6 research outputs found

    Instrumenting self-modifying code

    Full text link
    Adding small code snippets at key points to existing code fragments is called instrumentation. It is an established technique to debug certain otherwise hard to solve faults, such as memory management issues and data races. Dynamic instrumentation can already be used to analyse code which is loaded or even generated at run time.With the advent of environments such as the Java Virtual Machine with optimizing Just-In-Time compilers, a new obstacle arises: self-modifying code. In order to instrument this kind of code correctly, one must be able to detect modifications and adapt the instrumentation code accordingly, preferably without incurring a high penalty speedwise. In this paper we propose an innovative technique that uses the hardware page protection mechanism of modern processors to detect such modifications. We also show how an instrumentor can adapt the instrumented version depending on the kind of modificiations as well as an experimental evaluation of said techniques.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Compiled Low-Level Virtual Instruction Set Simulation and Profiling for Code Partitioning and ASIP-Synthesis

    Get PDF
    Abstract We present ongoing work and first results in static and detailed quantitative runtime analysis of LLVM byte code for the purpose of automatic procedural level partitioning and cosynthesis of complex software systems. Runtime behaviour is captured by reverse compilation of LLVM bytecode into augmented, self-profiling ANSI-C simulator programs retaining the LLVM instruction level. The actual global data flow is captured both in quantity and value range to guide function unit layout in the synthesis of application specific processors. Currently the implemented tool LLILA (Low Level Intermediate Language Analyzer) focuses on static code analysis on the inter-procedural data flow via e.g. function parameters and global variables to uncover a program's potential paths of data exchange

    Program variation for software security

    Get PDF

    Correct synthesis and integration of compiler-generated function units

    Get PDF
    PhD ThesisComputer architectures can use custom logic in addition to general pur- pose processors to improve performance for a variety of applications. The use of custom logic allows greater parallelism for some algorithms. While conventional CPUs typically operate on words, ne-grained custom logic can improve e ciency for many bit level operations. The commodi ca- tion of eld programmable devices, particularly FPGAs, has improved the viability of using custom logic in an architecture. This thesis introduces an approach to reasoning about the correctness of compilers that generate custom logic that can be synthesized to provide hardware acceleration for a given application. Compiler intermediate representations (IRs) and transformations that are relevant to genera- tion of custom logic are presented. Architectures may vary in the way that custom logic is incorporated, and suitable abstractions are used in order that the results apply to compilation for a variety of the design parameters that are introduced by the use of custom logic

    Profileringstechnieken voor prestatieanalyse en optimalisatie van Javaprogramma's

    Get PDF

    AADEBUG2003 XXX1 Instrumenting self-modifying code

    No full text
    Adding small code snippets at key points to existing code fragments is called instrumentation. It is an established technique to debug certain otherwise hard to solve faults, such as memory management issues and data races. Dynamic instrumentation can already be used to analyse code which is loaded or even generated at run time. With the advent of environments such as the Java Virtual Machine with optimizing Just-In-Time compilers, a new obstacle arises: self-modifying code. In order to instrument this kind of code correctly, one must be able to detect modifications and adapt the instrumentation code accordingly, preferably without incurring a high penalty speedwise. In this paper we propose an innovative technique that uses the hardware page protection mechanism of modern processors to detect such modifications. We also show how an instrumentor can adapt the instrumented version depending on the kind of modificiations as well as an experimental evaluation of said techniques
    corecore