4,968 research outputs found

    Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems

    Get PDF
    AbstractThis paper generalizes the results for the constructions of explicit bounds and the qualitative properties for the solutions of certain two-dimensional fractional differential systems established in a recent paper of the authors. The main generalizations come from an elementary inequality and by means of the modification of Medveď’s de-singular approach

    Spikes and diffusion waves in one-dimensional model of chemotaxis

    Full text link
    We consider the one-dimensional initial value problem for the viscous transport equation with nonlocal velocity ut=uxx(u(Ku))xu_t = u_{xx} - \left(u (K^\prime \ast u)\right)_{x} with a given kernel KL1(R)K'\in L^1(\R). We show the existence of global-in-time nonnegative solutions and we study their large time asymptotics. Depending on KK', we obtain either linear diffusion waves ({\it i.e.}~the fundamental solution of the heat equation) or nonlinear diffusion waves (the fundamental solution of the viscous Burgers equation) in asymptotic expansions of solutions as tt\to\infty. Moreover, for certain aggregation kernels, we show a concentration of solution on an initial time interval, which resemble a phenomenon of the spike creation, typical in chemotaxis models

    On a drift-diffusion system for semiconductor devices

    Full text link
    In this note we study a fractional Poisson-Nernst-Planck equation modeling a semiconductor device. We prove several decay estimates for the Lebesgue and Sobolev norms in one, two and three dimensions. We also provide the first term of the asymptotic expansion as tt\rightarrow\infty.Comment: to appear in Annales Henri Poincar\'

    On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis

    Get PDF
    We introduce new lower bounds for the fractional Fisher information. Equipped with these bounds we study a hyperbolic-parabolic model of chemotaxis and prove the global existence of solutions in certain dissipation regimes
    corecore