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Abstract 

The Assignment Problem is a basic combinatorial optimization problem. In a weighted 

bipartite graph, the Assignment Problem is to find a largest sum of weights matching. The 

Hungarian method is a well-known algorithm which is combinatorial optimization. 

Adding a new row and a new column to a weighted bipartite graph is called the 

Incremental Assignment Problem (IAP). The maximum weighted matching (the optimal solution) 

of the weighted bipartite graph has been given. The algorithm of the Incremental Assignment 

Problem utilizes the given optimal solution (the maximum weighted matching) and the dual 

variables to solve the matrix after extended bipartite graph. 

This thesis proposes an improvement of the Incremental Assignment Algorithm (IAA), 

named the Improved Incremental Assignment Algorithm. The improved algorithm will save the 

operation time and operation space to find the optimal solution (the maximum weighted 

matching) of the bipartite graph.  

We also present the definition of the Incremental Group Role Assignment Problem that 

based on the Group Role Assignment Problem (GRAP) and Incremental Assignment Problem 

(IAP). A solution has been designed to solve it by using the Improved Incremental Assignment 

Algorithm (IIAA).  

In this thesis, simulation results are presented. We utilize the tests to compare the 

algorithm of the Incremental Assignment Problem and the Improved Incremental Assignment 

Algorithm (IIAA) to show the advantages of IIAA.  

 

Keywords 

Assignment Problem, Weighted Bipartite Graph, Hungarian Algorithm, Incremental Assignment 

Problem, Improved Incremental Assignment Algorithm, Group Role Assignment.   



 

iv 

 

Acknowledgments 

I would like to express my appreciation to my supervisors Dr. Youssou Gningue and 

Haibin Zhu. When I get confused, they always give me directions to find the way to solve the 

problem. They provide support and considerable time into this research, and many excellent 

suggestions to me. My thesis would be difficult to finish without their guidance and assistance. 

I am so grateful to Dr. Matthias Takouda of accepting to be a member of the committee. 

Also, I would like to thank my family members, especially my mother and my aunt. 

Without their support, I could not have a chance to be a graduate student in Laurentian 

University, not mention to write this thesis. Their love is the most precious things in my life. 

Finally, I am grateful to my friend, Yashuang Wang. She is always be there to comfort 

me whenever I need. 

 



 

v 

 

Table of Contents 

Abstract .............................................................................................................................. iii 

Acknowledgments.............................................................................................................. iv 

Table of Contents ................................................................................................................ v 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Appendix .............................................................................................................. xiii 

Abbreviations ................................................................................................................... xiv 

Chapter 1 ............................................................................................................................. 1 

1 Assignment Problem ...................................................................................................... 1 

1.1 Background ............................................................................................................. 2 

1.2 Perfect Matching ..................................................................................................... 3 

1.3 Bipartite Matching Algorithms ............................................................................... 4 

1.3.1 A labeling (dual variables) method to find a maximum matching ............. 4 

1.3.2 Other Algorithms ........................................................................................ 7 

1.3.3 Applications of the Maximum Matching Algorithm .................................. 7 

1.4 Linear Assignment Problem ................................................................................... 9 

1.4.1 Linear Sum Assignment Problem ............................................................. 10 

1.4.2 The Linear Bottleneck Assignment Problem ............................................ 19 

1.4.3 Other Types of Linear Assignment Problems ........................................... 20 

1.5 Other Types of Assignment Problem .................................................................... 20 

1.5.1 Quadratic Assignment problems ............................................................... 20 

1.5.2 Multi-index Assignment problems ........................................................... 21 

Chapter 2 ........................................................................................................................... 22 



 

vi 

 

2 Group Role Assignment Problem ................................................................................ 22 

2.1 Introduction ........................................................................................................... 23 

2.2 Generalized Assignment Problem......................................................................... 24 

2.2.1 The Mathematical Formulation of the GAP ............................................. 24 

2.2.2 Literature review of the GAP .................................................................... 25 

2.3 Group Role Assignment Problem (GRAP) ........................................................... 29 

2.3.1 Role-Based Collaboration ......................................................................... 29 

2.3.2 The Mathematical Formulation of the GRAP ........................................... 31 

2.3.3 An Instance of the GRAP ......................................................................... 32 

2.3.4 Concepts .................................................................................................... 34 

2.3.5 Solution to GRAP ..................................................................................... 35 

Chapter 3 ........................................................................................................................... 39 

3 Incremental Assignment Problem ................................................................................ 39 

3.1 Introduction ........................................................................................................... 40 

3.2 Related Work ........................................................................................................ 41 

3.2.1 An addendum and the authors’ response to the addendum....................... 41 

3.2.2 The Dynamic Hungarian Algorithm ......................................................... 42 

3.3 The Algorithm for Incremental Assignment Problem .......................................... 42 

3.3.1 The Algorithm ........................................................................................... 42 

3.3.2 Example .................................................................................................... 44 

Chapter 4 ........................................................................................................................... 47 

4 Improved Incremental Assignment Algorithm ............................................................ 47 

4.1 Introduction ........................................................................................................... 48 

4.2 Improved Incremental Assignment Algorithm ..................................................... 48 

4.3 Examples ............................................................................................................... 51 



 

vii 

 

4.4 Platform of Simulation .......................................................................................... 54 

4.5 Implementation and Performance Experiments .................................................... 54 

4.6 Performance Analysis ........................................................................................... 61 

4.7 Complexity ............................................................................................................ 62 

Chapter 5 ........................................................................................................................... 63 

5 Incremental Group Role Assignment Problem ............................................................ 63 

5.1 Introduction ........................................................................................................... 64 

5.2 Real World Problem ............................................................................................. 65 

5.3 Solution to IGRAP ................................................................................................ 72 

5.3.1 Concepts .................................................................................................... 72 

5.3.2 Solution to IGRAP .................................................................................... 73 

Chapter 6 ........................................................................................................................... 84 

6 Conclusions .................................................................................................................. 84 

References ......................................................................................................................... 85 

Appendix I ........................................................................................................................ 93 

Appendix II ....................................................................................................................... 94 

Appendix III ...................................................................................................................... 95 



 

viii 

 

List of Tables 

Table 1: ......................................................................................................................................... 34 

Table 2 .......................................................................................................................................... 55 

Table 3 .......................................................................................................................................... 57 

Table 4 .......................................................................................................................................... 59 

Table 5 .......................................................................................................................................... 60 

 



 

ix 

 

List of Figures 

Figure 1: Representation of assignment .......................................................................................... 3 

Figure 2: Bipartite graph & alternating/ augmenting graph............................................................ 4 

Figure 3: (a) the network which cover all nodes with a minimum number of node disjoint paths 

(the bold line is shown the network); (b) shows the corresponding maximum matching [4]. ....... 8 

Figure 4: The preliminaries [38] ................................................................................................... 13 

Figure 5: (a) Graph with 0-weight edges only; (b) Maximum matching and minimum vertex 

cover [38] ...................................................................................................................................... 13 

Figure 6: (a) Graph with modified weights (delta=1); (b) Minimum matching [38]. .................. 14 

Figure 7: 𝟑 × 𝟑 matrix .................................................................................................................. 17 

Figure 8: (a) Original graph; (b) Equality subgraph+Matching. .................................................. 17 

Figure 9: (a) New equality subgraph; (b) Matching. .................................................................... 18 

Figure 10： The life cycle of RBC. .............................................................................................. 30 

Figure 11: Soccer team [40] .......................................................................................................... 32 

Figure 12: Evaluation values of agents and roles and the assignment matrix [40] ....................... 33 

Figure 13: Optimal solution [40] .................................................................................................. 34 

Figure 14: Matrix with .................................................................................................................. 37 

Figure 15: Created square matrix .................................................................................................. 37 

Figure 16: Adjusting square matrix .............................................................................................. 37 

Figure 17: Square matrix transferred from the qualification matrix ............................................. 38 



 

x 

 

Figure 18: Assignment Matrix 𝑻 .................................................................................................. 38 

Figure 19: 𝟒 × 𝟒 matrix ................................................................................................................ 44 

Figure 20: Situation before the first iteration of the algorithm: Weight Matrix ........................... 45 

Figure 21: Situation before the first iteration of the algorithm: Equality Subgraph ..................... 45 

Figure 22: Situation after the first iteration of the algorithm: Weight Matrix .............................. 46 

Figure 23: Situation after the first iteration of the algorithm: Equality Subgraph ........................ 46 

Figure 24: The overall program flow chart ................................................................................... 49 

Figure 25: 𝟑 × 𝟑 matrix ................................................................................................................ 52 

Figure 26: 4×4 matrix ................................................................................................................... 52 

Figure 27: 4×4 matrix ................................................................................................................... 53 

Figure 28: 𝟒 × 𝟒 matrix ................................................................................................................ 53 

Figure 29: Weight Matrix ............................................................................................................. 54 

Figure 30: Equality subgraph ........................................................................................................ 54 

Figure 31: Trend lines for average operation time for different dimensions ................................ 56 

Figure 32: Trend lines for operation time for different dimensions ............................................. 58 

Figure 33：Chances and the percentage of general cases ............................................................ 60 

Figure 34：A clinic with 20 nurses and 4 departments ................................................................ 65 

Figure 35: Evaluation values of agents and roles and the assignment matrix .............................. 66 

Figure 36: A clinic adding a new department ............................................................................... 67 

Figure 37: Evaluation values of agents and roles and the assignment matrix .............................. 67 



 

xi 

 

Figure 38: Optimal solution .......................................................................................................... 68 

Figure 39: A new nurse joins the clinic ........................................................................................ 69 

Figure 40: Evaluation values of nurses and departments and the assignment matrix .................. 69 

Figure 41: Optimal solution .......................................................................................................... 70 

Figure 42: A new department and a new nurse join the clinic...................................................... 71 

Figure 43: Evaluation values of nurses and departments and the assignment matrix .................. 71 

Figure 44: Optimal solution .......................................................................................................... 72 

Figure 45: Matrix with optimal solution ....................................................................................... 74 

Figure 46: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟏] ................................................. 75 

Figure 47: Matrix after subtracting ............................................................................................... 75 

Figure 48: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟐] ................................................. 76 

Figure 49: Matrix after subtracting ............................................................................................... 76 

Figure 50: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏] ..................................................... 77 

Figure 51: Optimal solution .......................................................................................................... 77 

Figure 52: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏] ..................................................... 78 

Figure 53: Optimal solution .......................................................................................................... 78 

Figure 54: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟏] ................................................. 79 

Figure 55: Optimal solution .......................................................................................................... 80 

Figure 56: Matrix with optimal solution (𝑳 = [𝟏, 𝟏, 𝟏, 𝟏]) .......................................................... 80 

Figure 57: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟏] ................................................. 80 



 

xii 

 

Figure 58: Optimal solution .......................................................................................................... 81 

Figure 59: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟐, 𝟏] ............................................. 82 

Figure 60: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟐, 𝟏] ............................................. 83 

 

  



 

xiii 

 

List of Appendix 

Appendix I .................................................................................................................................... 93 

Appendix II ................................................................................................................................... 94 

Appendix III .................................................................................................................................. 95 

 

 

 



 

xiv 

 

Abbreviations 

GRAP                                        Group Role Assignment Problem 

RBC                                           Role-Based Collaboration 

GAP                                           Generalized Assignment Problem 

AP                                              Assignment Problem 

IAP                                            Incremental Assignment Problem 

IAA                                            Incremental Assignment Algorithm 

IIAA                                          Improved Incremental Assignment Algorithm 

IGRAP                                       Improved Group Role Assignment Problem 

 

 



1 

 

  Chapter 1

 Assignment Problem 1

This chapter is a review of the Assignment Problem (AP) and its algorithms. This chapter 

includes: 

 The introduction of AP 

 Perfect matching 

 Bipartite matching algorithm 

 Linear Assignment Problem 

 Other Types of Assignment Problem 
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1.1 Background 

In recent years, there are many situations concerning assignment arise in many fields, 

such as, medical institution, business, transportation, education fields, and sports. The 

assignment problem is under optimization or operations research branches. It is a widely studied 

topic in combinatorial optimization problems [1]. In addition, the assignment problem is an 

important subject for solving many problems around the world [2]. 

Assignment problems are to assign 𝑛 items to 𝑛 other items [3] in an optimal way. The 

two components are the objective function and the assignments. The objective function reflects 

the expectation of optimizing as much as possible, while the assignment represents the 

underlying combinatorial structure. The problem is to minimize the total costs of operating the 

tasks or maximize the total profit of allocation. A table or matrix can be shown as assignment 

problem. Generally, the rows represent people or objects to assign, the columns stand for the 

tasks or things to be assigned [1]. 

A bipartite graph can be used to describe assignments. The definition of the bipartite 

graph is: A graph 𝐺 = (𝑈, 𝑉; 𝐸) has two vertex sets 𝑈 and 𝑉 which are not disjoint. 𝐸 is an edge 

set. If every edge connects a vertex of 𝑉 and there are no edges which have both endpoints in 𝑈 

and 𝑉, then 𝐺 is called bipartite. A subset of the edges such that every vertex of 𝐺 meets at most 

one edge of the matching is called a matching 𝑀 in 𝐺. Suppose that the number of vertices in 𝑈 

and 𝑉 equals 𝑛, i.e., |𝑈| = |𝑉| = 𝑛. If in this case, the matching 𝑀 is called a perfect matching 

when each vertex of 𝐺 coincides with an edge of the matching 𝑀. Obviously, every assignment 

can be shown as a perfect matching [4], shown in Figure 1. 
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Figure 1: Representation of assignment 

Given a bipartite graph 𝐺 = (𝑈, 𝑉; 𝐸) and its edge set 𝐸 and two vertex sets 𝑈 and 𝑉 

which are not disjoined. The assignment problem is to find a set of 𝑛 edges in the bipartite graph 

such that every vertex coincides with exactly one edge. It is also known as the Bipartite Perfect 

Matching Problem. 

1.2 Perfect Matching 

We will discuss whether there exists an assignment (i.e., a perfect matching) in a given 

bipartite graph or not in this section. Hall’s Marriage Theorem gives a basic answer to this 

question in 1935 [5]. There is a necessary and sufficient condition is stated which is known as 

the Hall’s Marriage Theorem for finding the perfect matching in a bipartite graph. For a vertex 

𝑖/𝑈, let 𝑁(𝑖) denote the set of its neighbors, i.e., the set of all vertices 𝑗/𝑉 which are connected 

with 𝑖 by an edge in 𝐸. When we consider the vertices in 𝑈 as young men and the vertices in 𝑉 

as young ladies, the set 𝑁(𝑖) contains the friends of 𝑖. Moreover, for any subset 𝑈 of 𝑈 let 

𝑁(𝑈) = ⋃ 𝑁(𝑖)𝑖∈𝑈 . The Theorem 1.2.1, 1.2.2 and 1.2.3 are presented by Hall [5]. 

Theorem 1.2.1. (Hall [5]F, 1935.) Let 𝐺 = (𝑈, 𝑉; 𝐸) be a bipartite graph. It is possible 

to match every vertex of 𝑈 with a vertex of 𝑉 if and only if for all subsets 𝑈 of 𝑈  

|𝑈| ≤ |𝑁(𝑈)| (Hall’s condition) 

Theorem 1.2.2.(Marriage theorem.) Let 𝐺 = (𝑈, 𝑉; 𝐸) be a bipartite graph with 

|𝑈| = |𝑉|. There exists a perfect matching (marriage) in 𝐺 if and only if 𝐺 fulfills Hall’s 

condition. 
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Theorem 1.2.3.(K�̈�nig’s matching theorem [19], 1931.) In a bipartite graph the 

minimum number of vertices in a vertex cover equals the maximum cardinality of a matching: 

𝑚𝑖𝑛
𝐶 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑣𝑒𝑟

|𝐶| = 𝑚𝑎𝑥
𝑀 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

|𝑀| . 

1.3 Bipartite Matching Algorithms 

In assignment problems, it is an important subject to finding a maximum matching in a 

bipartite graph.  

1.3.1 A labeling (dual variables) method to find a maximum matching 

Given a bipartite graph 𝐺 = (𝑈, 𝑉; 𝐸) and a matching 𝑀 (𝑀 might even be empty). If an 

edge of 𝐸 belongs to 𝑀, it is called a matching edge, if not a non-matching edge. Edges are 

alternately matching and non-matching is called an Alternating Path. An Augmenting Path 𝑃 is 

an Alternating Path that starts from a free (unmatched) vertex and ends on a free (unmatched) 

vertex. 

 

                            bipartite graph                                    alternating/ augmenting path 

Figure 2: Bipartite graph & alternating/ augmenting graph 

In Figure 2, let 𝑀 be a matching of G. Vertex 𝑣 is matched if it is the endpoint of an edge 

in 𝑀; otherwise 𝑣 is free. 𝑌2, 𝑌3, 𝑌4, 𝑌6, 𝑋2, 𝑋4, 𝑋5, 𝑋6 are matched, other vertices are free. 

𝑌5, 𝑋6, 𝑌6 is an alternating path. 𝑌1, 𝑋2, 𝑌2, 𝑋4, 𝑌4, 𝑋5, 𝑌3, 𝑋3 is an augmenting path.  

Y1 Y2 Y3 

X1 X2 X3 

Y4 Y5 Y6 

X4 X5 X6 

Y1 Y2 Y3 

X1 X2 X3 

Y4 Y5 Y6 

X4 X5 X6 
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The definition of augmentation: Let 𝑃 be an augmenting path with respect to the 

matching 𝑀. There are two rules that the matching augmented by 𝑃 is obtained [4]. 

The first rule is the unmatched and matching edges in 𝑃 change their roles (all previously 

matching edges of 𝑀 ∩ 𝑃 become unmatched edges, at the same time, all previously unmatched 

edges of 𝑀 ∩ 𝑃 now become matching). The second rule is all matching edges of 𝑀 which do 

not lie on the path 𝑃 remain to be the matching edges. 

If 𝑀 is not a maximum matching in 𝐺, then there exists an augmenting path 𝑃 with 

respect to 𝑀, and 𝑀 = 𝑀 ∈ 𝑃 is a matching in 𝐺 with |𝑀| = |𝑀| + 1 [7]. The cardinality 

matching algorithm is presented below [4]: 

Cardinality matching algorithm: 

𝑀 is a matching in graph 𝐺 = (𝑈, 𝑉; 𝐸) (possibly 𝑀 = ∅); 

𝐿 contain all unmatched vertices of 𝑈;  

Labeled vertices on the right side are collected in the set 𝑅; 

𝑅 ∶= ∅; 

while 𝐿 ∪ 𝑅 ≠ ∅ do 

choose a vertex 𝑥 from 𝐿 ∪ 𝑅; 

if 𝑥/𝐿 then Scan_leftvertex(𝑥) else Scan_rightvertex(𝑥) 

endwhile 

 

Procedure Scan_leftvertex(𝑥) 

𝐿 ∶= 𝐿 \ {𝑥}; 

while there exists an edge [𝑥, 𝑗] with 𝑗 unlabeled do 
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label 𝑗 as 𝑙(𝑗) ∶= 𝑥; 

𝑅 ∶= 𝑅 ∪ {𝑗} 

endwhile 

 

Procedure Scan_rightvertex(𝑥) 

𝑅 ∶= 𝑅 \ {𝑥}; 

if there is a matching edge[𝑖, 𝑥] then 

label 𝑖 as 𝑟(𝑖) ∶= 𝑥; 

𝐿 ∶= 𝐿 ∪ {𝑖} 

else [comment: augmentation of the matching] 

starting from 𝑥, find the alternating path 𝑃 by backtracking the labels; 

𝑃 ∶= (… , 𝑟(𝑙(𝑥)), 𝑙(𝑥), 𝑥); 

𝑀 ∶=𝑀 ∈ 𝑃; 

let 𝐿 contain all unmatched vertices of 𝑈; 

𝑅 ∶= ∅; 

cancel all labels 

endif 

The algorithm starts with an matching 𝑀 which is arbitrary. The matching 𝑀 gradually 

increases (augments) this matching step-by-step by way of augmenting paths until a maximum 

matching is reached. At each augmentation, one additional vertex of 𝑈 is matched. Therefore, 

there will be at most 𝑛 augmentations. In addition, every vertex is labeled no more than once for 
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each augmentation. Therefore, finding a augmenting path requires at most 𝑂(𝑚) steps, the 

operation time is 𝑂(𝑛𝑚). 

1.3.2 Other Algorithms 

Hopcroft and Karp [6] propose an algorithm that not only augments the augmentation 

by augmenting path, but also augments the matching by the largest disjoint aurmenting path 

system with the same minimum length. It runs in 𝑂(𝑚√𝑛) time. 

Alt, Blum, Mehlhorn, and Paul [8] do some improvement on Hopcroft and Karp’s 

method for the case of “dense” graphs by using a fast adjacency matrix scanning technique of 

Cheriyan, Hagerup and Mehlhorn [9]. Therefore they get an algorithm that improves the running 

time in 𝑂(𝑛1.5√𝑚 log𝑛⁄ )  to find the maximum bipartite matching, where 𝑛 = |𝑈| + |𝑉|, where 

𝑈 and 𝑉 are vertex sets. 

The rank of matrices has a close relationship with maximum matching. Another 

stochastic method is based on the algorithm which is called fast matrix multiplication and gives 

complexity of 𝑂(𝑛2.376) [10]. It is theoretically better for sufficiently dense graphs, but the 

algorithm is slower in practice. 

1.3.3 Applications of the Maximum Matching Algorithm 

(1) Vehicle scheduling problems 

When planning the operative public transport, the vehicle scheduling problem (VSP) is 

one of the most important tasks [11]. The set of schedule trips is given that the travel (departure 

and arrival) time is fixed, as well as the start and end locations, and travel times between all pairs 

of end stations, the aim is to find the assignment of trips to the vehicles in order to accurately 

cover each trip once, each vehicle performs a feasible itinerary sequence of trips [12].  
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(a)                                                             (b) 

Figure 3: (a) the network which cover all nodes with a minimum number of node disjoint paths 

(the bold line is shown the network); (b) shows the corresponding maximum matching [4]. 

A disjoint path problem modeled as this problem in a network. An example is shown in 

Figure 3(a). Then convert it to a maximum matching problem in a bipartite graph. Figure 3(b) 

shows the connect lines between the node disjoint paths of Figure 3(a) and matching. 

 

(2) Time slot assignment problem 

When using satellites in telecommunication systems, the data first to be remitted are first 

buffered in the ground station, then the data are transmitted to the satellite in very short data 

bursts, they are amplified and send back to Earth. The Time Division Multiple Access (TDMA) 

a 

b 

c 

d 

e 

f 
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h 
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technique can be used. A transponder connects the receiving station to the sending station. The 

time slot assignment problem solves the problem of which switching modes should be applied. It 

also figures out how long each of them lasts in a given amount of data can be remitted in the 

shortest possible time [13]. The time complexity is 𝑂(𝑛4). 

1.4 Linear Assignment Problem 

The general purpose of the assignment problem is to optimize the resources distribution. 

Resources demand points, and both resources and demand point have the same number [2]. 

Mathematically, the Linear Assignment Problem can be proposed following: 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                                              (1.4.1) 

subject to 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 , 𝑖 = 1,…,𝑛                                                        (1.4.2) 

∑ 𝑥𝑖𝑗 = 1
𝑛
𝑖=1 , 𝑗 = 1,…,𝑛                                                        (1.4.3) 

𝑥𝑖𝑗 = 0 or 1, 𝑖 = 1 ,…,𝑛, 𝑗 = 1,…,𝑛                                            (1.4.4) 

Where 𝑐𝑖𝑗 is the cost of effectiveness when assigning 𝑖th resource to 𝑗th demand, 𝑥𝑖𝑗 is 0 

or 1 (as presented in (1.4.4)), and 𝑛 is the number of resources or demands. The constraints of 

the assignment problem are defined as (1.4.2) - (1.4.4). Equation (1.4.22) indicates that each 

resource 𝑖 only can be assigned to one demand 𝑗, while (1.4.3) shows that each demand 𝑗 only 

can be assigned to one resource 𝑖. 

However, this theorem is not directly an efficient method for finding a perfect matching. 

In the early days of mathematical programming, labeling methods were used to create a perfect 

matching of the 𝑂(𝑛3) complexity. Several authors improved on these methods later. One of the 

well-known methods is Hopcroft and Karp [6], which show that a perfect matching can be found 

in 𝑂(𝑛5 2⁄ ) times. We will present this algorithm below.  

Regarding every assignment problem, there is a matrix called cost or validity matrix 

[𝑐𝑖𝑗], where 𝑐𝑖𝑗is the assigning cost of 𝑖th resource to 𝑗th demand. In this paper, it is called an 



10 

 

assignment matrix, where each resource can only be assigned to a requirement and represent it, 

as given in the following: 

(

𝑐11
𝑐21
⋮
𝑐𝑛1

𝑐12
𝑐22
⋮
𝑐𝑛2

𝑐13
𝑐23
⋮
𝑐𝑛3

⋯
⋯
⋮
⋯

𝑐1𝑛
𝑐2𝑛
⋮
𝑐𝑛𝑛

)                                                      (1.4.5) 

Which is always a square matrix. 

Here is a real world scenario. Assume that 𝑛 jobs are to be assigned to 𝑛 machines (or 

workers) in the best possible way. Let us assume that machine 𝑗 needs 𝑐𝑖𝑗 time units to process 

job 𝑖. We want to minimize the total completion time. If we assume that the machines work in 

series, we must minimize the linear sum objective function. If we assume that the machines work 

in parallel, we have to minimize the bottleneck objective function. 

This example shows different objective functions of interest. When it is necessary to 

minimize cost, the sum objective is usually used. If a time need to be minimized, a so-called 

bottleneck objective function is often used. Although this function is not written in linear form, 

the optimization problem with this objective function is called “linear” compared to the quadratic 

problems introduced in Section 1.5. 

1.4.1 Linear Sum Assignment Problem 

The most well-known problems in linear programming and in combinatorial optimization 

is the linear sum assignment problem (LSAP). Informally, we are given an 𝑛 × 𝑛 cost matrix 

𝐶 = (𝑐𝑖𝑗) and we want to match each row to a different column in order to minimize the sum of 

the corresponding entries. In other words, we want to select 𝑛 elements of 𝐶 so that there is only 

one element in each row and one in each column and the sum of the corresponding costs is a 

minimum. 

Alternatively, LSAP can be defined through a graph theory model, for example, a 

bipartite graph 𝐺 = (𝑈, 𝑉; 𝐸) having a vertex of 𝑈 for each row, a vertex of 𝑉 for each column, 

and cost 𝑐𝑖𝑗 associated with edge [𝑖, 𝑗](𝑖, 𝑗 = 1,2, … 𝑛). The problem is then to determine the 

minimum cost perfect matching in 𝐺 (weighted bipartite matching problem: find a subset of 
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edges so that each vertex happens to belongs to exactly one edge and the sum of the costs of 

these edges is a minimum). 

They mainly occur in sub-problems in more complex cases, such as the travelling 

salesman problems, vehicle routing problems, personnel assignments and similar problems in 

practice [3]. Neng [14] describes an interesting application in railway systems. He considers the 

problem of assigning engines to trains due to traffic restrictions and expressed this problem as a 

linear assignment problem.  

A large number of sequential and parallel algorithms has been developed for the LSAP, 

such as primal-dual algorithms, simplex-like methods, cost operation algorithms, forest 

algorithms and relaxation approaches. For a survey on these methods and available computer 

programs see the recent article of Burkard and Çela [15] or the annotated bibliography of Dell’ 

Amico and Martello [16]. Nowadays it is possible to solve large scale dense LSAPs (with 

𝑛 ≈ 106) within a couple of minutes, see [17].  

Although 𝑂(𝑛3) is the best worst case complexity for sequential linear sum assignment 

algorithms, Karp [18] develope an algorithm with the expected running time of 𝑂(𝑛2  log 𝑛) in 

the case of independent and uniformly distributed cost coefficients 𝑐𝑖𝑗 in [0, 1].This algorithm is 

a special implementation of the classical shortest augmenting path algorithm. It uses priority 

queues to compute shortest augmenting paths in 𝑂(𝑛2  log 𝑛) time which produces a worst case 

time complexity of 𝑂(𝑛3  log 𝑛). 

1.4.1.1 Mathematical Model 

The linear sum assignment problem (LSAP) can be stated as  

min ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                         

(1.4.1.1.1) 

subject to 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 , 𝑖 = 1,…,𝑛 

∑ 𝑥𝑖𝑗 = 1
𝑛
𝑖=1 , 𝑗 = 1,…,𝑛 
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𝑥𝑖𝑗 = 0 or 1, 𝑖 = 1 ,…,𝑛, 𝑗 = 1,…,𝑛 

By associating dual variables 𝑢𝑖 and 𝑣𝑗  with assignment constraints (1.4.1.1.2) and 

(1.4.1.1.3), respectively, the dual problem is 

max ∑ 𝑢𝑖 + ∑ 𝑣𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                  (1.4.1.1.2) 

s.t. 𝑢𝑖 + 𝑣𝑗 ≤ 𝑐𝑖𝑗 (𝑖, 𝑗 = 1,2, … 𝑛)                         (1.4.1.1.3) 

By duality theory, a pair of solutions respectively feasible for the primal and the dual 

is optimal if and only if 

𝑥𝑖𝑗(𝑐𝑖𝑗 − 𝑢𝑖 − 𝑣𝑗) = 0 (𝑖, 𝑗 = 1,2, … 𝑛)                      (1.4.1.1.4) 

1.4.1.2 An 𝑂(𝑛4) implementation of the Hungarian Algorithm 

The Hungarian algorithm is considered to be a predecessor of the primal-dual method for 

linear programming. It begins with a feasible dual solution 𝑢, 𝑣 satisfying (1.4.1.1.3) and a 

partial primal solution (in which less than 𝑛 rows are assigned) satisfying the condition 

(1.4.1.1.4) with respect to 𝑢, 𝑣. Each iteration solves a restricted primal problem independent of 

the costs, attempting to increase the cardinality of the current assignment by operating on the 

partial graph of 𝐺 = (𝑈, 𝑉; 𝐸) that only contains the edges of 𝐸 having zero reduced costs. If the 

attempt is successful, a new primal solution in which one more row is assigned is obtained. 

Otherwise, updating the current dual solution to get a new edge with zero reduction. 

The main idea of the method is as follows: consider we only use the edge of weight 0 

(called the “0-weight edges”) to find the perfect matching. Obviously, these edges will be the 

solution of the assignment problem. If we cannot find perfect matching on the current step, then 

the Hungarian algorithm changes weights of the available edges so that the new 0-weight edges 

appear and these changes do not affect the optimal solution [38]. 

Preliminaries. For each vertex from the left part, find the minimal outgoing edge and 

subtract its weight from all weights of the connection to the vertex. This will introduce 0-weight 

edges (at least one). Apply the same procedure for the vertices in the right part. 
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Figure 4: The preliminaries [38] 

Step 1. Find the maximum matching using only 0-weight edges (using augmenting path 

algorithm, etc.). If it is perfect, then the problem is solved. Otherwise find the minimum vertex 

cover 𝐸 (for the subgraph with 0-weight edges only), the best way to do this is to use Köning’s 

matching theorem. 

 

(a)                       (b) 

Figure 5: (a) Graph with 0-weight edges only; (b) Maximum matching and minimum vertex 

cover [38] 
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Step 2. Let ∆= 𝑚𝑖𝑛𝑖∉𝑈,𝑗∉𝑉(𝑐𝑖𝑗) and adjust the weights by using the rule as follows: 

𝑐𝑖𝑗 = {

𝑐𝑖𝑗 − ∆, 𝑖 ∉ 𝑈˄𝑗 ∉ 𝑉

𝑐𝑖𝑗 ,         𝑖 ∈ 𝑈˅𝑗 ∈ 𝑉

𝑐𝑖𝑗 + ∆, 𝑖 ∈ 𝑈˄𝑗 ∈ 𝑉
 

 

(a)                         (b) 

Figure 6: (a) Graph with modified weights (delta=1); (b) Minimum matching [38]. 

Step 3. Repeat Step 1 until solved. 

In this example, we are using the Hungarian Algorithm to solve the minimum value of 

the matrix. The perfect matching is (𝑢1, 𝑣2), (𝑢2, 𝑣3), (𝑢3, 𝑣1) which is 4+6+5=15. 

But there is a nuance here, finding the maximum matching in Step 1 on each iteration 

will cause the algorithm to become 𝑂(𝑛5). In order to avoid this situation, we can just modify 

the matching of the previous step at each step, which only takes 𝑂(𝑛2) time. It’s easy to see that 

since at least one edge becomes 0-wieght at a time, 𝑛2 iterations will occur. Therefore, the 

overall complexity is 𝑂(𝑛4). 
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1.4.1.3 An 𝑂(𝑛3) implementation of the Hungarian Algorithm 

We will introduce the maximum-weighted matching problem in this section. Obviously, 

it is easy to transform minimum problem to the maximum one, just by setting: 

𝑤(𝑢, 𝑣) = −𝑤(𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ 𝐸 

or 𝑤(𝑢, 𝑣) = 𝑀 −𝑤(𝑢, 𝑣),𝑀 = max(𝑢,𝑣)∈𝐸 𝑤(𝑢, 𝑣) 

Given a matching 𝑀, a path is alternating that begins with an unmatched vertex and 

whose edges belong alternately to the matching and not to the matching. It is called an 

alternating path. An augmenting path is an alternating path that starts from and ends on free 

(unmatched) vertices. All alternating paths originating from a given unmatched node form a 

Hungarian tree. 

The algorithm assigns dual variables 𝛼𝑖 and 𝛽𝑗 to each node 𝑈 and node 𝑉 respectively. 

The assignment problem is feasible when 𝛼𝑖 + 𝛽𝑗 ≥ 𝑊𝑖𝑗. The Hungarian algorithm maintains 

feasible values for all the 𝛼𝑖 and 𝛽𝑗 from initialization to termination. When 𝛼𝑖 + 𝛽𝑗 = 𝑊𝑖𝑗, an 

edge in the bipartite graph is called admissible. The sub-graph containing only the currently 

admissible edges is called the equality sub-graph 𝐺’.  

Starting from an empty matching, the basic strategy adopted by the Hungarian algorithm 

is to repeatedly search for augmenting paths in the equality sub-graph. If an augmenting path is 

found, the current match set is augmented by flipping the matched and unmatched edges along 

this path. Because there is one more unmatched than matched edge, this flipping increases the 

cardinality of the matching by one, completing a single stage of the algorithm. If an augmenting 

path is not found, adjust the dual variables to bring extra edges into the equality sub-graph by 

making them admissible and the continue searching. These stages of the algorithm are executed 

to determine 𝑛 matches, at which point the algorithm terminates [19].  

An outline of the Hungarian algorithm for the assignment problem is shown below [19]. 

Hungarian Algorithm: 

Input: A bipartite graph, {𝑈, 𝑉; 𝐸} (where |𝑈| = |𝑉| = 𝑛) and an 𝑛 × 𝑛 matrix of edge 
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weights 𝑊𝑖𝑗 

Output: A complete matching, 𝑀 

1. Perform initialization: 

(a) Begin with an empty matching, 𝑀 = ∅  

(b) Assign feasible values to the dual variables 𝛼𝑖 and 𝛽𝑗 as follows: 

∀𝑢𝑖 ∈ 𝑈, 𝛼𝑖 = 0                                               (1.4.1.3.1) 

∀𝑣𝑗 ∈ 𝑉, 𝛽𝑗 = 𝑚𝑎𝑥𝑖𝑊𝑖𝑗                                       (1.4.1.3.2) 

2. Perform 𝑛 stages of the algorithm, each given by the routine Stage. 

3. Output the matching after the 𝑛𝑡ℎ stage: 𝑀 = 𝑀𝑛. 

Stage: 

1. Designate each exposed (unmatched) node in 𝑈 as the root of a Hungarian tree. 

2. Grow the Hungarian tree rooted at the exposed nodes in the equality sub-graph. 

Designate the indices 𝑖 of nodes 𝑢𝑖 encountered in the Hungarian tree by the set 𝐼∗, and the 

indices 𝑗 of nodes 𝑣𝑗  encountered in the Hungarian tee by the set 𝐽∗. If an augmenting path 

is found, go to Step 4. If not, and the Hungarian trees cannot be grown further, proceed to 

Step 3. 

3. Modify the dual variables 𝛼𝑖 and 𝛽𝑗 as follows to add new edges to the equality subgraph. 

Then go to Step 2 to continue the search for the augmenting path. 

𝜃 = 𝑚𝑖𝑛
𝑖∈𝐼∗,𝑗∉𝐽∗

(𝛼𝑖 + 𝛽𝑗 −𝑊𝑖𝑗) 

𝛼𝑖 ← {
𝛼𝑖 − 𝜃   𝑖 ∈ 𝐼

∗

𝛼𝑖          𝑖 ∉ 𝐼
∗  

𝛽𝑗 ← {
𝛽𝑗 + 𝜃   𝑗 ∈ 𝐽

∗

𝛽𝑗           𝑗 ∉ 𝐽
∗  

4. Augment the current matching by flipping matched and unmatched edges along the 

selected augmenting path. That is, 𝑀𝑘 (the new matching at stage 𝑘) is given by (𝑀𝑘−1 −

𝑃) ∪ (𝑃 −𝑀𝑘−1), where 𝑀𝑘−1 is the matching from the previous stage and 𝑃 is the set of 

edges on the selected augmenting path. 
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Example: Consider the 3 × 3 weighted bipartite graph described by its weight matrix in 

the following: 

 𝑣1 𝑣2 𝑣3 

𝑢1 1 4 5 

𝑢2 5 7 6 

𝑢3 5 8 8 

Figure 7: 𝟑 × 𝟑 matrix 

Initialing the graph, trivial labeling and associated equality graph. 

 

(a)                                                               (b) 

Figure 8: (a) Original graph; (b) Equality subgraph+Matching. 

The Hungarian tree can be grown rooted at the nodes 𝑢1 in the equality subgraph. 

𝐼∗ = {𝑢1} and 𝐽∗ = ∅. 𝑀 = {(𝑢2, 𝑣1), (𝑢3, 𝑣2), (𝑢3, 𝑣3)}. The augmenting path cannot be found.  

𝜃 = 𝑚𝑖𝑛𝑖∈𝐼∗,𝑗∉𝐽∗ {

0 + 5 − 1 (𝑢1, 𝑣1)

0 + 8 − 4 (𝑢1, 𝑣2)

0 + 8 − 5 (𝑢1, 𝑣3)
 =3 

Reduce labels of 𝐼∗ by 3. 𝐼∗ = {𝑢1} and 𝐽∗ = {𝑣3}. Then we got the new equality 

subgraph and the augmenting path 𝑢1, 𝑣3, 𝑢3, 𝑣2. Flipping matched to augment the current 
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matching and unmatched edges along the selected augmenting path. 

Mk = {(𝑢2, 𝑣1), (𝑢3, 𝑣2), (𝑢1, 𝑣3)}. 

 

(a)                              (b) 

Figure 9: (a) New equality subgraph; (b) Matching. 

In each iteration, we increment matching. Therefore, we have 𝑛 iterations [4]. At each 

iteration, each edge of the graph is used no more than once when finding augmenting path, so 

we've got 𝑂(𝑛2) complexity. Concerning labeling we update slack array each time when we 

insert vertex from 𝑈 into 𝐼∗, so each iteration does not occur more than 𝑛 times, updating slack 

takes 𝑂(𝑛) operations, so again we've got 𝑂(𝑛2). Updating labels occur no more than 𝑛 times 

per iterations (since we add at least one vertex from 𝑉 to 𝐽∗ on each iteration), it takes 𝑂(𝑛) 

operations. Therefore the total complexity of this implementation is 𝑂(𝑛3). 

Jonker and Volgenant [20] develope an improved 𝑂(𝑛3) Hungarian algorithm. Fortran 

implementations of Hungarian algorithm are proposed by McGinnis [21], Carpaneto and Toth 

[22], and Carpaneto, Martello, and Toth [23]. The Carpaneto and Toth [22] paper, which 

includes the Fortran listing of their code, provides computational comparisons with the primal 

simplex algorithm by Barr, Glover, and Klingman [24]. 
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1.4.1.4 Other algorithms 

Dinic and Kronrod [25] has proposed a different approach that is completely independent 

of the linear programming duality theory. 

The most efficient LSAP algorithm is based on shortest augmenting path techniques. In 

the early 1960s, Hoffman and Markowitz [26] observe that an LSAP can be solved through a 

sequence of 𝑛 shortest paths on cost matrices of increasing size from 1 × 1 to 𝑛 × 𝑛. However 

such matrices can include negative costs, so each shortest path search would require 𝑂(𝑛3) time. 

In early 1970s Tomizawa [27] and Edmonds and Karp [28] study shortest path algorithms for the 

min-cost flow problem observe that by using the reduced costs, Dijkstra algorithm can be applied 

to obtain an 𝑂(𝑛3) time algorithm for LSAP. 

Dantzig [29] specialize the primal simplex algorithm into a network problem, which is 

the starting point for all primal simplex-based algorithms for LSAP. Gavish, Schweitzer and 

Shlifer [30] give computational results on the effect of various pivoting rules on the number of 

degenerate pivots in the solution of LSAP. In general, the primal algorithms are less efficient 

than other methods. 

1.4.2 The Linear Bottleneck Assignment Problem 

Fulkerson, Gllicksberg, and Gross [31] introduce the problem of linear bottleneck 

assignment. It happens when a job is assigned to a parallel machine to minimize the latest 

completion time. Another application is to locate objects in space. Let 𝑛 jobs and 𝑛 machines be 

given. The cost coefficient 𝑐𝑖𝑗 is the time required for machine 𝑗 to complete job 𝑖. If the 

machines work in parallel and we want to assign the jobs to the machines such that the latest 

completion time is as early as possible, it can mathematically be written as 

min max ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                              (1.4.2.1) 

subject to 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 , 𝑖 = 1,…,𝑛                                                              

∑ 𝑥𝑖𝑗 = 1
𝑛
𝑖=1 , 𝑗 = 1,…,𝑛                                                              
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𝑥𝑖𝑗 = 0 or 1, 𝑖 = 1 ,…,𝑛, 𝑗 = 1,…,𝑛                                                  

Solving an LBAP with cost matrix 𝐶 = (𝑐𝑖𝑗)  can produce very good results in practice. 

A similar technique can be used to track missiles in space. If their locations at two different times 

𝑡1 and 𝑡2 are known, the squared Euclidean distances between any pair of old and new locations 

are calculated and the corresponding linear bottleneck assignment problem is solved to match the 

points in the right way. 

1.4.3 Other Types of Linear Assignment Problems 

1. Algebraic Assignment Problem 

Sum and bottleneck assignment problems can be viewed as special situations of a more 

general model - the algebraic assignment problem which is introduced by Burkard, Hahn, and 

Zimmermann [32]. It allows people to develop and solve linear assignment problems within a 

general framework. 

2. Sum-𝑘 Assignment Problem 

Given an 𝑛 × 𝑛 cost matrix 𝐶 = (𝑐𝑖𝑗) and a value 𝑘 is not greater than 𝑛, the sum-𝑘 

assignment problem is to assign each row to a different column such that the sum of the 𝑘 largest 

selected costs is a minimum. Grygiel [33] designs an 𝑂(𝑛5) algorithm with real coefficients. 

3. Balanced Assignment Problem 

Martello, Pulleyblank, Toth, and de Werra [34] introduce the balanced assignment 

problem in a more general framework for balancing optimization problems, minimizing the 

spread of an assignment solution. 

1.5 Other Types of Assignment Problem 

1.5.1 Quadratic Assignment problems 

The quadratic assignment problem (QAP) is introduced by Koopmans and Beckmann 

[35] in 1957 as a mathematical model for the location of indivisible economical activities. A set 

of 𝑛 facilities has to be allocated to a set of 𝑛 locations. We give three 𝑛 × 𝑛 input matrices: 
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𝐴 = (𝑎𝑖𝑘), 𝐵 = (𝑏𝑗𝑙), and 𝐶 = (𝑐𝑖𝑗), where 𝑎𝑖𝑘 is the flow between facility 𝑖 and facility 𝑘, 𝑏𝑗𝑙 is 

the distance between location 𝑗 and location 𝑙, and 𝑐𝑖𝑗 is the cost of placing facility 𝑖 at location 𝑗. 

We assume that the total cost depends on the flow between facilities multiplied by their distance 

and the cost for placing a facility at a certain site. The goal is to assign each facility to a location 

to minimize the total cost. 

The quadratic assignment problem can be modeled as: 

min∑ ∑ ∑ ∑ 𝑎𝑖𝑘𝑏𝑗𝑙𝑥𝑖𝑗𝑥𝑘𝑙
𝑛
𝑙=1

𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1                    (1.5.1.1) 

subject to 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 , 𝑖 = 1,…,𝑛 

∑ 𝑥𝑖𝑗 = 1
𝑛
𝑖=1 , 𝑗 = 1,…,𝑛 

𝑥𝑖𝑗 = 0 or 1, 𝑖 = 1 ,…,𝑛, 𝑗 = 1,…,𝑛 

Quadratic assignment problems are so-called 𝑁𝑃-hard problems. This means that an 

optimal solution can only be found by enumeration of all possibilities unless 𝑃 = 𝑁𝑃. 

1.5.2 Multi-index Assignment problems 

In 1968, Pierskalla [36] introduces Multi-index assignment problems as a natural 

extension of linear assignment problems. For a long time only 3-index assignment problems have 

been considered, and in recent years, more than 3 indices problems have been investigated, 

mainly in the context of multi-target tracking and data association problems [37]. 
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  Chapter 2

 Group Role Assignment Problem 2

This chapter is a review of the Group Role Assignment Problem (GRAP). Generalized 

Assignment Problem (GAP) is related to GRAP, this chapter presents: 

 The introduction of GRAP, 

 The introduction of GAP, 

 The mathematical formulation of the GAP, 

 Literature review of the GAP, 

 Role-Based Collaboration, 

 The mathematical formulation of the GRAP, and 

 The solution of GRAP 
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2.1 Introduction 

In the real world, different people can be involved in different roles in different fields, 

such as sports players, doctors, teachers, etc. Roles are commonly concepts in many fields, e.g., 

behavioral science, sociology, drama, social psychology, management and psychology [39]. 

Therefore, collaboration is necessary to get the optimal performance of the entire system. Role-

Based Collaboration (RBC) is a method to promote an organizational structure, to provide 

ordered system behavior, and to integrate system security for both human and nonhuman entities 

that collaborate and coordinate their activities within systems [40]. Take a soccer team as an 

example; every football player has different performance when assigned to each role. How to 

assign football players to different roles and get their best performances in that role is the 

ultimate purpose for the coach. In order to solve these kinds of problems, RBC is a useful and 

functional methodology. 

In RBC, role assignment is a crucial task that affects the collaboration efficiency and the 

level of satisfaction of all the participating members involved in. It can be divided into three 

steps: agent evaluation, group role assignment, and role transfer [40]. Group role assignment 

problem (GRAP) initiates a group by assigning roles to its members or agents to achieve its 

highest performance. Considering the same example above, in a soccer team, if a coach wants to 

pick up 11 football players from 20 players for four roles: one goalkeeper, four backs, three 

midfields, and three forwards, how to make role assignment to optimize the whole team’s 

performance is a typical GRAP. 

GRAP can be transferred to the Generalized Assignment Problem (GAP). The well-

known Kuhn-Munkres (K-M) algorithm is designed to solve the GAP with the complexity of 

𝑂(𝑛3), GRAP can be solved efficiently. 

The objective of GAP is to find an assignment in which all agents minimize their costs or 

the total profit of the assignment is maximized. The GAP has been given the optimal or 

approximate solutions by different algorithms. 
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2.2 Generalized Assignment Problem 

The generalized assignment problem (GAP) is a problem in combinatorial optimization. 

When the number of tasks and agents are equal, it is known as a generalization form of a 

classical Assignment Problem (AP). This means that for GAP, the number of agents assigned to 

each task could be different.  

The goal of GAP is to find an assignment in which all agents minimize their costs or 

maximize the total profit. It has been applied to many applications, such as various routing 

problems and flexible manufacturing systems [41]. 

2.2.1 The Mathematical Formulation of the GAP 

Given 𝑛 jobs (𝑗 = 1,…𝑛) and 𝑚 agents (𝑖 = 1,… ,𝑚), each job should be assigned to 

only one agent to maximize the total profit without exceeding their budget. 

GAP can be formulated as an integer programming problem 

{
 
 
 
 
 

 
 
 
 
 𝑚𝑎𝑥∑∑𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                                         (2.2.1)

𝑠. 𝑡.

∑𝑤𝑖𝑗𝑥𝑖𝑗 ≤ 𝑐𝑖

𝑛

𝑗=1

    𝑖 = 1,… ,𝑚;                    (2.2.2)

∑𝑥𝑖𝑗

𝑚

𝑖=1

= 1           𝑗 = 1, … , 𝑛;                      (2.2.3)

𝑥𝑖𝑗 ∈ {0,1}           𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛; (2.2.4)

 

where 

𝑥𝑖𝑗 = {
1   if job 𝑗 is assigned to agent 𝑖
0   otherwize                                 

 

The parameters can be defined as follows: the profit of assigning job 𝑗 to agent 𝑖 is 

represented by 𝑝𝑖𝑗, the weight of assigning job 𝑗 to agent 𝑖 is represented by 𝑤𝑖𝑗, the budget 

allocated for agent 𝑖 is denoted by 𝑐𝑖. The objective function is to maximize the total profit of all 

the assignments. Constraint (2.2.2) is the limit of budget. Constraint (2.2.3) ensures every agent 
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is assigned exactly one job. Constraint (2.2.4) outlines the decision valuable and specify the 

ranges of both variables 𝑖 and 𝑗. 

The minimization version of the problem can also be encountered in the literature: by 

defining 𝑐𝑖𝑗 as the cost required to assign item 𝑗 to task 𝑖. The formula is 

𝑚𝑖𝑛∑∑𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                   (2.2.5) 

subject to  (2.2.2), (2.2.3), (2.2.4) 

GAP is a generalization of the Assignment Problem (AP). When 𝑤𝑖𝑗 = 1 for all 𝑖 ∈

𝑚, 𝑗 ∈ 𝑛 and 𝑚 = 𝑛, GAP is reduced to AP. AP has been solved by Hungarian Method (also 

known as K-M Algorithm) in polynomial time. 

When job 𝑗 assigns to agent 𝑖 with weight 𝑤𝑗, profit 𝑝𝑗 and capacity 𝑐𝑖, the 0-1 Multiple 

Knapsack Problem is a special case of the GAP. Furthermore, GAP can be interpreted as a 

specialized Transportation Problem when the quantity demanded at each destination should be 

supplied y a single origin and 𝑤𝑖,𝑗 is constant for each 𝑖. 

2.2.2 Literature review of the GAP 

There are several algorithms which have been proposed to obtain a better solution for 

GAP. These algorithms can be divided into three categories: the branch and bound scheme, the 

branch and price scheme and the heuristic methods.  

 The branch and bound scheme 

There are four procedures for the branch and bound: an upper bounding procedure, a 

lower bounding procedure, a branching strategy and a searching strategy.  

Ross and Soland [42] develop the first branch and bound algorithm to solve GAP. They 

reach the lower bounds by relaxing the capacity constraints. Martello and Toth [43] consider 

exact algorithms for the zero-one knapsack problem and their average computational 

performance; the study is extended to the other linear knapsack problems and to approximate 



26 

 

algorithms in Martello and Toth [44]. Fisher, Jalikumar and Wassenhove [45] use heuristic 

bounds which obtained from a Lagrangian relaxation with multipliers by adjustment methods to 

obtain the lower bounds in the branch and bound procedure. Guignard and Rusenwein [46] 

present a new algorithm which is effectively solves problems with up to 500 variables. This 

algorithm requires fewer enumeration nodes and shorter operation times than existing 

procedures. Improved performance stems from: an enhanced Lagrangian dual ascent procedure, 

solving a Lagrangian dual at each enumeration node; adding a surrogate constraint to the 

Lagrangian relaxed model; and an elaborate branch and bound scheme. Drexl [47] presents a 

hybrid branch and bound /dynamic programming algorithm with a (rather efficient Monte Carlo 

type) heuristic upper bounding technique as well as various relaxation procedures for 

determining lower bounds. Nauss [48] describes a special purpose branch-and-bound algorithm 

that utilizes linear programming cuts, feasible-solution generators, Lagrangean relaxation, and 

subgradient optimization. In addition, Nauss [49] presents a special purpose branch and bound 

algorithm that utilizes linear programming cuts, feasible solution generators, Lagrangean 

relaxation and subgradient optimization to the elastic generalized assignment problem (EGAP). 

Posta, Ferland and Michelon [50] propose a simple exact algorithm for solving the GAP. They 

redefine the optimization problem into a sequence of decision problems, and they applied 

variable-fixing rules to solve these effectively. The decision problems are solved by variable-

fixing rules to prune the search tree.  

 The branch and price scheme 

The branch and price scheme employs both column generation and branch-and-bound to 

obtain optimal integer solutions.  

Savelsbergh [51] firstly presents branch and price algorithm to solve the GAP. Martello 

and Toth [52] propose a combination of branch and price algorithm. Nasberg [53] introduces a 

new approach which is based on a reformulation of GAP into an equivalent problem, which is 

then relaxed by traditional Lagrangian relaxation techniques. The reformulation is created by 

introducing a set of auxiliary variables and a number of coupling constraints. By relaxing the 

coupling constraints, they get subproblems where both types of constraint structures present in 

the GAP are active. Ceselli and Righini [54] propose a branch and price algorithm for multilevel 
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generalized assignment problem which is based on a decomposition into a master problem with 

set-partitioning constraints and a pricing subproblem that is a multiple-choice knapsack problem. 

 The heuristic methods 

Based on the enumeration strategies, some problems still cannot be solved in reasonable 

computation time. As a result, many heuristic approaches were designed to find high quality 

solutions [60].  

Cattrysse, Salomon and Van Wassenhove [55] is based on column generation techniques, 

and yields both upper and lower bounds. A column is represented as a feasible assignment of a 

subset of tasks to a single agent. The main problem is formulated as a set partitioning problem. 

New columns that have been obtained will be added to the main problem by solving a knapsack 

problem for each agent. A dual ascent procedure can be solved using LP relaxation of the set 

partitioning problem. On a set of relatively hard test problems the heuristic is able to find 

solutions that are on average within 0.13% from optimality.  

Lorena and Narciso [56] propose relaxation heuristics for the problem of maximum profit 

assignment of GAP. Using Lagrangian or surrogate relaxation, the heuristics perform a 

subgradient search obtaining feasible solutions. Naricso and Lorena [58] find good feasible 

solutions by using relaxation multipliers with efficient constructive heuristics. 

Haddadi [57] defines a new Lagrangian heuristic for the generalized assignment problem 

(GAP). The heuristic is based on a Lagrangian decomposition of the problem in which a 

substitution of variables is performed and the constraints defining the substituted variables are 

then dualized in a Lagrangian relaxation of the problem. Haddadi and Ouzia [59] describe a new 

heuristic, applied at each iteration of the SM, which tries to exploit the solution of the relaxed 

problem, by solving a smaller generalized assignment problem.  

Amini and Racer [61] introduce variable depth search heuristic (VDSH) which is used to 

solve the GAP. VDSH is defined as a generalization of local search in which the size of the 

neighborhood adaptively changes to traverse a larger search space. Then they [62] develope a 

hybrid heuristic (HH) around the two heuristics called VDSH and heuristic generalized 

assignment problem (HGAP). Yagiura, Yamaguchi and Ibaraki [63] propose a heuristic 
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algorithm based on variable depth search procedure (VDS) for solving the GAP. The main idea 

is to adaptively change the size of a neighborhood so that it can effectively traverse a larger 

search space while keeping the amount of computational time reasonable. Yagiura, Yamaguchi 

and Ibaraki [64] develop a variable depth search (VDS) algorithm. To further improve the 

performance of the VDS, they examine the effectiveness of incorporating branching search 

processes to construct the neighborhoods. Lin et al [65] makes further observations on VDSH 

method through a series of computational experiments. They propose six different strategies for 

the improvement procedure each of which alternatively creates one action set in each of the loop 

iterations. 

Osman [66] introduces a λ-generation mechanism is introduced. Different search 

strategies and parameter settings are investigated for the λ-generation descent, hybrid simulated 

annealing/tabu search and tabu search heuristic methods. Yagiura, Yamaguchi and Ibaraki [67] 

suggest a tabu search algorithm for the generalized assignment problem, which is one of the 

representative combinatorial optimization problems known to be NP-hard. The algorithm 

features an ejection chain approach, which is embedded in a neighborhood construction to create 

more complex and powerful moves. Dıaz and Fernández [69] create a simple and flexible tabu – 

search algorithm for solving the GAP. The algorithm uses recent and medium-term memory to 

dynamically adjust the weight of the penalty incurred for violating feasibility. The algorithm 

provides good quality solutions in competitive computational times.  

Lourenco and Serra [73] present new metaheuristics for the generalized assignment 

problem based on hybrid approaches. One metaheuristic is a MAX-MIN Ant System (MMAS). 

The heuristic is combined with local search and tabu search heuristics to improve the search. A 

greedy randomize adaptive search heuristic (GRASP) is also proposed. 

Yagiura et al. [68] propose a new algorithm to prove that this problem is more effective 

than the previous existing methods. The algorithm uses a path re-linking approach, a mechanism 

for generating new solutions by combining two or more reference solutions. It also uses an 

ejection chain approach embedded in a neighborhood construction to create more complex and 

powerful movements.  
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Chu and Beasley [70] firstly propose a genetic algorithm to solve the GAP. A fitness-

unfitness pair for evaluation function and a heuristic operator helps to increase the cost and 

feasibility of the solution. This algorithm is used as a heuristic algorithm to help improve the cost 

and feasibility of GAP. Wilson [71] suggests another algorithm for GAP that operates in a dual 

sense. This algorithm attempts to genetically restore feasibility to a set of approximate optimal 

solutions. The new approach is presented by Feltl and Raidl [72] is based on a previously 

published, successful hybrid genetic algorithm and includes as new features two alternative 

initialization heuristics, a modified selection and replacement scheme for handling infeasible 

solutions more appropriately, and a heuristic mutation operator. Lorena, Narciso & Beasley [74] 

suggest an application of the Constructive Genetic Algorithm (CGA) to the Generalized 

Assignment Problem (GAP). Compared to a traditional genetic algorithm (GA), CGA presents 

some new features. When applying CGA to GAP, they consider the GAP to be a clustering 

problem. A binary representation is used for schemata and structures, and an assignment 

heuristic allocates items to knapsacks.  

2.3 Group Role Assignment Problem (GRAP) 

2.3.1 Role-Based Collaboration 

Role-based collaboration (RBC) is an emerging computational methodology that uses 

roles as the primary underlying mechanism to facilitate collaboration activities [75], providing 

ordered system behavior, and consolidate system security for both human and non-human 

entities. And collaborate and coordinate with their activities and systems [76]. It consists of a set 

of concepts, principles, models, and algorithms.  

Collaboration is when a task completion needs more than one individual. The research in 

the fields of collaboration theory, technologies, and systems helps people undertake 

collaboration in a more efficient and satisfactory manner [75]. Collaboration can be divided into 

five categories: collaboration between people in the reality; computer-supported cooperative 

work (CSCW); human-computer/machine interaction (HCI); distributed systems; and a computer 

system, which are collaboration between system components. Task assignment and coordination 

are two major aspects of collaboration. RBC is focused on providing better task assignments to 
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save the effort of coordination, which is considered to be more complex issue than task 

assignments [75].  

The RBC life cycle consists of three major tasks: role negotiation, role assignment and 

role execution [40]. Obviously, role assignment is an important aspect of RBC. It greatly affects 

the efficiency of collaboration and the satisfaction of the members involved in the collaboration. 

Figure 10 shows the life cycle of RBC. 

 

Figure 10： The life cycle of RBC. 
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After more than a decade continuous effort, RBC-related research has been developed 

into a discovery method in the field of collaboration-systems research, including the role transfer 

problem, the group role assignment problem, and so on.  

2.3.2 The Mathematical Formulation of the GRAP 

GRAP was first proposed by H. Zhu and R. Alkins in 2009 [76]. It aims at finding the 

maximum total profit among 𝑛 roles to 𝑚 agents with the agent evaluation result. The unit profit 

is represented by 𝑃𝑖,𝑗. Each role can be assigned to more than one agent and one agent can only 

receive one role. 

The mathematical formulation of GRAP is: 

{
 
 
 
 
 

 
 
 
 
 𝑚𝑎𝑥∑∑𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                                        (2.3.1)

𝑠. 𝑡.

∑𝑥𝑖𝑗 = 𝐿[𝑗]

𝑛

𝑖=1

        𝑗 = 1,… , 𝑛,                                   

𝐿[𝑗] ∈ 𝑁, N is a set of natural numbers; (2.3.2)

∑𝑥𝑖𝑗

𝑚

𝑖=1

= 1            𝑗 = 1, … , 𝑛;                      (2.3.3)

𝑥𝑖𝑗 ∈ {0,1}            𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛; (2.3.4)

 

Compared with the mathematical formulation of GAP, the objective function is different 

which is usually formulated as a maximization problem. The weight 𝑤𝑖𝑗 becomes uniform for all 

the agents and 𝑤𝑖𝑗 = 1. The unit profit 𝑝𝑖𝑗 is dependent of i and j. The parameter i is allocated to 

the agent i. The parameter j is allocated to the group role j. The parameters 𝐿[𝑗] (𝑖 = 1,… ,𝑚) 

represent the minimum numbers of agents required for role j which are integers. 

Since GRAP is a well-known hard problem, it needs advanced methodologies, for 

example information classification, data mining, pattern search and matching [40].  
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2.3.3 An Instance of the GRAP 

The GRAP has been implemented to a real world problem by Zhu, Zhou and Alkins in 

2012 [40]. In a soccer team, there are 20 players (𝑎0~𝑎19) in total. In the field, there are four 

roles and 11 players for the 1-4-3-3 formation: one goalkeeper (𝑟0), four backs (𝑟1), three 

midfields (𝑟2), and three forwards (𝑟3). Figure 11 shows the 20 players and the 4 roles. The 

coach has to choose 11 players before each game. Players’ performance is evaluated by their 

modes, emotions, health, fatigue, and past performance. 

 

Figure 11: Soccer team [40] 

Assume that the coach has the data shown in Figure 12 to represent the players’ 

evaluation values for each role (rows represent players, and columns represent roles). By 

choosing the players, the coach’s goal is to improve the performance of the whole team’s by 

preparing for role assignment.  
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(a)                       (b) 

Figure 12: Evaluation values of agents and roles and the assignment matrix [40] 

The team performance is assumed as a simple sum of the selected players’ performance 

on their designated roles. The coach has used several strategies to find the exact optimal solution. 

From 𝑟0 to 𝑟3, selecting the best players if they have not been selected. Table 1 shows all the 

group performances based on several strategies.  

Strategy Assignment for {𝒓𝟎}{𝒓𝟏}{𝒓𝟐}{𝒓𝟑} Group 

Performance 
(𝑟0, 𝑟1, 𝑟2, 𝑟3) {12} {0,2,6,15} {9,18,19} {3,11,16} 9.23 

(𝑟0, 𝑟1, 𝑟3, 𝑟2) {12} {0,2,6,15} {9,14,18} {3,11,19} 9.30 

(𝑟0, 𝑟2, 𝑟1, 𝑟3) {12} {2,6,7,15} {0,9,18} {3,11,19} 9.04 

(𝑟0, 𝑟2, 𝑟3, 𝑟1) {12} {2,6,7,15} {0,9,18} {3,11,19} 9.04 

(𝑟0, 𝑟3, 𝑟1, 𝑟2) {12} {2,6,7,15} {9,18,19} {0,3,11} 8.98 

(𝑟0, 𝑟3, 𝑟2, 𝑟1) {12} {2,6,7,15} {9,18,19} {0,3,11} 8.98 

(𝑟1, 𝑟0, 𝑟2, 𝑟3) {18} {0,2,12,15} {9,14,19} {0,3,11} 9.35 
(𝑟1, 𝑟0, 𝑟3, 𝑟2) {18} {0,2,12,15} {9,10,14} {3,11,16} 9.41 
(𝑟1, 𝑟2, 𝑟0, 𝑟3) {4} {0,2,12,15} {9,18,19} {3,11,16} 9.44 
(𝑟1, 𝑟2, 𝑟3, 𝑟0) {4} {0,2,12,15} {9,18,19} {3,11,16} 9.44 
(𝑟1, 𝑟3, 𝑟0, 𝑟2) {18} {0,2,12,15} {9,10,14} {3,11,19} 9.41 
(𝒓𝟏, 𝒓𝟑, 𝒓𝟐, 𝒓𝟎) {𝟒} {𝟎, 𝟐, 𝟏𝟐, 𝟏𝟓} {𝟗, 𝟏𝟒, 𝟏𝟖} {𝟑, 𝟏𝟏, 𝟏𝟗} 9.51 
(𝑟2, 𝑟0, 𝑟1, 𝑟3) {12} {2,6,7,15} {0,9,18} {3,11,19} 9.04 

(𝑟2, 𝑟0, 𝑟3, 𝑟1) {12} {2,6,7,15} {0,9,18} {3,11,19} 9.04 
(𝑟2, 𝑟1, 𝑟0, 𝑟3) {4} {2,6,12,15} {0,9,18} {3,11,19} 9.25 
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(𝑟2, 𝑟1, 𝑟3, 𝑟0) {4} {2,6,12,15} {0,9,18} {3,11,19} 9.25 
(𝑟2, 𝑟3, 𝑟0, 𝑟2) {12} {0,9,18} {1,10,14} {3,11,19} 8.79 
(𝑟2, 𝑟3, 𝑟2, 𝑟0) {4} {0,9,18} {10,12,14} {3,11,19} 8.98 
(𝑟3, 𝑟0, 𝑟1, 𝑟2) {12} {2,6,7,15} {9,18,19} {0,3,11} 8.98 
(𝑟3, 𝑟0, 𝑟2, 𝑟1) {12} {2,6,7,15} {9,18,19} {0,3,11} 8.98 
(𝑟3, 𝑟1, 𝑟0, 𝑟2) {18} {2,6,12,15} {9,14,19} {0,3,11} 9.10 
(𝑟3, 𝑟1, 𝑟2, 𝑟0) {4} {2,6,12,15} {9,18,19} {0,3,11} 9.19 
(𝑟3, 𝑟2, 𝑟0, 𝑟1) {4} {2,6,7,15} {9,12,18} {0,3,11} 8.91 
(𝑟3, 𝑟2, 𝑟1, 𝑟0) {4} {2,6,7,15} {9,12,18} {0,3,11} 8.91 

 

Table 1:  

Comparisons among assignment strategies [40] 

By using the enumeration method, the optimal solution is (𝑟1, 𝑟3, 𝑟2, 𝑟0) as shown in bold 

row in Table 1. The solution is shown in Figure 12(a) as circles, in Figure 12(b) as a matrix, and 

in Figure 13 as a graph. 

 

Figure 13: Optimal solution [40] 

2.3.4 Concepts 

In formalizing GRAPs, 𝑚 expresses the size of the agent, and 𝑛 expresses the size of the 

role. For example, in the soccer team, m is 20 players, n is four roles as goalkeeper, backs, 

midfields, and forwards.  
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Role Range Vector: A role range vector is a vector of the lower ranges of roles. The role 

range vector is denoted as 𝐿[𝑗] ∈ 𝑁, where 𝑁 is the set of natural numbers and 0 ≤ 𝑗 < 𝑛. For 

example, 𝐿 = [1, 4, 3, 3] for the soccer team in Fig. 11. 

Qualification Matrix: The qualification matrix is an 𝑚 × 𝑛 matrix of values in 

[0, 1],where 𝑄[𝑖, 𝑗] expresses the qualification value of agent 𝑖 for role 𝑗. It is denoted as 

𝑄[𝑖, 𝑗] ∈ [0, 1](0 ≤ 𝑖 < 𝑚; 0 ≤ 𝑗 < 𝑛). For example, Fig.12(a) shows a qualification matrix for 

the soccer team. 

Role Assignment Matrix: A role assignment matrix is an 𝑚 × 𝑛 matrix of values in {0, 

1}. If 𝑇[𝑖, 𝑗] = 1, agent 𝑖 is assigned to role 𝑗, and agent 𝑖 is called an assigned agent. It is 

denoted as 𝑇[𝑖, 𝑗] ∈ {0, 1}(0 ≤ 𝑖 < 𝑚; 0 ≤ 𝑗 < 𝑛). For example, Fig.12(b) shows an assignment 

matrix for the soccer team. 

 Group Qualification: A group qualification is defined as the sum of the assigned agents’ 

qualifications, i.e. ∑ ∑ 𝑄[𝑖, 𝑗] × 𝑇[𝑖, 𝑗]𝑛−1
𝑗=0

𝑚−1
𝑖=0 . For example, the group qualification of Fig.12 is 

9.51.  

Role Weight Vector: A role weight vector is a vector of the weights of roles. The role 

weight vector is denoted as 𝑊[𝑗] ∈ [0, 1]( 0 ≤ 𝑗 < 𝑛). For example, for the soccer team in Fig. 

2, if the attack is emphasized, the set 𝑊 = [0.6, 0.7, 0.8, 0.9], but if the defense is emphasized, 

the set 𝑊 = [0.9, 0.8, 0.7, 0.6]. 

Weighted Group Qualification: A weighted group qualification is defined as the weighted 

sum of assigned agents’ qualifications, i.e., ∑ 𝑊[𝑗] × ∑ 𝑄[𝑖, 𝑗] × 𝑇[𝑖, 𝑗]𝑚−1
𝑖=0

𝑛−1
𝑗=0 . For example, for 

the assignment in Fig. 12, if 𝑊 = [0.6, 0.7, 0.8, 0.9], the weighted group qualification is 7.2, and 

the assignment shown in Fig. 12(b) is not optimal in this situation. 

2.3.5 Solution to GRAP 

In order to apply the K-M algorithm into solving the GRAPs, many aspects should be 

considered. Given a matrix which has 𝑖 agents and 𝑗 roles, where 0 and 1 mean no and yes, 

respectively. The roles are equally important. Based on different requirements, GRAP can be 

categorized into different levels:  
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 Simple Role Assignment Problem (SGRAP): to find a role assignment matrix 𝑇 that makes it 

workable; 

 Rated Role Assignment Problem (RGRAP): favors a solution with the maximum overall 

sum of qualifications for all assigned agents; 

 Weighted Role Assignment Problem (WGRAP): if the roles in a group have different 

importance, for example, the roles have different weights. 

Condition 1: The total agent number should be larger than the required numbers, 

𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0 . 

Condition 2: For each role, there should be enough qualified agents, ∑ [𝑄[𝑖, 𝑗] − 𝜏] ≥𝑚−1
𝑖=0

𝐿[𝑗], where 0 ≤ 𝑗 < 𝑛. 

Qualification Threshold (𝜏): 𝜏 is a real number in [0, 1] to state that an agent is called 

qualified in a group only if its qualification value is greater than 𝜏. If an agent’s qualification 

value is not greater than 𝜏, the agent is unqualified for the role.  

Role Index Vector 𝐿′: A role index vector is an 𝑚(> ∑ 𝐿[𝑗]𝑛−1
𝑗=0 ) dimensional vector 

created from a role range vector 𝐿. 𝐿’[𝑘] is a role number related with column 𝑘(0 ≤ 𝑘 < 𝑚) in 

the adjusted qualification matrix 𝑄’ defined below, where 

                     0   (𝑘 < 𝐿[0]) 

𝐿’[𝑘] =         𝑥      (∑ 𝐿[𝑝] ≤ 𝑘 < ∑ 𝐿[𝑝](0 < 𝑥 < 𝑛))𝑥
𝑝=0

𝑥−1
𝑝=0  

                     𝑛       (𝑘 ≥ ∑ 𝐿[𝑝]𝑛−1
𝑝=0 ) 

Adjusted Qualification Matrix 𝑄’: 𝑄’ is an 𝑚 ×𝑚 matrix, where 𝑄’[𝑖, 𝑗] ∈ [0, 1] 

expresses the qualification value of agent 𝑖 for role 𝐿’[𝑗], where 

                               𝑄’[𝑖, 𝐿’[𝑗]]   (0 ≤ 𝑖 < 𝑚; 0 ≤ 𝑗 < ∑ 𝐿[𝑝]𝑛−1
𝑝=0 ) 

𝑄’[𝑖, 𝑗] =       

                                1         (0 ≤ 𝑖 < 𝑚;∑ 𝐿[𝑝]𝑛−1
𝑝=0 ≤ 𝑗 < 𝑚) 
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By adjusting the number of agents and roles, the RGRAP can be transferred to a GAP. 

GAP has been solved by K-M algorithm. Since K-M algorithm solve the square matrix of GAP, 

which means the number of agents should be equal to that of roles. In the real world scenario, the 

assignments will not always meet this condition. Obviously, we need to transfer the input matrix 

into a square matrix. In order to form the square matrix, they duplicate rows or columns by using 

the Role Range Vector, Qualification Threshold, Role Index Vector and other definitions and 

conditions to transfer RGRAP to GAP, as well as avoid the incorrect optimal result. For 

example, for 𝑄(𝐿 = [1, 2, 1]) in Figure 14, its square matrix is shown in Figure 15. If 𝜏 = 0.6, its 

adjusting matrix 𝑄’ is shown in Figure 16 and the relevant coumn number vector 𝐿’ =

[0, 1, 1, 2, 3, 3], where 3 corresponds to empty roles. 

[
 
 
 
 
 
0.36 0.76 0.72
0.93 0.59 0.24
0.06
0.40
0.23
0.21

0.46
0.10
0.75
0.77

0.69
0.74
0.24
0.24]

 
 
 
 
 

 

Figure 14: Matrix with 

 𝒎 > ∑ 𝑳[𝒋]𝒏−𝟏
𝒋=𝟎  

[
 
 
 
 
 
0.36 0.76
0.93 0.59
0.06 0.46

0.76 0.72 1.0 1.0
0.59 0.24 1.0 1.0
0.46 0.69 1.0 1.0

0.40 0.10
0.23 0.75
0.21 0.77

0.10 0.74 1.0 1.0
0.75 0.24 1.0 1.0
0.77 0.24 1.0 1.0]

 
 
 
 
 

 

Figure 15: Created square matrix 

[
 
 
 
 
 
−36 0.76
0.93 −36
−36 −36

0.76 0.72 1.0 1.0
−36 −36 1.0 1.0
−36 0.69 1.0 1.0

−36 −36
−36 0.75
−36 0.77

−36 0.74 1.0 1.0
0.75 −36 1.0 1.0
0.77 −36 1.0 1.0]

 
 
 
 
 

 

Figure 16: Adjusting square matrix 
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Because the K-M algorithm solves the minimization problem, it is easy to transfer it to a 

maximization one. Subtracting the entries of 𝑄’ from the largest entry of 𝑄’ to obtain a new 

matrix 𝑀. For example, for the maximization of 𝑄’ in Figure 16, a matrix 𝑀 (Figure 17) can be 

obtained by using the equation: 𝑀[𝑖, 𝑗] = 1 − 𝑄′[𝑖, 𝑗], (0 ≤ 𝑖, 𝑗 < 𝑚). After calling the K-M 

algorithm, the final assignment is produced based on the result (Figure 18). The group 

qualification is 3.2.  

 

[
 
 
 
 
 
37 0.24
0. .07 37

0.24 0.28
37 37

0.0 0.0
0.0 0.0

37 37
37 37

37 0.31
37 0.26

0.0 0.0
0.0 0.0

37 0.25
37 0.23

0.25 37
0.23 37

0.0 0.0
0.0 0.0]

 
 
 
 
 

 

Figure 17: Square matrix transferred from the qualification matrix 

[
 
 
 
 
 
0 1 0
1
0
0
0
0

0 0
0 0
0 1
0 0
1 0]

 
 
 
 
 

 

Figure 18: Assignment Matrix 𝑻 

In the final part, they presented the numerical results of different sizes of assignments. 

The group size varied from 10 to 100, with the efficiency of K-M algorithm, it can solve the 

assignment within 40 milliseconds on the provided simulation platform. The computational 

complexity of the K-M algorithm is 𝑂(𝑛3). 
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  Chapter 3

 Incremental Assignment Problem 3

This chapter is a review of the Incremental Assignment Problem (IAP). It includes: 

 The introduction of Incremental Assignment Problem (IAP), 

 The related work of IAP, and 

 The IAP Algorithm. 
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3.1 Introduction 

The assignment problem is a basic combinatorial optimization problem. It involves 

finding a matching in a weighted bipartite graph where the sum of weights of the edges is as 

large as possible. It is a widely-studied problem that applied to many areas [85]. A common 

variant includes finding a minimum-weight perfect matching. It can be expressed as follows: 

given a group of workers, a set of jobs, and a set of ratings indicating how well each worker can 

perform each job, determine the best work assignment to maximize the overall rating [80]. More 

generally, given a bipartite graph consisting of two partitions 𝑈 and 𝑉, and a set of weighted 

edges 𝐸 between the two partitions, the problem requires selecting a subset of the edges with a 

maximum sum of weights such that each node 𝑢𝑖 ∈ 𝑈, 𝑣𝑗 ∈ 𝑉 is connected to at most one edge. 

By considering a set of non-negative edge costs, 𝑐𝑖𝑗 = 𝑊 −𝑤𝑖𝑗, the problem can also be stated 

as a minimization problem, instead of edge weights 𝑤𝑖𝑗, where 𝑊 is at least as large as the 

maximum of all the edge weights. 

A matching or independent edge set in a graph is a set of edges that have no common 

vertices. There are several algorithms of the matching problem, such as matching in weighted 

bipartite graphs, matching in unweighted graphs, matching in general graphs. In unweighted 

graphs maximum cardinality matching is sought [77]. As for matching of weighted bipartite 

graphs, each edge has a correlation value. A maximum weighted bipartite matching is defined as 

a matching where the sum of the values of the edges in the matching has a maximal value. If the 

graph is incomplete, the missing edge is inserted with value zero. Finding such a matching is 

called the assignment problem. A common variant involves finding a minimum-weighted perfect 

matching [78]. Kuhn-Munkres algorithm or the Hungarian algorithm is the well-known 

algorithm for the assignment problem, originally proposed by H.W.Kuhn in 1955 [79] and 

refined by J. Munkres in 1957 [80]. When it is implemented with proper data structures, this 

algorithm has 𝑂(𝑛3) complexity.  

The incremental assignment problem is described as: given a weighted bipartite graph 

and its maximum weighted matching, determine the maximum weighted matching of the graph 

extended with a new pair of vertices, one per partition, and the weighted edges connecting these 

new vertices to all the vertices on their opposite partitions [81]. The Hungarian Algorithm can 
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solve it as the ordinary assignment problem. But Toroslu and Üçoluk, propose an algorithm that 

uses the given maximum weighted matching of the maximum-weighted-matched part of the 

bipartite graph in order to determine the maximum weighted matching of the entire (extended) 

bipartite graph. The complexity of the algorithm is 𝑂(𝑛2). 

This chapter is organized as follows. It first discusses the related work. Then we will 

present the algorithm of the incremental assignment problem and the example. 

3.2 Related Work 

3.2.1 An addendum and the authors’ response to the addendum  

An addendum on the incremental assignment problem by A.Volgenant [82] points out 

that the algorithm of the incremental assignment problem can be found in the literature. 

Tomizawa proposes an algorithm to solve transportation problems and assignment problem [27]. 

It solves a successive series of incremented sub-problems and gives an illustrative example. 

Jonker and Bolgenant improved the Hungarian algorithm that labels rows one by one [20]. This 

idea is “equivalent to solve an 𝑘 × 𝑘 assignment problem (2 ≤ 𝑘 ≤ 𝑛), when a partial solution of 

𝑘 − 1 assignment is available”. The decremental assignment problem is also presented by 

Toroslu and Üçoluk. Volgenant pointed out that it is equivalent to appropriately changing the 

weight coefficients of the arcs incident to the pair of vertices and re-optimize the problem in 

𝑂(𝑛2) which takes two steps of Ahuja’s [84] shortest augmenting path method. 

Toroslu and Üçoluk respond to Volgenant [83]. They state that the two papers [8,9] use 

some incremental methods to solve the standard assignment problem, Toroslu and Üçoluk, on 

the other hand, “introduce this new problem, proposes an algorithm specific to this problem and 

studies the complexity and the correctness of the solution in detail” [83]. The papers do not 

formally address the complexity and the correctness of incremental steps of their algorithm. The 

paper [27] focuses on different improvements using the shortest augmenting paths and studies 

the performance of these improvements empirically. Jonker and Bolgenant [20] present a 

completely different problem, the transportation network problem. They informally define the 

assignment problem and then describe an incremental solution. This is just a sketch of the idea 
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and illustrates an example, but they do not describe the detailed algorithm or the proof of 

complexity and correctness. 

3.2.2 The Dynamic Hungarian Algorithm 

Mills-Tettey, Stentz and Dias [19] present the dynamic Hungarian algorithm to solving 

the assignment problem by changing edge costs or weight. They propose the new version of 

dynamic algorithm that is more efficient by fixing the initial solution obtained before the cost 

changes.  

They extend the idea in incremental assignment problem to handle multiple updates and 

address deletions (assuming one-to-one assignment). For example, consider a problem where the 

nodes in the graph represent workers and jobs to be performed by these workers, and the edges 

represent transportation costs between the worker locations and job locations. In this area, a 

given road may be closed unexpectedly, greatly increasing the costs of some workers completing 

certain jobs.  

They present proofs of the correctness and efficiency of their algorithm and provide 

simulation results that illustrate its efficiency. The complexity of the algorithm is 𝑂(𝑘𝑛2) where 

𝑛 is the size of one partition of the bipartite graph, and 𝑘 is the number of changed rows or 

columns in the cost matrix. 

3.3 The Algorithm for Incremental Assignment Problem  

Toroslu and Üçoluk examine the incremental assignment problem and present an elegant 

algorithm for its solution. In the incremental assignment problem, a weighted bipartite graph and 

its maximum weighted matching are given, we want to determine the maximum weighted 

matching of the graph extended with a new pair of vertices (an adding row and an adding 

column), one on each partition, and weighted edges connecting these new vertices to all the 

vertices on their opposite partitions [81].  

3.3.1 The Algorithm 

The algorithm assigns dual variables 𝛼𝑖  to each node 𝑈 and dual variables 𝛽𝑗  to each 

node 𝑉 . The assignment problem is feasible when 𝛼𝑖 + 𝛽𝑗 ≥ 𝑊𝑖𝑗 . The Hungarian algorithm 
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maintains feasible values for all the 𝛼𝑖 and 𝛽𝑗 from initialization through termination. An edge in 

the bipartite graph is called admissible when 𝛼𝑖 + 𝛽𝑗 = 𝑊𝑖𝑗.  

The algorithm first determines the feasible values for the two new dual variables 𝛼𝑛+1 

and 𝛽𝑛+1 (the other dual variables are still feasible from the solution of the 𝑛 × 𝑛 problem). It 

then essentially performs a single stage of the Hungarian algorithm to find an augmenting path 

between the two new vertices 𝑈𝑛+1 and 𝑉𝑛+1, adjusting dual variables to add new admissible 

edges to the equality subgraph as needed. The matched and unmatched edges are flipped along 

the discovered augmenting path increases the cardinality of the matching by one, thus resulting 

in a complete matching. Note that the two new nodes 𝑢𝑛+1 and 𝑣𝑛+1 may not need to be matched 

to each other in the extended matching. Because the algorithm involves executing only one stage 

of the Hungarian algorithm after performing an 𝑂(𝑛)  initialization step, the computational 

complexity of the incremental assignment algorithm is 𝑂(𝑛2) . The incremental assignment 

algorithm is illustrated as follows. 

 

Incremental Assignment Algorithm: 

Input: 

 An assignment problem comprising a bipartite graph, {𝑈, 𝑉; 𝐸}  (where  |𝑈| =

|𝑉| = 𝑛 + 1) and an (𝑛 + 1) × (𝑛 + 1) matrix of edge weights 𝑊𝑖𝑗 

 An optimal solution to the 𝑛 × 𝑛 sub-problem of the above assignment problem, 

comprising a matching 𝑀∗ of the first 𝑛 nodes of 𝑈 to the first 𝑛 nodes of 𝑉, and 

the final values of the dual variables 𝛼𝑖 and 𝛽𝑗 for 𝑖 ∈ 1…𝑛 and 𝑗 ∈ 𝑖 …𝑛 

Output: An optimal matching 𝑀, for the (𝑛 + 1) × (𝑛 + 1) problem. 

 

1.  Perform initialization: 

(a) Begin with the given matching, 𝑀0 = 𝑀
∗.  

(b) Assign feasible values to the dual variables 𝛼𝑛+1 and 𝛽𝑛+1 as follows: 

𝛽𝑛+1 = 𝑚𝑎𝑥 (𝑚𝑎𝑥1≤𝑖≤𝑛(𝑊𝑖(𝑛+1) − 𝛼𝑖),𝑊(𝑛+1)(𝑛+1))             (3.3.1.1) 

𝛼𝑛+1 = 𝑚𝑎𝑥1≤𝑗≤𝑛+1(𝑊(𝑛+1)𝑗 − 𝛽𝑗)                      (3.3.1.2) 

2. Perform the routine Stage below. 

3. Output the resulting matching 𝑀. 
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Stage: 

1. Designate each exposed (unmatched) node in 𝑈 as the root of a Hungarian tree. 

2. Grow the Hungarian tree rooted at the exposed nodes in the equality subgraph. 

Designate the indices 𝑖 of nodes 𝑢𝑖 encountered in the Hungarian tree by the set 𝐼∗, and the 

indices 𝑗 of nodes 𝑣𝑗  encountered in the Hungarian tree by the set 𝐽∗. If an augmenting path 

is found, go to Step 4. If not, and the Hungarian trees cannot be grown further, proceed to 

Step 3. 

3. Modify the dual variables 𝛼𝑖 and 𝛽𝑗 as follows to add new edges to the equality subgraph. 

Then go to Step 2 to continue the search for the augmenting path. 

𝜃 = 𝑚𝑖𝑛
𝑖∈𝐼∗,𝑗∉𝐽∗

(𝛼𝑖 + 𝛽𝑗 −𝑊𝑖𝑗) 

𝛼𝑖 ← {
𝛼𝑖 − 𝜃   𝑖 ∈ 𝐼

∗

𝛼𝑖          𝑖 ∉ 𝐼
∗  

𝛽𝑗 ← {
𝛽𝑗 + 𝜃   𝑗 ∈ 𝐽

∗

𝛽𝑗           𝑗 ∉ 𝐽
∗  

4. Augment the current matching by flipping matched and unmatched edges along the 

selected augmenting path. That is, 𝑀𝑘 (the new matching at stage 𝑘) is given by (𝑀𝑘−1 − 𝑃) ∪

(𝑃 −𝑀𝑘−1), where 𝑀𝑘−1 is the matching from the previous stage and 𝑃 is the set of edges on the 

selected augmenting path. 

3.3.2 Example 

We propose the same example which presented by Toroslu and Üçoluk. Consider the 

4 × 4 weighted bipartite graph described by its weight matrix as follows: 

      𝛼𝑖 

  𝑉1 𝑉2 𝑉3 𝑉4 ↓ 

 𝑈1 5 1 1 1 0 

 𝑈2 4 3 1 3 -1 

 𝑈3 5 4 3 4 0 

 𝑈4 1 6 2 5 2 

𝛽𝑗 → 5 4 3 5  

Figure 19: 𝟒 × 𝟒 matrix 
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Assume that the first 3 vertices are given, which corresponds to the diagonal elements of 

the weight matrix. The last row and column correspond to the newly added vertex pairs. First 

two new vertices are added (𝑈4 and 𝑉4). The dual variables 𝛼4 and 𝛽4 are calculated by using the 

equation (3.3.1.1) and (3.3.1.2) as shown above. The Hungarian tree is obtained and no 

augmenting path is found (Figure 21). 

      𝛼𝑖 

  𝑉1 𝑉2 𝑉3 𝑉4 ↓ 

 𝑈1 5 1 1 1 0 

 𝑈2 4 3 1 3 -1 

 𝑈3 5 4 3 4 0 

 𝑈4 1 6 2 5 2 

𝛽𝑗 → 5 4 3 5  

Figure 20: Situation before the first iteration of the algorithm: Weight Matrix 

 

Figure 21: Situation before the first iteration of the algorithm: Equality Subgraph 

Revise the dual variables by using Stage→Step 3 in order to preserve all the matching 

edges, while adding new edges to 𝑀𝑘. By calculating, 𝜃 = 1, then reducing the dual variables 

from the nodes 𝐼∗ by 1, increasing the dual variables from the nodes 𝐽∗ by 1 (Figure 22). Then 

U4 U1 U2 U3 

V4 V3 V2 V1 

5 
3 3 

6 
4 5 

4 
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adjusting dual variables to add new admissible edges to the equality subgraph as needed (Figure 

23). 

 

      𝛼𝑖  𝛼𝑖 

  𝑉1 𝑉2 𝑉3 𝑉4 ↓   

 𝑈1 5 1 1 1 0 (-1) -1 

 𝑈2 4 3 1 3 -1 (-1) -2 

 𝑈3 5 4 3 4 0  0 

 𝑈4 1 6 2 5 2 (-1) 1 

𝛽𝑗 → 5 4 3 5    

  (+1) (+1)      

  𝛽𝑗   6 5 3 5    

Figure 22: Situation after the first iteration of the algorithm: Weight Matrix 

 

Figure 23: Situation after the first iteration of the algorithm: Equality Subgraph 

The augmenting path has been found as 𝑈4, 𝑉2, 𝑈3. The matched and unmatched edges 

flip along the discovered augmenting path increases the cardinality of the matching by one, thus 

resulting in a complete matching. This matching is perfect, and hence it must be the optimal. The 

matching (𝑈1, 𝑉1), (𝑈2, 𝑉4), (𝑈3, 𝑉3), (𝑈4, 𝑉2) has cost 5+6+3+3=17 which is exactly the sum of 

the labels in the dual variables. 

U4 U1 U2 U3 

V4 V3 V2 V1 

5 
3 3 

6 
4 5 

4 

3 
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  Chapter 4

 Improved Incremental Assignment Algorithm 4

This chapter will provide an improved algorithm for Incremental Assignment Problem. 

This chapter will present: 

 The requirement of Improved Incremental Assignment Algorithm, 

 The Improved Incremental Assignment Algorithm, 

 The overall program flow chart,  

 The platform of simulation, and  

 Simulation results and analysis. 
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4.1 Introduction 

The incremental assignment problem is described as: given a weighted bipartite graph 

and its maximum weighted matching, determine the maximum weighted matching of the graph 

extended by a new pair of vertices, one on each partition, and weighted edges connecting these 

new vertices to all the vertices on their opposite partitions [81]. It can be solved with the 

Hungarian Algorithm as the general assignment problem. But in Toroslu’s work, they propose an 

algorithm that uses the given maximum weighted matching of the maximum-weighted-matched 

part of the bipartite graph to determine the maximum weighted matching of the entire (extended) 

bipartite graph. The complexity of the algorithm is 𝑂(𝑛2). 

Considering there will be thousands or millions weights. It is costly to calculate by using 

incremental assignment algorithm. The goal is to propose an algorithm to improve the 

incremental assignment algorithm. 

4.2 Improved Incremental Assignment Algorithm 

The algorithm first determines the feasible values of the two new dual variables 𝛼𝑛+1 and 

𝛽𝑛+1 (the other dual variables are still feasible from the solution of the 𝑛 × 𝑛 matrix). It then 

basically performs a single stage of the Hungarian algorithm to find an augmenting path between 

the two new vertices 𝑈𝑛+1 and 𝑉𝑛+1. 

            𝐷𝐶𝑘 is the maximum value of the difference between the column weight and its dual 

variables; 

            𝐷𝑅𝑡 is the maximum value of the difference between the row weight and its dual 

variables; 

            𝑋𝑘𝑡 = 1 means 𝑊𝑘𝑡 is the optimal solution of the 𝑘th row 𝑡th column; 

            𝑋𝑘𝑡 ≠ 1 means 𝑊𝑘𝑡 is not the optimal solution of the 𝑘th row 𝑡th column. 

 If 𝑋𝑘𝑡 = 1, calculating 𝐷𝐶𝑘  and 𝐷𝑅𝑡  by using the dual variables 𝛼𝑛 and 𝛽𝑛, then compare 

the sum (𝐼) of 𝐷𝐶𝑘 and 𝐷𝑅𝑡 with the weight 𝑊(𝑛+1)(𝑛+1). Then get the optimal matching. 

 If 𝑋𝑘𝑡 ≠ 1, adjusting dual variables to add new admissible edges to the equality subgraph as 
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needed. Flipping the matched and unmatched edges along the discovered augmenting path 

increases the cardinality of the matching by one, thus resulting in a complete matching. Note 

that the two new nodes 𝑢𝑛+1 and 𝑣𝑛+1 may not necessarily be matched to each other in the 

final matching. The improved incremental assignment algorithm is illustrated below. Figure 

24 shows the overall program flow chart. 

 

Figure 24: The overall program flow chart 

 

Improved Incremental Assignment Algorithm: 

Start 

 (1) 

                     (2) 

  

Yes

! No! 

Yes! 

No! 

Empty matching 

Stage Step 

Output 
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Input: 

 An assignment problem comprising a bipartite graph, {V, E}  (where 𝑉 = 𝑋 ∪

𝑌, 𝑋 ∩ 𝑌 = ∅, |𝑋| = |𝑌| = 𝑛 + 1 ) and an (𝑛 + 1) × (𝑛 + 1)  matrix of edge 

weights 𝑊𝑖𝑗 

 An optimal solution to the 𝑛 × 𝑛 sub-problem of the above assignment problem, 

comprising a matching 𝑀∗ of the first 𝑛 nodes of 𝑋 to the first 𝑛 nodes of 𝑌, and 

the final values of the dual variables 𝛼𝑖 and 𝛽𝑗 for 𝑖 ∈ 1…𝑛 and 𝑗 ∈ 𝑖 …𝑛 

Output: An optimal matching 𝑀, for the (𝑛 + 1) × (𝑛 + 1) problem. 

 

1. Perform initialization: 

(a) Find the difference of each role and each column as follows: 

𝐷𝐶𝑘 = 𝑚𝑎𝑥1≤𝑖≤𝑛(𝑊𝑖(𝑛+1) − 𝛼𝑖)                                      (4.2.1) 

𝐷𝑅𝑡 = 𝑚𝑎𝑥1≤𝑖≤𝑛(𝑊(𝑛+1)𝑗 − 𝛽𝑗)                                      (4.2.2) 

𝐼 = 𝐷𝐶𝑘 + 𝐷𝑅𝑡                                                    (4.2.3) 

(b) If 𝑋𝑘𝑡 = 1, 

i. 𝐼 ≤ 𝑊(𝑛+1)(𝑛+1), then  

𝑋(𝑛+1)(𝑛+1) = 1, then  

go to step 3. 

ii. 𝐼 > 𝑊(𝑛+1)(𝑛+1), then  

find 𝑊𝑘(𝑛+1) and 𝑊(𝑛+1)𝑡 such 𝑋𝑘(𝑛+1) = 1 and 𝑋(𝑛+1)𝑡 = 1, then 

go to step 3. 

(c) Else if 𝑋𝑘𝑡 ≠ 1, Begin with an empty matching, 𝑀0 = 𝑀∗. Assign feasible values to 

the dual variables 𝛼𝑛+1 and 𝛽𝑛+1 as follows: 

𝛽𝑛+1 = 𝑚𝑎𝑥 (𝐷𝐶𝑘,𝑊(𝑛+1)(𝑛+1))                                       (4.2.4) 

𝛼𝑛+1 = 𝐷𝑅𝑡                                                        (4.2.5) 

2. Perform the Stage from the basic Hungarian algorithm detailed in the Hungarian Algorithm. 

3. Output the resulting matching 𝑀. 
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Stage: 

1. Designate each exposed (unmatched) node in 𝑋 as the root of a Hungarian tree. 

2. Grow the Hungarian tree rooted at the exposed nodes in the equality subgraph. 

Designate the indices 𝑖 of nodes 𝑥𝑖 encountered in the Hungarian tree by the set 𝐼∗, and the 

indices 𝑗 of nodes 𝑦𝑗 encountered in the Hungarian tee by the set 𝐽∗. If an augmenting path 

is found, go to step (4). If not, and the Hungarian trees cannot be grown further, proceed to 

step (3). 

3. Modify the dual variables 𝛼𝑖 and 𝛽𝑗 as follows to add new edges to the equality subgraph. 

Then go to step (2) to continue the search for the augmenting path. 

𝜃 = 𝑚𝑖𝑛
𝑖∈𝐼∗,𝑗∉𝐽∗

(𝛼𝑖 + 𝛽𝑗 −𝑊𝑖𝑗) 

𝛼𝑖 ← {
𝛼𝑖 − 𝜃   𝑖 ∈ 𝐼

∗

𝛼𝑖          𝑖 ∉ 𝐼
∗  

𝛽𝑗 ← {
𝛽𝑗 + 𝜃   𝑗 ∈ 𝐽

∗

𝛽𝑗           𝑗 ∉ 𝐽
∗  

4. Augment the current matching by flipping matched and unmatched edges along the 

selected augmenting path. That is, 𝑀𝑘 (the new matching at stage 𝑘) is given by (𝑀𝑘−1 −

𝑃) ∪ (𝑃 −𝑀𝑘−1), where 𝑀𝑘−1 is the matching from the previous stage and 𝑃 is the set of 

edges on the selected augmenting path. 

4.3 Examples 

Consider that we are given the assignment among the first 3 vertices, which corresponds 

to the diagonal elements of the weight matrix. The optimal matching and the value of dual 

variables are given. 

     𝛼𝑖 

  𝑌1 𝑌2 𝑌3  

 𝑋1 5 1 1 0 

 𝑋2 4 3 1 -1 

 𝑋3 5 4 3 0 
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𝛽𝑗  5 4 3  

Figure 25: 𝟑 × 𝟑 matrix 

The examples below show that how the algorithm will be implemented under different 

cases. The last row and column are the newly added vertex pairs.  

Example 1: Consider the 4 × 4 weighted bipartite graph described by its weight matrix 

as follows: 

      𝛼𝑖 

  𝑌1 𝑌2 𝑌3 𝑌4  

 𝑋1 5 1 1 1 0 

 𝑋2 4 3 1 3 -1 

 𝑋3 5 4 3 3 0 

 𝑋4 1 5 2 6  

𝛽𝑗  5 4 3   

Figure 26: 4×4 matrix 

By using the Equation (4.2.1), (4.2.2) and (4.2.3), the largest difference of the column is 

𝐷𝐶2 = 4, the largest difference of the row is 𝐷𝑅2 = 1, then 𝐼 = 4 + 1 = 5. As 𝑊44 = 6, then 

𝐼＜𝑊44. As 𝑋22 = 1, then 𝑋44 = 1. The optimal solution is 5+3+3+6=17.  

Example 2: Consider the 4×4 weighted bipartite graph described by its weight matrix as 

follows: 

      𝛼𝑖 

  𝑌1 𝑌2 𝑌3 𝑌4  

 𝑋1 5 1 1 1 0 

 𝑋2 4 3 1 3 -1 

 𝑋3 5 4 3 3 0 

 𝑋4 1 6 2 5  

𝛽𝑗  5 4 3   
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Figure 27: 4×4 matrix 

This is the same example shown in [81]. We do not need to apply the Hungarian 

algorithm to find the dual variables. As the Improved Incremental Assignment Algorithm above, 

by using the Equation (4.2.1), (4.2.2) and (4.2.3), the largest difference of the column is 𝐷𝐶2 =

4, the largest difference of the row is 𝐷𝑅2 = 2, then 𝐼 = 4 + 2 = 6. As 𝑊44 = 5, then 𝐼 > 𝑊44. 

As 𝑋22 = 1, then 𝑋24 = 1 and 𝑋42 = 1. The optimal solution is 5+3+3+6=17.  

Example 3: Consider the 4 × 4 weighted bipartite graph described by its weight matrix 

as follows: 

      𝛼𝑖 

  𝑌1 𝑌2 𝑌3 𝑌4  

 𝑋1 5 1 1 1 0 

 𝑋2 4 3 1 3 -1 

 𝑋3 5 4 3 3 0 

 𝑋4 1 3 6 5  

𝛽𝑗  5 4 3   

Figure 28: 𝟒 × 𝟒 matrix 

As the Improved Incremental Assignment Algorithm above, by using the Equation 

(4.2.1), (4.2.2) and (4.2.3), the largest difference of the column is 𝐷𝐶2 = 4, the largest difference 

of the row is 𝐷𝑅3 = 3. But 𝑋23 ≠ 1, Perform the Stage from the basic Hungarian algorithm. 

Determine the  augmenting path on the weighted bipartite graph which was extended by the 

feasible vertex labels. 

      𝛼𝑖 

  𝑌1 𝑌2 𝑌3 𝑌4  

 𝑋1 5 1 1 1 0 

 𝑋2 4 3 1 3 -1 

 𝑋3 5 4 3 3 0 

 𝑋4 1 3 6 5 3 



54 

 

𝛽𝑗  5 4 3 5  

Figure 29: Weight Matrix 

 

Figure 30: Equality subgraph 

The weighted matrix presents the feasible vertex labels of its vertices. The equality 

subgraph obtained from the weight matrix and the feasible vertex label is shown in Figure 30.  

Augmenting path 𝑋4, 𝑌3, 𝑋3, 𝑌2, 𝑋2, 𝑌4 is found; interchange matched and unmatched 

edges in the augmenting path. The optimal solution (𝑊11, 𝑊32, 𝑊43 and 𝑊24) has been found 

which is 5+3+4+6=18. 

4.4 Platform of Simulation 

The hardware platform is a laptop with a CPU of 2.30GHz and a main memory of 8GB. 

The development environment is Microsoft Windows 10 (Home Edition) and Eclipse 4.11. 

The simulation result is presented in 4.5. 

4.5 Implementation and Performance Experiments 

When properly implemented, the Incremental Assignment Algorithm (IAA) can operate 

with the computational complexity of 𝑂(𝑛2) [81]. To verify the performance of the Improved 

Incremental Assignment Algorithm (IIAA), a program is implemented based on that of the IAA.  

Y1 Y2 Y3 Y4 

X4 X1 X2 X3 
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Three cases are designed for the Improved Incremental Assignment Algorithm (IIAA) in 

different dimensions, where the percentage tells the operation time of Improved Incremental 

Assignment Algorithm time as a percentage of Incremental Assignment Algorithm among 600 

random matrixes. Case 1 shows the operation time comparison of the circumstances that 𝑋𝑘𝑡 = 1 

and 𝐼 > 𝑊(𝑛+1)(𝑛+1). Case 2 shows the running time comparison of the matrix that 𝑋𝑘𝑡 = 1 and 

𝐼 ≤ 𝑊(𝑛+1)(𝑛+1). Case 3 is the general cases which will express the chances that a random matrix 

will be solved by the IIAA and how much percentage of the operation time will be saved.  

All the experiments are workable in both algorithms. Each matrix is formed by randomly 

creating weights. Each case takes 20 different dimensions which the largest is 100 dimensions 

(i.e., a matrix with 100×100 elements) and the smallest is 5 dimensions ( a matrix with 5×5 

elements). Each dimension repeats 10 times to show that the algorithm is workable.  

Table 2 

The Operation Time for Case 1 

                  Time (ms) 

Dimension 

Improved IAA Average IAA Average Percentage 

5 1.648110 7.336810 22% 

10 1.828240 12.697650 14% 

15 1.694130 8.413910 20% 

20 1.809400 12.952850 14% 

25 1.222370 13.128120 9% 

30 2.203930 35.669240 6% 

35 1.765967 20.204889 9% 

40 1.904920 42.730290 4% 

45 2.095520 34.807790 6% 

50 1.731450 48.148740 4% 

55 1.928090 52.943150 4% 

60 2.308790 73.964380 3% 

65 3.248080 76.252410 4% 

70 3.240990 99.721670 3% 

75 3.350340 81.735200 4% 

80 4.353430 87.974030 5% 
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85 2.976130 91.464860 3% 

90 3.102580 98.607320 3% 

95 3.155540 101.195130 3% 

100 4.197170 106.825880 4% 

 

Figure 31: Trend lines for average operation time for different dimensions 

 

Table 1 presents the average time of different dimension matrix which has been solved by 

Improved Incremental Assignment Algorithm and Incremental Assignment Algorithm for Case 1. 

Timing unit is millisecond.  

Percentage =  
Improved IAA average time

IAA average time
 

Figure 31 shows the trend line for average operation time for different dimensions in 

Case 1. 
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Table 3 

The Operation Time for Case 2 

                  Time (ms) 

Dimension 

Improved IAA Average IAA Average Percentage 

5 1.529310 5.305950 29% 

10 1.833020 14.519800 13% 

15 1.533510 10.288430 15% 

20 1.212810 15.268100 8% 

25 1.110590 19.689600 6% 

30 1.772970 29.741750 6% 

35 1.399510 24.993040 6% 

40 2.009330 46.639780 4% 

45 1.584130 36.025330 4% 

50 2.325630 67.057310 3% 

55 1.879350 54.300640 3% 

60 2.291460 78.948510 3% 

65 3.270390 92.805720 4% 

70 3.208170 100.959030 3% 

75 4.811270 83.651650 6% 

80 4.267130 91.528590 5% 

85 3.237480 100.349570 3% 

90 2.864940 99.996790 3% 

95 3.298380 105.278890 3% 

100 3.993250 118.730300 3% 
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Figure 32: Trend lines for operation time for different dimensions 

 

Table 3 presents the average time of different dimension matrix which has been solved by 

Improved Incremental Assignment Algorithm and Incremental Assignment Algorithm for Case 2. 

Timing unit is millisecond.  

Figure 32 shows the trend line for average operation time for different dimensions in 

Case 2. 
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Table 4 

The Operation Time for Case 3 (General Case) 

                         Time 

Dimension 

Average IIAA  Average IAA  Percentage 

5 4.756250 6.105120 78% 

10 7.443250 10.365210 72% 

15 9.523685 13.256840 72% 

20 13.256470 16.524190 80% 

25 1.2182180 15.965740 76% 

30 23.965230 27.365210 88% 

35 19.254150 22.654230 85% 

40 41.426960 4.3520180 95% 

45 32.427760 36.733240 95% 

50 40.100680 41.300960 88% 

55 47.684420 49.862270 97% 

60 69.762950 78.467450 96% 

65 82.236240 88.386430 89% 

70 88.739410 96.520320 93% 

75 73.096270 79.328690 92% 

80 76.216940 94.359090 92% 

85 91.283150 99.860260 81% 

90 92.494110 93.051050 91% 

95 89.090840 92.479740 96% 

100 74.333890 106.840880 96% 

Sum 49.463742 55.647355 88% 
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Table 5 

The Operation Time for Case 3 (General Case) 

No. 

Dimension 

Random Matrix Solved by IIAA Chance 

5 100 21 21% 

10 100 20 20% 

15 100 12 12% 

20 100 11 11% 

25 100 13 13% 

30 100 9 9% 

35 100 6 6% 

40 100 2 2% 

45 100 11 11% 

50 100 1 1% 

55 100 1 1% 

60 100 12 12% 

65 100 7 7% 

70 100 6 6% 

75 100 3 3% 

80 100 12 12% 

85 100 4 4% 

90 100 1 1% 

95 100 1 1% 

100 100 21 21% 

Sum 2000 174 8.70% 

 

Figure 33：Chances and the percentage of general cases 
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Table 4 provides the average time of different dimension matrix which has been solved 

by Improved Incremental Assignment Algorithm and Incremental Assignment Algorithm for 

Case 2. Timing unit is millisecond. Table 5 presents the chances that a random matrix solved by 

IIAA 

Figure 33 presents the trend line of chances that a random matrix solved by IIAA for 

different dimensions and the percentage of operation time of IAA 

4.6 Performance Analysis 

Table I and II show the typical data collected from the experiments stated previously. The 

average operation time of Incremental Assignment Algorithm (IAA) required by random matrix 

are linearly increased. It is possible for some particular smaller dimension matrix to take more 

time than a larger dimension matrix because the value distributions significantly affect the time 

needed in the relevant algorithm. The average running time of Improved Incremental Assignment 

Algorithm (IIAA) is stable regardless of the increase of the dimension. The difference average 

running time between IIAA and IAA becomes higher because of the difference of iteration. With 

the higher dimension, the iteration of IAA will go higher. But IIAA still have only one iteration 

no matter how high the dimension is.  

In Case 1, IIAA saves up to 97% of operation time in high dimension matrix. In low 

dimension matrix, it will save 78% of running time on average. In Case 2, IIAA saves up to 97% 

of operation time in high dimension matrix. In low dimension matrix, it will save 71% of running 

time on average. The data express that Improved Incremental Assignment Algorithm will save 

much time when the dimension of the matrix is high.  

In Case 3 (general cases), for all the 2000 random matrices, 8.7% matrices meet the 

conditions of Improved Incremental Assignment Algorithm, the rest of the matrices will go to 

Incremental Assignment Algorithm. In each dimension, when the matrix is solved by Improved 

Incremental Assignment Algorithm, the operation time will be 70% ~90% of the Incremental 

Assignment Algorithm.  

Overall, when the matrix is solved by Improved Incremental Assignment Algorithm, the 

operation time will be faster than Incremental Assignment Algorithm. 
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4.7 Complexity 

Because the algorithm involves the worst case is to executing the Incremental 

Assignment Algorithm, the computational complexity of the Improved Incremental Assignment 

Algorithm is same as the Incremental Assignment Algorithm which is 𝑂(𝑛2). 
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  Chapter 5

 Incremental Group Role Assignment Problem 5

This chapter shows a way to solve Group Role Assignment Problem (GRAP) by using 

the Improved Incremental Assignment Algorithm (IIAA). This chapter will provide: 

 The introduction of Incremental Group Role Assignment Problem (IGRAP), 

 A real-world Problem, 

 Solution to IGRAP, 
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5.1 Introduction 

Incremental Group role assignment problem (IGRAP) initiates: Given a matrix which has 

𝑚 agents and 𝑛 roles, where 0 and 1 mean no and yes, respectively. The roles are equally 

important. Its highest performance role assignments and the dual variables (𝑢𝑖 for rows and 𝑣𝑗  

for columns) are also given, determine the optimal solution of the group for the different 

situations below: 

 extended with a new agent; 

 extended with a new role; 

 extended with a new agent and a new role at the same time; 

 extended with a new agent and more than one role at the same time; 

 extended with more than one agent and a new role at the same time; 

 extended with more than one agent and more than one role at the same time. 

Group Role Assignment problem can be solved by adjusting the number of agents and 

roles, the Role Group Role Assignment Problem (RGRAP) can be transferred to a General 

Assignment Problem (GAP). GAP has been solved by K-M algorithm. Since K-M algorithm 

solves the square matrix of GAP, which means the number of agents should be equal to that of 

roles. In the real world scenario, the assignments will not always meet this condition. Obviously, 

we need to transfer the input matrix into a square matrix. In order to form the square matrix, they 

duplicate rows or columns by using the Role Range Vector, Qualification Threshold Role Index 

Vector and other definitions and conditions to transfer RGRAP to GAP, as well as avoid the 

incorrect optimal result. After calling the K-M algorithm, the final assignment is produced based 

on the result. They provided the proofs and algorithms about how to transfer an RGRAP to a 

GAP and how a Weighted Group Role Assignment Problem (WGRAP) can be solved by the 

algorithm for an RGRAP [60]. 

The remainder of this chapter will be introduced as follows. 5.2 introduce the 

requirement of incremental group role assignment by a real world problem. 5.3 will talk about 

how to applying Improved Incremental Assignment Algorithm (IIAA) to solve IGRAP. 5.4 

introduces other real world scenario about IGRAP can be solved by using IIAPA. 
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5.2 Real World Problem 

In a walk-in clinic, the director of nursing department hopes to establish a system that can 

help him/her to assign different nurses to different departments. The departments will be 

included Registration Office, Reception Room, Consultation Room, Dressing Room, Therapeutic 

Department…Different department staff has different expertise.  

A walk-in clinic has 20 nurses in total. There are four departments: Registration Office 

(one nurse), Dressing Room (four nurses), Consultation Room (three nurses), and Therapeutic 

Department (three nurses). This is the solution to assign the nurses to each department to get 

their best performance. Nurses are evaluated by their modes, emotions, professional certificate, 

work experience and GPA. The result will be shown as the weights in the matrix. Suppose that 

the director has the data shown in the table to express the evaluation values of nurses with 

respect to each department (rows represent nurses, and columns represent departments). The 

clinic nurses’ performance is assumed as a simple sum of the selected nurses’ performance on 

their designated departments. The optimal solution is as shown.  

 

Figure 34：A clinic with 20 nurses and 4 departments 
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(a)                                (b) 

Figure 35: Evaluation values of agents and roles and the assignment matrix 

Case 1: 

During the graduation season, nurses graduated from nursing school and are looking for 

jobs. Because the number of patients increases, the clinic expanded its scale to open a new 

department – Reception Room. The director of nursing department need to assign the new 

graduates to each department (combine the old and the new) to achieve their optimal 

performance in the clinic. This is exactly an Incremental Group Role Assignment Problem that 

can be solved by applying the Improved Incremental Assignment Algorithm in the real world in 

some cases.  
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Figure 36: A clinic adding a new department 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.65 0.98
0.26 0.33

0.96 0.90 0.30
0.59 0.19 0.36

0.72 0.61
0.06 0.48

0.19 0.63 0.43
0.43 0.90 0.55

0.87 0.35
0.72 0.15

0.06 0.25 0.32
0.28 0.01 0.29

0.33 0.59
0.75 0.59

0.37 0.67 0.89
0.25 0.45 0.51

0.12 0.10
0.84 0.13

0.01 0.51 0.20
0.96 0.63 0.03

0.01 0.29
0.07 0.52

0.82 0.12 0.32
0.36 0.95 0.13

0.97 0.90
0.14 0.54

0.88 0.54
0.51 0.26

0.20
0.37

0.04 0.03
0.44
0.12
0.30
0.91
0.53

0.70
0.48
0.14
0.50
0.06

0.83 0.70 0.16
0.16
0.04
0.52
0.96
0.85

0.39 0.45
0.76 0.35
0.08 0.26
0.21
0.85

0.61
0.52]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
0
0

1 0 0
0 0 0
1 0 0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 1
0 0 0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a)                                         (b) 

Figure 37: Evaluation values of agents and roles and the assignment matrix 
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The clinic nurses’ performance is assumed as a simple sum of the selected nurses’ 

performance on their designated departments. By using GRAP, the optimal solution is 𝑟0 = {𝑎4}, 

𝑟1 = {𝑎0, 𝑎2, 𝑎12, 𝑎15}, 𝑟2 = {𝑎10, 𝑎14, 𝑎18}, 𝑟3 = {𝑎3, 𝑎11, 𝑎19}, r4 = {a6}. This assignment 

obtains the best total group performance of 10.4. The optimal solution is shown in Figure 35(a) 

the number with the line under, in Figure 35(b) as a matrix, and in Figure 36 as a graph.  

 

Figure 38: Optimal solution 

Case 2: 

A new nurse (agent) joins the clinic, which makes the group of 21 nurses (𝑎0~𝑎21). 

Figure 37 shows the 21 nurses and the 4 departments. 
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Figure 39: A new nurse joins the clinic 
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Figure 40: Evaluation values of nurses and departments and the assignment matrix 
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By using GRAP, the optimal solution is 𝑟0 = {𝑎4}, 𝑟1 = {𝑎0, 𝑎12, 𝑎15, 𝑎20}, 𝑟2 =

{𝑎10, 𝑎14, 𝑎18}, 𝑟3 = {𝑎3, 𝑎11, 𝑎19}. This assignment obtains the best total group performance of 

9.68. The optimal solution is shown in Figure 38(a) the number with the line under, in Figure 

38(b) as a matrix, and in Figure 39 as a graph.  

 

Figure 41: Optimal solution 

Case 3: 

The director wants to add a new department and a new nurse joins the clinic. The 

department has one nurse in it. Figure 40 shows the 21 nurses and the 5 departments.  
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Figure 42: A new department and a new nurse join the clinic 
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Figure 43: Evaluation values of nurses and departments and the assignment matrix 
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By using GRAP, the optimal solution is 𝑟0 = {𝑎4}, 𝑟1 = {𝑎0, 𝑎12, 𝑎15, 𝑎20}, 𝑟2 =

{𝑎10, 𝑎14, 𝑎18}, 𝑟3 = {𝑎3, 𝑎11, 𝑎19}, r4 = {a6}. This assignment obtains the best total group 

performance of 10.57. The optimal solution is shown in Figure 41(a) the number with the line 

under, in Figure 41(b) as a matrix, and in Figure 42 as a graph.  

 

Figure 44: Optimal solution 

5.3 Solution to IGRAP 

5.3.1 Concepts 

To clarify the Incremental Group Role Assignment (IGRAP), we need to state some 

concepts first. In formalizing IGRAPs, 𝑚 expresses the size of the agent, and 𝑛 expresses the 

size of the role. For example, in the soccer team, 𝑚 is 20 players, 𝑛 is four roles as goalkeeper, 

backs, midfields, forwards and backup.  

Role Range Vector: A role range vector is a vector of the lower ranges of roles. The role 

range vector is denoted as 𝐿[𝑗] ∈ 𝑁, where 𝑁 is the set of natural numbers and 0 ≤ 𝑗 < 𝑛. 
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For example, 𝐿 = [1, 4, 3, 3, 1] for the soccer team in Figure 34. 

Qualification Matrix: The qualification matrix is an 𝑚 × 𝑛 matrix of values in 

[0, 1],where 𝑄[𝑖, 𝑗] expresses the qualification value of agent 𝑖 for role 𝑗. It is denoted as 

𝑄[𝑖, 𝑗] ∈ [0, 1](0 ≤ 𝑖 < 𝑚; 0 ≤ 𝑗 < 𝑛). 

For example, Figure 35(a) shows a qualification matrix for the soccer team. 

Role Assignment Matrix: A role assignment matrix is an 𝑚 × 𝑛 matrix of values in {0, 

1}. If 𝑇[𝑖, 𝑗] = 1, agent 𝑖 is assigned to role 𝑗, and agent 𝑖 is called an assigned agent. It is 

denoted as 𝑇[𝑖, 𝑗] ∈ {0, 1}(0 ≤ 𝑖 < 𝑚; 0 ≤ 𝑗 < 𝑛). 

For example, Figure 35(b) shows an role assignment matrix for the soccer team. 

Group Qualification: A group qualification is defined as the sum of the assigned agents’ 

qualifications, i.e. ∑ ∑ 𝑄[𝑖, 𝑗] × 𝑇[𝑖, 𝑗]𝑛−1
𝑗=0

𝑚−1
𝑖=0 . 

For example, the group qualification of Figure 35 is 10.4. 

5.3.2 Solution to IGRAP 

Given a matrix that has 𝑖 agents and 𝑗 roles, where 0 and 1 mean no and yes, respectively. 

The roles are equally important. The maximization assignment and the dual variables (𝑢𝑖 for 

rows and 𝑣𝑖 for columns) have already been given. One condition is the total agent number (𝑚) 

should be larger than the required numbers, 𝑚 ≥ ∑ 𝐿[𝑗]𝑛−1
𝑗=0 .  

There are three situations we need to consider:  

 𝑚 > 𝑛: The number of agents (𝑚) is higher than the number of roles (𝑛). And each role can 

have more than one agent which is shown in Figure 10.  

 𝑚 = 𝑛: The number of agents (𝑚) equal to the number of roles (𝑛). And each role only has 

one agent. 

 𝑚 < 𝑛: The number of agents (𝑚) is lower than the number of roles (𝑛). And each role can 

have more than one agent. This situation cannot happen because of the condition. 
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Y1 Y2 Y3 αi 

X1 0.36 0.76 0.72 0.43 

X2 0.93 0.59 0.24 0.53 

X3 0.06 0.46 0.69 0.69 

X4 0.40 0.10 0.74 0.74 

X5 0.23 0.75 0.24 0.75 

X6 0.21 0.77 0.24 0.77 

β
i
 0.4 0.3 0  

Figure 45: Matrix with optimal solution 

Situation 1:  

Case 1(1): 

The matrix is extended with a new column which corresponding a role. Figure 11 shows 

an example of the extended matrix. This matrix has 6 rows corresponding to agents. Its role 

range vector is 𝐿 = [1, 2, 1, 1]. In Figure 11, 𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which meets the condition.  

 

 
Y1 Y2 Y3 Y4 αi 

X1 0.36 0.76 0.72 0.32 0.43 

X2 0.93 0.59 0.24 0.43 0.53 

X3 0.06 0.46 0.69 0.59 0.69 

X4 0.40 0.10 0.74 0.25 0.74 

X5 0.23 0.75 0.24 0.16 0.45 
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X6 0.21 0.77 0.24 0.26 0.47 

β
i
 0.4 0.3 0   

Figure 46: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟏] 

 

Subtracting all the rows with chosen agents, then we get the matrix in Figure 45. By 

comparing the variable in the adding column, we can get the maximum result in the column 𝑌5. 

The optimal solution is 3.79. 

 
Y1 Y2 Y3 Y4 αi 

X3 0.06 0.46 0.69 0.59 0.69 

X5 0.23 0.75 0.24 0.16 0.45 

β
i
 0.4 0.3 0   

Figure 47: Matrix after subtracting 

 

Case 1(2): 

Figure 46 shows another example of the extended matrix. This matrix has 6 rows 

corresponding to agents. Its role range vector is 𝐿 = [1, 2, 1, 2]. In this case, 𝑚 = ∑ 𝐿[𝑗]𝑛−1
𝑗=0  

which meets the condition.  

 

 
Y1 Y2 Y3 Y4 αi 

X1 0.36 0.76 0.72 0.32 0.43 

X2 0.93 0.59 0.24 0.43 0.53 

X3 0.06 0.46 0.69 0.59 0.69 

X4 0.40 0.10 0.74 0.25 0.74 

X5 0.23 0.75 0.24 0.16 0.45 



76 

 

X6 0.21 0.77 0.24 0.26 0.47 

β
i
 0.4 0.3 0   

Figure 48: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟐] 

Subtracting all the rows with chosen agents, then we get the matrix in Figure 47. This 

will be easier that there are two left agents and the goal is to choose two agents. Both of the left 

agents need to be chosen. The maximum result in the column 𝑌5. The optimal solution is 3.95. 

 
Y1 Y2 Y3 Y4 αi 

X3 0.06 0.46 0.69 0.59 0.69 

X5 0.23 0.75 0.24 0.16 0.45 

β
i
 0.4 0.3 0   

Figure 49: Matrix after subtracting 

 

Case 2(1): 

The matrix is extended with a new row corresponding to an agent. Figure 48 shows an 

example of the extended matrix. This matrix has 7 rows corresponding to agents. Its role range 

vector is 𝐿 = [1, 2, 1]. In Figure 14, 𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which meets the condition.  

 

 
Y1 Y2 Y3 αi 

X1 0.36 0.76 0.72 0.43 

X2 0.93 0.59 0.24 0.53 

X3 0.06 0.46 0.69 0.69 

X4 0.40 0.10 0.74 0.74 

X5 0.23 0.75 0.24 0.45 

X6 0.21 0.77 0.24 0.47 
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X7 0.65 0.43 0.88  

β
i
 0.4 0.3 0  

Figure 50: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏] 

In this case, we need to apply the GRAP to get the maximum result which is shown in 

Figure 49. The optimal solution is 3.94. 

 
Y1 Y2 Y3 

X1 0.36 0.76 0.72 

X2 0.93 0.59 0.24 

X3 0.06 0.46 0.69 

X4 0.40 0.10 0.74 

X5 0.23 0.75 0.24 

X6 0.21 0.77 0.24 

X7 0.65 0.43 0.88 

Figure 51: Optimal solution 

Case 2(2): 

The matrix is extended with more than one row corresponding to an agent. Figure 50 

shows an example of the extended matrix with two agents. This matrix has 8 rows corresponding 

to agents. Its role range vector is 𝐿 = [1, 2, 1]. In this case, 𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which meets the 

condition.  

 
Y1 Y2 Y3 αi 

X1 0.36 0.76 0.72 0.43 

X2 0.93 0.59 0.24 0.53 

X3 0.06 0.46 0.69 0.69 

X4 0.40 0.10 0.74 0.74 

X5 0.23 0.75 0.24 0.45 
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X6 0.21 0.77 0.24 0.47 

X7 0.65 0.43 0.88  

X8 0.25 0.80 0.13  

β
i
 0.4 0.3 0  

Figure 52: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏] 

In this case, we need to apply the GRAP to get the maximum result which is shown in 

Figure 51. The optimal solution is 3.94. 

 
Y1 Y2 Y3 

X1 0.36 0.76 0.72 

X2 0.93 0.59 0.24 

X3 0.06 0.46 0.69 

X4 0.40 0.10 0.74 

X5 0.23 0.75 0.24 

X6 0.21 0.77 0.24 

X7 0.65 0.43 0.88 

Figure 53: Optimal solution 

 

Case 3: 

The matrix is extended with a new column corresponding a role and a new row 

corresponding to an agent at the same time. This is a new instance of the incremental problem 

which adds an agent and a role at the same time. Figure 19 shows an example of the extended 

matrix. This matrix has 6 rows corresponding to agents. Its role range vector is 𝐿 = [1, 2, 1, 1]. In 

Figure 52, 𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which meets the condition.  
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Y1 Y2 Y3 Y4 αi 

X1 0.36 0.76 0.72 0.32 0.43 

X2 0.93 0.59 0.24 0.43 0.53 

X3 0.06 0.46 0.69 0.59 0.69 

X4 0.40 0.10 0.74 0.25 0.74 

X5 0.23 0.75 0.24 0.16 0.45 

X6 0.21 0.77 0.24 0.26 0.47 

X7 0.65 0.43 0.88 0.92  

β
i
 0.4 0.3 0   

Figure 54: Matrix extended with a new column, 𝑳 = [𝟏, 𝟐, 𝟏, 𝟏] 

By applying the GRAP, we can get the maximum result which is shown in Figure 53. The 

optimal solution is 4.12. 

 
Y1 Y2 Y3 Y4 

X1 0.36 0.76 0.72 0.32 

X2 0.93 0.59 0.24 0.43 

X3 0.06 0.46 0.69 0.59 

X4 0.40 0.10 0.74 0.25 

X5 0.23 0.75 0.24 0.16 

X6 0.21 0.77 0.24 0.26 

X7 0.65 0.43 0.88 0.92 



80 

 

Figure 55: Optimal solution 

Situation 2: 

      𝑚 = 𝑛: The number of agents (𝑚) equal to the number of roles (𝑛). And each role only has 

one agent which is shown in Figure 54. 

 
Y1 Y2 Y3 Y4 αi 

X1 0.36 0.76 0.72 0.32 0.43 

X2 0.93 0.59 0.24 0.43 0.53 

X3 0.40 0.10 0.74 0.25 0.74 

X4 0.21 0.39 0.24 0.77 0.77 

β
i
 0.4 0.3 0 0  

Figure 56: Matrix with optimal solution (𝑳 = [𝟏, 𝟏, 𝟏, 𝟏]) 

Case 1: 

The matrix is extended with a new column corresponding to a role and a new row 

corresponding to an agent at the same time. This is typical incremental problem which can be 

solved by applying the Improved Incremental Assignment Algorithm. Figure 55 shows an 

example of the extended matrix. This matrix has 6 rows corresponding to agents. Its role range 

vector is  𝐿 = [1, 1, 1, 1]. In Figure 22, 𝑚 = ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which meets the condition.  

 
Y1 Y2 Y3 Y4 Y5 αi 

X1 0.36 0.76 0.72 0.32 0.53 0.43 

X2 0.93 0.59 0.24 0.43 0.26 0.53 

X3 0.40 0.10 0.74 0.25 0.15 0.74 

X4 0.21 0.39 0.24 0.77 0.34 0.77 

X5 0.36 0.83 0.63 0.45 0.96  

β
i
 0.4 0.3 0 0   

Figure 57: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟏] 
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By applying the IIAP, we can get the maximum result which is shown in Figure 56. The 

optimal solution is 4.16. 

 

 

 
Y1 Y2 Y3 Y4 Y5 

X1 0.36 0.76 0.72 0.32 0.53 

X2 0.93 0.59 0.24 0.43 0.26 

X3 0.40 0.10 0.74 0.25 0.15 

X4 0.21 0.39 0.24 0.77 0.34 

X5 0.36 0.83 0.63 0.45 0.96 

Figure 58: Optimal solution 

Obviously, instead of applying the Kuhn-Munkres Algorithm which complexity is 𝑂(𝑛3) 

to solve IGRAP, Improved Incremental Assignment Algorithm will save much time and space to 

solve the Incremental Group Role Assignment Problem (IGRAP).  

Case 2: 

The matrix is extended with more than one columns (𝑘) corresponding to the roles and 

more than one rows (𝑡) corresponding the agents at the same time. In this case, 𝑡 > 𝑘. This is 

new type of incremental group role assignment problem. Figure 57 shows an example of the 

extended matrix. Its role range vector is 𝐿 = [1, 1, 1, 2, 1]. In Figure 24, 𝑚 > ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which 

meets the condition.  
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Y1 Y2 Y3 Y4 Y5 Y6 αi 

X1 0.36 0.76 0.72 0.32 0.53 0.66 0.43 

X2 0.93 0.59 0.24 0.43 0.26 0.59 0.53 

X3 0.40 0.10 0.74 0.25 0.15 0.10 0.74 

X4 0.21 0.39 0.24 0.77 0.34 0.39 0.77 

X5 0.36 0.53 0.63 0.45 0.96 0.83  

X6 0.36 0.50 0.26 0.50 0.58 0.76  

X7 0.14 0.63 0.29 0.62 0.90 0.45  

X8 0.25 0.60 0.24 0.37 0.46 0.86  

β
i
 0.4 0.3 0 0    

Figure 59: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟐, 𝟏] 

By applying the GRAP, we can get the maximum result which is shown in Figure 57. The 

optimal solution is 5.92. 

Case 3: 

The matrix is extended with more than one columns (𝑘) corresponding to the roles and 

more than one rows (𝑡) corresponding to the agents at the same time. In this case, 𝑡 < 𝑘. This is 

not incremental group role assignment problem because 𝑚 < ∑ 𝐿[𝑗]𝑛−1
𝑗=0  which does not meet the 

condition. Figure 58 shows an example of the extended matrix. Its role range vector is 𝐿 =

[1, 1, 1, 2, 1]. 
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Y1 Y2 Y3 Y4 Y5 Y6 αi 

X1 0.36 0.76 0.72 0.32 0.53 0.66 0.43 

X2 0.93 0.59 0.24 0.43 0.26 0.59 0.53 

X3 0.40 0.10 0.74 0.25 0.15 0.10 0.74 

X4 0.21 0.39 0.24 0.77 0.34 0.39 0.77 

X5 0.36 0.83 0.63 0.45 0.96 0.83  

β
i
 0.4 0.3 0 0    

Figure 60: Matrix extended with a new column, 𝑳 = [𝟏, 𝟏, 𝟏, 𝟐, 𝟏] 
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  Chapter 6

 Conclusions 6

In this thesis, an improved algorithm has been proposed to solve Incremental Assignment 

Problem. From the view of the overall program, the algorithm improves a lot with the running 

time of operation. From finding the largest difference of the row and the column, with the use of 

exchange with its maximum weighted matching, the problem has been reduced. Consequently, 

the step of iteration can be reduced largely. 

The Improved Incremental Assignment Algorithm also has good performance when 

solve the Incremental Group Role Assignment Problem. If the case meets the conditions of Case 

1 and Case 2, instead of the complexity of  𝑂(𝑛2), the problem can be solved by only using one 

iteration. The performance of experiments has shown the advantage of our algorithm. 

From the perspective of functions, our solution directly provides an improved way to 

solving the Incremental Assignment Problem. This solution can also be used to improve the 

Group Role Assignment Problem when there is a pair of new agent and new role (which has one 

agent in the group) adding to the matrix. Not only the operation time will be saved, but also the 

occupied space will be reduced. 

The computational complexity of our algorithm is 𝑂(𝑛2), because the most complicated 

case for our algorithm will go to Incremental Assignment Algorithm. As the complexity of 

Incremental Assignment Algorithm is 𝑂(𝑛2), our algorithms are also at the same level. 

Our solution has many advantages, but it still necessary to point out the disadvantages. 

In general cases, about 8.7% of the 2000 random matrices meet the conditions of Improved 

Incremental Assignment Algorithm, the rest of the matrix will go to Incremental Assignment 

Algorithm. The chance is limited which need to be improved in the future.  
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Appendix I 

This appendix is the maximum running time and the minimum running time of Incremental 

Assignment Algorithm and Improved Incremental Assignment Algorithm in Case 1. 

              Time (ms) 

Dimension 

IIAA Max IIAA Min IAA Max IAA Min 

5 2.775900 0.809700 11.843000 3.605700 

10 3.155300 1.007800 29.262300 5.532300 

15 2.416800 0.783300 10.374100 6.320200 

20 3.447700 0.740400 17.760300 9.486000 

25 1.895801 0.830701 18.330300 10.197900 

30 3.984400 1.172400 126.331600 17.426300 

35 3.927100 1.014100 23.748100 16.285900 

40 3.839500 1.153100 64.245200 28.302800 

45 3.418000 1.304300 49.567500 28.510500 

50 2.508400 1.216200 53.943300 39.909500 

55 2.535800 1.474100 59.939000 47.028700 

60 3.967800 1.262800 117.148000 50.581900 

65 4.301000 1.554300 100.045200 18.575000 

70 4.982300 1.660900 115.891799 75.239301 

75 4.569700 1.582000 130.493100 63.174000 

80 5.879900 3.174800 105.043500 61.280800 

85 3.989800 2.301400 100.358800 69.800300 

90 3.914600 2.107500 121.074600 84.413500 

95 4.487800 2.397500 117.880600 91.999500 

100 6.524400 2.614800 117.311600 92.163900 
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Appendix II 

This appendix is the maximum running time and the minimum running time of Incremental 

Assignment Algorithm and Improved Incremental Assignment Algorithm in Case 2. 

Time (ms) 

Dimension 

IIAA Max IIAA Min IAA Max IAA Min 

5 2.486000 0.754800 7.339600 3.118100 

10 3.084600 0.961000 25.906100 6.381400 

15 2.346800 0.965800 14.566900 7.281400 

20 2.679800 0.712900 22.630200 8.092000 

25 1.765600 0.838500 38.868401 13.083299 

30 3.493000 0.936900 47.798400 19.708000 

35 2.515800 0.912000 28.608900 19.834100 

40 3.031899 1.168000 79.442600 34.455000 

45 2.310200 1.167000 46.856000 31.639800 

50 3.667600 1.391700 131.671800 36.891700 

55 2.380500 1.421900 62.886900 43.799300 

60 3.196000 1.261800 108.415700 58.537300 

65 4.993500 1.402700 146.824500 65.585900 

70 4.617400 1.465400 110.288201 94.628900 

75 7.532800 3.194000 117.590000 67.875500 

80 4.934900 3.021400 106.298400 59.418300 

85 4.305500 2.442900 133.620500 65.973100 

90 4.233100 2.301500 119.383700 83.284900 

95 4.585900 1.983400 114.241300 94.118200 

100 5.977300 3.177000 130.864300 97.024000 
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Appendix III 

This appendix is the maximum running time and the minimum running time of Incremental 

Assignment Algorithm and Improved Incremental Assignment Algorithm in Case 3. 

Time (ms) 

Dimension 

IIAA Max IIAA Min IAA Max IAA Min 

5 10.051900 1.170300 9.688700 4.344700 

10 21.439200 1.068400 20.592600 9.294100 

15 12.250700 1.141100 12.566400 8.135600 

20 24.431200 1.483900 30.004400 10. 442700 

25 25.724999 0.98,500 27.136800 10.082001 

30 39.386900 1.218300 44.763300 21.523700 

35 25.798600 2.613300 28,090800 17.720900 

40 72.103400 27.782800 67.590700 27.915900 

45 38.080800 25.299400 39.573800 28.396700 

50 49.055900 3.807700 66.579600 42.349600 

55 68.793900 2.380500 63.291800 44.966700 

60 116.272900 2.486500 138.822900 57.100400 

65 110.295600 61.285200 103.969100 67.856300 

70 107.151899 3.860099 172.658000 86.639501 

75 88.357300 62.410200 108.533400 67.468700 

80 91.485100 4.061300 126.127100 81.382000 

85 103.893300 81.419300 125.805100 91.329700 

90 161.647200 4.233100 127.307100 87.790700 

95 107.744600 2.397500 127.115600 92.160100 

100 122.337800 4.048500 123.669300 93.273000 
 


