,13] 418
4 [9,1,3,4,5,6,8,2,0,7] 8 [153,12,36,42,26,63,15,54,31,13] 445
5 [1,2,6,9,5,8,4,7,3,0] 9 [112,12,36,43,26,63,15,88,31,13] 439

Table 5.3: Running three iterations for the �rst run.

Input permutation Solution Cost Output permutation

Iteration 1

p [8,0,1,3,7,5,6,2,4,9] [9,6,19,47,26,9,21,27,13,1] 178 q [3,4,9,5,1,2,7,6,8,0]
q [3,4,9,5,1,2,7,6,8,0] [6,13,1,9,19,41,2,22,9,6] 128 q′ [8,9,4,5,7,3,6,0,1,2]
q′ [8,9,4,5,7,3,6,0,1,2] [2,5,7,6,2,7,2,6,2,13] 52 p [3,9,1,7,0,2,5,6,4,8]

Iteration 2

p [3,9,1,7,0,2,5,6,4,8] [7,8,8,11,28,9,6,4,13,7] 101 q [3,4,1,8,2,0,5,6,9,7]
q [3,4,1,8,2,0,5,6,9,7] [7,13,8,7,9,28,6,4,8,11] 101 q′ [0,8,2,9,5,4,6,7,1,3]
q′ [0,8,2,9,5,4,6,7,1,3] [3,25,2,4,2,9,2,8,2,7] 64 p [1,0,5,4,7,2,3,6,9,8]

Iteration 3

p [1,0,5,4,7,2,3,6,9,8] [4,6,20,35,14,9,7,1,2,7] 105 q [5,9,6,2,4,7,3,8,1,0]
q [5,9,6,2,4,7,3,8,1,0] [9,2,1,3,1,8,1,2,4,6] 37 q′ [8,9,5,0,7,6,3,2,1,4]
q′ [8,9,5,0,7,6,3,2,1,4] [4,6,8,9,2,1,3,1,2,1] 37 p [1,0,6,5,9,3,7,2,4,8]
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5.4 Hybrid Algorithm Description

Genetic Algorithms show mixed success in addressing optimisation problems. In general,

standard GAs may falter in some cases. Better outcomes are observed through integrating

local improvement heuristics, exempli�ed by the local search methods. In this section, a

new hybrid genetic algorithm is introduced for solving 3IAP. The approach integrates the

adapted TLS method with the genetic algorithm, yielding promising outcomes, as observed

in its application to diverse optimisation challenges.

5.4.1 Encoding Solution

Any feasible solution to 3IAP is de�ned by a pair of permutations; once the �rst permuta-

tion is set, the Hungarian method determines the second. The chosen encoding method is

the permutation representation, where each feasible solution is associated with a chromo-

some represented by a permutation of n nonnegative integers. Each element of a chromo-

some is called a `gene'. Every member of the initial population is generated by a random

permutation.

Example 1 : Let p be a chromosome representing a feasible solution of 3IAP of size

9, as shown in Table 5.4.

Table 5.4: A permutation representing a chromosome.

3 2 6 4 9 1 5 7 8

5.4.2 Initial Population

Various methods, including the Diagonals Method, Greedy-Style Procedure, Random Per-

muted Number technique, or the local search method can be employed to generate the

initial population. The TLS method is preferentially applied to enhance chromosome

quality; hence, every member of the initial population indicates a local minimum within

the solution space. Starting with a good initial population may accelerate GA convergence.
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An iteration resulting in a new population is called `generation'. Across generations,

the iterative evolutionary process preserves speci�c hereditary features, and enhances the

overall �tness function. A better �tness value o�ers an individual a better chance to be

selected for the next generation. Methods exist to de�ne an appropriate �tness function.

Given that the 3IAP objective is to minimise the total assignment cost, the objective func-

tion can be considered as a �tness function.

Algorithm 5: Initial Random Population.
Input: A nonnegative integer number N .

Output: A random population of chromosomes.

1 P := ∅.

2 for i← 1 to N do

3 Generate a random permutation pi.

4 Apply TLS method starting with pi .

5 Generate permutations qi and q′i.

6 Update the population P := P ∪{ pi, qi, q′i}.

7 end for

8 return An initial random population.

5.4.3 Stopping Criteria

In theory, the search process can continue inde�nitely unless the optimal solution of the

problem is known beforehand. In practice, algorithms necessitate termination. Common

criteria include a �xed number of iterations or CPU time. Termination also occurs when

neither a local nor a global optimum are achieved, or convergence is unattainable. Another

criterion involves termination when the solution found shows no improvement over a spec-

i�ed iteration count, indicating a local or global optimum has been reached. Additionally,

termination may be prompted by a generation average �tness closely aligning with the

�tness value of the solution found. Two termination criteria will be used in this project:

convergence detection and no improvement detection.
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5.4.4 Crossover

From an initial population of a predetermined size, two random chromosomes are selected

as parents. The principal genetic operator, the crossover, involves swapping a segment

of one parent chromosome with the corresponding segment of the other chromosome at

a random position. The single-point crossover is a fundamental operator. Alternatively,

multipoint crossover allows the exchange of multiple segments between chromosomes, con-

tributing to increased evolutionary e�ciency of genetic algorithms and partially mapped

crossover, whose principle is to exchange a partial segment between two parents. Utilis-

ing these crossover operators enhances the adaptability of genetic algorithms by enabling

exploration across diverse solution spaces, thereby increasing the algorithm e�cacy in so-

lution re�nement.

Example 2 : Let p and q be two chromosome parents, as shown in Table 5.5 below.

Table 5.5: Two chromosomes chosen from the population.

3 2 6 4 9 1 5 7 8
4 1 9 2 6 5 7 8 3

Algorithm 6: The single-point crossover.
Input: Two permutations p and q of size n chosen as parents.

Output: Two o�spring p′ and q′ resulting from the single-point crossover.

1 Select a random position i from [1,2,. . . ,n].

2 Split both parents at position i, such that p = p1 ∪ p2 and q = q1 ∪ q2.

3 Set p′ = p1 ∪ q2 and q′ = q1 ∪ p2.

4 return Two o�spring p′ and q′ resulting from the crossover.

Table 5.6 illustrates an example of two o�spring resulting from a single-point crossover.

Example 3 : Two o�spring resulting after the single-point crossover of p and q.

Table 5.6: The single-point crossover.

3 2 6 4 9 5 7 8 3
4 1 9 2 6 1 5 7 8



106 Chapter 5. Genetic Algorithm

Partially Mapped Crossover (PMX) is a genetic operator commonly used in genetic

algorithms to generate new o�spring by combining two parent chromosomes randomly se-

lected from the population. Algorithm 7 outlines the steps of PMX.

Algorithm 7: PMX Crossover.
Input: Two permutations p and q of size n chosen as parents.

Output: Two o�spring p′ and q′ resulting from the PMX crossover.

1 Select two random positions i and j from [1,2,. . . ,n].

2 Split both parents at these positions.

3 p = pl ∪ pm ∪ pr and q = ql ∪ qm ∪ qr.

4 Set p′ = pl ∪ qm ∪ pr and q′ = ql ∪ pm ∪ qr.

5 if p′ and q′ contain duplicated genes then

6 Repair p′ and q′ to preserve their feasibility.

7 Update p′ and q′.

8 end if

9 return Two o�spring p′ and q′ resulting from the PMX crossover.

Let p and q be two random chromosomes selected as parents. Select in both parents,

two random positions, i and j, then split p and q into three segments. The PMX algorithm

is used to reproduce new chromosomes p′ and q′ by exchanging the middle segment of p

with the corresponding segment of q. Genes outside these segments remain unchanged.

However, the occurrence of duplicated values in the resulting sequences renders them in-

valid, necessitating repair to ensure solution feasibility. Tables 5.7 and 5.8 illustrate the

two phases of the PMX algorithm.

The following example refers to the same permutations p and q to illustrates the

PMX crossover.

Example 4 : Two sequences resulting from the PMX crossover of p and q.

Table 5.7: The PMX crossover result before the repair.

3 2 6 2 6 5 5 7 8
4 3 9 4 9 1 7 8 1
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These two sequences are deemed unfeasible solutions due to duplicated genes, needing

repair for feasibility. The repair involves substituting the duplicated genes with the omitted

ones. The updated chromosomes are presented in Table 5.8.

Table 5.8: The PMX crossover result after the repair.

3 4 9 2 6 5 1 7 8
2 3 6 4 9 1 7 8 5

5.4.5 Mutation Operator

The mutation operator follows the crossover operator with a low probability pm facilitating

a good diversi�cation of the solution space exploration. The mutation modi�es one or more

genes within a chosen chromosome, reintroducing novel genetic material and widening pop-

ulation variability. The stochastic alteration of solution elements increases the population

diversity, o�ering a mechanism to escape a local minimum. In particular, the mutation

operator frequently yields solutions beyond the explored subspace.

The mutation causes small random adjustments in the chromosome structure to ob-

tain new solutions. The objective is to maintain population diversity, which is often applied

with a low pm probability; otherwise, it will reduce the e�ectiveness of GA. In summary,

the mutation operator is responsible for diversifying the search process. Literature contains

a variety of mutation operators.

5.4.5.1 Swap Mutation

In the swap mutation of genetic algorithms, two genes within a chromosome are randomly

chosen, and their values are exchanged. This operator has the potential to generate a

better solution, as described through Algorithm 8, below.
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Algorithm 8: Swap Mutation.

Input: A chromosome p of size n and its �tness c(p).

Output: A �tter chromosome p′ of size n resulting from the swap mutation.

1 Select two random positions i and j from [1,2,. . . ,n].

2 if p = ( p1, p2, . . . , pi, pi+1, . . . , pj , pj+1, . . . , pn) then

3 Set p′ = ( p1, p2, . . . , pj , pi+1, . . . , pi, pj+1, . . . , pn).

4 Compute c(p′) �tness of chromosome p′.

5 end if

6 if c(p′) < c(p) then

7 Substitute p with p′.

8 end if

9 return A new chromosome p′ can result from the swap mutation.

Let p = ( p1, p2, . . . , pi, pi+1, . . . , pj , pj+1, . . . , pn) be a chromosome. Randomly

select two distinct genes at positions i and j, interchanging their values, to generate a new

chromosome denoted p′ = ( p1, p2, . . . , pj , pi+1, . . . , pi, pj+1, . . . , pn). The chromosome

p is substituted with p′ only if its cost c(p′) is less than c(p). This process fosters diversity

and exploration in the population, as illustrated in the example below.

Example 5 : Let p be a chromosome similar to that in Table 5.4.

Table 5.9: The permutation p representing a chromosome.

3 2 6 (4) 9 1 (5) 7 8

Table 5.10: A chromosome p′ can replace p by the swap mutation.

3 2 6 (5) 9 1 (4) 7 8

5.4.5.2 Scramble Mutation

Let p represent a chromosome. Randomly select two positions, i and j and scramble all

genes between i and j, yielding a new chromosome denoted p′. This process is described

in Algorithm 9 below.
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Algorithm 9: Scramble Mutation.

Input: A chromosome p of size n and its �tness c(p).

Output: Another chromosome p′ of size n resulting from the scramble mutation.

1 Select two random positions i and j from [1,2,. . . ,n].

2 Set q = ( pi, pi+1, . . . , pj) a segment of p.

3 Shu�e q into q′.

4 Set p′ = ( p1, p2, . . . , pi) ∪ q′ ∪ ( pi+1, . . . , pj , pj+1, . . . , pn).

5 Compute c(p′) �tness of chromosome p′.

6 if c(p′) < c(p) then

7 Substitute p with p′.

8 end if

9 return A new chromosome p′ can result from the scramble mutation.

Consider a chromosome p. Randomly select a segment q of p, and scramble all genes

of q, giving rise to a new chromosome, p′. The scramble mutation is displayed in the

example below.

Example 6 : Let p be a chromosome similar to that in Table 5.4.

Table 5.11: The permutation p representing a chromosome.

3 2 6 (4) (9) (1) (5) 7 8

Let q = [4, 9, 1, 5] be a segment of p, and q and is shu�ed into q′ = [5, 4, 1, 9].

Table 5.12: A chromosome p′ resulting from p by the scramble mutation.

3 2 6 (5) (4) (9) (1) 7 8

5.4.5.3 Inversion Mutation

The inversion mutation is similar to a scramble mutation. Let p be a chromosome. By

randomly selecting two positions i and j, reverse the order of the genes between i and j

to generate a new chromosome, p′. This operator, promoting genetic diversity and explo-

ration within the population, is described in Algorithm 10 below.
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Algorithm 10: Inversion Mutation.

Input: A chromosome p of size n and its �tness c(p).

Output: Another chromosome p′ of size n resulting from the inversion mutation.

1 Let p = ( p1, p2, . . . , pn) be a permutation of size n.

2 Select two random positions i and j from [1,2,. . . ,n].

3 Set q = ( pi, pi+1, . . . , pj) a segment of p.

4 Set q′ = ( pj , pj−1, . . . , pi) inverse of segment q.

5 Set p′ = ( p1, p2, . . . , pi) ∪ q′ ∪ ( pi+1, . . . , pj , pj+1, . . . , pn).

6 Compute c(p′) �tness of chromosome p′.

7 if c(p′) < c(p) then

8 Substitute p with p′.

9 end if

10 return A new chromosome p′ can result from the inversion mutation.

Let p = ( p1, p2, . . . , pi, pi+1, . . . , pj , pj+1, . . . , pn) be a chromosome. Randomly

select two genes at positions i and j, reverse the order between them, to generate a new

chromosome p′ = ( p1, p2, . . . , pi−1, pj , pj−1, . . . , pi, pj+1, . . . , pn). This process is

illustrated in the example below.

Example 7 : Let p be a chromosome similar to that in Table 5.4.

Table 5.13: The permutation p representing a chromosome.

3 2 6 (4) (9) (1) (5) 7 8

Let q = [4, 9, 1, 5] be a segment of p, and q and is inversed into q′ = [5, 1, 9, 4].

Table 5.14: A chromosome p′ resulting from p by the inversion mutation.

3 2 6 (5) (1) (9) (4) 7 8

5.5 Hybrid Algorithm Implementation

After introducing the local search method TLS, renowned for its e�cacy in solving 3IAP,

this technique will be hybridised with the genetic algorithm. The implementation of the
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Figure 5.4: The Hybrid Genetic Algorithm structure.

hybrid genetic algorithm follows the ensuing steps. Figure 5.4 presents the main compo-

nents of the hybrid genetic algorithm, exhibiting a structure nearly identical to that of the

simple genetic algorithm. The sole di�erence lies in integrating the local search method

just after the mutation operator.

The genetic algorithm commences by randomly reproducing an initial population of a

predetermined size. Subsequently, the crossover operator selects two parent chromosomes

based on their �tness function values, producing two o�spring. The mutation operator is

then applied to the newly generated chromosomes. The algorithm computes the �tness

values of newly generated individuals and sorts the whole in ascending order. Following

the principle of survival of the �ttest, the survivors for the next generation are identi�ed.

Then, the algorithm �nds the best solution from this generation. This process iterates

until one of the two termination criteria is satis�ed.

Figure 5.5 represents the Hybrid Genetic Algorithm �owchart. The initial population

is randomly generated, every feasible solution is produced by the adapted TLS method

which enhances its quality. As a result, each member of the initial population is already a

local minimum within the solution space. The initial population is of size N = 100 which

remains invariable through the whole process. Sort the population in increasing order

then select the candidate with minimum cost as the best solution found for the current

generation. The While loop attempts to improve the solution found.

The implementation features two stopping criteria, the �rst ends the algorithm if the

solution quality does not improve over a �xed prede�ned number of consecutive generations.



112 Chapter 5. Genetic Algorithm

Figure 5.5: The Hybrid Genetic Algorithm �owchart.

The second criterion terminates the algorithm after a maximum number of iterations.

Various crossover operators are documented in the literature, and there is no evidence

of superiority of any one among them. The proposed algorithm in this project employs the

partially mapped crossover (PMX) operator introduced by (Goldberg and Lingle, 1985) to

address the travelling salesman problem (TSP). Our hybrid algorithm realises the exchange

of a random partial segment between two parents. Subsequently, an adjustment step may

be necessary to preserve the feasibility of the new solutions.

The mutation operator within the algorithm initiates three successive swaps on ran-

dom chromosomes, followed by the application of the TLS method to enhance their quality.

A subsequent �tness assessment determines whether the modi�ed chromosomes surpass

their predecessors in �tness value. Only the best chromosomes are incorporated into the

population, maintaining a constant size through equivalent removals. The current genera-

tion is updated each time to achieve a better solution. The hybrid approach integrates a

local search with the genetic algorithm as illustrated in Figure 5.4.

Based on the principle of survival of the �ttest, the algorithm only incorporates

newly generated individuals if their �tness values show improvement. Then, the current

generation is sorted in ascending order according to the �tness function values. When a
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newly generated solution outperforms the existing one, it is added to the candidate pool,

prompting the algorithm to repeat the process. The iterative loop continues until there is

no improvement in the �tness value across a predetermined number of iterations. Thus,

the algorithm terminates after multiple generations.
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Algorithm 11: Hybrid Genetic Algorithm - HGA
Input: pop_size=100, num_generations=1000, num_crossovers=75,

num_mutations=25, median OR minimum, tol_size=10, cost_dataset.

Output: Best solution possible for 3IAP.

1 Apply TLS to generate initial population of size pop_size.

2 Compute the cost of each individual in the population.

3 Sort the population by cost in ascending order.

4 if median then

5 Compute pop_cost as the median cost of the population.

6 end if

7 else

8 Compute pop_cost as the minimum cost of the population.

9 end if

10 for niter ← 1 to num_generations do

11 for nx← 1 to num_crossovers do

12 Apply PMX crossover a few times and update the population.

13 end for

14 for nm← 1 to num_mutations do

15 Select a random element from the population

16 Apply swap mutation to the element.

17 Apply TLS to that element.

18 Compute the Cost of the resulting element as e_cost.

19 Compute the Median Cost of the current population as temp_cost

20 if e_cost < temp_cost then

21 Drop the element with the highest cost from the population.

22 Add the resulting element to the population.

23 end if

24 end for

25 Recompute pop_cost for the population as done above.

26 if pop_cost did not change for the last tol_size iterations then

27 Exit

28 end if

29 end for

30 return Solution for 3IAP with the minimum cost possible.
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5.5.1 Numerical Experiments

Implementing the hybrid genetic algorithm, Algorithm 11, in Python via a Jupyter Note-

book begins with loading the necessary data �le. Subsequently, the program generates

an initial population comprising 100 individuals, using a random function for initial seed-

ing and the TLS method, which computes the �tness value of each individual within this

population.

In this algorithm, each iteration produces a new generation. Users have two metrics

for comparing generations: minimum or median cost. The program execution is capped at

1,000 iterations, with an adaptive termination criterion allowing cessation past 10, 15, or

20 consecutive iterations without �tness function improvement. Such a mechanism allows

for the balancing of exploration and exploitation, ensuring the algorithm remains e�cient.

The program core loop encompasses two For loops dedicated to crossover and mu-

tation operators. The PMX crossover involves selecting two random parents to produce

o�spring and calculating their �tness values. Subsequently, the algorithm enforces a selec-

tion criterion, retaining only the two �ttest individuals out of the four individuals (parents

and o�spring), thereby discarding the lesser-�t individuals to optimise the population ge-

netic quality.

The mutation operator executes three swaps on randomly chosen individuals, with

the stipulation that modi�ed elements supplant their predecessors merely if an enhanced

�tness value is observed.

The program ceases execution upon ful�lment of either of two prede�ned criteria.

Upon termination, it prints the initial and �nal populations, each comprising 100 feasible

solutions, arranged in ascending order by cost. The program also reports the total iterations

completed before its end, accompanied by a graphical representation of the decreasing

�tness function. The graph below shows the variation of the median of the �tness function

of the resulting generations according to the number of iterations. Moreover, it assesses

population diversity by enumerating the distinct individuals, o�ering insights into the

genetic variability and evolutionary dynamics experienced throughout its execution.
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Table 5.15 illustrates the 3IAP example of instance 3 of size 10 from Sample 1.

Table 5.15: Outcomes of HGA for one 3IAP instance of size 10.

Index Initial Population Cost | Final Population Cost

1 [6, 1, 7, 8, 0, 9, 3, 5, 2, 4] 24 ∥ [6, 1, 9, 8, 3, 2, 0, 7, 4, 5] 21
2 [3, 1, 8, 0, 2, 4, 6, 7, 9, 5] 31 ∥ [6, 1, 7, 8, 0, 9, 3, 5, 2, 4] 24
3 [9, 3, 2, 1, 6, 8, 4, 7, 5, 0] 36 ∥ [3, 6, 1, 9, 7, 8, 5, 4, 0, 2] 25
4 [8, 6, 5, 3, 4, 7, 1, 9, 0, 2] 37 ∥ [2, 6, 0, 3, 5, 7, 8, 1, 4, 9] 25
5 [6, 0, 3, 5, 1, 4, 9, 2, 8, 7] 37 ∥ [4, 0, 3, 7, 2, 1, 9, 5, 8, 6] 27

... ... ... ∥ ... ...

96 [2, 4, 9, 5, 1, 0, 7, 8, 3, 6] 68 ∥ [4, 1, 0, 3, 8, 2, 5, 6, 9, 7] 41
97 [1, 9, 3, 5, 6, 0, 8, 2, 4, 7] 70 ∥ [0, 9, 2, 6, 4, 7, 8, 5, 1, 3] 41
98 [7, 1, 2, 5, 0, 8, 4, 9, 3, 6] 71 ∥ [8, 7, 2, 6, 5, 4, 9, 1, 0, 3] 41
99 [2, 3, 4, 6, 1, 0, 5, 8, 9, 7] 71 ∥ [2, 1, 9, 5, 0, 6, 8, 7, 4, 3] 41
100 [2, 7, 4, 5, 8, 0, 3, 9, 6, 1] 86 ∥ [4, 0, 7, 8, 6, 2, 5, 9, 3, 1] 41

The same table displays an extract of the initial and �nal populations, arranged in

ascending order by cost. The initial best solution of cost 24 improved to an optimal �nal

solution of cost 21, achieved over 106 iterations after the stagnation of the algorithm during

the last 20 consecutive iterations.

The results in Table 5.15 show a signi�cant reduction in the cost range, from 62 in

the initial population to 20 in the last population, evidencing the algorithm e�ectiveness in

optimisation. The best result achieved for the chosen instance of size 10 equals 21, which

is an optimal solution. Furthermore, 85 distinct individuals in each population undergo

substantial genetic diversity during the evolutionary process.

In this study, I introduced a hybrid genetic algorithm (HGA) called TLS, which in-

corporates an e�ective local search technique into the conventional GA structure. This

enhancement signi�cantly improves solution quality for 3IAP. Using Python Jupyter Note-

book for HGA deployment, the algorithm starts with a random initial population and

iteratively achieves optimal or near-optimal solutions for 3IAP over successive generations.

Numerical experiments illustrate the HGA e�ciency in handling large instances of 3IAP.



Figure 5.6: The graph of the HGA results.



Chapter 6

Future Developments

Two potential future developments and expected applications are proposed at the end of

this project. The �rst extension suggests a the correlation between cost matrices and the

optimal total cost of the assignment. The second extension involves integrating variable

costs de�ned by speci�c probability distributions

6.1 First Extension

As part of future developments of the current project, an investigation into possible ex-

tensions is planned, including the exploration of the potential correlation between the

structure of cost matrices and the total assignment cost and the dependence of the ma-

trices structure and their connection to optimal solutions. The focus will be on analysing

the stochastic dependence of a square matrix, let us say of size four, and exploring its

multivariate properties. The aim will be to examine whether a correlation exists between

the matrices' con�guration, such as individual columns, and their impact on the optimal

solution utilising copula theory and Sklar's theorem (1959) as analytical tools.

A copula is a probability model representing a multivariate uniform distribution,

facilitating variable association analysis. This powerful statistical tool helps to discern

the dependency structure in multivariate distributions and understand joint probabilities.
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Copulas are functions that separate the marginal distributions from the dependency struc-

ture of a given multivariate distribution, as they can identify shady correlations observed

in data.

Copula modelling has emerged as a pivotal tool in �nancial analysis, sparking debate

since the 2008/2009 �nancial crisis. Despite challenges associated with its application, the

comprehension of copulas retains signi�cance in risk management. Currently, copulas �nd

application in advanced �nancial analysis to understand better outcomes featuring fat tails

and skewness.

The investigation will explore the possibility of identifying rules or patterns of struc-

ture of cost matrices having a high chance of yielding the optimal solution in a reasonable

time.

6.2 Second Extension

A potential project application in the economic and commercial context is worth consid-

ering. The Three-index Assignment Problem pertains to the optimal allocation of tasks

to machines within factories. This assignment problem can be applied to manufacturing

TV solar panels in the UK, with the primary objective of optimising pro�t. Over the past

decade, the United Kingdom has witnessed signi�cant growth in solar PV installations,

driven by government incentives and increasing demand for clean electricity. Escalating

domestic energy prices, up by 221% for gas and 193% for electricity as of 2020, have spurred

the expansion of the residential solar PV market, with increased solar module orders in

2020 and 2021. Anticipated technological advancements are expected to further boost

residential solar PV demand in the future.

UKSOL, a solar PV module producer in Buckinghamshire, aims to manufacture a pre-

determined quantity of solar panels weekly or monthly for global distribution. Production

involves �xed and variable costs for raw materials, equipment, maintenance, and labour.

All incurred costs are assumed to be normally distributed. Imagine that UKSOL plans to

expand its production throughout the UK, and the cost distribution varies across regions
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but remains follows a Normal probability distribution. A comparative analysis between PV

solar panel manufacturing in China and the UK is worth conducting, assuming identical

product speci�cations. A business person owning production units in both countries needs

to satisfy global demands e�ectively. The project will aim to optimise task allocation to

machines in di�erent factories to achieve an optimal outcome that meets speci�c demand

requirements. If a particular type of PV solar panels is exclusively produced in the UK and

China, with costs following a normal distribution, the company manager will strategically

plan the production quantities in the UK and China to serve a particular demand let us

say a third country Italy.

The variation of the cost distributions a�ects the allocation of tasks to machines;

economists often model cost distributions based on sectors. The next step will identify suit-

able references where economists have successfully estimated cost distributions for adoption

in the Three-index Assignment project. Some authors have remarkably, formulated energy

cost estimation models for various countries, o�ering valuable insights for the study.

Focusing solely on energy costs simpli�es the model application. The availability of

monthly time-series data for energy costs in each country facilitates the establishment of

empirically derived cost distributions. This data comprises the "Index for Energy," provid-

ing daily energy cost prices. Leveraging energy cost estimation enables proactive planning

of PV solar panel production, alternating between one week in the UK and the subse-

quent three weeks in China, optimising production decisions based on cost �uctuations.

Energy cost estimation aids proactive scheduling of PV solar panel production for optimal

e�ciency and cost-e�ectiveness.

During the sixties, seventies and eighties, economists conducted extensive studies on

cost distributions, particularly in manufacturing, as evidenced in prominent economic jour-

nals like the American Quarterly Review. Some investigations focused on cost distributions

related to capital production. Concurrently researchers also explored wage distribution,

concluding that wages are log-normal distributed. Analyses of wage distribution were con-

sistently initiated by considering the log-normal model. In �nancial markets, stock returns

are commonly assumed to be normally distributed, leading to the popularity of the normal

probability distribution model supported by several authors who proved it to �t 95% of
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their cases.

Future research will focus on the costs structure by choosing either rows or columns

of the matrices, situating the study in an economic framework. Labour distribution be-

comes variable as costs �uctuate due to varying job expenses across countries. Thus, this

variability is critical for a comprehensive analysis of economic contexts.

In conclusion, it is imperative to explore empirical studies about the costs distribution

related to the project.



Chapter 7

Conclusion

This thesis investigated the axial Three-Index Assignment Problem (3IAP), an extended

version of the classical two-dimensional assignment problem. The study adopted an al-

gorithmic approach to solving the problem and introduced two e�cient heuristics, the

Greedy-style Procedure (GSP) and the Diagonals Method (DM). These methods were

further re�ned to manage tie-cases, resulting in three distinct variants. Furthermore, by

exploring speci�c features of the cost matrices, two novel categories designed to solve 3IAP

were proposed to address 3IAP.

Comprehensive computational tests demonstrated that the proposed heuristics e�-

ciently generate feasible solutions, usually of high quality within polynomial time. This

approach yielded 21 distinct solutions, from which the best result from the two heuristic

classes was selected. Therefore, for every 3IAP case, a quality solution was achieved within

a competitive time frame.

Two computer programs utilising Gurobi and Python-MIP solvers were developed

and implemented for comparative evaluation. Each program reached optimal solutions

within a competitive timeframe, benchmarked against existing data and randomly gener-

ated instances. However, the Python-MIP performance signi�cantly exceeded Gurobi's,

demonstrating superior e�ciency in solving 3IAP.
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The literature review indicates that the largest 3IAP instance previously solved to

optimality was size n=26. The programs developed in this study have notably exceeded

this benchmark, achieving optimal solutions for 3IAP instances of sizes n=35, 60, and

70, with the potential for more. For larger sizes, the proposed heuristics produced well-

approximated solutions within a reasonable CPU time frame.

The research project then introduced the Genetic Algorithm (GA) as an approxima-

tion method, drawing inspiration from biological evolution and natural selection to solve

NP -hard optimisation problems. The study speci�cally applied GA to 3IAP, endeavouring

to achieve optimal or near-optimal solutions through the iterative evolution of a pool of

candidate solutions across multiple generations.

Although traditional GAs achieve satisfactory results, for this study I introduced

a hybrid genetic algorithm (HGA) that incorporates an e�ective local search technique,

TLS, into the conventional GA structure, signi�cantly enhancing solution quality for 3IAP.

Using Python Jupyter Notebook for HGA deployment, starting with a random initial

population, the algorithm iteratively attained optimal or near-optimal solutions for 3IAP

over successive generations. The numerical experiments demonstrate HGA e�cacy in

e�ciently handling large instances of 3IAP.

Chapters 3, 4 and 5 constitute the core contribution of this study. Summaries of

Chapters 3 and 4 were submitted as an article to a specialised journal, RAIRO - Operations

Research (Cairo-ro.org), which was recently accepted on July 4, 2024, and the manuscript

is now under print. Following this thesis completion, Chapter 5 will be similarly prepared

and submitted for publication, continuing the trend of disseminating signi�cant research

�ndings to the academic community.

My contribution presents a new algorithmic methodology for addressing 3IAP, high-

lighted by the development of e�cient heuristics, exact algorithms for �nding optimal

solutions, and a hybrid genetic algorithm designed for large-scale instances, all poised for

potential publication. This project has allowed me to acquire novel strategies for tack-

ling NP -hard optimisation problems, enhance my computer programming pro�ciency in

Python, and familiarise myself with the LaTeX word processing software.
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