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Nothing in this world can take the place of persistence.
Talent will not; nothing is more common than unsuccessful people with talent.

Genius will not; unrewarded genius is almost a proverb.
Education will not; the world is full of educated derelicts.

Persistence and determination alone are omnipotent.
Calvin Coolidge
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Samenvatting

Beheerde programmeertalen zoals Java hebben de laatste jaren een enor-
me vlucht genomen. Functionaliteit zoals overdraagbaarheid, dynami-
sche typecontrole, veiligheid, wijzerencapsulatie, het dynamisch laden
van klassen en automatisch geheugenbeheer laat software-ontwikkelaars
toe om sneller betere code te schrijven.

Om een deel van deze functionaliteit te bewerkstelligen is een geso-
fisticeerde virtuele machine vereist. Javabroncode wordt vertaald naar
Java-bytecode, en die kan dan worden uitgevoerd op elk hardwareplat-
form waarvoor een Java Virtuele Machine beschikbaar is. In vergelijking
met programma’s geschreven in traditionele programmeertalen zoals C
of C++, beschikken programma’s die gebruik maken van een virtuele ma-
chine over een extra niveau van abstractie en virtualisatie.

Een gevolg hiervan is dat voor het efficiënt uitvoeren van een Java-
programma een extra vertaalslag nodig is. Om de uitvoering van Java-
programma’s te versnellen, vertalen de meeste Java Virtuele Machines de
Java-bytecode van frequent uitgevoerde methoden naar machinetaal zo-
dat de code rechtstreeks uitgevoerd kan worden op het onderliggende
hardwareplatform. Deze vertaling gebeurt meestal tijdens de uitvoering
van het programma zelf.

Omdat de uitvoering van toepassingen geschreven in beheerde pro-
grammeertalen een geavanceerde virtuele machine vereist, bestaat er een
complexe interactie tussen het programma en de onderliggende virtue-
le machine. Dit maakt het voor software-ontwikkelaars vaak moeilijk
om het uitvoeringsgedrag van Javaprogramma’s te doorgronden. Bo-
vendien worden Javaprogramma’s vaak ingewikkelder; door de opkomst
van middelware-lagen breiden Javaprogramma’s uit in grootte en com-
plexiteit.

Omwille van deze redenen is het begrijpen, laat staan het verbeteren,
van de prestatie van programma’s geschreven in een dergelijke program-
meertaal verre van triviaal is. Dit is dan ook het kernprobleem dat we
behandelen in dit proefschrift.

De oplossing die we aanreiken ligt in profilering. Het centrale thema
van dit proefschrift is het verzamelen van meer complete profielen ten-
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einde de prestatie van Javaprogramma’s te begrijpen en te verbeteren.
Naarmate programma’s complexer worden en virtualisatie aan belang
toeneemt, wordt het steeds belangrijker om informatie van verschillen-
de lagen van de uitvoeringsstapel te combineren in één profiel. In dit
proefschrift stellen we drie nieuwe profileringstechnieken voor die ons
toelaten om meer complete profielen op te meten.

Ten eerste presenteren we Javana, een raamwerk dat het mogelijk maakt
om op een eenvoudige manier verticale profileringstoepassingen te bou-
wen. Javana gebruikt dynamische binaire instrumentatie om laag-niveau-
informatie te verzamelen en terug te koppelen aan hoogniveauprogram-
meerconstructies zoals objecten, methoden en draden. Het gebruik van
een dynamisch binair instrumentatieraamwerk is traag, maar functioneel
accuraat. We tonen aan hoe Javana kan gebruikt worden om informatie,
verzameld op verschillende lagen van de uitvoeringsstapel, te combine-
ren tot één profiel, en hoe software-ontwikkelaars en onderzoekers op die
manier meer inzicht kunnen krijgen in de uitvoering van Javaprogram-
ma’s.

Vervolgens stellen we MonitorMethod voor, een nieuwe profilerings-
techniek die het fasegedrag van Javaprogramma’s gebruikt om informa-
tie verzameld op het niveau van de microprocessor te koppelen met de
broncode van die Javaprogramma’s. Net zoals Javana maakt Monitor-
Method gebruik van instrumentatie, maar dan op basis van hardware-
prestatietellers (HPTs) in plaats van dynamische binaire instrumentatie.
Het gebruik van HPTs laat ons toe om de profielinformatie te verzamelen
met een kleinere overhead dan bij Javana. We tonen aan hoe software-
ontwikkelaars deze informatie kunnen gebruiken om prestatieproblemen
in hun Javaprogramma’s te identificeren, te lokaliseren en te verklaren.

Tot slot stellen we HPT-bemonstering voor, een techniek die gebruik
maakt van de HPTs om methoden te vinden die in aanmerking komen
om door de Java Virtuele Machine geoptimaliseerd te worden. De HPTs
worden hier niet gebruikt om inzicht te krijgen in het gedrag van Java-
programma’s, maar om de Java Virtuele Machine te helpen de uitvoering
van Javaprogramma’s te versnellen. Het optimaliseren van het program-
ma en het verzamelen van de informatie die hiervoor nodig is, moet ge-
beuren tijdens de uitvoering van het programma. Het is dus belangrijk
dat de overhead veroorzaakt door de gebruikte profileringstechniek, tot
het minimum herleid wordt. We bereiken dit door gebruik te maken van
bemonstering in plaats van instrumentatie en noemen deze techniek dan
ook HPT-bemonstering. Met HPT-bemonstering illustreren we dat door
het propageren van profielinformatie van de hardware naar de Java Virtu-
ele Machine, we sneller en nauwkeuriger belangrijke methoden kunnen
identificeren dan in software geı̈mplementeerde profileringstechnieken.

Het overkoepelende verband tussen deze bijdragen is dat ze informa-
tie verzamelen op verschillende lagen van de uitvoeringstapel en dat de-
ze informatie gecombineerd wordt met als doel meer volledige profielen
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te verzamelen. Door gebruik te maken van profielinformatie afkomstig
van het microprocessor-niveau kunnen we profielen opstellen die meer
accuraat zijn, sneller te bekomen zijn, en die we vroeger niet ter beschik-
king hadden. Concreet tonen we aan hoe deze verbeteringen in profile-
ringstechnieken ons helpen bij het begrijpen van het prestatiegedrag en
het versnellen van Javaprogramma’s.
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Abstract

Managed languages such as Java become increasingly popular. Features
like portability, dynamic type checking, security, pointer encapsulation,
dynamic class loading and automatic memory management allow devel-
opers to produce higher quality software faster.

To support a number of these features, a sophisticated virtual ma-
chine is required. Java source code is translated to Java bytecode, and
Java bytecode can then be executed on all host platforms for which a Java
Virtual Machine is available. Compared to applications written in tradi-
tional programming languages such as C or C++, applications that run
on top of a virtual machine benefit from an additional layer of abstraction
and virtualization.

A result of the additional abstraction and virtualization is that the ex-
ecution of Java bytecode is much slower than executing native machine
code. To improve performance of Java applications, most Java Virtual Ma-
chines compile the Java bytecode of frequently executed methods to ma-
chine code so they can run directly on the underlying hardware platform.
The compilation typically takes place at runtime while the application is
running.

Because the execution of applications written in such languages re-
quires a sophisticated virtual machine, there exists a complex interaction
between the application and the underlying virtual machine. As such, for
software developers, it is difficult to fully understand the performance of
Java applications. In addition to that, as middleware applications are be-
coming commodity, Java applications are growing in size and complexity.

Understanding and optimizing the performance of applications writ-
ten in managed programming languages is non-trivial. This is the key
challenge that we will address in this dissertation.

The solution lies in profiling. The central thesis of this dissertation is
that in order to understand and optimize the performance of Java applica-
tions, the ability to capture complete profiles is key. As Java applications
become more complex and as virtualization becomes more important, we
need to investigate profiling techniques that combine information cap-
tured at different layers of the execution stack. In this PhD dissertation,
we present three novel profiling techniques that capture more complete
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profiles.
The first contribution is the proposal of Javana, a framework for build-

ing customized vertical profiling tools. Javana uses dynamic binary in-
strumentation and an event handling mechanism in the VM to link low-
level information to programming language constructs such as objects,
methods and threads. By doing so, higher-level profiling tools can be
built. Using binary instrumentation is slow but functionally accurate.
Application developers and researchers can use Javana to build a wide
variety of profiling tools that aggregate information across different lay-
ers of the execution stack into one profile.

The second contribution is the proposal of a profiling mechanism that
links hardware performance monitors (HPMs) to method-level phases by
means of instrumentation. We use this technique to build MonitorMethod,
a tool that helps software developers identify and explain performance
bottlenecks in their Java application. Just like Javana, MonitorMethod
uses instrumentation to capture profile information. However, by using
hardware performance monitors instead of dynamic binary instrumenta-
tion, MonitorMethod has limited overhead compared to Javana.

Finally, the third contribution is the proposal of an online profiling
technique that uses hardware performance monitors, not to gain insight
in the behavior of applications, but to improve their performance. Here,
profile information is used to identify frequently executed methods, and
to help the JVM make better optimization decisions at runtime. Because
the profiling and compilation of methods happens during the execution
of the program, this profiling technique is optimized to collect informa-
tion with extremely low overhead. To control the overhead, it uses a
sampling mechanism rather than instrumentation. Hence, we called this
contribution HPM-sampling. We illustrate that by propagating profile in-
formation captured by the hardware to the Java Virtual Machine, we are
able to identify frequently executed methods faster and more accurately
compared to profiling techniques implemented in software.

The central attribute of these contributions is that they link informa-
tion gathered at different levels of the execution stack, and that this in-
formation is used to gather more complete profiles. By collecting infor-
mation at the micro-processor level, we have profile information that is
more accurate, faster to obtain, or that was otherwise not available. We
show that advances in profiling techniques lead to better understanding
of program behavior and faster executing Java applications.
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Chapter 1

Introduction

Software development is hard. It is no surprise that high-level managed
programming languages such as Java and C# – but also scripting lan-
guages like Python, Perl and PHP – have become increasingly popular
over the past few years. In fact, a recent Gartner report estimates that
80% of new software development will be in Java or C# [36].

What all of these languages have in common, and what helps drive
their adoption, is the fact that they run on a high-level language virtual ma-
chine (VM). Computers are among the most advanced engineered sys-
tems, and the key to managing complexity is abstraction and virtualiza-
tion. The higher the level of abstraction, the more details are hidden, the
easier it becomes to program for. The better the virtualization, the better
the software can be isolated from the underlying host platform, and the
less likely developers have to produce separate versions of their applica-
tion for each target platform of interest.

Compared to applications written in traditional programming lan-
guages like C or C++, applications that run on top of a VM benefit from
an additional layer of abstraction and virtualization, and this additional
layer can provide important features such as portability, dynamic type
checking, security, dynamic class loading, automatic memory manage-
ment, etc. These features, provided by abstraction and virtualization,
help developers produce higher quality software faster.

For example, software written in a managed programming language
is often compiled to a machine-independent instruction set such as Java
bytecode or the Microsoft Intermediate Language (MSIL) in the .NET
framework. The VM defines its own instruction set, and the application’s
source code is compiled to the VM’s instruction set much like C or C++
applications are compiled to the processor’s instruction set. This is how
virtualization makes applications highly portable, as it is not the applica-
tion, but the VM that needs to be ported to make the application run on a
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new host platform.

Another important advantage provided by most VMs is pointer encap-
sulation. VMs often force developers to think in terms of objects rather
than in terms of memory locations, and don’t allow direct accesses to
raw memory addresses. Just like a file system makes it easier to oper-
ate a physical hard disk, pointer encapsulation make it easier to use a
computer’s physical memory. A VM that supports pointer encapsulation
prevents inadvertent or malicious memory corruption.

On top of that, most VMs use automatic memory management which
enables the VM to automatically reclaim objects in memory that are no
longer reachable by the application, making it easier to develop applica-
tions, and making applications more robust to memory corruption.

Not surprisingly, the abstractions and virtualizations introduced by
VMs come at some costs. It is clear that the goals of software engineer-
ing and the ability to achieve high performance are often at odds. The
execution of applications written in managed programming languages
involves a complex interaction between the application and the under-
lying VM. In addition to that, the applications themselves are growing
in size and complexity. As a result, understanding and optimizing the
performance of today’s applications written in managed programming
languages is hard. These are the key challenges that we will address in
this PhD dissertation.

In the remainder of this thesis, we will focus on Java Virtual Machines
(JVMs). However, the presented techniques and ideas are applicable to
many other VM-based platforms as well.

1.1 Challenges in VM performance analysis and

optimization

We envision two major challenges in VM performance analysis and op-
timization: (i) understanding the runtime performance of applications
written in managed programming languages, and (ii) automatically im-
proving their runtime performance.

1.1.1 Understanding runtime performance

Application and system software developers need a good understanding
of an application’s behavior in order to optimize overall system perfor-
mance. Analyzing the behavior of applications written in languages such
as C and C++ is a well understood problem [56, 65, 66, 75], but under-
standing the behavior of modern software that relies on a VM is much
more challenging.
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Figure 1.1: An overview of a Java execution stack.

To support the features that modern programming environments like
Java offer [42], a sophisticated VM is required [54]. A high-level language
VM consists of a number of complex sub-components such as a class
loader, an interpreter, a run-time compiler, an optimizer, a garbage col-
lector and much more. The execution of applications involves a complex
interaction between the Java code and the different VM components, and
between the VM, the operating system and the hardware which makes
it challenging to relate hardware performance with source code. The be-
havior that is observed at the highest level in the execution stack is not
just the result of the application, but is a result of the interaction between
the application, the VM, the operating system and the hardware.

Furthermore, the applications themselves are growing in size and
complexity. Or, as Norman R. Augustine states it: Software is like entropy.
It is difficult to grasp, weighs nothing, and obeys the second law of thermody-
namics, i.e., it always increases. For example, enterprise Java applications
often run on top of an application server or framework. A good example
of such a framework is a Content Management System (CMS); it provides
an additional layer between the VM and the actual applications that are
implemented on top of the CMS. Like a CMS, there are many other mid-
delware applications that provide business logic or data access to other
software components or applications. Figure 1.1 shows an example Java
execution stack.

While it is useful to shield software developers from as many details
as possible and to delegate responsibility, it makes it increasingly diffi-
cult to conduct a thorough performance analysis. The more layers there
are, and the more complex each of these layers becomes, the harder it be-



4 Introduction

comes to understand the behavior of the entire application. In general,
there is an increasing need to gather more complete profiles that contain
information about the behavior of each of the components in the execu-
tion stack. Capturing a performance profile that crosscuts multiple layers
of the software in a way that is useful for software developers is a key
challenge.

1.1.2 Improving runtime performance

The second challenge stems from the fact that VMs need to run an appli-
cation written in a machine-independent instruction set as efficiently as
possible. Early VM implementations interpreted programs by emulating
the machine-independent instructions. Unfortunately, an interpreted exe-
cution is much slower than source code compiled to native machine code.
In particular, Java source code is compiled to a machine-independent in-
struction set, called Java bytecode, and early versions of the JVM were not
known for their blistering performance at interpreting and executing Java
bytecode.

To overcome this problem, Sun Microsystems added a runtime compiler
to their Java Virtual Machine (JVM). The run-time compiler translates the
machine-independent instructions to native machine code during the ex-
ecution of the program. This technique is often referred to as dynamic com-
pilation and was first pioneered by the Smalltalk and Lisp community in
the 1980s. In the early 1990s, the Self group at Sun Microsystems worked
on dynamic compilation techniques to make Self perform well [85]. Later,
in 1996, when Java entered the scene, many of the research results and in-
novations of the Self group became part of the Java Virtual Machine. In
1997, Sun Microsystem purchased Longview Technologies, the company
that originally developed the HotSpot Virtual Machine, widely respected
for its runtime compiler. In 1999, HotSpot became the default Sun JVM in
Java 1.3 [67].

Run-time compilers typically compile the machine-independent in-
structions on a per-method basis just before the code is about to be exe-
cuted; hence also the name just-in-time compiler, or JIT compiler for short [7,
15, 67, 80]. Whereas static compilers are often limited by the information
available at compile time, JIT compilers can take advantage of the profile
information collected at runtime to dynamically adapt to changes in pro-
gram execution behavior and can therefore concentrate their efforts on
methods where they can be most effective [2, 8, 10, 69].

Not surprisingly, a JIT compiler’s biggest challenge lies in balancing
the overhead of profiling and JIT compilation versus code quality. Com-
piling a method from Java bytecode to native machine code can be ex-
pensive. Compiling and optimizing a method that will only be executed
once is likely to result in a performance loss. It is important that the per-
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formance gain obtained from compiling and optimizing a method amor-
tizes the cost of profiling and run-time compilation. Unlike static com-
pilers that have the luxury of spending a lot of time analyzing the source
code, run-time compilers are restricted in the scope of the analysis and
optimizations they can perform. As a consequence, dynamic compilation
systems need to balance code quality with the time spent compiling the
method.

To balance these costs and to achieve high-performance, production
Java virtual machines contain at least two modes of execution: (i) unop-
timized execution, using interpretation [61, 67, 80] or a simple dynamic
compiler [7, 15, 24, 47] that produces code quickly, and (ii) optimized exe-
cution using an optimizing dynamic compiler. Methods are first executed
using the unoptimized execution strategy. An online profiling mecha-
nism is used to find a subset of methods to optimize during the same
execution. Many systems enhance this scheme to provide multiple levels
of optimized execution [7, 61, 80], with increasing compilation cost and
benefits at each level. This approach is commonly referred to as adaptive
or selective compilation.

A crucial component to improve runtime performance is the ability
to capture the necessary profile information in a low-overhead and accu-
rate manner. The quantity and the quality of the information gathered
directly impacts the performance of runtime environments. As advances
in online profiling techniques will lead to advances in performance, im-
proving existing online profiling schemes is our second key challenge.

1.2 Profiling

As hinted in the previous section, the key solution to both challenges –
understanding the behavior of layered applications and optimizing the
performance of virtualization software – lies in profiling. We define the
term profiling to mean, in a broad sense, the ability to capture information
on the execution of the program.

We now provide background information with respect to the state-of-
the-art in offline and online profiling techniques prior to the work pre-
sented in this dissertation.

1.2.1 Profiling for program understanding

The most obvious way to profile the performance of an application is by
manually instrumenting the Java source code of the application. Manual
instrumentation is tedious, hence there exists a large body of work about
offline profiling tools [9, 14, 22, 25, 75]. Offline meaning that the pro-
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files are collected in a separate preparatory run of the program and that
the information is then used to understand and (potentially) optimize the
program’s performance.

The Java Virtual Machine Profiler Interface (JVMPI) defines a gen-
eral purpose mechanism to obtain profile data from the JVM [81]. It is
intended for tool vendors to develop profilers that work in conjunction
with Sun’s JVM implementation. Profiling tools like IBM Jinsight, JProbe,
HProf, OptimizeIt, etc. obtain their profile information from the virtual
machine using the JVMPI [43]. The JVMPI is a two-way API between the
JVM and a profiler agent. The profiling agent specifies to the JVM what
kind of events it is interested in, and the JVM will tell the agent when an
event occurred. The JVMPI supports CPU-time profiling for threads and
methods, heap profiling, and monitor contention profiling. The JVMPI
does not allow events to be matched to host-specific events, or events
that occurred at lower levels of the execution stack. As such, the JVMPI
does not allow vertical profiles to be collected.

Building customized profiling tools

In 1994, Amitabh Srivastava and Alan Eustace of Digital Equipment Cor-
poration published a paper describing ATOM [75]. ATOM is a static bi-
nary instrumentation tool; it provides a mechanism that allows elements
of the program executable, such as instructions, basic blocks, and proce-
dures to be queried and manipulated. In particular, ATOM allows one
to add custom code to an executable. This custom code runs in the same
address space, making it possible to collect information about registers
used, branch conditions, data-flow analysis, etc. This technique, modify-
ing a program to profile itself, is known as instrumentation.

The approach taken by ATOM proved to be one of the most gen-
eral and efficient techniques for the transformation and instrumentation
of programs. As a consequence, a lot of systems have been developed
that provide ATOM-like functionality on various platforms. For exam-
ple, it leads to the development of dynamic binary instrumentation tools
like PIN [56], Valgrind [65, 66] or DIOTA [60]. Given an instrumentation
specification, these tools transform the binary application at runtime to
intercept memory operations, code execution, signals, function calls, sys-
tem calls, etc.

In the context of Java, the first academic works on Java bytecode in-
strumentation and transformation were BIT (Bytecode Instrumentation
Toolkit) [52] and BCEL (Bytecode Engineering Library) [6]. Both tools can
be used to alter the behavior of existing Java applications. Program trans-
formation tools developed with BIT or BCEL typically take Java class files
as input, and output modified version of these class files. This can be used
to eliminate dead code or unused variables, to add instrumentation code
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that locates where a program spends its time, or to collect information
that can be used as input for profile-based optimization systems.

Unfortunately, these tools are inadequate to understand the complex
interactions that exist in virtual execution environments. As program-
ming environments become more complex, and as middleware applica-
tions are becoming commodity, there is a desire for more complete pro-
files that crosscut multiple layers in the execution stack. Unfortunately
there is no ATOM-like tool that allows one to create a wide variety of
profiling tools for Java applications.

Using hardware performance counters

Modern processors are often equipped with a set of performance counter
registers. These registers are designed to count microprocessor events
that occur during the execution of a program. They allow to keep track
of the number of retired instructions, elapsed clock cycles, cache misses,
branch mispredictions, etc.

Sweeney et al. [82] present a system to profile microprocessor-level
behavior of Java workloads. At every thread switch, one or more hard-
ware performance monitors are read. Doing so, they generate traces
of hardware performance monitor values while executing Java applica-
tions. They also present a tool for graphically exploring the performance
counter traces.

In later work [44, 45], Hauswirth et al. found that using hardware per-
formance monitors was not enough for a complete understanding of cer-
tain performance phenomena, and concluded that they also needed in-
formation from higher layers in the execution stack. They extended their
previous work [82] to coin a new profiling technique called vertical profil-
ing. They used the term to describe a profiling setup in which a stream
of hardware performance monitors were recorded and later on synchro-
nized with events occurring at the VM level. This information can be used
to explain unusual, unexpected or undesirable aspects of the application’s
performance. For example, they used it to show that a dip in the number
of cycles per instruction (CPI) corresponds to garbage collector activity,
and that an increase in CPI was due to a method being recompiled at a
higher optimization level.

While the recent work illustrates the usefulness of using hardware
performance monitors to better understand program behavior, the results
obtained with their techniques are coarse-grained as they only read the
hardware performance monitors at every thread switch.
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1.2.2 Profiling for runtime optimization

The goal of online profiling techniques is to collect profile information
during the execution of the application and to consume that information
within the same run [2, 8, 10, 69].

Applying offline profiling techniques online

There has been significant interest in making offline profiling techniques
online. Online profiling tools are fundamentally different from offline
profiling tools. An online system needs to profile the application during
program execution and when profiling is expensive, it is difficult for op-
timizations to amortize this cost. As a consequence, offline profiling tools
tend to favor precision, whereas online profiling tools tend to focus on
achieving low-overhead.

A number of solutions have been proposed to limit the overhead of
offline profiling techniques to enable them being used online. On-stack
replacement (OSR) [37] is a technique used to enable and disable pro-
gram specialization. Using OSR, an executing method can be recompiled
or transformed, and its stack frame can be dynamically replaced with that
of the new version. This allows methods with instrumentation code to be
replaced with methods that do not execute instrumentation code. Arnold
and Ryder [11] proposed a general framework for performing instrumen-
tation sampling, allowing previously expensive instrumentation to be per-
formed with low overhead. Their framework performs code duplication
and uses compiler-inserted counter-based sampling to switch between in-
strumented and non-instrumented code. The reduction in overhead pro-
vided by such systems allows profiling to be performed for a longer time
and makes it easier to control the overhead of online profiling.

Identifying methods to optimize

As explained, to achieve high performance, production Java virtual ma-
chines combine an unoptimized and optimized execution mode. Meth-
ods are initially interpreted or compiled with a simple baseline compiler.
However, an online profiling mechanism is used to find a subset of meth-
ods to optimize during the same execution.

Two approaches that are commonly used to find optimization candi-
dates are method invocation counters [24, 61, 67, 80] and timer-based sam-
pling [7, 15, 61, 80, 86]. Although invocations counters can be used for
profiling unoptimized code, their overhead makes them a poor choice for
use in optimized code.

Most VMs rely on an operating system timer interrupt to perform
sampling, but this approach has a number of drawbacks. First, the min-
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imum timer interrupt varies depending on the version of the operating
system, and in many cases can result in too few samples being taken. Sec-
ond, the sample-taking mechanism is untimely and inaccurate because
there is a variable delay between the timer going off and the sample be-
ing taken. Third, the minimum sample rate does not change when mov-
ing to newer, faster hardware; thus, the effective sample rate (relative to
the program execution) continues to decrease as hardware performance
improves.

1.3 The focus and contributions of this thesis

The central thesis of this PhD dissertation is that in order to understand
and optimize the performance of Java applications, the ability to capture
complete profiles is of key importance. As we go forward, we need to in-
vestigate profiling techniques that combine information captured at dif-
ferent layers of the execution stack.

This PhD dissertation presents three novel profiling techniques rep-
resenting different trade-offs in accuracy versus overhead. The central
attribute of these contributions is that they link information gathered at
different levels of the execution stack, and that this information is used
to gather more complete profiles. By collecting information at the micro-
processor level, we have profile information that is more accurate, faster
to obtain, or that was otherwise not available.

The first contribution is the proposal of Javana, a framework for build-
ing customized vertical profiling tools. Javana uses dynamic binary in-
strumentation and an event handling mechanism in the VM to link low-
level information to programming language constructs such as objects,
methods and threads. By doing so, higher-level profiling tools can be
built. Using binary instrumentation is slow but functionally accurate.
Application developers and researchers can use Javana to build a wide
variety of vertical profiling tools. Example applications of Javana include
object lifetime analysis, memory address tracing, etc.

The second contribution is the proposal of a profiling mechanism that
links hardware performance monitors to method-level phases by means
of instrumentation. Using hardware performance monitors instead of
dynamic binary instrumentation makes that this technique can be used
with limited overhead. We used this technique to build MonitorMethod, a
tool that helps developers identify and explain performance bottlenecks
in their Java application.

Finally, the third contribution is the proposal of an online profiling
technique that uses hardware performance monitors, not to gain insight
in the behavior of applications, but to improve their performance. Here,
profile information is used to help the JVM make better optimization de-
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cisions at runtime. Because it is an online profiling tool, it is optimized
to collect information with extremely low overhead. To control the over-
head, we use a sampling mechanism rather than instrumentation. Hence,
we called this contribution HPM-sampling. Table 1.1 compares the differ-
ent properties of these contributions.

Contribution 1: Contribution 2: Contribution 3:
Javana MonitorMethod HPM-sampling

- Offline - Offline - Online
- Uses binary - Uses hardware - Uses hardware
instrumentation performance monitors performance monitors
- Uses instrumentation - Uses instrumentation - Uses sampling
- For application - For application - For the Java
developers and developers and Virtual Machine
researchers VM developers
- Very detailed - Moderately detailed - Coarse-grained
profile information profile information profile information
- Slow - Fast - Fastest

Table 1.1: A comparison of the contributions in this PhD dissertation.

We now discuss each of these contributions in more detail.

1.3.1 Contribution 1: Offline profiling using binary in-
strumentation

The first technique uses dynamic binary instrumentation to create cus-
tomized Java program analysis tools. A dynamic binary instrumentation
tool runs underneath the JVM. The JVM informs the instrumentation
layer about a number of events, for example when an object is created,
moved or collected, or when a method gets compiled or re-compiled, etc.
The dynamic binary instrumentation tool then catches these events and
links instruction pointers and memory addresses to high-level language
concepts such as objects and methods.

We use this technique to build Javana, a proof-of-concept tool that pro-
vides developers an easy-to-use instrumentation framework to develop
profiling tools that crosscut the Java application, the JVM and the native
execution layers. To do so, the Javana instrumentation framework pro-
vides the end user with both high-level and low-level information. The
high-level information relates to the Java application and the VM, such
as thread IDs, method IDs, source code line numbers, object IDs, object
types, etc. The low-level information consists of instruction pointers, and
memory addresses. The end result is that Javana knows for all native
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instructions from what method and thread the instruction comes and to
what line of source code the instruction corresponds; and for all accessed
memory locations, Javana knows what objects are being accessed. Run-
ning the Java application of interest within the Javana system along with
user-specified instrumentation routines then collects the desired profiles
of the Java application. This allows for building a wide variety of pro-
filing tools, such as memory address tracing, vertical cache simulation,
object lifetime computation, etc.

To illustrate the usefulness of Javana consider Table 1.2 which is the
output of a simple profiling tool built with Javana that computes the cache
behavior per line in the Java source code. As we will show in this disser-
tation, the shell sort method of the SPECjvm98 db benchmark is an
important performance bottleneck – we will describe the experimental
setup in Chapter 2. Table 1.2 shows the shell sort method annotated
with cache miss information, i.e., L1 and L2 data cache miss rates are
annotated to each line of source code. Line 13 seems to be the primary
source for the high cache miss rate in the shell sort method. The rea-
son is that the j+gap index results in a fairly random access pattern into
a 61 KB index array.

Instrumentation tasks like the example above look conceptually sim-
ple, however, in practice they are challenging to implement without Ja-
vana. To accurately capture cache miss information, the JVM and its com-
pilers need to be adjusted in numerous ways, we have to deal with native
code that is called through the Java Native Interface (JNI), the standard
class libraries need to be instrumented, etc. Javana is useful because it en-
ables one to easily build accurate profiling tools without having to man-
ually instrument the application, the JVM, the standard class libraries or
the native code. The code required to build the profiling tool to compute
Table 1.2 was roughly 200 lines and will be presented in Chapter 2.

Another key advantage of Javana is that it is functionally accurate
(by construction) because the dynamic binary instrumentation layer can
track every executed machine code instruction. The pay-off however is
that tracking individual instructions results in a slowdown that varies
between a factor 125× and 850×. A large part of that overhead can be
attributed to the dynamic binary instrumentation layer that is required to
build a profiling framework like Javana.

This work is described in1:

• Javana: A system for building customized Java program analysis tools,
Jonas Maebe, Dries Buytaert, Lieven Eeckhout and Koen De Boss-

1This was joint work with Jonas Maebe. The focus of Jonas’ contributions was on the
aspect-oriented instrumentation specification and the dynamic binary instrumentation. My
contribution was the overall system design, the vertical profiling infrastructure and demon-
strating the use of Javana for building customized profiling tools. The work presented in
this dissertation represents my contributions.
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1 void shell sort(int fn) {
2 int i, j, n, gap;

3 String s1, s2;

4 Entry e;

5
6 if (index == null) set index(); 67 0 (0%) 0 0 (0%)
7 n = index.length; 134 1 (0%) 1 0 (0%)
8
9 for (gap = n/2; gap > 0; gap/=2) 938 0 (0%) 0 (0%)

10 for (i = gap; i < n; i++) 12,276,499 910 (0%) 1,083 3 (0%)
11 for (j = i-gap; j >=0; j-=gap) { 23,064,743 8,179 (0%) 9,615 33 (0%)
12 s1 = (String)index[j].items. 157,553,557 29,772,665 (19%) 36,551,726 6,095,594 (17%)

elementAt(fn);

13 s2 = (String)index[j+gap].items. 157,553,557 24,036,992 (15%) 29,456,752 15,581,062 (53%)
elementAt(fn);

14
15 if (s1.compareTo(s2) <= 0) break; 45,015,302 128 (0%) 153 1 (0%)
16
17 e = index[j]; 32,322,537 219 (0%) 228 0 (0%)
18 index[j] = index[j+gap]; 75,419,253 2,654 (0%) 3,228 811 (25%)
19 index[j+gap] = e; 43,096,716 0 (0%) 0 0 (0%)
20 }
21 fnum = fn; 67 61 (91%) 73 61 (84%)
22 }

Table 1.2: The shell sort method from db annotated with cache miss information computed using Javana.
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chere. In Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA
’06), Portland, USA, October 2006.

1.3.2 Contribution 2: Offline profiling using hardware
performance monitors

The second contribution is an offline profiling technique that uses hard-
ware performance monitors and phase behavior of Java applications to
gain more insight in the execution behavior of a Java application on real
hardware. The goal is to identify method-level phase behavior and to
use that information to correlate hardware performance characteristics
directly to the source code of the application and the virtual machine.

The technique reads the hardware performance monitors (i.e., cycles
per instruction, cache miss rates and branch misprediction rates) at the
beginning and end of each execution phase, and links the microprocessor-
level information to the source code of the Java application. The use of
phase behavior in combination with hardware performance monitors al-
lows us to collect profile information without the overhead that is inher-
ent to a similar profiling tool built with a system like Javana.
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compilation run 1 compilation run 2 compilation run 3 compilation run 4

Method / phase Region Time (%) CPI L1-D L2-D BMP

SourceClass.check 3 7.06 2.25 8.06 1.74 23.20
SourceClass.compileClass 3 26.03 1.74 5.14 0.98 16.26

Garbage collector 1 28.99 1.80 4.48 2.55 4.76
Parser.parseClass 2 22.68 1.48 2.93 0.54 18.26

Benchmark average n/a n/a 1.67 4.28 1.32 13.26

Figure 1.2: The graph and the table present example phases in a javac -s100 run.
The time is given as a percentage of the total execution time. The L1 data cache
miss rates, the L2 data cache miss rates and the branch misprediction rates are
given as the number of events per 1,000 instructions.
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We used this technique to build a prototype tool called MonitorMethod.
The output of MonitorMethod helps answering three fundamental ques-
tions programmers might ask when optimizing their application: (i) what
are the application’s performance bottlenecks, (ii) why do these perfor-
mance bottlenecks occur and (iii) when do the performance bottlenecks
occur? To illustrate this point, consider the execution of the SPECjvm98
javac benchmark application. Figure 1.2 shows a graph produced by
MonitorMethod that plots javac’s cycles per instruction (CPI) over time
when measured on an AMD Athlon XP system. The vertical separators
group phases in regions with similar performance characteristics. Note
that javac with the -s100 input set compiles the same Java classes four
times. Profile information captured at each context switch is used to ag-
gregate all profiling data into a single graph. To answer the first question
(what is the performance bottleneck?), we ordered the phases by their
CPI values as shown in the table of Figure 1.2. Note that the table depicts
only a small subset of all the phases in javac. Methods whose CPI is
worse than the average CPI, are potential performance bottlenecks. To
answer the second question (why does the performance bottleneck oc-
cur?), one can investigate the corresponding metrics such as cache miss
rates and the branch misprediction rate, see the table in Figure 1.2. Fi-
nally, to answer the last question (when does the performance bottleneck
occur?), one can use region information to relate phases to the time be-
havior of an application, see also Figure 1.2. This example illustrates that
to understand how, why and when bottlenecks occur, it is valuable to
link hardware performance monitors, captured at the lowest level of the
execution stack, with the source code of a Java application.

By exploiting phase behavior we can capture the hardware perfor-
mance monitors at an acceptable performance cost; the overhead of pro-
filing javac was only 2.11%, compared to a slowdown of 125× and more
that we observe for similar profiling tool built with Javana.

This work is described in2:

• Method-level phase behavior in Java workloads, Andy Georges, Dries
Buytaert, Lieven Eeckhout and Koen De Bosschere. In Proceed-
ings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’04), Vancouver,
British Columbia, Canada, October 2004.

2This was joint work with Andy Georges. While the main contribution of Andy was
the statistical data analysis, my primary contribution was on the vertical instrumentation
aspects of the overall system design. The work presented in this dissertation represents my
contributions.
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1.3.3 Contribution 3: Online profiling using hardware
performance monitors

While the first and second contribution where offline techniques, the third
contribution is an online profiling technique. Unlike the previous tech-
niques that helped developers identify performance bottlenecks in their
Java applications, this technique looks for methods that can be optimized
by the VM during the execution of the program itself. Methods are first
executed unoptimized and then an online profiling mechanism is used
to find a subset of methods that should be optimized during that same
execution.

The technique uses hardware performance monitors to identify meth-
ods that might be good candidates for optimization. Besides reading the
counting hardware performance monitors at instrumentation points, as
done by MonitorMethod, the hardware performance monitors can also
be configured to generate an interrupt when a counter overflows. This
interrupt can be converted to a signal that is delivered to the process us-
ing the hardware performance monitors, which can track which methods
are being executed. In other words, the approach that we propose uses
event-based sampling, not instrumentation, to identify the methods that
can be optimized by the VM. This allows us to collect the information
necessary to drive optimization decisions with extremely low overhead;
typically the profiling overhead is no more than 0.2%.

We empirically evaluate the design space of several profilers for dy-
namic compilation and show that existing online profiling schemes suffer
from several limitations. They provide an insufficient number of sam-
ples, are untimely, and have limited accuracy. Next, we describe and
comprehensively evaluate HPM-sampling, a simple but effective profil-
ing scheme for finding optimization candidates using hardware perfor-
mance monitors that addresses the aforementioned limitations. We show
that HPM-sampling is more accurate; has low overhead; and improves
performance of existing Java applications by 5.7% on average and up to
18.3% when compared to results obtained with existing profilers.

This work is based on3:

• Using HPM-Sampling to Drive Dynamic Compilation, Dries Buytaert,
Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout,
Koen De Bosschere. In Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’07), Montreal, Canada, October 2007.

3The principal contributors to this work are Andy Georges and Michael Hind. Andy’s
main contribution is with helping to determine the accuracy and stability of the HPM-
sampling approach. Michael Hind provided feedback on the technical aspects of this work
and took the lead on writing the OOPSLA’07 paper.
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1.4 Thesis outline

In Chapter 2, we present the first contribution, an offline profiling tech-
nique that uses binary instrumentation to build a profiling framework for
creating customized Java program analysis tools. We show how this tech-
nique can be used to build a wide variety of profiling tools that accurately
relate microprocessor information to Java source code.

In Chapter 3, we describe the second contribution, an offline profiling
technique that uses hardware performance monitors instead of binary in-
strumentation to relate hardware performance monitors to the Java appli-
cation’s source code. We present a detailed case study showing that link-
ing microprocessor-level performance characteristics to the source code is
helpful for identifying performance bottlenecks.

In Chapter 4, we present the third contribution of this thesis, and
study how the VM identifies methods that can be optimized at runtime.
We evaluate the design space of existing online profiling schemes, and
propose an online profiling mechanism that uses hardware performance
monitors to identify methods that are optimization candidates.

In the last chapter, Chapter 5, a conclusion and future research direc-
tions are given.



Chapter 2

Offline profiling using

binary instrumentation

This chapter describes Javana, a system for building customized Java pro-
gram analysis tools. The Javana instrumentation framework provides the
end user with both high-level and low-level information. The high-level
information relates to the Java application and the VM, such as thread
IDs, method IDs, source code line numbers, object IDs, object types, etc.
The low-level information consists of instruction pointers and memory
addresses. Running the Java application of interest within the Javana sys-
tem along with user-specified instrumentation routines then collects the
desired profiles of the Java application.

The Javana system consists of a VM along with a dynamic binary
instrumentation tool that runs underneath the VM. The virtual machine
communicates with the dynamic binary instrumentation tool through
an event handling mechanism. The virtual machine informs the instru-
mentation layer about a number of events, for example when an object
is created, moved or collected, or when a method gets compiled or re-
compiled, etc. The dynamic binary instrumentation tool then catches
these events and subsequently builds a vertical map that links instruction
pointers and memory addresses to high-level language concepts.

The dynamic binary instrumentation tool captures all natively exe-
cuted machine instructions during a profiling run within Javana; this in-
cludes instructions executed in native functions called through the Java
Native Interface (JNI). Instrumenting all natively executed machine in-
structions causes a substantial slowdown, however, it enables Javana to
know for all native instructions from what method and thread the instruc-
tion comes and to what line of source code the instruction corresponds.
Also, for all accessed memory locations, Javana knows what objects are
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accessed.

As such, Javana enables the building of vertical profiling tools, i.e.,
profiling tools that crosscut the Java application, the VM and the native
execution layers. Vertical profiling tools are invaluable for gaining insight
into the overall performance and behavior of a Java application.

When looking at the lowest level of the execution stack, i.e., when
looking at the individual instructions executed on the host machine, it is
hard to understand the application’s behavior because of the fact that the
virtualization software gets intermixed with application code. However,
when the goal is deep understanding of the application’s behavior, the
lowest level of the execution stack really is the level to look at. Vertical
profiling enables gaining such insights and Javana makes vertical profil-
ing easy to do. Building equally powerful profiling tools without Javana
is both tedious and error-prone. Dynamic binary instrumentation under-
neath the virtual machine as done in Javana alleviates this issue.

In this chapter we demonstrate the power and accuracy of Javana
through three applications.

Our first application is memory address tracing. A recent study pub-
lished by Shuf et al. [74] analyzed the memory behavior of Java appli-
cations based on memory address traces. They instrumented the virtual
machine to trace all heap accesses, but did not trace stack accesses. As we
will show in this chapter, we found that on average 58% of all memory ac-
cesses in a Java application are non-heap accesses. Hence, not including
non-heap accesses in a memory behavior analysis study may significantly
skew the overall results. The Javana system captures all memory accesses
and consequently is more accurate.

In our second application we built a vertical profiling tool for ana-
lyzing the cache behavior of Java applications. This cache performance
profiling tool tracks cache miss rates per object type and per method and
thus allows for quick computation of the top-most cache miss causing
lines of code, the top-most cache miss causing object types, etc. This is in-
valuable information for an application developer who wants to optimize
the memory performance of his software.

Our third application shows how easy it is to build an object lifetime
analysis tool in Javana. Previous work [70] has shown that object lifetime
is an important characteristic which can be used for analyzing and opti-
mizing the memory behavior of Java applications. Computing an object’s
lifetime, although conceptually simple, is challenging in practice with-
out Javana because the virtual machine needs to be adjusted in numerous
ways in order to track all possible accesses to all objects, including ac-
cesses that occur through the Java Native Interface (JNI). This requires an
in-depth understanding of the virtual machine. Computing object life-
time distributions with Javana on the other hand, is easy to set up and in
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Figure 2.1: The Javana system for profiling Java applications.

addition, is guaranteed to deliver accurate object lifetimes.

2.1 The Javana system

Figure 2.1 illustrates the basic concept of the Javana system. The top of the
execution stack shows a Java application that is to be profiled. The Java
application together with a number of Java libraries runs on top of a vir-
tual machine. The virtual machine translates Java bytecode instructions
into native instructions. A dynamic binary instrumentation tool resides
beneath the virtual machine and tracks all native instructions executed by
the virtual machine.

The key point of the Javana system is that the virtual machine in-
forms the dynamic binary instrumentation tool through an event han-
dling mechanism whenever an object is created, moved, or deleted; or a
method is compiled, or re-compiled; or a thread is created, switched or
terminated, etc. The dynamic binary instrumentation tool then uses these
events to build vertical maps that associate native instruction pointers and
memory addresses with objects, methods, threads, etc. The dynamic bi-
nary instrumentation tool also intercepts all memory accesses during the
execution of the Java application on the virtual machine. This includes
instructions executed in native JNI functions, but excludes kernel-level
system calls as will be discussed later. Using the vertical maps, the bi-
nary instrumentation tool associates native machine addresses to high-
level concepts such as objects, methods, etc. This high-level information
along with the low-level information is then made available to the end
user through the Javana instrumentation framework.

The remainder of this section discusses the Javana system in more de-
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tail. We discuss the events that are triggered by the virtual machine, the
dynamic binary instrumentation layer in the Javana system, the event
handling mechanism, the vertical instrumentation, the perturbation of
the Javana system and finally our Javana proof-of-concept implementa-
tion. All of the subsections below give a general description of what the
issues are for building a vertical profiling system; the final subsection then
discusses our own proof-of-concept implementation.

2.1.1 Events triggered by the virtual machine

The Javana system requires that the virtual machine is instrumented to
trigger events. These events communicate information between the vir-
tual machine and the dynamic binary instrumentation tool. The Javana
system supports the following events:

• Class loading: When a new class is loaded and a new object type be-
comes available, the new class name is communicated to the binary
instrumentation tool.

• Object allocation: When a new object is allocated, the object’s type
and memory location (object starting address and its size) are com-
municated.

• Object relocation: When an object is moved by the garbage collector,
the object’s new location is communicated to the instrumentation
tool.

• Method compilation: When a method is compiled, its name, mem-
ory location and a ‘code to line number’ map are communicated to
the instrumentation tool.

• Method recompilation: When a method is recompiled, the method’s
location and ‘code to line number’ map are updated in the binary
instrumentation tool.

• Method relocation: When code is moved by the garbage collector,
the code’s new location in memory is communicated.

• Memory freed during garbage collection: When memory is freed,
the address range of the freed memory space is communicated to
the binary instrumentation tool.

• Java thread creation: When a new Java thread is created, the
thread’s ID and name are communicated.

• Java thread switch: When a Java thread switch occurs, the newly
scheduled Java thread’s ID is communicated.
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• Java thread termination: When a Java thread has ended execution,
this is communicated to the dynamic binary instrumentation tool.

• Java thread stack switch: When a Java thread stack is relocated, the
thread ID, the old stack location and the new stack location are com-
municated.

Note that this event list is just an example event list that can be tracked
within a Javana system. Additional events can be defined and added to
this list if desired. As we will show in Section 2.1.3, implementing events
in a virtual machine is easy to do. However, we found that this list of
events is sufficient for our purpose of building powerful Java program
analysis tools, as will be shown in the remainder of this chapter.

2.1.2 Dynamic binary instrumentation

A dynamic binary instrumentation tool takes as input a binary and an in-
strumentation specification [56, 59, 60, 65, 66]. The binary is the program
of interest; this is the Java application running in a virtual machine in our
case. The instrumentation specification indicates what needs to be instru-
mented in the binary; it drives the customized profiling. The dynamic
binary instrumentation tool then instruments the program of interest at
run time. Upon the first execution of a given code fragment, the instru-
mentation tool reads the original code, modifies it according to the given
instrumentation specification and stores the result as part of the instru-
mented binary. The instrumented version of the code is then executed
and the desired profiling information is collected while executing the in-
strumented binary.

The data memory addresses referenced by the loads and stores in the
instrumented binary are identical to those of the uninstrumented binary.
By keeping the original binary in memory at its original address while
generating the instrumented binary elsewhere, the instrumented binary
obtains correct data values from the original uninstrumented binary in
case data-in-code is read. The instrumentation tool also keeps track of
correspondences between instruction pointers in the original binary ver-
sus the instrumented binary. By doing so, the instrumentation routines
see instruction pointers and memory addresses as if they were generated
during the execution of the original binary.

Running a dynamic binary instrumentation tool underneath a vir-
tual machine requires that the instrumentation tool can deal with self-
modifying code. The reason is that most virtual machines implement a
dynamic optimizer that detects and (re-)optimizes frequently executed
code fragments. A similar issue occurs when garbage is collected; copy-
ing collectors may copy code from one memory location to another. This
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requires that the dynamic instrumentation tool invalidates the old code
fragment and replaces it with an instrumented version of the newly gen-
erated code fragment.

Note that the dynamic binary instrumentation tool does not track
kernel-level system calls. This limits the use of Javana to user-space
instrumentation.

2.1.3 Event handling method

The virtual machine triggers events by calling empty functions; these
empty functions are native C functions. The dynamic binary instrumen-
tation tool intercepts such function calls and in response calls the appro-
priate event handlers. Event handlers can accept arguments because the
arguments placed on the stack by the virtual machine are available to
the binary instrumentation tool as well. For example, when allocating an
object, the virtual machine calls the AllocateObject procedure with a
number of arguments, namely the object type t, its address m and its size
s. The dynamic binary instrumentation tool intercepts such events by in-
specting the target addresses of the function calls. If the target address
corresponds to the AllocateObject function in the above example —
the dynamic binary instrumentation tool knows this function by name
from the symbol information of the virtual machine — the dynamic bi-
nary instrumentation tool transfers control to the appropriate event han-
dler which in turn reads the arguments from the stack and adds this in-
formation to its internal data structures. When the event handler has fin-
ished execution, control is transferred to the return address of the event’s
function call, i.e., the instrumented binary gets control again.

Event handling enables the dynamic instrumentation tool to build the
vertical map. In the above example with the AllocateObject event,
the event handler adds the following information to the vertical map: an
object of type t is allocated in the memory address range m to m+s. Similar
event handlers exist for all the events mentioned in Section 2.1.1.

The dynamic instrumentation tool captures all native instructions and
memory accesses from both the application and the virtual machine dur-
ing the execution of a Java application within Javana. The vertical map
then enables the dynamic binary instrumentation tool to know for each
memory access what object is being accessed and what the object’s type
is; and for every instruction pointer, the dynamic binary instrumenta-
tion tool knows to what method, to what line of source code and to what
thread the instruction corresponds. As a result, Javana allows for easy
tracking of all Java object accesses, which is much harder to do without a
vertical map and dynamic binary instrumentation support.
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2.1.4 Perturbation issues

An important property of any instrumentation framework is that the re-
sults that are obtained during profiling may not suffer from perturba-
tion. The end user wants the instrumentation framework to be completely
transparent, i.e., the instrumentation framework must not impact the re-
sults from profiling.

More in particular, in our Javana system, care needs to be taken that
the profiling results are not perturbed by the event handling mecha-
nism. Recall that the virtual machine triggers events by calling an empty
method with a number of arguments. Computing the arguments, push-
ing them onto the stack, and finally calling the empty method introduces
some overhead. Since the dynamic binary instrumentation tool instru-
ments all natively executed instructions, the instructions executed for
triggering an event in the virtual machine get instrumented as well. In
order to avoid this issue, and to remove any perturbation due to the event
handling mechanism, we communicate the address ranges of the virtual
machine code for event triggering. The dynamic binary instrumentation
tool knows that the code executed in these address ranges needs to be
disregarded.

Another issue is that many virtual machines use timer-based sam-
pling, i.e. to detect frequently executed methods that needs to be sched-
uled for optimization. This can be done by sampling the call stack at
regular timer intervals; when the number of samples of a given method
gets above a given threshold, the method is considered for optimization.
We will discuss how methods are selected for optimization in more de-
tail in Chapter 4. The Java thread scheduling also relies on the notion of
real time. Java threads get time quanta for execution and when a time
quantum has finished, another Java thread can be scheduled. Running
a virtual machine within a Javana system causes the virtual machine to
run slower, and by consequence, this affects timer-based virtual machine
events such as code optimization and Java thread scheduling. While we
haven’t solved this problem, we believe it could be solved by using de-
terministic replay techniques [23].

2.2 The Javana language

A system for building customized Java program analysis tools also re-
quires an easy-to-use instrumentation framework. The instrumentation
framework is the environment in which the end user will build his pro-
filing tools. For Javana we designed the Javana instrumentation lan-
guage for building Java program profiling tools. The Javana instrumen-
tation language is inspired by the Aspect-Oriented Programming (AOP)
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paradigm because AOP matches the needs in instrumentation very well.
A formal description of the Javana language can be found in our OOP-
SLA’06 paper [58]. The remainder of this chapter will provide several
practical examples of the Javana language.

2.3 A proof-of-concept Javana system

The Javana system is a general framework for building customized Java
program analysis tools. Any virtual machine could be employed in this
framework and any dynamic binary instrumentation tool could be used
as well. In our experimental framework, we use the Jikes RVM as our vir-
tual machine and we use DIOTA as our dynamic binary instrumentation
tool.

2.3.1 Jikes RVM

In May 1995, Sun Microsystems introduced the Java programming lan-
guage. The technology quickly gained popularity and a few years later
Java was already in wide use by many big players, including IBM.

In November 1997, a research group was founded at IBM Thomas J.
Watson, with the goal to develop an internal research platform for VM
technologies. The project, formally known as Jalapeño, strived to be flex-
ible and extensible, so it could serve as a tool to research, prototype and
evaluate VM implementation techniques. During that time, various as-
pects of Jalapeño were documented in research papers [2, 7, 20].

In October 2001, IBM decides to release the Jalapeño project as Open
Source software, and to rename the software to Jikes Research Virtual Ma-
chine, or Jikes RVM for short. Ever since, there has been a growing pool
of professors, students and researchers that use Jikes RVM for their work,
and Jikes RVM established itself as one of the de facto research platforms
in the Java world [3].

One of the remarkable properties about Jikes RVM is that it uses a
’compile only’ strategy. Methods are never interpreted, but are always
compiled to machine code just before they are about to be executed the
first time (lazy compilation or deferred compilation). Compilation is done
by a simple and fast baseline compiler that translates the Java bytecode
to native machine code that emulates the Java operand stack. That is to
say, the machine code implements a stack machine rather than taking full
advantage of the underlying processor’s register architecture.

Jikes RVM is shipped with an optimizing compiler. Just like the base-
line compiler, the optimizing compiler gets Java bytecode as input, and
generates native machine code as output. However, instead of fast and
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straightforward compilation, the optimizing compiler translates the Java
bytecode to an intermediate representation (IR). The various optimization
phases in the compiler operate at the IR-level to perform optimizations.
After the optimizations, the actual machine code is produced. (For com-
pleteness, we note that Jikes RVM actually uses three levels of IRs, and
that each IR has its own format and set of available optimizations.)

The optimization phases implemented by Jikes RVM include, but are
not limited to method inlining, eliminating null- and array checks, branch
optimization, loop unrolling, SSA-based optimizations, linear register al-
location, code placement, and much more. All of these optimization
phases can be arranged in three groups and will also be executed group
by group. These groups are: level 0, level 1 and level 2 [7, 8]. The higher
the level, the more optimizations that will be performed or the more
aggressive certain optimizations become.

Compiling and optimizing a method can be expensive, and because
these optimizations have to be performed during the execution of the pro-
gram, not all methods can be optimized. Optimizing all methods might
make the execution of the program slower. Selecting what methods to
optimize and what methods not to optimize is the task of the adaptive op-
timization system (AOS). The AOS consists of 3 components: (i) an online
profiler that collects information during the execution of the program, (ii)
a component that uses this profile information to decide what methods
are good candidates for optimization, and (iii) the compiler.

Because Jikes RVM itself is used in many research projects around the
world, it includes many of the latest developments in terms of runtime
compilation, dynamic optimization, garbage collection, and so on. For
example, Jikes RVM ships with at least five state-of-the-art garbage col-
lectors and memory allocators [16]. This makes it easy to compare one
strategy to another.

Furthermore, Jikes RVM is written almost entirely in the Java pro-
gramming language; unlike most other JVMs that are written in C or C++.
This has two key advantages: (i) it provides a high-level and strongly
typed programming environment which makes it easier to prototype new
ideas, and (ii) it enables the JVM to optimize itself, including its garbage
collector and its optimizing compiler.

The combination of all the aspects above, makes Jikes RVM a great
research platform. For those reasons, we have chosen to use Jikes RVM
for our research. Throughout this work, we’ll highlight more aspects of
the Jikes RVM where appropriate.

Relevant to the work in this dissertation is also Jikes RVM’s threading
mechanism. The threading system multiplexes n Java threads (applica-
tion and VM) onto m native (kernel) threads that are scheduled by the
operating system. A command line option specifies the number of ker-
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nel threads that are created by the Jikes RVM. Usually, there is one kernel
thread used for each physical processor, also referred to as a virtual pro-
cessor because multiple Java threads can be scheduled by the VM within
the single kernel thread. In our setup, we have used a single virtual pro-
cessor.

For our experiments with Javana we use the FastAdaptive configura-
tion: all methods are initially compiled using a baseline compiler, and
hot methods are recompiled using an optimizing compiler.

Making the Jikes RVM Javana-enabled was easy. We only had to insert
around two hundred lines of code (including comments) into the virtual
machine in order to trigger the events intercepted by the dynamic binary
instrumentation tool. More specifically, we added an event to the class
loader, to the object allocator, to all garbage collectors when an object or
code is being moved or deleted, to all compilers and optimizers when a
method is being compiled or optimized, and to the thread management
system when a thread is created, switched or terminated.

Because the Jikes RVM itself is written in Java, there are also some pe-
culiarities. One such peculiarity is with instrumenting this VM as done
with Javana. Instrumentation cannot be activated until the virtual ma-
chine is properly booted. This means that there are some virtual machine
methods and objects that cannot be communicated to the binary instru-
mentation tool during virtual machine startup. This can be solved by
communicating these virtual machine methods and objects as soon as the
virtual machine is properly booted. From then on, the instrumentation
tool intercepts all method calls and object accesses during the program
execution.

2.3.2 DIOTA

The dynamic binary instrumentation tool that we use in our proof-of-
concept Javana system is DIOTA [60]. DIOTA stands for Dynamic In-
strumentation, Optimization and Transformation of Applications and is
a dynamic binary instrumentation framework for use on the Linux oper-
ating system running on x86-compatible processors. Its functionality in-
cludes intercepting memory operations, code execution, signals, system
calls and functions based on their name or address, as well as the ability
to instrument self-modifying code [59].

DIOTA is implemented as a dynamic shared library that can be
hooked up to any program. The main library of DIOTA contains a generic
dynamic binary instrumentation infrastructure. This generic instrumen-
tation framework can be used by so-called backends that specify the
particular instrumentation of interest that needs to be done. The backend
that we use for Javana is a memory operation tracing backend, i.e., this
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backend instruments all memory operations.

The general operation of DIOTA is very similar to that of other dy-
namic binary instrumentation frameworks such as PIN [56] and Val-
grind [65, 66]. All of these operate in a similar way as described in
Section 2.1.2.

2.3.3 Java applications

We use the SPECjvm98, SPECjbb2000 and DaCapo benchmark suites in
this dissertation. An overview is given in Table 2.1.

Suite Benchmark Description

SPECjvm98 compress Compresses a number of input files
using an LZW method.

jess Solves a number of puzzles with
varying degrees of complexity.

db Performs a set of database requests
on a memory resident database.

javac Compiles a number of Java files.
mpegaudio Decompresses MPEG Layer-3 audio

files.
mtrt Renders a scene using ray tracing.
jack Parses grammar files and generates

a parser for each.

DaCapo antlr Parses grammar files and generates a
parser and lexical analyzer for each.

fop Takes an XSL-FO file, parses it and
formats it, generating a PDF file.

hsqldb Executes a number of transactions
against a memory resident database.

jython Interprets a series of Python
programs.

ps Reads and interprets a PostScript
file.

xalan Transforms XML documents into
HTML.

SPECjbb2000 PseudoJBB Performs transactions on a three-tier
transaction system.

Table 2.1: The benchmarks used in this PhD dissertation.

SPECjvm98 [77] is a client-side Java benchmark suite consisting of
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seven benchmarks. For each of these, SPECjvm98 provides three inputs
sets: s1, s10 and s100. Contradictory to what their names suggest, the
size of the input set does not increase exponentially. For some bench-
marks, a larger input indeed increases the problem size. For other bench-
marks, a larger input executes a smaller input multiple times. SPECjvm98
was designed to evaluate combined hardware (CPU, caches, memory,
etc.) and software aspects (virtual machine, kernel activity, etc.) of a
Java environment. However, they do not include graphics, networking
or AWT (window management).

The DaCapo [17, 84] suite is a relatively new benchmark suite. The
DaCapo benchmark suite was designed for research on memory manage-
ment studies. In the complete suite there are 10 benchmarks, of which we
use six. The others did not run reliably under the Jikes RVM versions that
we used.

SPECjbb2000 (Java Business Benchmark) [76] is a server-side bench-
mark suite focusing on the middle-tier, the business logic, of a three-tier
system. We have used a modified version of this benchmark, known as
PseudoJBB, which executes a fixed number of transactions, instead of
running for a predetermined period of time. The benchmark was run
with 8 warehouses.

These benchmarks are the de facto benchmarks in today’s Java re-
search. No distributed benchmark applications were used; all bench-
marks were run on a single uniprocessor machine.

For our work on Javana, we run all SPECjvm98 benchmarks with the
largest input set (-s100). All of the SPECjvm98 benchmarks are run
on the Jikes RVM using a 64 MB heap and the generational mark-sweep
(GenMS) garbage collector; the DaCapo and PseudoJBB benchmarks are
run with a 500 MB heap. For the DaCapo benchmark suite we used re-
lease version beta050224.

2.3.4 Hardware platform

Our measurements are done on a 2.8 Ghz Intel Pentium 4 system with a
512 KB L2 cache and 1 GB main memory. The operating system on which
we run our experiments is Gentoo Linux with a 2.6.10 kernel.

2.3.5 Javana overhead analysis

Running a Java application within Javana obviously introduces overhead.
There are a number of contributors to the overall overhead:

• First, the dynamic binary instrumentation tool that runs underneath
the virtual machine causes overhead independent of the instrumen-
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Figure 2.2: The slowdown due to dynamic binary instrumentation.

tation specification provided by the end user of the Javana system.

• Second, the event handling mechanism that communicates high-
level language concepts from the virtual machine to the dynamic
binary instrumentation tool also introduces overhead. In addition,
the event handler needs to process this information for updating the
vertical map in the dynamic binary instrumentation tool.

• Third, executing instrumented code requires that the binary instru-
mentation tool searches the vertical map for every memory location
accessed.

• And finally, executing the instrumentation code itself as imple-
mented by the end user of the Javana system also causes additional
overhead.

We will now quantify the overhead caused by each of these four overhead
contributors.

Dynamic binary instrumentation overhead

We first quantify the overhead of the binary instrumentation (bullet one
from above). There are two contributors to this overhead. First, whenever
control is transferred, the binary instrumentation engine needs to perform
an address look-up. The overhead that we observe for DIOTA in our
Javana system ranges from 1.5× to 5.5×, see Figure 2.2.
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Figure 2.3: The slowdown due to vertical instrumentation.

The second contributor is due to calling an instrumentation routine for
all natively executed memory operations. We quantify this overhead by
calling a dummy (empty) function for each memory operation. The over-
head varies between a factor 12× and 53× depending on the benchmark,
see Figure 2.2. This overhead is inherent to dynamic binary instrumenta-
tion. Most of this overhead comes from saving the caller-saved registers
and preparing the parameters for the dummy function call. One of the
parameters is a data structure that contains the thread ID, the instruction
pointer, the type of memory access and the number of bytes accessed.
This data structure needs to be constructed for every memory access.

Vertical instrumentation overhead

We now quantify the overhead caused by the event handling mechanism
and by searching the vertical map for every memory location accessed
(bullets two and three from above). We collectively refer to this overhead
as vertical instrumentation overhead, i.e., this is the overhead that en-
ables cross-layer instrumentation. In our experiments we observed that
the event handling mechanism is only a very small part of the total verti-
cal instrumentation overhead.

Figure 2.3 quantifies the overhead from vertical instrumentation.

• The first bar for each benchmark shows the overhead for the Javana
system during a vertical profiling run that only considers method-
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related information.

• The second bar depicts the overhead when enabling vertical profil-
ing for measuring object-related information.

• The third bar shows the overhead when both the method- and
object-related information is captured.

The average vertical instrumentation overhead varies between a fac-
tor 2.8× and 5.5× depending on what information is to be kept track of.

Overall overhead

From the above enumeration, it follows that the total slowdown of a
Java program analysis tool built within Javana equals the product of the
dynamic binary instrumentation slowdown, the vertical instrumentation
slowdown and the slowdown due to the user-defined instrumentation
routines, i.e., the advice code included in the instrumentation specifica-
tion.

The total slowdown for the dynamic binary instrumentation and the
vertical instrumentation varies between a factor 90× and 345×. This is
the overhead caused by using Javana. The additional overhead due to
the instrumentation routines, increases the overall overhead to the 125×-
850× range; this is for the vertical cache simulation which is the most
demanding vertical profiling tool that we built with Javana.

According to our experience, this is an acceptable slowdown. Com-
pared to simulation, Javana is fast; simulation typically causes a slow-
down by at least a factor 10,000× [19]. In cases where a 90× to 345×
slowdown is undesirable, sampling can be employed to reduce this slow-
down. However, this comes at the price of accuracy; our measurements
were done without applying any sampling.

2.4 Applications of Javana

We now discuss three example applications of the Javana system: mem-
ory address trace generation, vertical cache simulation and object lifetime
computation. These applications demonstrate the real power of Javana:
Javana provides an easy-to-use instrumentation environment that allows
for quickly building customized (vertical) Java program analysis tools.
The key benefit is that easy-to-build program analysis tools increase a
software designer’s productivity. In addition, the results show that we
need to look at profiling techniques that combine information captured
at different layers of the execution stack.
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1: before any:access

(location_t const *loc, type_t const *type,

void **userdata) {

2: printf ("access by insn @ %p to memory location

%p of size %d\n", loc->ma->ip, loc->ma->addr,

loc->ma->size);

3: }

Figure 2.4: The code for the memory address tracing tool in Javana.

2.4.1 Memory address trace generation

Our first application is memory access tracing; the instrumentation spec-
ification for building this profiling tool is shown in Figure 2.4. This pro-
filing tool captures all memory accesses during program execution and
writes each access’ instruction pointer, memory address and size to a file.
The procedure shown in Figure 2.4 is called before each memory access.
The first parameter is a data structure that collects information concern-
ing the ‘location’ of the object or memory event. The ma field in this
structure is a pointer to a mem access t structure that contains (i) the in-
struction pointer of the native instruction performing the memory access,
(ii) the object’s memory location or in case of a memory operation, the
memory location being accessed, (iii) the size of the object or in case of a
memory operation, the number of bytes accessed in memory, (iv) whether
this memory access is a load or store operation, and (v) the thread ID of
the thread performing the object or memory operation. The second pa-
rameter in the parameter list is a pointer to a data structure that specifies
information concerning the ‘type’ of the object or memory operation. The
third parameter in the parameter list (void **userdata) allows the end
user to maintain object-specific information. As can be seen, the Javana
instrumentation language only requires three lines of code for building
this profiling tool. In other words, the expressiveness of the Javana lan-
guage is high while the code itself is very intuitive.

Recent work done by Shuf et al. [74] analyzed the memory behav-
ior of Java applications. For doing so, Shuf et al. modified the virtual
machine to trace all accesses to the heap, however, they did not trace ac-
cesses to the stack — presumably because it is very difficult to track all
memory accesses including stack accesses by instrumenting the virtual
machine. Using Javana we built a profiling tool that traces all heap mem-
ory accesses and all stack memory accesses. We found that on average
only 42% of all memory accesses are heap accesses, see Figure 2.5 which
shows the fraction heap accesses compared to the total number of data
memory accesses. In other words, Shuf et al. captured only 42% of the
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Figure 2.5: The fraction of all memory accesses that are heap accesses.

total number of memory accesses on average. Consequently, not captur-
ing the large fraction of non-heap accesses has a significant impact on the
observed memory system behavior.

Figure 2.6 shows the fraction L1 and L2 misses as a ratio to the to-
tal number of memory accesses. These results are for a simulated 4-way
set-associative 32 KB 32-byte line L1 cache and an 8-way set-associative 1
MB 128-byte line L2 cache. Both are write-back, write-allocate caches.
The cache simulation routines were taken from the SimpleScalar Tool
Set [19]. The perturbation introduced by Javana should not significantly
affect the results; all measurements – including the measurements to re-
produce Shuf’s results – were done using Javana. We observe that only
considering heap accesses results in a severe overestimation of the actual
cache miss rates. The difference in miss rates varies by a factor 1.8 and
2.9 between tracking heap accesses versus tracking all memory accesses.
Therefore, we conclude that a methodology that analyzes heap accesses
in a memory performance study, is questionable.

2.4.2 Vertical cache simulation

The second application relates cache miss rates to high-level concepts
such as methods, source code lines, objects and object types. This is in-
valuable information for software developers that are in the process of
optimizing their code for memory performance. As is well known, the
memory-processor speed gap is an important issue in current computer
systems. Poor memory behavior can severely affect overall performance.
As such, it is very important to optimize memory performance as much as
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0: #pragma requires object_info

1: #pragma requires method_info

2: before object:access (location_t const *loc, type_t const *type, void **userdata) {

/* compute whether this object reference is a cache miss or not */

3: hit = simulate_memory_access (loc->ma->addr, type->type_ID);

/* update the per-type hit/miss information */

4: update_per_type_miss_rate (type->type_ID, hit);

5: update_per_method_miss_rate (loc->method_name, loc->line_number);

6: }

7: before nonobject:access (location_t const *loc, type_t const *type, void **userdata) {

/* update the simulated cache content */

8: simulate_memory_access (loc->ma->addr, -1);

9: update_per_method_miss_rate (loc->method_name, loc->line_number);

10: }

Figure 2.7: The code for the vertical cache simulation tool in Javana.
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0: #pragma requires object_info

1: typedef {

2: unsigned long long creation_time;

3: unsigned long long last_access;

4: } object_info_t;

5: static unsigned long long timestamp = 0;

6: after object:create (location_t const *loc, type_t const *type, void **userdata) {

7: object_info_t ** const objectinfo = (object_info_t**)userdata;

8: (*objectinfo) = diota_malloc(sizeof(object_info_t));

9: (*objectinfo)->creation_time = timestamp;

10: (*objectinfo)->last_access = 0;

11: }

10cm

12: before object:access (location_t const *loc, type_t const *type, void **userdata) {

13: object_info_t ** const objectinfo = (object_info_t**)userdata;

14: timestamp++;

15: (*objectinfo)->last_access = timestamp;

16: }

17: before nonobject:access (location_t const *loc, type_t const *type, void **userdata) {

18: timestamp++;

19: }

Figure 2.8: The code for object lifetime computation tool in Javana.
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Method Accesses (%) DL1 misses DL2 misses

compress

Compressor.compress()V 42.7 130,906,173 (7.8%) 533,099 (0.4%)
Decompressor.decompress()V 42.7 21,390,490 (1.3%) 485,995 (2%)
Input Buffer.readbytes([BI)I 1.8 247,545 (0.3%) 55,151 (18.4%)
Compressor.output(I)V 4.5 207,706 (0.1%) 35,700 (14%)
Output Buffer.putbyte(B)V 0.9 125,551 (0.3%) 25,169 (17.2%)

db

Database.shell sort(I)V 59.8 132,442,434 (10.5%) 50,720,398 (31.6%)
Entry.equals(Ljava/lang/Object;)Z 3.5 3,413,385 (4.6%) 1,720,280 (36%)
Database.set index()V 6 3,924,453 (3.1%) 1,345,881 (28.7%)
Database.read db(Ljava/lang/String;)V 0.8 36,682 (0.2%) 9,152 (13%)
spec.io.FileInputStream.read()I 0 5,078 (0.7%) 3,927 (60%)

mtrt

OctNode.FindTreeNode(LPoint;)LOctNode; 11.8 27,446,406 (12.1%) 463,179 (1.5%)
PolyTypeObj.Intersect(LRay;LIntersectPt;)Z 3.9 1,718,595 (2.3%) 184,134 (9.9%)
Vector.<init>(FFF)V 0.3 715,338 (13.7%) 177,453 (22%)
OctNode.Intersect(LRay;LPoint;F)LOctNode; 16.4 146,3021 (0.5%) 145,254 (8.9%)
Face.GetVert(I)LPoint; 14.3 9,920,823 (3.6%) 113,315 (1%)

Table 2.2: The top 5 methods for some of the benchmarks sorted by the number of L2 cache misses.
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Type Accesses (%) DL1 misses DL2 misses

compress

[B 20.6 13,001,417 (1.6%) 1,038,857 (7.1%)
[I 9.2 100,254,792 (27.8%) 56,465 (0%)
[S 4.7 41,699,357 (22.6%) 54,699 (0.1%)
[Ljava/lang/Object; 0.4 4,010 (0%) 406 (8.8%)
[[I 0.1 1,632 (0%) 368 (19.6%)

db

Ljava/util/Vector; 15.3 36,375,367 (11.2%) 17,288,803 (38.8%)
[Ljava/lang/Object; 7.2 24,118,101 (15.7%) 11,838,596 (41.3%)
[C 11.7 22,697,725 (9.1%) 11,598,229 (42.4%)
LEntry; 4.1 2,8511,936 (32.6%) 7,941,652 (22.7%)
Ljava/lang/String; 13 22,717,143 (8.3%) 4,348,649 (15.6%)

mtrt

LVector; 5.5 3,968,361 (3.7%) 554,763 (12.7%)
LPoint; 10.6 15,020,935 (7.4%) 358,453 (2.1%)
[LPoint; 3.5 10,720,458 (16%) 114,210 (1%)
[I 4.7 1,055,491 (1.2%) 97,335 (8.4%)
LFace; 3.3 6,796,479 (10.7%) 82,116 (1.1%)

Table 2.3: The top 5 objects types for some of the benchmarks sorted by the number of L2 cache misses.



2
.4

A
p

p
lic

a
tio

n
s

o
f

J
a
v
a

n
a

3
9

Source code DL1 accesses DL1 misses DL2 accesses DL2 misses

1 void shell sort(int fn) {
2 int i, j, n, gap;

3 String s1, s2;

4 Entry e;

5
6 if (index == null) set index(); 67 0 (0%) 0 0 (0%)
7 n = index.length; 134 1 (0%) 1 0 (0%)
8
9 for (gap = n/2; gap > 0; gap/=2) 938 0 (0%) 0 (0%)

10 for (i = gap; i < n; i++) 12,276,499 910 (0%) 1,083 3 (0%)
11 for (j = i-gap; j >=0; j-=gap) { 23,064,743 8,179 (0%) 9,615 33 (0%)
12 s1 = (String)index[j].items. 157,553,557 29,772,665 (19%) 36,551,726 6,095,594 (17%)

elementAt(fn);

13 s2 = (String)index[j+gap].items. 157,553,557 24,036,992 (15%) 29,456,752 15,581,062 (53%)
elementAt(fn);

14
15 if (s1.compareTo(s2) <= 0) break; 45,015,302 128 (0%) 153 1 (0%)
16
17 e = index[j]; 32,322,537 219 (0%) 228 0 (0%)
18 index[j] = index[j+gap]; 75,419,253 2,654 (0%) 3,228 811 (25%)
19 index[j+gap] = e; 43,096,716 0 (0%) 0 0 (0%)
20 }
21 fnum = fn; 67 61 (91%) 73 61 (84%)
22 }

Table 2.4: The shell sort method from db annotated with cache miss information.
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possible. Vertical profiling is a very valuable tool for hinting the software
developer what to focus on when optimizing the application’s memory
behavior.

Vertical cache simulation requires that an instrumentation specifica-
tion be written as shown in Figure 2.7. Lines 0 and 1 specify that the
instrumentation needs to keep track of both per-object and per-method
information. Upon a memory access to an object (lines 2-6), the mem-
ory address is used by the cache simulator to update the cache’s state.
The type-specific and method-specific data structures maintained by the
instrumentation tool are updated to keep track of the per-type and per-
method miss rates. Other memory accesses, i.e., to non-objects (lines 7-
10), update the cache’s state and update the per-method miss rate infor-
mation. The per-type miss rate information is not updated because these
memory references do not originate from object accesses.

The instrumentation specification for this profiling tool was no more
than 200 lines of code, including comments. The output of the profiling
run is a table describing cache miss rates per method, per line of code, per
object and per object type.

Selecting the per-method and per-object type cache miss rates and
sorting them by decreasing number of L2 misses results in Tables 2.2
and 2.3. In both tables we limit the number of methods and object types
to the top five per benchmark in order not to overload the tables. The
first column in each table mentions the method or object type, respec-
tively. The second column shows the percentage memory references of
the given method or object type as a percentage of the total number of
memory references. The two rightmost columns show the number of L1
and L2 misses, respectively, along with the percentage local miss rates,
i.e., the number of misses divided by the number of accesses to the given
cache level. Results for benchmarks not listed in Tables 2.2 and 2.3 are
available in [58].

Software developers can use these tables to better understand the
memory behavior of their software for guiding memory optimizations at
the source code level. For example, from Table 2.2 it is apparent that the
shell sort method in db is a method that suffers heavily from poor
cache performance. About 60% of the memory references in db occur
within the shell sort method. Of these memory references, 10.5%
result in an L1 cache miss, and 31.7% of the L2 cache accesses are cache
misses. As such, this method is definitely a method of concern to a
software developer when optimizing the memory performance of db.

Table 2.3 shows per-object type miss rates for the various benchmarks.
The poor cache behavior for db seems to be apparent across a number of
object types. For example, this table shows that the cache behavior for the
Vector class is relatively poor with an L1 cache miss rate of 11.4% and
an L2 miss rate of 38.6%. Note that our framework also allows for going



2.4 Applications of Javana 41

yet one step further, namely to tracking down miss rates to individual
objects. This allows the software developer to isolate the source of the
poor memory behavior. We do not include an example of per-object miss
rates here in this chapter, however, this could be easily done in Javana.

Because the shell sort method in db seems to suffer the most from
poor cache behavior, we focus on that method now. Table 2.4 shows the
shell sort method annotated with cache miss information, i.e., L1 and
L2 cache miss rates are annotated to each line of source code. Often there
are more DL2 accesses then there are DL1 misses; this is explained by
the fact that we used write-back, write-allocate caches. Line 13 seems to
be the primary source for the high cache miss rate in the shell sort

method. The reason is that the j+gap index results in a fairly random
access pattern into the 61 KB index array. It is interesting to note that
Hauswirth et al. [45] also identified the shell sort method as a critical
method for db.

The number of L1 and L2 misses in Table 2.4 differ from the num-
bers given Table 2.2; the reason is that the numbers in this table were
obtained using the baseline compiler whereas the numbers in Table 2.2
were obtained using the adaptive compiler; the line numbers returned by
the adaptive compiler in Jikes are inaccurate due to inlining effects.

2.4.3 Object lifetime

Our third example application computes object lifetimes. In this appli-
cation we define the object lifetime as the number of memory accesses
between the creation and the last use of an object. Knowing the allocation
site and knowing where the object was last used can help a programmer
to rewrite the code in order to reduce the memory usage of the application
or even improve overall performance [70].

Computing object lifetimes without Javana is fairly complicated. First,
the virtual machine needs to be extended in order to store the per-object
lifetime information. Second, special care needs to be taken so that the
computed lifetimes do not get perturbed by the instrumentation code.
Finally, all object references need to be traced. This is far from trivial
to implement. For example, referencing the object’s header is required
for accessing the Type Information Block (TIB) or vertical lookup table
(vtable) on a method call, for knowing the object’s type, for knowing the
array’s length, etc. Also, accesses to objects in native methods need to be
instrumented manually. Implementing all of this in a virtual machine is
time consuming, error-prone and will likely be incomplete.

Measuring the object lifetime within Javana on the other hand is easy
to do and in addition, it is accurate because it allows for tracking all ref-
erences to a given object. In a Javana instrumentation specification, an
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Figure 2.9: The cumulative object lifetime distribution for the SPECjvm98 bench-
marks.

object’s lifetime can be computed and stored using the per-object void

**userdata parameter that is available in Javana language. For details,
see [58]. As such, computing object lifetimes is straightforward to do in
Javana — no more than 50 lines of code. The skeleton of the instrumenta-
tion specification is shown in Figure 2.8.

Figure 2.9 shows the lifetime distribution for the SPECjvm98 bench-
marks computed using the Javana system. The horizontal axis on these
graphs is given on a log-scale; the vertical axis shows the cumulative per-
centage objects in the given lifetime bucket. We observe that the object
lifetimes are fairly small in general, i.e., most objects are short-lived ob-
jects. For most benchmarks, the object lifetime typically is smaller than 16
data memory accesses between the creation of an object and its last use.
Some benchmarks have a relatively larger object lifetime, see for example
javac, compress and mpegaudio, however the object lifetime is still very
small in absolute terms, i.e., the object lifetime is rarely more than 64 data
memory accesses.

In order to evaluate the accuracy of object lifetime computations with-
out Javana, we have set up the following experiment. We compute the
object lifetimes under two scenarios. The first scenario computes the ob-
ject lifetime when taking into account all memory accesses as done using
out-of-the-box Javana. The second scenario computes the object lifetime
while excluding all object accesses from non-Java code; this excludes all
the object accesses from native JNI functions. This second scenario em-
ulates current practice of building an object lifetime measurement tool
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Figure 2.10: The accuracy of object lifetime computations without Javana: the
percentage objects for which a non-Javana instrumentation results in incorrect
lifetime computations.

within the virtual machine, without Javana. The results are shown in
Figure 2.10. The graph shows the percentage of objects for which an in-
correct lifetime is computed in current practice, i.e., when not including
accesses to objects through JNI functions. We observe large error per-
centages for a couple of benchmarks, namely fop (4%), antlr (6.5%) and
ps (19%). We conclude that current practice of computing object lifetime
without Javana can yield incorrect results, and this could be misleading
when optimizing the code based on these measurements.

2.5 Related work

We now discuss related work. We first discuss bytecode-level instrumen-
tation tools. Next, we detail on existing vertical profiling approaches us-
ing hardware performance counters.

2.5.1 Bytecode-level profiling

A number of Java bytecode-level profiling tools have been presented in
the recent literature. These bytecode-level profiling tools differ from the
Javana system in that Javana allows for building vertical profiling tools,
whereas bytecode-level profiling tools are limited by the fact that they
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can’t instrument the JVM or any of the native libraries. We discuss two
bytecode-level profiling tools.

First, Dufour et al. [32] studied the dynamic behavior of Java applica-
tions in an architecture-independent way. To do so, they built a tool called
*J [33] that uses the Java Virtual Machine Profiling Interface (JVMPI) to
collect a wide set of bytecode-level Java program characteristics. The Java
metrics that they collect are related to program size and structure, the oc-
currence of various data structures (such as arrays, pointers, etc.), poly-
morphism, memory usage, concurrency and synchronization.

Second, Dmitriev [28] presents a Java bytecode-level profiling tool
called JFluid. JFluid can be attached to a running Java application. The
attached JFluid then injects instrumentation bytecodes into the methods
of the running Java program. The instrumentation bytecodes collect pro-
filing information online.

2.5.2 Vertically profiling Java applications

Some very recent work focused on vertical profiling of Java applications.
The purpose of these approaches is to link microprocessor performance
to the Java application and the virtual machine. However, they do not
allow for building customized vertical profiling tools.

Hauswirth et al. [45] and the earlier work by Sweeney et al. [82] pre-
sented a vertical profiling approach that correlates hardware performance
counter values to manually inserted software monitors in order to keep
track of the program’s execution across all layers. The low-level and high-
level information is collected at a fairly coarse granularity, i.e., hardware
performance counter values and software monitor values are measured
at every thread switch. Hauswirth et al. measure various hardware per-
formance metrics during multiple runs yielding multiple traces. And
because of non-determinism during the execution, these traces subse-
quently need to be aligned. Although being much faster than Javana,
there are two important limitations with this approach. First, aligning
traces is challenging and caution is required in order not to get out of
sync [44]. Second, the granularity is very coarse-grained — one per-
formance number per thread switch. This allows for analyzing coarse-
grained performance variations but does not allow for analyzing the fine-
grained performance issues we target with Javana.

In Chapter 3 of this thesis we will discuss a form of vertical profiling
that links microprocessor-level metrics obtained from hardware perfor-
mance counters to method-level phases in Java. This allows for analyz-
ing Java applications at a finer granularity than the vertical profiling ap-
proach by Hauswirth et al. [44, 45], however, the granularity is still much
more coarse-grained than the granularity that we can achieve using Ja-
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vana.

VTune, a commercially available tool from Intel, also allows for profil-
ing Java applications [29]. VTune samples hardware performance coun-
ters to profile an application and to annotate source code with cache miss
rate information. However, given the fact that VTune relies on sampling it
is questionable whether this allows for fine-grained profiling information
with little overhead and perturbation of the results.

All of these vertical profiling approaches rely on a microprocessor’s
performance counters. This limits the scope of these techniques to evalu-
ating Java system performance on existing microprocessors. These ap-
proaches do not allow for building customized vertical Java program
analysis tools as the Javana system does.

2.6 Conclusion

Understanding the behavior of Java application is non-trivial because of
the tight entanglement of the application and the virtual machine at the
lowest machine-code level. This chapter presented Javana, a system for
quickly building Java program analysis tools. Javana runs a dynamic
binary instrumentation tool underneath a virtual machine. The virtual
machine communicates with the dynamic binary instrumentation tool
using an event handling mechanism. This event handling mechanism
enables the dynamic binary instrumentation layer to build a so called
vertical map. The vertical map keeps track of correspondences between
high-level language concepts such as objects, methods, threads, etc, and
low-level native instruction pointers and memory addresses. This vertical
map provides the Javana end user with high-level information concern-
ing every memory access the dynamic binary instrumentation tool inter-
cepts. As a result, Javana is capable of tracking all memory references and
all natively executed instructions and to provide high-level information
for each of those.

Javana also comes with an easy-to-use Javana instrumentation lan-
guage. The Javana language provides the Javana user with low-level and
high-level information that enables the Javana user to quickly build pow-
erful Java program analysis tools that crosscut the Java application, the
VM and the native execution layer.

The first key property of Javana is that Java program analysis tools
can be built very quickly. To demonstrate the real power of Javana we
presented three example applications: memory address tracing, vertical
cache simulation and object lifetime computation. For each of these ap-
plications, the core instrumentation specification was only a few lines of
code.
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The second key property of Javana is that the profiling results are
guaranteed to be highly accurate (by construction) because the dynamic
binary instrumentation layer tracks every single natively executed in-
struction. Current practice is typically one of manually instrumenting
the virtual machine which is both time-consuming and error-prone. In
addition, the accuracy of the profiling results might be questionable be-
cause it is hard to instrument a virtual machine in such a way that all
memory accesses are tracked, as we have shown through our example
applications.

Last but not least, this illustrates that it can be difficult to get deep
understanding of the behavior of Java applications and that there is a
lot of value in tools that gather more complete profiles or that look at
different layers of the execution stack.
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As shown in Chapter 2, it is useful to look at the behavior of Java appli-
cations at the micro-architectural level and to link that information back
to the source code of the Java application. While Javana is a great tool for
building a wide variety of vertical profiling tools with minimal effort, it
suffers from one major drawback that is inherent to the use of a dynamic
binary instrumentation tool: it is slow. It typically has a slowdown factor
of several hundreds.

In this chapter, we present a technique that measures the performance
characteristics of the VM and the application using the hardware perfor-
mance monitors (HPMs) rather than through a dynamic binary instru-
mentation tool. This enables gaining insight into what the application’s
bottlenecks are and where to optimize. To do so with low overhead, it
is based on method-level phase behavior in Java workloads. A method-level
phase is defined as a set of parts of the program execution with similar
behavior which do not necessarily need to be temporally adjacent.

Specifically, the goal of our technique is to identify method-level phase
behavior, and to use that information to correlate hardware performance
characteristics directly to the source code of the application and the vir-
tual machine. This is useful for Java and VM developers during perfor-
mance analysis of their software.

We have implemented a tool, called MonitorMethod, that implements
our technique. MonitorMethod uses an off-line analysis that consists of
three steps. In a first step, we determine how much time the Java appli-
cation spends in different portions or methods of the application. This is
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done by instrumenting all methods to read microprocessor performance
counter values and to track the amount of time that is spent in each
method. The result of this first step is an annotated dynamic call graph. In
step 2, we determine the methods in which the application spends a sig-
nificant portion of its total execution time with the additional constraint
that one invocation of the method takes a significant portion of the to-
tal execution time as well. This is to avoid selecting methods that are
too small. During a second run of the application (step 3), these selected
methods are instrumented and performance characteristics are measured.
Measuring these performance characteristics is done using the hardware
performance monitors provided by the microprocessor. In this step, we
measure a number of characteristics such as branch misprediction rate,
cache miss rate, number of retired instructions per cycle, etc. By doing
so, we obtain detailed performance characteristics for the major method-
level execution phases of the Java application. In addition to the method-
level phases, we also measure performance characteristics for major parts
of the VM, such as the compiler/optimizer, the garbage collector, the class
loader, etc. By attributing information captured by the hardware perfor-
mance monitors to the methods in the source code, MonitorMethod gives
developers additional insight in the behavior of their application.

In addition to the use case presented in this dissertation, there are sev-
eral other applications for method-level phase behavior. Detecting pro-
gram execution phases and exploiting them has received increased at-
tention in recent literature. Various authors have proposed ways of ex-
ploiting phase behavior. One example is to adapt the available hardware
resources to reduce energy consumption while sustaining the same per-
formance [13, 27, 48, 72]. Also, JIT compilers [7, 10] and dynamic opti-
mization frameworks [12, 62] heavily rely on implicit phase behavior to
optimize code.

This chapter is organized as follows. The next section details on our
experimental setup. Section 3.2 discusses the off-line approach for iden-
tifying method-level phase behavior as used by MonitorMethod. The re-
sults of our phase analysis are presented in Section 3.3. Section 3.4 dis-
cusses related work. Finally, we provide a summary in Section 3.5.

3.1 Experimental setup

In this section we discuss the experimental setup: our hardware platform,
the use of performance monitors, Jikes RVM in which all experiments are
done, and the Java applications that are used in the evaluation section of
this chapter.
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3.1.1 Hardware platform

We use an AMD Athlon XP microprocessor for our measurements. The
processor runs at 1.33 Ghz, has an L2 cache of 265 KB and 1 GB of RAM.

3.1.2 Hardware performance monitors

Modern processors are often equipped with a set of performance counter
registers. These registers are designed to count microprocessor events
that occur during the execution of a program. They allow to keep track
of the number of retired instructions, elapsed clock cycles, cache misses,
branch mispredictions, etc. Generally, there are only a limited number of
performance counter registers available on the chip. On the AMD Athlon,
there are four such registers. However, the total number of microproces-
sor events that can be traced using these performance monitors exceeds
60 in total. As a result, these registers need to be programmed to measure
a particular event. The events that are traced for this study are given in
Table 3.1. These events are commonly used in architectural studies to an-
alyze program execution behavior. For most of the analyses done in this
chapter, we use derived performance metrics. These performance metrics
are obtained by dividing the number of events by the number of retired
instructions. In this way, we use events that occurred per instruction.
This is more meaningful than the often-used miss rates. For example, we
will use the number of cache misses per instruction instead of the number
of cache misses per cache access. The reason is that the number of cache
misses per instruction relates more directly to performance than cache
miss rate since it also incorporates the number of cache accesses per in-
struction. Thus, the performance metrics derived from the events shown
in Table 3.1, include for example CPI (clock cycles per retired instruction),
L1 D-cache misses per retired instruction, etc.

Performance monitors have several important benefits over other
characterization methods: they cause less slowdown since measure-
ments happen at native execution speed, they are easy to use, and they
are highly accurate. However, there are also a number of issues that need
further attention. First, measuring more than four events at a time in our
setup is impossible. Consequently, multiple runs are required to mea-
sure more than 4 events. Second, non-determinism can lead to slightly
different performance counter values when running the same program
multiple times. Therefore, we measure each performance counter multi-
ple times and use the average during analysis.

In this study, the performance counter values are accessed through
the VM, see the next section. In turn, the VM makes use of the following
tools: (i) the perfctr Linux kernel patch [68], which provides a ker-
nel module to access the processor hardware, and (ii) Performance API
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Event

Elapsed clock cycles during execution
Retired instructions
L1 D-cache misses
L2 D-cache misses
L1 I-cache misses
L2 I-cache misses
L1 load misses
L1 store misses
L2 load misses
L2 store misses
Instruction TLB misses
Data TLB misses
Branches mispredicted

Table 3.1: The performance counter events traced on the AMD Athlon XP.

(PAPI) [18], a high-level library presenting a uniform interface to the per-
formance monitors on multiple platforms. The kernel patch allows trac-
ing a single process, maintaining the state of the performance monitors
across kernel thread switches. The PAPI library presents a uniform man-
ner for accessing the performance monitors through the kernel module.
Not all PAPI defined events are available on every platform, and not all
native AMD events can be accessed through PAPI. However, for our pur-
poses, it provides a sufficient set of events.

3.1.3 Virtual machine

As motivated in Section 2.3.1 of this thesis, we use the Jikes Research Vir-
tual Machine (RVM). For our work on MonitorMethod we used the CVS
head (development) version from January 2004. We used Jikes RVM’s
most advanced compilation strategy, namely the adaptive strategy. In this
scheme, Jikes RVM compiles each method on its first invocation using
the baseline compiler and adaptively optimizes hot methods. Multiple
recompilations are possible at higher optimization levels. Furthermore,
we used Jikes RVM’s built-in CopyMS collector, a generational GC with a
mark-sweep strategy to clean the mature space.

Current implementations of the Jikes RVM include support for hard-
ware performance monitors on both the IA-32 and PowerPC platforms.
On the IA-32 platform, access to the processor hardware is done through
the PAPI library as discussed above, see also Figure 3.1. The Hardware
Performance Monitor (HPM) subsystem of the Jikes RVM defines a set of
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Figure 3.1: An overview of the Jikes RVM tracing system

methods to access the PAPI functions, such as starting, stopping, and re-
suming the event counters, as well as reading the counter values. Keep-
ing track of the events in the Jikes RVM is done as follows. Essentially,
each Java thread keeps track of the performance counter events that oc-
cur while it is the executing thread on the virtual processor. Each time
the VM schedules a virtual context switch, the removed thread reads the
counter values, accumulates them with its existing values, and resets the
counters. Hence, a scheduled thread only observes counter values for
the events that occur while it is executing. This mechanism for reading
performance counter values is the standard implementation within the
Jikes RVM. For a more detailed description on this, we refer to [82]. In
Section 3.2, we will detail how we extended this approach for measuring
performance counter values on a per-method basis.

3.1.4 Java applications

We use the SPECjvm98 and PseudoJBB (i.e. the SPECjbb200 derivative)
benchmark suites for the experiments in this chapter. For the SPECjvm98
benchmarks we used the s100 input set, and the JVM was set to use a 64
MB heap. For PseudoJBB, we use 8 warehouses and the JVM is configured
to use a 384 MB heap. More information about these benchmarks can be
found in Section 2.3.3.
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3.2 Method-level phases

Previous work has shown that applications exhibit phase behavior as a
function of time, i.e. programs go from one phase to another during ex-
ecution [13, 48, 51]. In this chapter, we study method-level phase behavior.
We consider a method-level phase to be the execution of a Java method
including the execution of all its callees. This includes the execution of all
the methods called by the selected method, i.e. all the methods in the call
graph of which the selected method is the root. There are two motiva-
tions for doing so. First of all, the granularity of a method call including
its callees is not too small to introduce too much overhead during profil-
ing. Second, it is sufficiently fine-grained to identify phases of execution.
Previous work on phase classification [51] has considered various meth-
ods for identifying phases, ranging from the instruction level, the basic
block level, the loop level up to the method-level. From this research,
Lau et al. conclude that phase classification using method-level informa-
tion is fine-grained enough to identify phases reliably, especially when
the application executes many small methods. This is generally the case
for applications written in object-oriented languages, of which Java is an
example. The use of method calls as a unit for phase classification was
also studied by Balasabrumonian et al. [13] and Huang et al. [48].

The following issues are some of the more specific goals we want to
reach in order to make MonitorMethod useful:

• We want to gather information from the start to the end of the pro-
gram’s execution. We want maximal coverage without gaps.

• The overhead when profiling method calls should be small enough
not to interfere with normal program execution. This means that
tracing all executed methods is not a viable option. Also, we want
the volume of the trace data to be acceptable.

• We want to gather as much information as possible. At a minimum,
the collected information should be sufficiently fine-grained such
that transitions in Java performance characteristics can be readily
identified. Such transitions can be caused by thread switches, e.g.
the garbage collector is activated, or because the application enters
a method that shows different behavior from previously executed
methods.

To reach these goals, we use the following off-line phase analysis
methodology. During a first run of the Java application, we measure the
number of elapsed clock cycles in each method execution. This infor-
mation is collected in a trace file that is subsequently used to annotate a
dynamic call graph. A dynamic call graph is a tree that shows the vari-
ous method invocations during a program execution when traversed in
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depth-first order. In a second step of our methodology, we use an off-
line tool that analyzes this annotated dynamic call graph and determines
the major phases of execution. The output of this second step is a Java
source file that describes which methods are responsible for the major
execution phases of the Java application. In the third (and last) step, we
dynamically link a compiled version of this Java source file to the VM
and execute the Java application once again. The Java class file that is
linked to the VM forces the VM to measure performance characteristics
using the hardware performance monitors for the selected methods. The
result of this run is a set of detailed performance characteristics for each
method-level phase.

Obviously, to identify recurring phases, static phase analysis has the
advantage over dynamic phase analysis as it can look at the ‘future’ by
looking ahead in the trace file. A dynamic approach would have to antic-
ipate phase behavior and that could result in suboptimal phase identifi-
cation. In addition, the resources that are available during off-line analy-
sis are much larger than in case of on-line analysis, irrespective whether
phase classification is done in software or in hardware.

3.2.1 Mechanism

This section details on how a Java workload is profiled with Moni-
torMethod. We first discuss how the methods in the Java application
are instrumented. This mechanism will be used during two steps of our
methodology: when measuring the execution time of each method exe-
cution during the first run (step 1), and when measuring the performance
characteristics of the selected methods (step 3). The only difference be-
tween both cases is that in step 1 we instrument all methods. In step 3, we
only profile the selected methods. In the second subsection, we detail on
what information is collected during profiling. Subsequently, we address
profiling the components of the VM.

Instrumenting the application methods

Methods compiled by the VM compilers consist of three parts: (i) the pro-
logue, (ii) the main body of the method, and (iii) the epilogue. The pro-
logue and epilogue handle the calling conventions, pushing and popping
the callee’s stack frame, yielding at a thread switch, etc. The goal is to cap-
ture as many of the generated events during the execution of a method. To
achieve this, we add our instrumentation to the method’s prologue and
to the beginning of the method’s epilogue. Methods are instrumented on-
line by all the Jikes RVM compilers, i.e. the baseline compiler as well as
the optimizing compiler.

Extending the baseline compiler to instrument methods is quite
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Figure 3.2: Tracing the performance counter events at the prologue and epilogue
of a method call.

straightforward. It involves emitting the machine code to call the in-
strumentation functionality in the Jikes RVM run-time facilities. Calling
the instrumentation functionality is done using the Jikes RVM HPM API.
Adding calls to baseline compiled methods introduces new yield points.
As each yield point is a potential GC point (or safe point), it is necessary
to update the stack maps accordingly. If not, referenced objects might not
be reachable for the GC and risk being erroneously collected.

For the optimizing compiler, things are slightly more complicated.
Optimizations are directed by the optimization planner, and involve
multiple layers, from a high-level representation to a machine code level
representation. Our instrumentation involves adding an extra compiler
phase to the compiler plan in the High Intermediate Representation (HIR)
optimization set. Basically, we walk through the control flow graph of
each method and add similar call instructions to the prologue and epi-
logue as we did for baseline compiled methods.
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Next to the baseline and optimizing compiler, Jikes RVM also employs
an on-stack replacement (OSR) scheme [37]. OSR allows the machine
code of methods that are executing to be replaced by an optimized ver-
sion of that machine code, or even by a baseline compiled version. This
is especially useful for long-running methods, as the VM does not need
to wait until the method finishes executing to replace the code that is cur-
rently executing with the newer code. For this, certain OSR safe-points
are available in the compiled code. At these points, the OSR mechanism
can interrupt the thread executing the code and replace it with the opti-
mized version. Our implementation also supports OSR.

Regardless of the compiler that was used to generate the executable
machine code, we call our tracing framework as soon as the new frame
for the callee has been established, see Figure 3.2. At this point, the thread
executing the method updates its counter values, and suspends counting
through the Jikes RVM HPM interface. In this way, no events are counted
during the logging of the counter values. When the trace values have
been stored into a trace buffer, counting is resumed. To enhance through-
put, the trace data is stored in a buffer. We maintain a per-thread cyclic
list, which contains two 128 KB buffers. To ensure that these buffers are
never touched by the garbage collector, they are allocated outside of the
Java heap. Each time one of the buffers for a thread is full, it is scheduled
to be written to disk, and the other buffer is used to store the trace data
of that thread. A separate thread1 stores the full buffer contents to disk
in a properly synchronized manner. The same action sequence occurs at
the method epilogue, just before the return value is loaded into the re-
turn register(s) and the stack frame is popped. When a method frame is
popped because of an uncaught exception, we also log the counter values
at that point. In summary, this approach reads the performance moni-
tor values when entering the method and when exiting the method. The
difference between both values gives us the performance metric of the
method including its callees. For computing the performance metrics of
the method itself, i.e. excluding its callees, the performance metrics of the
callees need to be subtracted from the caller method.

From Figure 3.2, it can be observed that the events occurring before
reading the counter values in the prologue and the events in the epilogue
of a method are attributed to the calling method. However, this inaccu-
racy is negligible for our purposes.

MonitorMethod pays special attention to exceptions which can be
thrown either implicitly or explicitly. The former are thrown by the VM
itself whereas the latter are thrown by the program. In both cases, when-
ever an exception is thrown, control must be transferred from the code
that caused the exception to the nearest dynamically-enclosing exception

1This is an OS-level POSIX thread, not a VM thread. This ensures that storing the trace
data does not block the Virtual Processor POSIX thread on which the Jikes RVM executes.
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handler. To do so, Jikes RVM uses stack unwinding: stack frames are
popped one at a time until an exception handler is reached. When a
frame is popped by the exception handling mechanism, the normal (in-
strumented) epilogue is not executed, i.e. there is a mismatch in prologue
versus epilogue. To solve this problem, we instrumented the exception
handling mechanism as well to assure that the trace always contains
records for methods that terminate because of an uncaught exception.

Logging the trace data

An instrumented run of our application results in multiple traces,
one with the IDs for the compiled methods (baseline, optimized and
OSR-compiled), and the others with the relevant counter information per
thread. Each record in the latter requires 37 bytes at most, and provides
the following information:

• A 1-byte tag, indicating the record type (high nibble) and the num-
ber of counter fields (1 up to 4) used in the record (low nibble). The
record type denotes whether the record concerns data for a method
entry, a method exit, a method exit through an exception, an entry
into the compiler, a virtual thread switch, etc.

• Four bytes holding the method ID. This should prove more than
sufficient for even very large applications.

• Eight bytes per counter field in the record. We can measure up to
four hardware performance monitor values at a time.

It is possible to use a scheme in which the traces for each thread are
written to a single file. In this case, we add extra synchronization to en-
sure the order of the entries in the trace is the same as the execution or-
der. The disadvantage here is that there occurs a serialization during the
profiling run, which can be bothersome when using multiple virtual pro-
cessors on a multi-processor system. Also, in this case, each record will
contain two extra bytes for the thread ID.

The total trace file size is thus a function of the number of method
invocations, the number of virtual context switches and the number of
traced events. Again, for clarification, the same structure is used for both
the first step of our methodology (measuring execution times for each
method) and the third step (measuring performance characteristics for
the selected phases). However, for the first step we apply a heuristic so
that we do not need to instrument all methods; this reduces the run-time
overhead and prevents selecting wrapper methods as the starting point
of a phase. A method is instrumented if the bytecode size of its body
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is larger than a given threshold (50 bytes), or if the method contains a
backward branch, i.e. can contains a loop.

Instrumenting VM routines

As mentioned earlier, a VM consists of various components, such as the
class loader, the compiler, the optimizer, the garbage collector, the thread
scheduler, etc. To gain insight in Java workload behavior, it is thus of
primary importance to profile these components. For most of these, this
is easily done using the available Jikes RVM HPM infrastructure since
they are run in separate VM threads. This is the case for the garbage
collector and the optimizer (which uses six separate threads). To be able
to capture the behavior of the compiler, we had to undertake special ac-
tion since calling the baseline compiler is done in the Java application
threads. In case of the optimizing compiler, the method is queued to
be optimized by the optimizer thread. These two cases were handled
in our modified Jikes RVM implementation by manually instrumenting
the runtimeCompiler and compile methods from VM Runtime.

3.2.2 Phase identification

This section discusses how MonitorMethod identifies phases using the
off-line phase identification tool. MonitorMethod takes a trace file with
timing information about method calls and thread switches (see Sec-
tion 3.2.1) as input, analyzes it, and outputs a list of unique method
names that represent the phases of the application.

To select method-level phases, we use the algorithm proposed by
Huang et al. [48] which requires two parameters, called θweight and θgrain .
The basic idea of this algorithm is to select methods in which the program
spends a substantial portion of its total execution time (i.e. a fraction of
the total execution time that is larger than θweight ), and in which the pro-
gram spends a sufficiently long period of time on each invocation (i.e.
this eliminates short methods and is realized through θgrain ).

To illustrate the phase identification algorithm, consider the call graph
in Figure 3.3. It depicts a call tree that is the result of analyzing the trace
file of a fictive sort program. The sort program reads the data to be sorted,
prints an intermediate status message to the screen, sorts the data, and
finally prints the sorted data before terminating. For simplicity, abstract
time units are used. The table in Figure 3.3 also shows the total time spent
in each method, as well as the time spent per invocation.

To identify program phases, our tool first computes the total and av-
erage execution times spent in each method. For all methods, these times
include the time spent in their callees. In order for a method to be selected
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Method name Total time Time/call Calls

main 1800 1800 1
init 30 30 1
readData 300 300 1
readElement 200 4 50
print 30 30 1
sortData 1300 1300 1
compare 600 2 300
swap 500 2 250
printData 170 170 1
printElement 150 3 50

Figure 3.3: A fictive phase identification example.

as a program phase, its total execution time needs to be at least a fraction
θweight of the program’s total execution time, and the average execution
time should take at least a fraction θgrain of the program’s total execution
time on average. In our running example, θweight = 10% and θgrain = 5%,
would select methods whose total execution time is more than 180 and
whose average execution time is more than 90 — main, readData and
sortData, respectively.

3.2.3 Statistical evaluation

To verify that the phase-detection mechanism described above actually
works, we used several statistical techniques to show that our technique
is capable of reliably discriminating method-level phases. We used Coef-
ficient of Variation (CoV) to quantify the variability within a phase, and
we used an ANOVA test to quantify the variability between different
phases. The results show that a larger variability is observed between
the phases than within the phases. This asserts that our technique is
capable of reliably discriminating method-level phases, and that Moni-
torMethod can use this information. A detailed overview of these results
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Benchmark Configuration Overhead

θweight (%) θgrain (%) Estimated (%) Measured (%)

compress 8× 10−6 6× 10−6 1.84 1.82
jess 1.0 1.0 1.22 1.27
db 8× 10−6 6× 10−6 7.17 5.61
javac 2× 10−2 6× 10−3 2.61 2.11
mpegaudio 2× 10−2 2× 10−3 10.75 3.52
mtrt 10−2 10−3 24.68 7.83
jack 1.0 10−2 3.98 4.28
PseudoJBB 2× 10−1 2× 10−4 3.69 6.65

Table 3.2: Summary of the selected method-level phases for the chosen θweight and
θgrain values: the estimated overhead and the real overhead..

can be found in our OOPSLA’04 paper [41].

3.3 Results

3.3.1 Identifying method-level phases

Tracing all methods at their entry and exit points is very intrusive. Thus,
it is important to determine a set of method-level phases such that the
incurred overhead is relatively low, but such that we still get a detailed
picture of what happens at the level of the methods being executed. This
is done by choosing appropriate values for θweight and θgrain . These val-
ues depend on three parameters: (i) the maximum acceptable overhead,
(ii) the required level of information, and (iii) the application itself. The
off-line analysis tool aids in selecting values for θweight and θgrain by pro-
viding an estimate for both the overhead and the information yielded by
each possible configuration. The graphs at the top of Figure 3.4 and Fig-
ure 3.5 present the number of selected method-level phases as a function
of θweight and θgrain . Figure 3.4 presents the data for jack, and Figure 3.5
presents the data for PseudoJBB). Out of the eight benchmarks we ana-
lyzed the remaining six benchmarks showed similar results; these have
graphs have been omitted from this dissertation.

The graphs at the bottom Figure 3.4 and Figure 3.5 show the corre-
sponding estimated overhead which is defined as the number of profiled
method invocations (corresponding to method-level phases) divided by
the total number of method invocations. Note that this is not the same
as coverage, since selected methods also include their callees. The cover-
age is always 100% in our phase classification method because the main
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Figure 3.4: Estimating the overhead as a function of θweight and θgrain for jack. The
figure at the top presents the number of selected method-level phases; the figure
at the bottom presents the estimated overhead.
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method of the application is always selected.

Using the plots in Figure 3.4 and 3.5 we can now choose appropri-
ate values for θweight and θgrain for each benchmark. This is done by in-
specting the curves with the estimated overhead. We choose θweight and
θgrain in such a way that the estimated overhead is smaller than 1%, i.e.
we want less than 1% of all method invocations to be instrumented. The
results for each benchmark are shown in Table 3.2. Note that the user has
some flexibility for determining appropriate values for θweight and θgrain ;
this allows the user to determine the number of selected method-level
phases according to his interest.

So far, we have used an estimated overhead which is defined as
the number of profiled method invocations versus the total number of
method invocations of the complete program execution. To validate these
estimated overheads, i.e. to compare with the actual overheads, we pro-
ceed as follows. We measure the total execution time of each benchmark
(without any profiling enabled) and compare this with the total execution
time when profiling is enabled for the selected methods. The actual over-
head is defined as the increase in execution time due to adding profiling.
Measuring the wall clock execution time is done using the GNU/Linux
time command. Table 3.2 compares the estimated overhead and the ac-
tual overhead. We observe from these results that the actual overhead is
usually quite small and mostly tracks the estimated overhead very well.
This is important since determining the estimated overhead is more con-
venient than measuring the actual overhead. In two cases the estimate
is significantly larger than the measured overhead, i.e. for mpegaudio

and for mtrt. The latter can be explained by the fact that the formula for
estimating the overhead is somewhat naive.

Benchmark Configuration Number of phases

θweight (%) θgrain (%) Static (total) Dynamic (total)

compress 8× 10−6 6× 10−6 49 (54) 2,664 (19,726,311)
jess 1.0 1.0 10 (211) 23 (22,693,249)
db 8× 10−6 6× 10−6 52 (57) 32,223 (1,484,605)
javac 2× 10−2 6× 10−3 29 (503) 9,864 (23,388,699)
mpegaudio 2× 10−2 2× 10−3 23 (191) 40,064 (29,338,068)
mtrt 10−2 10−3 30 (94) 88,719 (14,859,306)
jack 1.0 10−2 18 (182) 2,528 (4,292,580)
PseudoJBB 2× 10−1 2× 10−4 52 (381) 29,599 (16,224,804)

Table 3.3: Summary of the selected method-level phases for the chosen θweight and
θgrain values: the number of static and dynamic phases.

For completeness, Table 3.3 presents the number of static method-level
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Benchmark Configuration Trace file size (KB)

θweight (%) θgrain (%)

compress 8× 10−6 6× 10−6 211
jess 1.0 1.0 68
db 8× 10−6 6× 10−6 2590
javac 2× 10−2 6× 10−3 871
mpegaudio 2× 10−2 2× 10−3 753
mtrt 10−2 10−3 2,680
jack 1.0 10−2 244
PseudoJBB 2× 10−1 2× 10−4 2,766

Table 3.4: Summary of the selected method-level phases for the chosen θweight and
θgrain values: the size of the trace file.

phases as well as the number of phase invocations or dynamic phases. For
reference, the total number of static methods as well as the total number
of dynamic method invocations are shown. Table 3.4 presents the file size
of the trace file obtained from running the Java application while profiling
the selected method-level phases. Recall that besides application method
records, the trace also contains data regarding thread switches, GC, and
compiler activity.

3.3.2 Analysis of method-level phase behavior

A programmer analyzing application behavior will typically start from
a high-level view of the program. Two of the first things one wants to
analyze are where the time is spent, and whether potential performance
bottlenecks are due to the application or the VM. In the first subsection,
we look at the high-level behavior of Java applications and compare it
with the behavior of the VM (GC, compiler, etc.). Once the high-level
behavior is understood, the next logical step is to investigate parts of the
application into more detail. The subsequent subsection shows how the
programmer can use the information collected by our framework to gain
insight about the low-level behavior of his program, and how our data
can help identify and explain performance bottlenecks.

VM versus application behavior

Figure 3.6 (top) shows the number of events occurring in the applica-
tion versus the VM. This is done here for PseudoJBB. We observe that
most of the events occur in the application and not in the VM. Indeed,
the total program execution spends 73% of its total execution time in the
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Figure 3.6: The performance characteristics for the application versus the VM
components for PseudoJBB (top) and jack (bottom).
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application; the remaining 27% is spent in the VM. The time spent in the
VM is partitioned in the time spent in the various VM components: com-
piler, optimizer, garbage collector and others. We observe that the most
dominant part of the VM routines is due to the optimizer (3.5%) and the
garbage collector (23%). In Section 4.4.2 we will analyse the overhead of
the optimization system in more detail. This graph reveals several inter-
esting observations. For example, although the optimizer is responsible
for only 3.5% of the total execution time, it is responsible for a signifi-
cantly larger proportion of the L1 D-cache load misses (6.3%) and L2 I-
cache misses (13.7%). The garbage collector on the other hand, accounts
for significantly more L2 D-cache misses (28%) than it accounts for execu-
tion time (21%). Another interesting result is that the garbage collector ac-
counts for a negligible fraction of the L1 and L2 I-cache and I-TLB misses.
This is due to the fact that the garbage collector has a small instruction
footprint while accessing a large data set.

Figure 3.6 (bottom) presents a similar graph for jack. The percentage
of the total execution time spent in the application is 54%. Of the 46%
spent in the VM, 41.5% is spent in the garbage collector, 2.3% in the op-
timizing compiler, 0.9% in the baseline compiler and 1.3% in other VM
routines, such as the thread scheduler, class loader, etc. These results con-
firm the specific behavior of the garbage collector previously observed
for PseudoJBB: low L1 and L2 I-cache and I-TLB miss rates and high L2
D-cache and D-TLB miss rates (due to writes). The baseline compiler and
the optimizer show high L2 I-cache miss rates.

Table 3.5 presents the time spent in the application versus the time
spent in the VM components for the SPECjvm98 and PseudoJBB bench-
marks. The time spent in the application varies between 54% and 92%
of the total execution time; the time spent in the garbage collector varies
between 7% and 42%, and the time spent in the optimizer varies between
0.4% and 5.8%. The execution time in the other VM components is neg-
ligible. We conclude that Java workloads spend a significant fraction of
their total execution time in the VM, up to 46% for the long-running appli-
cations included in our study. For short-running applications, for exam-
ple SPECjvm98 with the s1 input set, this fraction will be even larger [35].
It is interesting to note that the three benchmarks (compress, db, and
mpegaudio) for which the total execution time spent in the application
is significantly larger than the average case (89%, 92% and 85%, respec-
tively), were labeled as ‘simple’ benchmarks by Shuf et al. [74].

In this chapter we use a 64 MB heap size for the SPECjvm98 bench-
marks and a 384 MB heap size for the PseudoJBB benchmark. It is im-
portant to note that the time spent collecting garbage depends largely
on the heap size; for larger heap sizes, less time will be spent collecting
garbage. Hence, Figure 3.6 and Table 3.5 present a single data point only.
Measuring the execution time spent in garbage collection with different
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Garbage Baseline Optimizing
Benchmark Application (%) collector (%) compiler (%) compiler (%) Other (%)

compress 89.136 9.377 0.205 0.696 0.580
jess 56.835 39.641 0.919 1.914 0.688
db 92.211 6.991 0.128 0.455 0.213
javac 65.463 28.987 0.940 3.618 0.984
mpegaudio 85.000 7.999 0.559 5.821 0.620
mtrt 65.802 28.039 0.485 4.687 0.982
jack 53.905 41.556 0.941 2.317 1.265
PseudoJBB 73.348 22.974 0.091 3.532 0.063

Table 3.5: The time spent in the application and the different VM components.
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heap sizes falls outside the scope of this work.

Application performance bottleneck analysis

Profilers provide a means for programmers to perceive the way their pro-
grams are performing. Our technique provides an easy way to program-
mers to gain insight about the performance of their application at the
micro-architectural level. That is, hardware performance monitors can
be linked to the methods in the source code. Conventional methods on
the other hand, are much more labor-intensive and error-prone for the
following reasons: (i) the huge amount of data gathered from a profiling
run, and (ii) the presentation of this huge amount of data usually prevents
quick insight.

This section shows how method-level phases can help answer three
fundamental questions programmers might ask when optimizing their
application: (i) what is the application’s performance bottleneck, (ii) why
does the performance bottleneck occur, and (iii) when does the perfor-
mance bottleneck occur?

To answer the first question (what is the performance bottleneck?), we
ordered the phases by CPI. Tables 3.6, 3.7 and 3.8 present the major bot-
tleneck phases for both the SPECjvm98 benchmarks and for PseudoJBB.
We show the phases for which the total execution time takes more than
1% or 2% of the program execution time and for which the CPI is above
the average CPI, or which otherwise display bad behavior for a shown
characteristic. Methods whose CPI is worse than the average CPI, are
potential bottlenecks.

To answer the second question (why does the performance bottleneck
occur?), this table also shows the cache miss rates and the branch mispre-
diction rate. This information is helpful in identifying why these phases
suffer from such a high CPI. For example, high D-cache miss rates suggest
that the programmer should try to improve the data memory behavior for
the given phases. We can make the following interesting observations—
these are just a few examples to clarify the usefulness of linking micro-
processor level information to source-code level methods.

• The Compressor.compress method in compress suffers from
high D-cache miss rates. Optimization of the data memory behav-
ior can be achieved by applying prefetching.

• From all the benchmarks, mtrt has a method with the highest frac-
tion mispredicted branches: Scene.RenderScene. This method
contains two nested loops, iterating over all pixels in the scene to
be rendered. Inside the loop there are a number of conditional
branches and a call to for example Scene.Shade. In turn, the lat-
ter shows bad branch behavior due to numerous (nested) tests that
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Branches
Phase Time (%) CPI L1-D L1-I L2-D L2-I mispredicted

compress

FileInputStream.read 2.1517 5.194 8.41 56.74 4.39 8.31 32.13
garbage collector 9.3773 1.7778 4.04 0.02 2.59 0.01 4.39
Compressor.compress 58.3916 1.7447 22.91 0.01 4.36 < 0.01 7.28
Decompressor.decompress 25.2042 0.9242 2.53 < 0.01 0.12 < 0.01 4.83

Benchmark average n/a 1.4830 12.25 0.10 2.01 0.04 5.69

jess

Jesp.parse 1.1021 1.8701 4.52 5.91 1.04 1.71 14.55
garbage collector 39.6413 1.7647 4.02 0.02 2.58 0.01 4.33
Rete.Run 53.8732 1.1796 4.92 0.51 0.45 0.05 4.51

Benchmark average n/a 1.3959 4.66 0.68 1.12 0.17 4.73

db

Database.shell sort 85.5593 5.1134 26.42 0.02 18.01 0.01 4.87
Database.remove 4.5821 2.7155 11.33 0.10 6.28 0.06 1.36
garbage collector 6.9912 1.7989 3.92 0.03 2.45 0.01 4.23
Database.set index 2.3873 1.5749 5.74 0.08 3.38 0.04 0.08

Benchmark average n/a 3.9847 4.71 0.05 3.13 0.01 1.07

Table 3.6: The method-level phases from SPECjvm98. The L1 and L2 I-cache miss rates, L1 and L2 D-cache miss rates and the branch
misprediction rate are given as the number of events per 1,000 instructions.
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Branches
Phase Time (%) CPI L1-D L1-I L2-D L2-I mispredicted

javac

SourceClass.check 7.0644 2.2501 8.06 13.13 1.74 1.75 23.2
garbage collector 28.9874 1.8059 4.48 0.02 2.55 0.01 4.76
SourceClass.compileClass 26.0361 1.7408 5.14 6.53 0.98 0.85 16.26
Parser.parseClass 22.6849 1.4789 2.93 5.52 0.54 0.44 18.26

Benchmark average n/a 1.6747 4.28 4.48 1.32 0.66 13.26

mpegaudio

garbage collector 7.9994 1.7795 4.15 0.03 2.62 0.01 4.71
lb.read 20.7281 0.8602 1.41 1.17 0.01 < 0.01 6.38
t.O 75.1119 0.8430 0.82 0.49 < 0.01 < 0.01 2.29

Benchmark average n/a 0.8157 1.07 0.47 0.03 0.02 3.25

mtrt

Scene.RenderScene 1.9640 2.3249 12.32 18.74 0.21 0.25 35.98
garbage collector 28.0391 1.7829 3.73 0.02 2.40 < 0.01 4.47
Scene.GetLightColor 23.7782 1.4919 9.74 3.29 0.68 0.03 8.95
Scene.Shade 36.2558 1.3496 7.21 2.84 0.42 0.05 11.42
Scene.ReadPoly 2.4275 1.2909 1.52 3.32 0.12 0.10 8.88

Benchmark average n/a 1.5389 8.27 2.66 1.03 0.07 7.18

Table 3.7: The method-level phases from the SPECjvm98 (continued) benchmark suite. The L1 and L2 I-cache miss rates, L1 and L2
D-cache miss rates and the branch misprediction rate are given as the number of events per 1,000 instructions.
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Branches
Phase Time (%) CPI L1-D L1-I L2-D L2-I mispredicted

jack

Jack the Parser Generator. Jack3 1 2.34092 1.9655 5.84 5.19 0.57 0.22 11.53
garbage collector 41.5561 1.7741 4.04 0.02 2.59 0.01 4.36
Jack the Parser Generator.production 1.87112 1.7039 4.38 7.41 0.51 0.73 15.16
Jack the Parser Generator.jack input 2.8412 1.6014 3.59 6.26 0.38 0.56 13.69
Jack the Parser Generator.expansion choices 20.5098 1.5546 4.46 7.54 0.22 0.23 15.94
Jack the Parser Generator.java declarations and code 19.4081 1.3648 2.70 5.1 0.11 0.09 12.64
Jack the Parser Generator Internals.db process 2.78693 1.2737 2.61 1.61 0.59 0.28 4.74
ParseGen.build 2.6689 1.1157 2.27 0.37 0.69 0.06 2.41
Jack the Parser Generator.complex regular expression 1.98849 0.5508 3.45 7.45 0.13 0.19 10.46

Benchmark average n/a 1.5976 3.83 3.58 1.19 0.24 9.58

PseudoJBB

DeliveryTransaction.process 2.7597 3.0722 8.74 9.95 6.45 2.61 17.32
garbage collector 22.9744 2.1581 5.76 0.03 3.59 < 0.01 4.35
TransactionManager.go 57.9074 2.1219 6.77 7.77 2.91 0.75 11.08
Warehouse.loadStockTable 7.7381 1.4245 1.25 1.61 0.14 0.02 8.26

Benchmark average n/a 2.046 6.02 5.02 2.69 0.57 9.13

Table 3.8: The method-level phases from the SPECjvm98 (continued) and SPECjbb2000 (as observed in PseudoJBB) benchmark suites.
The L1 and L2 I-cache miss rates, L1 and L2 D-cache miss rates and the branch misprediction rate are given as the number of events per
1,000 instructions.



3.4 Related work 71

are conducted to decide on the color of the pixel that is being ren-
dered. This behavior can be optimized by changing the code layout
to improve the branch predictability.

• Poor I-cache behavior can be observed for the expansion choices

method in jack.

• For the SPECjvm98 benchmarks, the garbage collector shows a very
consistent behavior, with a CPI that remains around 1.77. Also, the
garbage collector shows very good I-cache behavior both on L1 and
L2. This is (i) due to the fact that garbage collection can take quite
some time and (ii) because the garbage collector code is usually
quite compact.

Finally, to answer the last question (when does the performance bot-
tleneck occur?), one can use region information to relate phases to the
time behavior of an application. Figure 3.7 shows the CPI over time
for javac. Region one corresponds to the garbage collector, region 2 to
Parser.parseClass and region 3 with SourceClass.check and
SourceClass.compileClass.

3.4 Related work

The first subsection details on related work done on Java performance
analysis. In the second subsection, we discuss phase classification and
detection techniques.

3.4.1 Java performance analysis

Cain et al. [21] characterize the Transaction Processing Council’s TPC-W
web benchmark which is implemented in Java. TPC-W is designed to
exercise the web server and transaction processing system of a typical
e-commerce web site. They used both hardware execution (on an IBM
RS/6000 S80 server with 8 RS64-III processors) and simulation in their
analysis.

Karlsson et al. [49] study the memory system behavior of Java-
based middleware. To this end, they study the SPECjbb2000 and SPEC-
jAppServer2001 benchmarks on real hardware as well as through sim-
ulation. For the real hardware measurements, they use the hardware
counters on a 16-processor Sun Enterprise 6000 multiprocessor server.
They measure performance characteristics over the complete benchmark
run and make no distinction between the VM and the execution phases
of the application.
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Luo et al. [57] compare SPECjbb2000 versus SPECweb99, VolanoMark
and SPEC CPU2000 on three different hardware platforms: the IBM RS64-
III, the IBM POWER3-II and the Intel Pentium III. All measurements were
done using performance counters and measure aggregate behavior.

Eeckhout et al. [35] measure various performance counter events and
use statistical data analysis techniques to analyze Java workload behavior
at the microprocessor level. One particular statistical data analysis tech-
nique that is used in that paper is principal components analysis which
allows to reduce the dimensionality of the data set. This reduced data
set allows for easier reasoning. In that work, the authors also measured
aggregate performance characteristics and made no distinction between
execution phases.

Dufour et al. [32] present a set of architecture-independent metrics for
describing dynamic characteristics of Java applications. All these metrics
are bytecode-level program characteristics and measure program size,
the usage frequency of various data structures (arrays, pointers, floating-
point operations), memory use, concurrency, synchronization and the de-
gree of polymorphism.

Dmitriev [28] presents a bytecode-level profiling tool for Java appli-
cations, called JFluid. During a typical JFluid session, the VM is started
with the Java application without any special preparation. Subsequently,
the tool is attached to the VM, the application is instrumented, the results
are collected and analyzed on-line, and the tool is detached from the VM.
The instrumentation is done by injecting instrumentation bytecodes into
methods of a running program. In JFluid, the user needs to specify which
call subgraph, called a ‘task’ by Dmitriev, from an arbitrary root method
is to be instrumented. This method has two major differences with our
approach: (i) we do not operate at the bytecode level but at the lower
microprocessor level and (ii) we provide a means to automatically detect
these ‘tasks’. The advantage of our approach is that it relieves the user
from manually selecting major tasks of execution. The disadvantage of
our approach is that a preparatory run is required.

Sweeney et al. [82] present a system to measure microprocessor level
behavior of Java workloads. To this end, they generate traces of hard-
ware performance counter values while executing Java applications. This
is done for each Java thread and for each microprocessor on which the
thread is running. The latter can be useful in case of a multiprocessor
environment. The infrastructure for reading performance counter val-
ues used by Sweeney et al. is exactly the same as the one we use—using
HPM in the Jikes RVM—except for the fact that our measurements are
done on an IA-32 ISA platform opposed to the PowerPC ISA platform.
Sweeney et al. read the performance counter values on every virtual con-
text switch in the VM. This information is collected for each virtual pro-
cessor and for each Java thread, and written in a per virtual processor
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record buffer. Sweeney et al. also present a tool for graphically exploring
the performance counter traces. The major difference between the work
by Sweeney et al. and our work, is that we collect performance counter
values on a per-phase basis as opposed to the timing-driven approach of
taking one sample on every virtual context switch. The benefit of measur-
ing performance counter values on a per-phase basis is that performance
counter values can be easily linked to the code that is executed in the
phase. We believe this is particularly useful for analysis in general, and
for application and VM developers in particular. Moreover, our approach
is more general than the approach by Sweeney et al. since the informa-
tion we obtain can be easily transformed to behavioral information over
time. This can be done by ordering our information on a time-line basis.
The benefit of the approach by Sweeney et al. is that they use an on-line
technique, while we essentially perform an offline analysis.

In later work [44, 45], Hauswirth et al. extend this work [82]. They
found that using hardware performance monitors was not enough for
a complete understanding of certain performance phenomena, and con-
cluded that they also needed information from higher layers in the exe-
cution stack. They propose an extended approach, called vertical profiling,
that enables this level of understanding by correlating behavioral infor-
mation about multiple layers of the execution stack. In their extended
work, they still use timer-driven sampling whereas our work used phase
behavior.

VTune [29] is a tool from Intel that provides a framework for gathering
performance counter data over time. Our work differs in that we are us-
ing instrumentation instead of sampling. However, unlike our technique,
VTune does not require a preparatory run.

3.4.2 Program phases

Several techniques that have been proposed in the recent literature to de-
tect program phases divide the total program execution in fixed intervals.
For each interval, program characteristics are measured during program
execution. When the difference in program characteristics between two
consecutive intervals exceeds a given threshold, the algorithm detects a
phase change. These approaches are often referred to as temporal tech-
niques.

Balasubramonian et al. [13] compute the number of dynamic condi-
tional branches executed. A phase change is detected when the difference
in branch counts between consecutive intervals exceeds a threshold. This
threshold is adjusted dynamically during program execution to match
the program’s execution behavior. Sherwood et al. [71, 72] use basic
block vectors (BBVs) to identify phases. A BBV is a vector in which the
elements count the number of times each static basic block is executed in
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the fixed interval. These BBVs are weighted by the number of instructions
in the given basic block. A phase change is detected when the Manhattan
distance between two consecutive intervals exceeds a given threshold.
They consider both static and dynamic methods for identifying phases
in [71] and [72], respectively. In a follow-up study, Lau et al. [51] study
several structures for classifying program execution phases. They study
approaches using basic blocks, loops, procedures, opcodes, register us-
age and memory address information. In contrast to the previously
mentioned approaches which all use micro-architecture-independent
characteristics—i.e. the metrics are only dependent on the instruction
set architecture (ISA) and not on the micro-architecture—Duesterwald et
al. [31] use micro-architecture-dependent characteristics to detect phases.
The metrics used by them are the instruction mix, the branch prediction
accuracy, the cache miss rate and the number of instructions executed
per cycle (IPC). These metrics are measured using performance monitors
over fixed intervals of 10 milliseconds.

Next to temporal phase detection approaches, there exist a number of
approaches that do not use fixed intervals. Balasubramonian et al. [13]
consider procedures to identify phases. They consider non-nested and
nested procedures as phases. A non-nested procedure is a procedure that
includes its complete call graph, i.e., including all the methods it calls,
as is done in MonitorMethod. A nested procedure does not include its
callees. They concluded that non-nested procedures are better perform-
ing than nested procedures. Huang et al. [48] also use procedures to
identify phases. The method used in our work to identify method-level
phases of execution—using θweight and θgrain —is based on the approach
proposed by Huang et al. Next to this static approach, they also propose a
hardware-based call stack mechanism to identify program phase changes.
Our work differs from the one by Huang et al. for at least three reasons.
First, we explore the technique for detecting phases in more detail by
quantifying the overhead and coverage as a function of θweight and θgrain .
Huang et al. chose fixed θweight = 5% and θgrain = 1,000 cycles in their ex-
periments. Second, we study Java workloads whereas Huang et al. stud-
ied SPEC CPU2000 benchmarks. Java workloads provide several addi-
tional challenges over C-style workloads because of the managed run-
time environment. Third, the focus of the work by Huang et al. was on
exploiting phase behavior for energy-efficient computing. The focus of
our work is on using phase behavior to increase the understanding dur-
ing program performance analysis.

Huang et al. [48] found that program behavior tends to be fairly ho-
mogeneous across different invocations of the same procedure. More re-
cently, Lau et al. [50] found that this extends to loops as well. Lau et
al. used this observation to develop an automated profiling technique to
identify code locations (branches, procedure calls, returns, loop entries,
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etc) whose executions correlate to phase changes. To do so, they build a
combined procedure and loop graph, and they use this graph to identify
the start of phases. The main difference with our work is that we only
consider procedures.

Nagpurkar et al. [63] present a framework that can be used to develop
a wide range of on-line phase detection algorithms. The input of the
framework is an execution profile and the output of the framework is a se-
ries of states that indicate whether the execution is in a phase or in a tran-
sition between phases. These states could, for example, be used by a dy-
namic optimization system to perform specializing optimizations when
the behavior is stable or it can consider optimization decisions when the
behavior changes. An interesting property of their framework is that it
detects these phase changes based on a user-provided similarity model.
Nagpurkar et al. did not explore using hardware performance monitors
as the input to this similarity model, however we see no reason why this
should not be possible. An other important difference with our work is
that their technique is on-line.

3.5 Conclusion

Java applications closely interact with the VM. In addition, applications
themselves are becoming increasingly complex. Because of this, auto-
matic tools for characterizing and understanding such software systems
are becoming paramount for effective performance analysis. We have
shown this in Chapter 2, and we have shown it again in this chapter.

The purpose of the work in this chapter is to take advantage of
method-level phase behavior of Java applications so that we can relate
processor-level performance characteristics to application source code
with acceptable overhead.

The technique presented consists of three steps. In the first step, we
measure the execution time for each method invocation using hardware
performance monitors which are made available through the Jikes RVM
HPM API. The second step analyzes this information using an off-line
tool and selects a number of phases. These phases are subsequently char-
acterized in the third step using performance monitors. This character-
ization includes measuring a number of microprocessor events such as
cache miss rates, TLB miss rates, branch misprediction rates, etc. Partic-
ularly novel compared to existing work is the fact this technique can link
the microprocessor-level information to the methods in the Java applica-
tion’s source code.

Using this framework, we investigated the phase behavior of both the
SPECjvm98 and SPECjbb2000 benchmark suite. In a first set of experi-
ments, we compared the characteristics of the Java application versus the
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various VM components. We conclude that Java workloads spend a sig-
nificant portion of their total execution time (up to 46%) in the VM, more
specifically in the garbage collector. In a second set of experiments, we
focused on the method-level phase behavior of the Java application itself.
We have shown that the overhead incurred due to profiling is small.

Finally, we showed how this information can be used by developers
to answer three fundamental questions about the performance of their
application: (i) what are the application’s bottlenecks, (ii) why do these
bottlenecks occur and (iii) when do these bottlenecks occur?
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Chapter 4

Online profiling using

hardware performance

monitors

In the previous chapters, we looked at offline profiling techniques that
link information captured at different layers of the execution stack. In
this chapter, we will look at an online vertical profiling technique. The
goal of online profiling techniques is to collect profile information during
the execution of the application and to consume that information within
the same run.

To achieve high performance, production Java virtual machines con-
tain at least two modes of execution: (i)) unoptimized execution, using
interpretation [61, 67, 80] or a simple dynamic compiler [7, 15, 24, 47] that
produces code quickly, and (ii) optimized execution using an optimizing
dynamic compiler. Methods are first executed using the unoptimized ex-
ecution strategy. An online profiling mechanism is used to find a subset of
methods to optimize during the same execution. Many systems enhance
this scheme to provide multiple levels of optimized execution [7, 61, 80],
with increasing compilation cost and benefits at each level. A crucial com-
ponent to this strategy is the ability to find the important methods for
optimization in a low-overhead and accurate manner.

Two approaches that are commonly used to find optimization candi-
dates are method invocation counters [24, 61, 67, 80] and timer-based sam-
pling [7, 15, 61, 80, 86]. The counters approach counts the number of
method invocations and, optionally, loop iterations. Timer-based sam-
pling records the currently executing method at regular intervals using
an operating system timer.

Although invocations counters can be used for profiling unoptimized
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code, their overhead makes them a poor choice for use in optimized code.
As a result, VMs that use multiple levels of optimization rely exclusively
on sampling for identifying optimized methods that need to be promoted
to higher levels. Having an accurate sampler is critical to ensure that
methods do not get stuck at their first level of optimization, or in unopti-
mized code if a sample-only approach is employed [7, 15].

Most VMs rely on an operating system timer interrupt to perform
sampling, but this approach has a number of drawbacks. First, the min-
imum timer interrupt varies depending on the version of the OS, and
in many cases can result in too few samples being taken. Second, the
sample-taking mechanism is untimely and inaccurate because there is a
variable delay between the timer going off and the sample being taken.
Third, the minimum sample rate does not change when moving to newer,
faster hardware; thus, the effective sample rate (relative to the program
execution) continues to decrease as hardware performance improves.

This work advocates a different approach, using the hardware perfor-
mance monitors (HPMs) on modern processors to assist in finding opti-
mization candidates. This HPM-sampling approach measures the time
spent in methods more accurately than any existing sample-based ap-
proach, yet remains low-overhead and can be used effectively for both
optimized and unoptimized code. In addition, it allows for more frequent
sampling rates compared to timer-based sampling, and is more robust
across hardware implementations and operating systems.

This chapter makes the following contributions:

• We describe and empirically evaluate the design space of several
existing sample-based profilers for driving dynamic compilation;

• We describe the design and implementation of an HPM-sampling
approach for driving dynamic compilation; and

• We empirically evaluate the proposed HPM approach in Jikes RVM,
demonstrating that it has higher accuracy than existing techniques,
and improves performance by 5.7% on average and up to 18.3%.

To the best of our knowledge, no production VM uses HPM-sampling
to identify optimization candidates to drive dynamic compilation. This
work illustrates that this technique results in significant performance im-
provement and thus has the potential to improve existing VMs with min-
imal effort and without any changes to the dynamic compiler.

This chapter is organized as follows. Section 4.1 provides further
background information for this work. Section 4.2 details the HPM-
sampling approach we propose. After detailing our experimental setup
in Section 4.3, Section 4.4 presents a detailed evaluation of the HPM-
sampling approach compared to existing techniques; the evaluation in-
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Figure 4.1: The design space for sampling profilers: sampling versus trigger
mechanism.

cludes overall performance, overhead, accuracy, and robustness. Sec-
tion 4.5 compares our contribution to related work and Section 4.6 pro-
vides a summary.

4.1 Background

This section describes background for this work. Specifically, it describes
the design space of sampling techniques for finding optimization can-
didates and discusses the shortcomings of these techniques; gives rele-
vant details of Jikes RVM; and summarizes hardware performance mon-
itor facilities, focusing on the particular features we employ in this work.
This background is important to help understand why it is useful to feed
micro-processor level information into the JVM and how it helps to collect
more complete profiles.

4.1.1 Sampling design space

Two important factors in implementing any method sampling approach
are (i) the trigger mechanism and (ii) the sampling mechanism. Fig-
ure 4.1 summarizes this 2-dimensional design space for sampling-based
profilers. The horizontal axis shows the trigger mechanism choices and
the vertical axis shows the sampling mechanism choices. The bullets in
Figure 4.1 represent viable design points in the design space of sampling-
based profilers – we will discuss the nonviable design points later. Sec-
tion 4.4 compares the performance of these viable design points and
shows that HPM-immediate is the best performing sampling-based pro-
filing approach.
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Trigger mechanisms

The trigger mechanism is the technique used to periodically initiate the
sample-taking process. All production JVMs that we are aware of that
use sampling to find optimization candidates use an operating system
feature, such as nanosleep or setitimer, as the trigger mechanism for find-
ing methods to optimize [7, 15, 80, 86, 61]. The nanosleep approach uses
a native thread running concurrently with the VM. When the timer inter-
rupt goes off, this native thread is scheduled to execute and then set a bit
in the VM. When the VM next executes and sees the bit is set, a sample is
taken. The setitimer approach does not use a native thread and thus has
one less level of indirection. Instead, the interrupt handler for the VM
sets the bit in the VM when the timer interrupt goes off. The third option,
HPM, will be described in Section 4.2.

Timer-based sampling (using nanosleep or setitimer) is a low over-
head profiling technique that can be used on all forms of code, both unop-
timized and optimized code. It allows for the reoptimization of optimized
code to higher levels, as well as for performing online profile-directed op-
timizations, when the profile changes, such as adaptive inlining [7].

However, timer-based sampling does have the following limitations:

Not enough data points: The timer granularity is dependent on the op-
erating system settings, e.g., a mainstream operating system, such
as Linux 2.6, provides a common granularity of 4 ms, which means
that at most 250 samples/second can be taken. Other operating sys-
tems may not offer such a fine granularity. For example, in ear-
lier versions of Linux the granularity was only 10 ms, resulting in
at most 100 samples per second. Furthermore, the granularity is
not necessarily something that can be easily changed because it will
likely require rebuilding the kernel, which may not be feasible in
all environments and will not be possible when source code is not
available.

Lack of robustness among hardware implementations: Timer-based sam-
pling is not robust among machines with different clock speeds and
different microarchitectures because a faster machine will execute
more instructions between timer-interrupts. Given a fixed operat-
ing system granularity, a timer-based profiler will collect fewer data
points as microprocessors attain higher performance. Section 4.4
demonstrates this point empirically.

Not timely: There is a variable delay from when the operating system
discovers that a thread needs to be notified about a timer event and
when it schedules the thread that requested the notification for ini-
tiating the sample taking.
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As we will see in Section 4.2, the HPM approach addresses all of these
shortcomings.

Sampling mechanisms

Once the sample-taking process has been initiated by some trigger mech-
anism, a sample can be taken. Two options exist for taking the sample (the
vertical axis in Figure 4.1): immediate and polling. An immediate approach
inspects the executing thread(s) to determine which method(s) they are
executing. The polling approach sets a bit in the VM that the execut-
ing threads check at well-defined points in the code, called polling points.
When a polling point is executed with the bit set, a sample is taken.

Polling schemes are attractive for profiling because many VMs already
insert polling points into compiled code (sometimes called yieldpoints) to
allow stopping the executing thread(s) when system services need to be
performed. The sampling profiler can piggyback on these existing polling
points to collect profile data with essentially no additional overhead.

Polling points are a popular mechanism for stopping application
threads because the VM often needs to enforce certain invariants when
threads are stopped. For example, when garbage collection occurs, the
VM needs to provide the collector with the set of registers, globals, and
stack locations that contain pointers. Stopping threads via polling signif-
icantly reduces the number of program points at which these invariants
must be maintained.

However, using polling as a sampling mechanism does have some
shortcomings:

Not timely: Although the timer expires at regular intervals, there is some
delay until the next polling point is reached. This is in addition to
the delay imposed by timer-based profiling as described in the pre-
vious section. In particular, the trigger mechanism sets a bit in the
VM to notify the VM that a sample needs to be taken. When the VM
gets scheduled for execution, the sample is not taken immediately.
The VM has to wait until the next polling point is reached before a
sample can be taken.

Limited accuracy: Untimely sampling at polling points may also impact
accuracy. For example, consider a polling point that occurs after a
time-consuming operation that is not part of Java, such as an I/O
operation or a call to native code. It is likely that the timer will ex-
pire during the time-consuming operation so unless the native code
clears the sampling flag before returning (or the VM somehow en-
sures that it was never set), the next polling point executed in Java
code will have an artificially high probability of being sampled. Es-
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sentially, time spent in native code (which generally does not con-
tain polling points) may be incorrectly credited to the caller Java
method.

An additional source of inaccuracy is that some VMs, such as Jikes
RVM, do not insert polling points in all methods and thus some
methods cannot be sampled. For example, native methods (not
compiled by the VM’s compilers), small methods that are always
inlined (polling point elided for efficiency reasons), and low-level
VM methods do not have polling points.

Overhead: Polling requires the executing code to perform a bit-checking
instruction followed by a conditional branch to sampling code. This
bit-checking code must always be executed, regardless of whether
the bit has been set. Reducing the number of bit-checking instruc-
tions can reduce this overhead (as Jikes RVM does for trivial meth-
ods), but it will also reduce the accuracy as mentioned above.

To avoid these limitations we advocate an immediate approach as de-
scribed in Section 4.2.

4.1.2 Jikes RVM

As explained in Section 2.3.1, methods running on Jikes RVM are ini-
tially compiled by a baseline compiler, which produces unoptimized code
quickly. An optimizing compiler is used to recompile important methods
with one of its three optimization levels: 0, 1, and 2 [7, 8].

Jikes RVM uses timer-based sampling with polling for finding meth-
ods to be considered for optimization. Specifically, a timer-interrupt is
used to set a bit in the virtual machine. On our platform, Linux/IA32, the
default Jikes RVM system does this every 20 ms, which was the smallest
level of granularity on Linux when that code was written several years
ago. However, current Linux 2.6 kernels allow for a finer granularity of 4
ms by default.1 Therefore, we also compare our work to an improved de-
fault system, where the timer-interrupt is smaller than 20 ms. Section 4.4
discusses the performance improvements obtained by reducing this in-
terrupt value. This illustrates an important shortcoming of an OS timer-
based approach: as new versions of the OS are used, the sampling code
in the VM may need to be adjusted.

Jikes RVM provides two implementation choices for timer-based sam-
pling: (i) nanosleep-polling, and (ii) setitimer-polling. The first strategy,
which is the default, spawns a auxiliary, native thread at VM startup.

1The granularity provided by the OS is a tradeoff between system responsiveness and
the overhead introduced by the OS scheduler. Hence, the timer granularity cannot be too
small.
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This thread uses the nanosleep system call, and sets a bit in the VM when
awoken before looping to the next nanosleep call. The polling mechanism
checks this bit. The second strategy, setitimer, initiates the timer interrupt
handler at VM startup time to set a bit in the VM when the timer goes off.
Setitimer does not require an auxiliary thread. In both cases, the timer
resolution is limited by the operating system timer resolution.

When methods get compiled, polling instructions called yield-points
are inserted into the method entries, method exits, and loop back edges.
These instructions check to see if the VM bit is set, and if so, control goes
to the Jikes RVM thread scheduler to schedule another thread. If the VM
bit is not set, execution continues in the method at the instruction after
the yield-point. Before switching to another thread, the system performs
some simple profiling by recording the top method on the stack (for loop
or exit yield-points) or the second method on top of the stack (entry yield-
points) into a buffer. When N method samples have been recorded, an
organizer thread is activated to summarize the buffer and pass this sum-
mary to the controller thread, which decides whether any recompilation
should occur. The default value for N is 3.

The controller thread uses a cost/benefit analysis to determine if a
sampled method should be recompiled [7, 8]. It computes the expected
future execution time for the method at each candidate optimization
level. This time includes the cost for performing the compilation and the
time for executing the method in the future at that level. The compilation
cost is estimated using the expected compilation rate as a function of
the size of the method for each optimization level. The expected future
execution time for a sampled method is assumed to be the amount of
time the method has executed so far, scaled by the expected speedup of
the candidate optimization level.2 For example, the model assumes that a
method that has executed for N seconds will execute for N more seconds
divided by the speedup of the level compared to the current level. The
system uses the profile data to determine the amount of time that has
been spent in a method.

4.1.3 Hardware performance monitors

As explained in Section 3.1.2, modern processors are usually equipped
with a set of performance event counter registers also known as hardware
performance monitors (HPMs). The HPM hardware can be configured
to count elapsed cycles, retired instructions, cache misses, etc. Besides
simple counting, as used for MonitorMethod in Chapter 3, the hardware
performance counter architecture can also be configured to generate an
interrupt when a counter overflows. This interrupt can be converted to

2This speedup and the compilation rate are constants in the VM. They are currently ob-
tained offline by measuring their values in the SPECjvm98 benchmark suite.
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a signal that is delivered immediately to the process using the HPMs.
This technique is known as event-based sampling. The HPM-sampling
approach that we propose uses event-based sampling using the elapsed
cycle count as its interrupt triggering event.

4.2 HPM-immediate sampling

This section describes our new sampling technique. It first discusses
the merits of immediate sampling and then describes HPM-based sam-
ple triggering. When combined, this leads to HPM-immediate sampling,
which we advocate in this work.

4.2.1 Benefits of immediate sampling

An advantage of using immediate sampling is that it avoids an often un-
documented source of overhead that is present in polling-based profilers:
the restrictions imposed on yield-point placement.

VMs often place yield-points on method prologues and loop backedges
to ensure that threads can be stopped within a finite amount of time to
perform system services. However, this placement can be optimized fur-
ther without affecting correctness. For example, methods with no loops
and no calls do not require a yield-point because only a finite amount of
execution can occur before the method returns.

However, when using a polling-based profiler, removing yield-points
impacts profile accuracy. In fact, yield-points need to be placed on
method epilogues as well as prologues to make a polling-based sampler
accurate; without the epilogue yield-points, samples that are triggered
during the execution of a callee may be incorrectly attributed to the caller
after the callee returns. For this reason, Jikes RVM places epilogue yield-
points in all methods, except for the most trivial methods that are always
inlined.

There are no restrictions on yield-point placement when using an im-
mediate sampling mechanism. All epilogue yield-points can be removed,
and the prologue and backedge yield-point placement can be optimized
appropriately as long as it maintains correctness for the runtime system.
The experimental results in Section 4.4 include a breakdown to show how
much performance is gained by removing epilogue yield-points.

4.2.2 HPM-based sampling

HPM-based sampling relies on the hardware performance monitors send-
ing the executing process a signal when a counter overflows. At VM
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input : CPU context
output : none

begin
registers← GetRegisters (CPU context);
processor← GetJikesProcessorAddress ();
if isJavaFrame (processor, registers) then

stackFrame← GetFrame (processor);
methodID← GetMethodID (stackFrame);
sampleCount← sampleCount + 1;
samplesArray [sampleCount ]← methodID;

end
HPMInterruptResumeResetCounter ()

end

Algorithm 1: HPM signal handler as implemented in JikesRVM, where
the method ID resides on the stack.

startup, we configure a HPM register to count cycles, and we define the
overflow threshold (the sampling interval or the reciprocal of the sample
rate). We also define which signal the HPM driver should send to the VM
process when the counter overflows.3 Instead of setting a bit that can later
be checked by the VM, as is done with polling, the VM acquires a sample
immediately upon receiving the appropriate signal from the HPM driver.
Several approaches can be used to determine the executing method. For
example, the program counter can be used to determine the method in
the VM’s compiled code index. Alternatively, if the method ID is stored
on the stack, as is done in Jikes RVM, the method ID can be read directly
from the top of the stack. In our implementation, we take the latter ap-
proach, as illustrated in Algorithm 1: the state of the running threads is
checked, the method residing on the top of the stack is sampled, and the
method ID is copied in the sample buffer.

Because the executing method can be in any state, the sampler needs
to check whether the stack top contains a valid Java frame; if the stack
frame is not a valid Java frame, the sample is dropped. On average, less
than 0.5% of all samples gathered in our benchmark suite using an imme-
diate technique are invalid.

4.2.3 How HPM-immediate fits in the design space of
sampling-based profiling

Having explained both immediate sampling and HPM-sampling, we can
now better understand how the HPM-immediate sampling-based pro-

3Our implementation uses SIGUSR1; any of the 32 POSIX real-time signals can be used.
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filing approach relates to the other sampling-based approaches in the
design space. HPM-immediate sampling shows the following advan-
tages over timer-based sampling: (i) sample points can be collected at a
finer time granularity, (ii) performance is more robust across platforms
with different clock frequencies and thread scheduling quanta, and (iii)
it is more timely, i.e., a sample is taken immediately, not at the next
thread scheduling point. Compared to polling-based sampling, HPM-
immediate sampling (i) is more accurate and (ii) incurs less overhead.

Referring back to Figure 4.1, there are two design points in sampling-
based profiling that we do not explore because they are not desirable:
nanosleep-immediate and HPM-polling. The nanosleep-immediate ap-
proach does not offer any advantage over setitimer-immediate: to get
a sample, nanosleep incurs an even larger delay compared to setitimer,
as explained previously. The HPM-polling approach is not desirable
because it would combine a timely trigger mechanism (HPM-sampling)
with a non-timely sampling mechanism (polling).

4.2.4 HPM platform dependencies

HPMs are present on almost all modern microprocessors and can be used
by applications if they are accessible from a user privilege level. Not all
microprocessors offer the same HPM events, or expose them in the same
way. For example, on IA-32 platforms, low overhead drivers provide ac-
cess to the HPM infrastructure, but programming the counters differs for
each manufacturer and/or processor model. One way in which a VM
implementor can resolve these differences is by encapsulating the HPM
subsystem in a platform-dependent dynamic library. In this way, HPM-
sampling is portable across all common platforms.

Standardizing the HPM interfaces is desirable because it can enable
better synergy between the hardware and the virtual machine. In many
ways it is a chicken-and-egg problem; without concrete examples of
HPMs being used to improve performance, there is little motivation for
software and hardware vendors to standardize their implementations.
However, we hope this and other recent work [1, 69, 79] will show the
potential benefit of using HPMs to improve virtual machine performance.

Furthermore, collecting HPM data can have different costs on differ-
ent processors or different microarchitectures. As our technique does not
require the software to read the HPM counters, but instead relies on the
hardware itself to track the counters and to send the executing process
a signal only when a counter overflows, the performance of reading the
counters does not affect the portability of our technique.
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4.3 Experimental setup

Before evaluating the HPM-sampling approach, we first detail our exper-
imental setup: the virtual machine, the benchmarks, and the hardware
platforms.

4.3.1 Virtual machine

For the work in this chapter, we used the CVS version of Jikes RVM from
April 10th, 2006. A motivation for the use of Jikes RVM is provided in
Section 2.3.1. To ensure a fair comparison between HPM-immediate sam-
pling with the other sampling-based profilers described in Section 4.1, we
replace only the sampling-based profiler in Jikes RVM. The cost/benefit
model for determining when to optimize to a specific optimization level
and the compilers itself remain unchanged across all sampling-based pro-
filers. In addition, we ensure that Jikes RVM’s thread scheduling quan-
tum remains unchanged at 20 ms across different sampling-based profil-
ers with different sampling rates.

The experiments are run on a Linux 2.6 kernel. We use the perfctr
tool version 2.6.19 [68] for accessing the HPMs.

4.3.2 Java applications

We use the SPECjvm98 benchmark suite [77], the DaCapo benchmark
suite [17], and the PseudoJBB benchmark [76]. We run all SPECjvm98
benchmarks with the largest input set (-s100). For the DaCapo bench-
mark we use release version 2006-10. We use only the benchmarks that
execute properly on our baseline system, the April 10th, 2006 CVS version
of Jikes RVM. We consider 35 K transactions as the input to PseudoJBB.

Table 4.1 gives an overview of the benchmark applications that we
used along with some additional information required to interpret the
results in this chapter. The second column in Table 4.1 shows the number
of application threads. The third column gives the number of application
methods executed at least once; this does not include VM methods or
library methods used by the VM. The fourth column gives the running
time on our main hardware platform, the Athlon XP 3000+, using the
default Jikes RVM configuration.

We consider two ways of evaluating performance, namely one-run
performance and steady-state performance, and use the statistically rig-
orous performance evaluation methodology as described by Georges et
al. [40]. For one-run performance, we run each application 11 times each
in a new VM invocation, exclude the measurement of the first run, and
then report average performance across the remaining 10 runs. We use a
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Application Methods Running
Benchmark threads executed time (seconds)

compress 1 189 6.1
jess 1 590 2.9
db 1 184 12.1
javac 1 913 6.5
mpegaudio 1 359 5.8
mtrt 3 314 3.9
jack 1 423 3.3

antlr 1 1419 5.6
bloat 1 1891 14.2
fop 1 2472 6.1
hsqldb 13 1277 7.3
jython 1 3093 21.2
pmd 1 2117 14.8

PseudoJBB 1 812 6.6

Table 4.1: The benchmark characteristics for the default Jikes RVM configuration
on the Athlon XP 3000+ hardware platform.

Student t-test with a 95% confidence interval to verify that performance
differences are statistically meaningful. For SPECjbb2000 we use a single
warehouse for measuring one-run performance.

For steady-state performance, we use a similar methodology, but in-
stead of measuring performance of a single run, we measure performance
for 50 consecutive iterations of the same benchmark in 11 VM invocations,
of which the first invocation is discarded. Running a benchmark multiple
times can be done easily for the SPECjvm98 and the DaCapo benchmarks
using the running harness.

4.3.3 Hardware platforms

We consider two hardware platforms, both are AMD Athlon XP micro-
processor-based computer systems. The important difference between
both platforms is that they run at different clock frequencies and have dif-
ferent memory hierarchies, see Table 4.2. The reason for using two hard-
ware platforms with different clock frequencies is to demonstrate that the
performance of HPM-sampling is more robust across hardware platforms
with different clock frequencies than other sampling-based profilers.
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Processor Frequency (Ghz) L2 (KB) RAM (GB) Bus (Mhz)

1500+ 1.33 256 1 133
3000+ 2.1 512 2 166

Table 4.2: An overview of the hardware platforms used.

4.4 Evaluation

This section evaluates the HPM-immediate sampling profiler and com-
pares it against existing sampling profilers. This comparison includes
performance along two dimensions: one-run and steady-state, as well as
measurements of overhead, accuracy, and stability.

4.4.1 Performance evaluation

We first evaluate the performance of the various sampling-based profilers
— we consider both one-run and steady-state performance in the follow-
ing two subsections.

One-run performance

Impact of sampling rate. Before presenting per-benchmark perfor-
mance results, we first quantify the impact of the sample rate on average
performance. Figure 4.2 shows the percentage average performance im-
provement on the Athlon XP 3000+ machine across all benchmarks as
a function of the sampling interval compared to the default Jikes RVM,
which uses a sampling interval of 20 ms. The horizontal axis varies the
sampling interval from 0.1 ms to 40 ms for the nanosleep- and setitimer-
sampling approaches. For the HPM-sampling approach, the sampling
interval varies from 100 K cycles up to 90 M cycles. On the Athlon XP
3000+, this is equivalent to a sampling interval varying from 0.047 ms
to 42.85 ms. Curves are shown for all four sampling-based profilers;
for the immediate-sampling methods, we also show a version includ-
ing and excluding epilogue yield-points to help quantify the reason for
performance improvement. Because an immediate approach does not
require any polling points, the preferred configuration for the immediate
sampling approach is with no yield-points.

We make several observations from Figure 4.2. First, comparing the
setitimer-immediate versus the setitimer-polling curves clearly shows
that an immediate sampling approach outperforms a polling-based sam-
pling mechanism on our benchmark suite. The setitimer-immediate
curve achieves a higher speedup than setitimer-polling over the en-
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of sample rate, relative to default Jikes RVM, which uses a sampling interval of 20 ms.
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tire sample rate range. Second, HPM-based sampling outperforms
OS-triggered sampling — the HPM-immediate curve achieves higher
speedups than setitimer-immediate. Third, removing epilogue yield-
points yields a slight performance improvement for both the HPM-based
and OS-triggered immediate sampling approaches. So, in summary the
overall performance improvement for the HPM-sampling approach that
we advocate comes from three sources: (i) HPM-based triggering instead
of OS-triggered sampling, (ii) immediate sampling instead of polling-
based sampling, and (iii) the removal of epilogue yield-points.

Each sampling-based profiler has a best sample rate for our bench-
mark suite. Values below this rate result in too much overhead. Values
above the rate result in a less accurate profile. We use an interval of 9
M cycles (approximately 4.3 ms) for the HPM-immediate approach in the
remainder of this chapter.4 Other sampling-based profilers achieve their
best performance at different sample rates — in all other results presented
in this chapter, we use the best sample rate per sampling-based profiler. For
example, for the setitimer-immediate approach with no yield-points the
best sampling interval on our benchmark suite is 4 ms. The default Jikes
RVM with nanosleep-polling has a sampling interval of 20 ms.

Per-benchmark results. Figure 4.3 shows the per-benchmark percent-
age performance improvements of all sampling profiler approaches (us-
ing each profiler’s best sample rate) relative to the default Jikes RVM’s
nanosleep-polling sampling approach, which uses a sampling interval of
20 ms. The graph at the top in Figure 4.3 is for the best sample rates on the
Athlon XP 1500+ machine. The graph at the bottom is for the best sample
rates on the Athlon XP 3000+.

The results in Figure 4.3 clearly show that HPM-immediate sampling
significantly outperforms the other sampling profiler approaches. In par-
ticular, HPM-immediate results in an average 5.7% performance speedup
compared to the default Jikes RVM nanosleep-polling approach on the
Athlon XP 3000+ machine and 3.9% on the Athlon XP 1500+ machine.
HPM-immediate sampling results in a greater than 5% performance
speedup for many benchmarks (on the Athlon XP 3000+): antlr (5.9%),
mpegaudio (6.5%), jack (6.6%), javac (6.6%), hsqldb (7.8%), jess (9.6%)
and mtrt (18.3%).

As mentioned before, this overall performance improvement comes
from three sources. First, immediate sampling yields an average 3.0%

4As Figure 4.2 shows, we explored a wide range of values between 2 M and 9 M for
the HPM-immediate approach. An ANOVA and a Tukey HSD post hoc [40, 64] test with a
confidence level of 95% reveal that in only 1.5% of the cases (7 out of 468 comparisons), the
execution times differ significantly. This means one can use any of the given rates in [2 M; 9
M] without suffering a significant performance penalty. Therefore, we chose 9 M as the best
value for HPM-immediate.
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Figure 4.3: The percentage performance improvement relative to the default Jikes
RVM configuration (nanosleep-polling with a 20 ms sampling interval). Each con-
figuration uses the single best sampling interval as determined from the data in
Figure 4.2 for all benchmarks. The graphs give improvement on the Athlon XP
1500+ with a 20 M sample interval (top) and the Athlon XP 3000+ with a 9 M
sample interval (bottom). On the former, the nanosleep-polling bars show no
improvement, because the default configuration rate performed best for that par-
ticular technique; as a result, the left graph has one bar less.
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speedup over polling-based sampling. Second, HPM-sampling yields an
additional average 2.1% speedup over OS-triggered sampling. Third,
eliminating the epilogue yield-points contributes an additional 0.6%
speedup on average. For some benchmarks, removing the epilogue
yield-points results in significant performance speedups, for example
jack (4.1%) and bloat (3.4%) on the Athlon XP 3000+ machine.

Statistical significance. Furthermore, these performance improvements
are statistically significant. We use a one-sided Student t-test with a
95% confidence level following the methodology proposed by Georges
et al. [40] to verify that HPM-immediate-no-yieldpoints does result in
a significant performance increase over the non-HPM techniques. For
each comparison, we require one test where the null hypothesis is that
both compared techniques result in the same execution time on aver-
age, the alternative hypothesis is that HPM-immediate-no-yieldpoints
has a smaller execution time. The null hypothesis is rejected for 10 out
of 14 benchmarks when we compare to nanosleep-polling; it is rejected
for 8 out of 14 benchmarks when we compare to setitimer-immediate-
no-yieldpoints; and it is rejected for even 5 out of 14 benchmarks when
we compare to HPM-immediate. This means that HPM-immediate-no-
yieldpoints outperforms the best execution times compared to the other
techniques.

Robust performance across machines. The two graphs in Figure 4.3
also show that the HPM-immediate sampling profiler achieves higher
speedups on the Athlon XP 3000+ machine than on the 1500+ machine.
This observation supports our claim that HPM-sampling is more robust
across hardware platforms, with potentially different clock frequencies.
The reason is that OS-triggered profilers collect relatively fewer samples
as clock frequency increases (assuming that the OS time quantum remains
unchanged). As such, the profile collected by an OS-triggered profiler be-
comes relatively less accurate compared to HPM-sampling when clock
frequency increases.

Steady-state performance

We now evaluate the steady-state performance of HPM-sampling for
long-running Java applications. This is done by iterating each bench-
mark 50 times in a single VM invocation. This process is repeated 11
times (11 VM invocations of 50 iterations each); the first VM invocation is
a warmup run and is discarded [40].

Figure 4.4 shows the average execution time per benchmark iteration
across all VM invocations and all benchmarks. Two observations can be
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Figure 4.4: Quantifying steady-state performance of HPM-immediate-no-
yieldpoints sampling: average execution time per run for 50 consecutive runs.

made: (i) it takes several benchmark iterations before we reach steady-
state behavior, i.e., the execution time per benchmark iteration slowly
decreases with the number of iterations, and (ii) while HPM-immediate
is initially faster, the other sampling mechanisms perform equally well
for steady-state behavior. This suggests that HPM-immediate is faster at
identifying and compiling hot methods, but that if the hot methods of
an application are stable and the application runs long enough, the other
mechanisms also succeed at identifying these hot methods. Once all im-
portant methods have been fully optimized, no mechanism has a signif-
icant competitive advantage over the other, and they exhibit similar be-
havior. In summary, HPM-sampling yields faster one-run times and does
not hurt steady-state performance. Nevertheless, in case a long-running
application would experience a phase change at some point during the
execution, we believe HPM-immediate will be more responsive to this
phase change by triggering adaptive recompilations more quickly.

4.4.2 Analysis

To get better insight into why HPM-sampling results in improved per-
formance, we now present a detailed analysis of the number of method
recompilations, the optimization level these methods reach, the overhead
of HPM-sampling, the accuracy of a sampling profile, and the stability of
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across all benchmarks on the Athlon XP 3000+.

HPM-sampling across multiple runs.

Recompilation activity

Table 4.3 shows a detailed analysis of the number of methods sampled,
the number of methods presented to the analytical cost/benefit model,
and the number of method recompilations for the default system and
the four sampling-based profilers. The difference between default and
nanosleep-polling is that the default system uses 20 ms as the sleep in-
terval, whereas nanosleep-polling uses the best sleep interval for our
benchmark suite, which is 4 ms. Table 4.3 shows that HPM-sampling
collects more samples (2066 versus 344 to 1249, on average) and also
presents more samples to the analytical cost/benefit model (594 versus
153 to 408, on average) than OS-triggered sampling. This also results in
more method recompilations (134 versus 63 to 109, on average).

Figure 4.5 provides more details by showing the number of method
recompilations by optimization level. These are average numbers across
all benchmarks on the Athlon XP 3000+ as reported by Jikes RVM’s log-
ging system. This figure shows that HPM-immediate sampling results in
more recompilations, and that more methods are compiled to higher lev-
els of optimization, i.e., compared to nanosleep polling, HPM-immediate
compiles 27% more methods to optimization level 0 and 46% more meth-
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Default Nanosleep-polling Setitimer-polling Setitimer-immediate HPM-immediate

Benchmark S P C S P C S P C S P C S P C

compress 258 162 16 1010 173 15 1190 195 17 977 288 19 1536 437 23
jess 126 82 35 425 191 45 499 216 47 416 199 49 714 299 55
db 530 56 9 1950 87 9 2340 92 9 1959 159 9 3349 189 10
javac 251 147 80 893 447 139 1048 510 159 1004 426 150 1647 620 195
mpegaudio 250 199 58 900 453 75 1065 526 80 906 634 81 1489 908 98
mtrt 128 98 33 460 204 54 529 230 58 538 281 63 847 382 82
jack 140 56 27 510 162 41 585 192 47 451 110 22 758 185 32
antlr 249 120 60 855 339 100 1040 402 112 750 269 105 1263 403 138
bloat 601 150 60 2145 404 111 2595 490 117 2255 329 111 3733 486 144
fop 273 60 37 995 199 63 1175 230 70 576 185 74 957 275 103
hsqldb 247 180 91 869 478 133 995 525 138 1117 500 152 1816 747 181
jython 928 426 203 3294 1079 342 3813 1220 357 3169 1145 350 5178 1667 426
pmd 565 244 93 1995 623 154 2355 721 165 2355 704 158 3938 989 206
PseudoJBB 271 161 85 950 451 129 1114 521 146 1014 489 152 1697 729 190

Average 344 153 63 1232 378 101 1453 433 109 1249 408 107 2066 594 134

Table 4.3: Detailed sample profile analysis for one-run performance on the Athlon XP 3000+: ’S’ stands for the number of method samples
taken, ’P’ stands for the number of methods that have been proposed to the analytical cost/benefit model and ’C’ stands for the number
of method recompilations.
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ods to optimization level 1.

Figure 4.3 showed that HPM-immediate sampling resulted in an
18.3% performance speedup for mtrt. To better understand this speedup
we performed additional runs of the baseline and HPM-immediate con-
figurations with Jikes RVM’s logging level set to report the time of all
recompilation events.5 We ran each configuration 11 times and the sig-
nificant speedup of HPM, relative to the baseline configuration, occurred
on all runs, therefore, we conclude that the compilation decisions lead-
ing to the speedup were present in all 11 HPM-immediate runs. There
were 34 methods that were compiled by the HPM-immediate configu-
ration in all runs, and of these 34 methods, only 13 were compiled on
all baseline runs. Taking the average time at which these 13 methods
were compiled, HPM compiles these methods 28% sooner, with a max-
imum of 47% sooner and a minimum of 3% sooner. Although this does
not concretely explain why HPM-immediate is improving performance,
it does show that HPM-immediate is more responsive in compiling the
important methods, which most likely explains the speedup.

Overhead

Collecting samples and recompiling methods obviously incurs overhead.
To amortize this cost, dynamic compilation systems need to balance code
quality with the time spent sampling methods and compiling them. To
evaluate the overhead this imposes on the system, we investigate its two
components: (i) the overhead of collecting the samples and (ii) the over-
head of consuming these samples by the adaptive optimization system.
As explained in Section 4.1.2, the latter is composed of three parts imple-
mented as separate threads in Jikes RVM: (a) the organizer, (b) the con-
troller, and (c) the compiler.

To identify the overhead of only collecting samples, we modified Jikes
RVM to discard samples after they have been captured in both an HPM-
immediate configuration and the baseline nanosleep-polling configura-
tion. In both configurations no samples are analyzed and no methods
are recompiled by the optimizing compiler. By comparing the execution
times from the HPM-immediate configuration with those of the default
Jikes RVM configuration that uses nanosleep-polling with the 20 ms sam-
ple interval, we can study the overhead of collecting HPM samples. Fig-
ure 4.6 shows this overhead for a range of HPM sample intervals aver-
aged across all benchmarks; at the sampling interval of 9 M cycles, the
overhead added by HPM-immediate sampling is limited to 0.2%.

To identify the overhead of processing the samples we look at the time
spent in the organizer, controller, and compiler. Because each of these

5This logging added a small amount of overhead to each configuration, but the speedup
remained about the same.
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subsystems runs in their own thread, we use Jikes RVM’s logging system
to capture each thread’s execution time. Figure 4.7 shows the fraction of
the time spent in the organizer, controller, and the compiler for all sam-
pling profiler approaches averaged across all benchmarks. The results
in Figure 4.7 are consistent with the results from MonitorMethod in Ta-
ble 3.5. Based on Figure 4.7, we conclude that although HPM-immediate
collects many more samples, the overhead of the adaptive optimization
system increases by only roughly 1% (mainly due to the compiler). This
illustrates that Jikes RVM’s cost/benefit model successfully balances code
quality with time spent collecting samples and recompiling methods —
even when presented with significantly more samples as discussed in the
previous section. We believe this property is crucial for the applicability
of HPM-immediate sampling.

Accuracy

To assess the accuracy of the profile collected through HPM-immediate
sampling, we would like to compare the various sampling approaches
with a perfect profile. A perfect profile satisfies the property that the num-
ber of samples for each method executed is perfectly correlated with the
time spent in that method. Such a profile cannot be obtained, short of
doing complete system simulation. Instead, we obtain a detailed profile
using a frequent HPM sample rate (a sample is taken every 10 K cycles)
and compare the profiles collected through the various sampling profiler
approaches with this detailed profile.

We determine accuracy as follows. We run each benchmark 30 times
in a new VM instance for each sampling approach (including the de-
tailed profile collection) and capture how often each method is sampled
in a profile. A profile is a vector where each entry represents a method
along with its sample count. We subsequently compute an average pro-
file across these 30 benchmark runs. We then use the metrics described
below to determine the accuracy for a sampling approach by comparing
its profile with the detailed profile. We use both an unweighted and a
weighted metric.

Unweighted metric. The unweighted metric gives the percentage of
methods that appear in both vectors, regardless of their sample counts.
For example, the vector x = ((a, 5), (b, 0), (c, 2)) and the vector y =
((a, 30), (b, 4), (c, 0)) have corresponding presence vectors px = (1, 0, 1)
and py = (1, 1, 0), respectively. The common presence vector then is
pcommon = (1, 0, 0). Therefore, pcommon has a score of .33, which is the
sum of its elements divided by the number of elements.

This metric attempts to measure how many methods in the detailed
profile also appear in the profiles for the sampling approach of interest.
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Figure 4.8: The sampling accuracy using the unweighted accuracy metric: the
average overlap with the detailed profile is shown on the vertical axis for the top
N percent of hot methods on the horizontal axis.

Because the metric ignores how often a method is sampled in the detailed
profile, it seems appropriate to consider only the top N percent of most
frequently executed methods in the detailed profile.

Figure 4.8 shows the average unweighted metric for the various
sampling-based profilers for the top N percent of hot methods. The hori-
zontal axis shows the value of N . The vertical axis shows the unweighted
metric score, so higher is better for this metric. For example, the accuracy
of the profilers finding the top 20% of methods found in the detailed
profile is 57.4%, 56.3%, 70.2%, and 74.5% for nanosleep-polling, setitimer-
polling, setitimer-immediate-no-yieldpoints, and HPM-immediate-no-
yieldpoints, respectively. Immediate sampling techniques are clearly
superior to polling-based techniques on our benchmark suite.

Weighted metric. The weighted metric considers the sample counts as-
sociated with each method and computes an overlap score. To determine
the weighted overlap score, we first normalize each vector with respect to
the total number of samples taken in that vector. This yields two vectors
with relative sample counts. Taking the element-wise minimum of these
vectors gives the weighted presence vector. The score then is the sum of
the elements in the presence vector. For example, for x and y as defined
above, the score is 0.71. Indeed, the only element that has samples in both
vectors, a, scores 5

5+0+2
= 0.71 in x and 30

30+4+0
= 0.88 in y.
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Figure 4.9: The accuracy using the weighted metric of various sampling-based
profilers compared to the detailed profile.

Figure 4.9 demonstrates the accuracy using the weighted metric for
all benchmarks. This graph shows that polling-based sampling achieves
the lowest accuracy on average (59.3%). The immediate techniques score
much better, attaining 74.2% on average for setitimer. HPM improves this
even further to a 78.0% accuracy on average compared to the detailed
profile.

Stability

It is desirable for a sampling mechanism to detect hot methods in a con-
sistent manner, i.e., when running a program twice, the same methods
should be sampled (in the same relative amount) and optimized so that
different program runs result in similar execution times. We call this
sampling stability. To evaluate stability, we perform 30 runs holding the
sampling mechanism constant. We use the weighted metric described in
the previous section to pairwise compare all the vectors for the different
benchmark runs with the same sampling mechanism. We report the sta-
bility score as the mean of these values.
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For example, given three vectors

x = ((a, 5), (b, 1), (c, 4))

y = ((a, 6), (b, 0), (c, 3))

z = ((a, 5), (b, 2), (c, 3))

that correspond to three benchmark runs of a particular configuration,
the stability is computed as follows. First, we normalize the vectors
and take the element-wise minimum of all the different combinations
of vectors. Comparing x and y yields ((a, 1

2
), (b, 0), (c, 1

3
)), comparing

x and z yields ((a, 1
2
), (b, 1

10
), (c, 3

10
)) and comparing y and z results in

((a, 1
2
), (b, 0), (c, 3

10
)). Next, we compute the sum of the elements in each

of the vectors and compute the final stability score as the mean of these
values. That is, 0.83+0.9+0.8

3
= 0.84.

Figure 4.10 compares the stability of the following five configurations:
(i) nanosleep-polling, (ii) setitimer-polling, (iii) setitimer-immediate, (iv)
HPM-immediate, and (v) the HPM configuration with a sample rate of
10 K cycles, i.e., the detailed profile. The detailed profile is very sta-
ble (on average the stability is 95.1%). On average, nanosleep-polling
and setitimer-polling have a stability score of 75.9% and 76.6%, respec-
tively. The average stability for setitimer-immediate is 78.2%, and HPM-
immediate has the best stability score (83.3%) of the practical sampling
approaches.

4.5 Related work

This section describes related work. We focus mostly on profiling tech-
niques for finding important methods in language-level virtual machines.
We briefly mention other areas related to online profiling in dynamic op-
timization systems.

4.5.1 Existing virtual machines

As mentioned earlier, Jikes RVM [7] uses a compile-only approach to pro-
gram execution with multiple recompilation levels. All recompilation is
driven by a polling-based sampler that is triggered by an operating sys-
tem timer.

BEA’s JRockit [15, 73] VM also uses a compile-only approach. A sam-
pler thread is used to determine methods to optimize. This thread sus-
pends the application threads and takes a sample at regular intervals.
Although full details are not publicly available, the sampler seems to be
triggered by an operating system mechanism. It is not clear if the samples
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Figure 4.10: Quantifying sampling stability: higher is better.

are taken immediately or if a polling approach is used. Friberg’s MS the-
sis [39] extends JRockit to explore the use of HPM events on an Itanium
2 to better perform specific compiler optimizations in a JIT. The thesis
reports that using HPM events improves performance by an average of
4.7%. This work also reports that using HPM events to drive only recom-
pilation (as we advocate in this work) does not improve performance,
but does compile fewer methods. In a workshop presentation, Eastman
et al. [34] report similar work to Friberg’s work. The slides claim to ex-
tend JRockit to use an HPM-immediate approach using Itanium 2 events
to drive optimization. Unlike Friberg they do not report how the new
approach compares to existing approach for finding optimization candi-
dates, but instead focus on how HPM events improve performance when
used by compiler optimizations.

Whaley [86] describes a sampling profiler that is implemented as a
separate thread. The thread awakes periodically and samples the appli-
cation threads for the purpose of building a dynamic call graph. He men-
tions that this sampling thread could be triggered by operating system
or processor mechanisms, but used an operating system sleep function in
his implementation. No performance results are reported comparing the
various trigger approaches. The IBM DK for Java [80] interprets methods
initially and uses method entry and back edge counters to find methods
to optimize. Multiple optimization levels are used. A variant of the sam-
pling technique described by Whaley (without building the dynamic call
graph) is used to detect compiled methods that require further optimiza-
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tion.

IBM’s J9 VM [61] is similar to the IBM DK for Java in that it is also
interpreter-based with multiple optimization levels. It uses a sampling
thread to periodically take samples. The implementation of the sampler
is similar to Jikes RVM in that it uses a polling-based approach that is
triggered by an operating system timer.

Intel’s ORP VM [24] employs a compile-only strategy with one level
of recompilation. Both the initial and the optimizing compiler use per-
method counters to track important methods. A method is recompiled
when the counter passes a threshold or when a separate thread finds
a method with a counter value that suggests compiling it in the back-
ground. Optimized methods are not recompiled. No sampling is used.

In a technical report, Tam et al. [83] extend Intel’s ORP to use HPMs to
trigger dynamic code recompilation. They instrument method prologues
and epilogues to read the HPM cycle counter. The cycle counter value is
read upon invocation of a method and upon returning from the method,
and used to compute the time spent in each method. These deltas are
accumulated on a per method basis, and when a method’s accumulated
time exceeds a given threshold (and that method has been executed at
least two times), the method is recompiled at the next optimization level.
They report large overheads, and conclude that this technique cannot be
used in practice. Our approach is different in that it does not use instru-
mentation and relies on sampling to find candidate methods.

Sun’s HotSpot VM [67] interprets methods initially and uses method
entry and back edge counters to find methods to optimize. No published
information is available on what, if any, mechanism exists for recompil-
ing optimized methods and if sampling is used. However, HotSpot was
greatly influenced by the Self-93 system [47], which used a compile-only
approach triggered by decayed invocation counters. Optimized methods
were not further optimized at higher levels.

In summary, no production VMs use HPMs as a trigger mechanism for
finding optimization candidates. Two descriptions of extending JRockit
to use HPMs do exist in the form of MS thesis and a slides-only work-
shop. In contrast to our work, neither showed any improvement using
this approach and no comprehensive evaluation was performed.

4.5.2 Other related work

Lu et al. [55] describe the ADORE dynamic binary optimization system,
which uses event-sampling of HPMs to construct a path profile that is
used to select traces for optimization. At a high level this is a similar ap-
proach to what we advocate, HPM profiling for finding optimization can-
didates, but details of the optimization system (a binary optimizer versus
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a virtual machine) are quite different.

Adl-Tabatabai et al. [1] used HPMs as a profiling mechanism to guide
the placement of prefetch instructions in the ORP virtual machine. We
believe prefetching instructions are inserted by forcing methods to be re-
compiled. Although this work may compile a method more than once
based on HPM information, it does not rely on HPMs as a general pro-
filing mechanism to find optimization candidates. Su and Lipasti [79]
describe a hybrid hardware-software system that relies on hardware sup-
port for detecting exceptions in specified regions of code. The virtual ma-
chine then performs speculative optimizations on these guarded region.
Schneider et al. [69] show how hardware performance monitors can be
used to drive locality-improving optimizations in a virtual machine. Al-
though these works are positive examples of how hardware can be used
to improve performance in a virtual machine environment, neither ad-
dress the specific problem we address: finding candidates for recompila-
tion.

Ammons et al. [4] show how HPMs can be incorporated into an of-
fline path profiler. Andersen et al. [5] describe the DCPI profiler, which
uses HPMs to trigger a sampling approach to understand program per-
formance. None of these works use HPMs to find optimization candi-
dates.

Zhang et al. [87] describe the Morph Monitor component of an online
binary optimizer that uses an operating system kernel extension to imple-
ment an immediate profiling approach. Duesterwald et al. [30] describe a
low-overhead software profiling scheme for finding hot paths in a binary
optimization systems. Although both works are tackling the problem of
finding optimization candidates, neither use HPMs.

Merten et al. [62] propose hardware extensions to monitor branch be-
havior for runtime optimization at the basic block and trace stream level.
Conte et al. [26] describe a hardware extension for dedicated profiling.
Our work differs in that we use existing hardware mechanisms for find-
ing hot methods.

4.6 Conclusion

To our knowledge, this is the first work to empirically evaluate the de-
sign space of several sampling-based profilers for dynamic compilation.
We describe a technique, HPM-sampling, that leverages hardware per-
formance monitors (HPMs) to identify methods for optimization. In
addition, we show that an immediate sampling approach is signifi-
cantly more accurate in identifying hot methods than a polling-based
approach. Furthermore, an immediate sampling approach allows for
eliminating epilogue yield-points. We show that, when put together,
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HPM-immediate sampling with epilogue yield-point elimination out-
performs all other sampling techniques. Compared to the default Jikes
RVM configuration, we report a performance improvement of 5.7% on
average and up to 18.3% without modifying the compiler. Moreover,
we show that HPM-based sampling consistently improves the accuracy,
robustness, and stability of the collected sample data.

These result support the central thesis of this PhD dissertation; in or-
der to improve the runtime performance of Java applications, the ability
to capture more complete profiles is key. By taking advantage of infor-
mation captured at the lowest level of the execution stack, we can collect
profile information that is more accurate and faster to obtain.
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Conclusion

Virtual execution environments are here to stay. As a result, an increasing
number of applications run on top of execution stacks that have multi-
ple layers. The objective of this thesis was to investigate how information
collected at different levels of an execution stack is helpful in understand-
ing and optimizing program performance. This is important, because the
abstractions and virtualizations introduced by virtual execution environ-
ments, come with some trade-offs. In this work, we focus on the Java
programming language and its Java Virtual Machine. Two major trade-
offs of virtual execution environments have been identified.

First, understanding the behavior of Java applications is difficult be-
cause it involves a complex interaction between the different components
of the VM (interpreter, run-time compiler, garbage collection), the ap-
plication, and the underlying hardware. Furthermore, the applications
themselves are growing in size and complexity and often run on top an
application framework. So while it is great that virtual execution envi-
ronments like Java shield developers from as much details as possible, it
makes it increasingly difficult to conduct thorough program analysis.

Second, abstraction and virtualization layers are often at odds with
the ability to achieve high performance. For example, the fact that a
JVM operates on machine-independent instructions rather than native
machine instructions, makes it an interesting challenge to achieve high
performance.

In this thesis, we show that both problems benefit from advances in
profiling techniques. Better offline profiling tools help us provide better
insight in the behavior of Java applications, and novel online profiling
mechanisms can help us improve performance of Java applications. The
thesis of this PhD dissertation is that in order to understand and optimize
the performance of Java applications, the ability to capture complete pro-
files is key.
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Specifically, this PhD dissertation presented three novel profiling tech-
niques.

First, we presented Javana, a framework that makes it easy to build
vertical profiling tools. We illustrated how Javana combines information
gathered at different layers of the execution stack to help application de-
velopers and researchers gain better understanding of Java applications.

Next, we presented MonitorMethod, a novel profiling tool that ex-
ploits phase behavior to link microprocessor-level information to the
methods in a Java application. We showed how this information can
be used by application developers to identify and explain performance
bottlenecks in terms of method-level phases.

Finally, in Chapter 4 we proposed HPM-based sampling, a technique
that leverages hardware performance monitors to identify methods for
optimization. We showed that by propagating information captured by
the hardware to the JVM, we can identify hot methods faster and more ac-
curately than a polling-based approach implemented solely in software.
Compared to existing profiling techniques implemented in the JVM, our
HPM-based sampling technique improves performance by 5.7% on aver-
age and up to 18.4%.

The central attribute of these contributions is that we link information
gathered at the microprocessor-level to other layers in the execution stack
to gather more complete profiles. By taking advantage of information
captured at the lowest level of the execution stack, we can collect profile
information that is more accurate, faster to obtain, or that was otherwise
not available.

5.1 Future work

We believe there are a number of potentially interesting directions for fu-
ture research. Our work has demonstrated that there is potential for better
synergy between the hardware and virtual machines. Both try to exploit a
program’s execution behavior, but little synergy has been demonstrated
to date. This is partially due to the narrow communication channel be-
tween hardware and software, as well as the lack of cross-subdiscipline
innovation in these areas. We hope this work will encourage others to ex-
plore this fruitful area of greater synergy between hardware and software
(and system software like VMs in particular).

First, for our HPM-based sampling technique we used the cycle
counter event to sample methods. Other HPM events may also be useful
for identifying methods for optimization, such as cache miss count events
and branch misprediction count events. Second, it may be interesting to
apply the improved accuracy of HPM-based sampling to other parts of
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the adaptive optimization system, such as dynamic call graph profiling
used for method inlining.

Second, our work on MonitorMethod uses an offline phase detection
step. If we’d be able to detect method-level phase behavior online – for ex-
ample with dedicated hardware – we could eliminate the required train-
ing run and make MonitorMethod an online tool. Being able to detect
online phase behavior is useful not only for gaining better insight in the
behavior of Java applications, but can potentially be used to improve per-
formance of Java applications. Specifically, we believe it might be useful
to link different compilation plans to phases with different behavior as
observed at the microarchictectural level. Similarly, our work on Javana
could also benefit from being able to offload some of the book keeping or
computational work to hardware.
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Appendix A

Other contributions

In addition to the work that is covered in this thesis, we also contributed
to the following papers.

A.1 Statistically rigorous Java performance eval-

uation

Java performance is far from being trivial to benchmark because it is af-
fected by various factors such as the Java application, its input, the vir-
tual machine, the garbage collector, the heap size, etc. In addition, non-
determinism at run-time causes the execution time of a Java program to
differ from run to run — and the variability can be fairly high.

There exist a wide variety of Java performance evaluation methodolo-
gies used by researchers and benchmarkers. All of these methodologies
differ from each other in a number of ways. Some report average perfor-
mance over a number of runs of the same experiment; others report the
best or second best performance observed; yet others report the worst.
Some iterate the benchmark multiple times within a single VM invoca-
tion; others consider multiple VM invocations and iterate a single bench-
mark execution; yet others consider multiple VM invocations and iterate
the benchmark multiple times. Some eliminate the non-determinism due
to JIT compilation by fixing the compiler work for each benchmarking
experiment.

We showed that prevalent methodologies can be misleading, and can
even lead to incorrect conclusions. We presented a survey of existing Java
performance evaluation methodologies and discussed the importance of
statistically rigorous data analysis for dealing with non-determinism. We
advocated approaches to quantify startup as well as steady-state perfor-
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mance, and, in addition, we provided JavaStats, software to automatically
obtain performance numbers in a rigorous manner.

This work is described in:

1. Statistically Rigorous Java Performance Evaluation, Andy Georges,
Dries Buytaert, Lieven Eeckhout. In Proceedings of the ACM con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’07), Montreal, Canada, October 2007.

A.2 Garbage collection in hard- and software

During codesign of a system, one still runs into the impedance mismatch
between the software and hardware worlds. We identified the different
levels of abstraction of hardware and software as a major culprit of this
mismatch. For example, when programming in high-level object-oriented
languages like Java, one has objects, methods, memory management, etc.
that facilitates development but these have to be largely abandoned when
moving the same functionality into hardware.

As a solution we proposed a design that is able to bridge the gap by
providing the same capabilities to hardware components as to software
components. This seamless integration is achieved by introducing an ar-
chitecture and protocol that allow reconfigurable hardware and software
to communicate with each other in a transparent manner, i.e. no com-
ponent of the design needs to be aware whether other components are
implemented in hardware or in software.

Part of the design is a novel technique that allows reconfigurable hard-
ware to manage dynamically allocated memory. This is achieved by al-
lowing the hardware to hold references to objects and by modifying the
garbage collector of the virtual machine to be aware of these references in
hardware.

This work is described in:

1. FPGA-aware garbage collection in Java, Philippe Faes, Mark Christi-
aens, Dries Buytaert, Dirk Stroobandt. In Proceedings of the In-
ternational Conference on Field Programmable Logic and Applica-
tions (FPL’05), Tampere, Finland, August 2005

A.3 Garbage collection hints

We showed that a popular class of garbage collectors often make subop-
timal decisions both in terms of when and how to collect. We argue that
garbage collection should be done when the amount of live bytes is low
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Figure A.1: The garbage collection points with and without garbage collection
hints.

(in order to minimize the collection cost) and when the amount of dead
objects is high (in order to maximize the available heap size after col-
lection). In addition, we observe that this class of collectors sometimes
trigger a nursery collection in cases where a full-heap collection would
have been better.

Based on these observations, we propose garbage collection hints (GCH)
which is a profile-directed method for guiding garbage collection. Off-
line profiling is used to identify favorable collection points in the program
code. In those favorable collection points, the garbage collector dynami-
cally chooses between nursery and full-heap collections based on an an-
alytical garbage collector cost-benefit model. By doing so, GCH guides
the collector in terms of when and how to collect. Experimental results us-
ing the SPECjvm98 benchmarks and two generational garbage collectors
show that substantial reductions can be obtained in garbage collection
time (up to 29×) and that the overall execution time can be reduced by
more than 10%. In addition, we also show that GCH reduces the maxi-
mum pause times and outperforms user-inserted forced garbage collec-
tions.

Figure A.1 illustrates why GCH actually works for the javac bench-
mark. This graph shows the number of live bytes as a function of the
number of allocated bytes. The empty circles denote nursery collections
and the squares denote full-heap collections when GCH is not enabled.
Without GCH, GC is triggered at points where the number of live bytes is
not necessarily low. In fact, the maximum GC time that we observed on
our platform for these GC points is 225 ms; and 12 MB needs to be copied
from the nursery to the mature generation. The GC time for a full-heap
collection takes 330 ms. When GCH is enabled (see the filled circles in
Figure A.1), garbage gets collected when the amount of live bytes reaches
a minimum, i.e., at an FCP. The GC time at an FCP takes at most 4.5 ms
since only 126 KB needs to be copied. From this example, we observe two
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key features why GCH actually works: (i) GCH preferably collects when
the amount of live data on the heap is low, and (ii) GCH eliminates full-
heap collections by choosing to perform (cheaper) nursery collections at
more valuable points in time.

This work is described in:

1. Garbage collection hints, Dries Buytaert, Kris Venstermans, Lieven
Eeckhout and Koen De Bosschere. In Lecture Notes in Computer
Science Volume 3793, Springer-Verlag. In Proceeding of the Inter-
national Conference on High Performance Embedded Architectures
and Compilers (HIPEAC’05), Barcelona, Spain, November 2005.

2. GCH: Hints for Triggering Garbage Collections, Dries Buytaert, Kris
Venstermans, Lieven Eeckhout and Koen De Bosschere. Transac-
tions on High-Performance Embedded Architectures and Compil-
ers, 1(1):52-72, June 2006

A.4 Hints for refactoring Java applications.

It has long been observed that many objects in languages with garbage
collection have a short life-time [46, 53, 78]. In other words, many objects
become unreachable and garbage shortly after they have been created.

We investigated if we can prevent these short-lived objects from be-
ing created in the first place. We conjecture that most of these objects are
created merely to communicate data from one location in the program to
another. When there is a short time between the object’s creation and its
last use, we expect that a simple program refactoring might be possible to
establish the communication between the two program locations without
creating an object. Here, we understand refactoring to mean “changing
the internal structure of the software, without changing its functional-
ity” [38]. Whereas most refactorings focus on optimizing the design of
the software, we focus on reducing the rate at which it creates new ob-
jects.

By reducing the number of allocated objects, less garbage is created.
This results in less work for the garbage collector and a better temporal
locality, potentially leading to significant speedups. Furthermore, in a
number of cases, time-consuming code executed in object constructors
can be avoided, leading to further speedups.

We developed a tool which helps to automatically find the locations in
the source code where many short-lived objects are created, the locations
where they are used for the last time, and the methods between which
these objects are communicated. By intelligently clustering all the objects
observed during a profiling run, our tool groups together objects that can
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be optimized by the same refactoring. We used our tool to optimize a
number of programs from well-known benchmark suites. The optimiza-
tions typically require less than an hour of programmer effort, which is
measured as the total time required to analyze the output of our tool,
understand the source code constructs responsible for generating many
short-lived objects, coming up with a suitable refactoring, and applying
the required source code changes. In most cases, only a limited number
of code lines need to be changed, without breaking the object-oriented
design of the program. After refactoring, between 1.5 and 14 times fewer
bytes are allocated, resulting in speedups between about 1.1 and 15.

This work is described in:

1. Hinting Refactorings to Reduce Object Creation In Java, Dries Buytaert,
Kristof Beyls, Koen De Bosschere. In Proceedings of the fifth ACES
symposium, Edegem, Belgium, 2005.



118 Other contributions



Bibliography

[1] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subra-
money. Prefetch injection based on hardware monitoring and object
metadata. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 267–276. ACM, 2004.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The Jalapeño Virtual Machine. IBM Systems
Journal, 39(1):211–238, 2000.

[3] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. McKinley, M. Mergen,
J. Moss, T. Ngo, V. Sarkar, and M. Trapp. The Jikes Research Vir-
tual Machine project: Building and open-source research commu-
nity. IBM Systems Journal, 44(2), 2005.

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), 32(5):85–96, May 1997.

[5] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S. tak A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger,
and W. E. Weihl. Continuous profiling: Where have all the cycles
gone? ACM Transactions on Computer Systems, 15(4):357–390, Nov.
1997.

[6] Apache. BCEL: the bytecode engineering library.
http://jakarta.apache.org/bcel.

[7] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adap-
tive optimization in the Jalapeño JVM. ACM SIGPLAN Conference
on Object-Oriented Programming, Systems and Languages (OOPSLA),
35(10):47–65, Oct. 2000.



120 BIBLIOGRAPHY

[8] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Architec-
ture and policy for adaptive optimization in virtual machines. Tech-
nical Report 23429, IBM Research, Nov. 2004.

[9] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A comparative
study of static and profile-based heuristics for inlining. In ACM
Workshop on Dynamic and adaptive compilation and optimization, pages
52–64. ACM Press, 2000.

[10] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed
optimization of Java. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems and Languages (OOPSLA), pages 111–
129. ACM, 2002.

[11] M. Arnold and B. G. Ryder. A framework for reducing the cost of in-
strumented code. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 168–179. ACM Press,
2001.

[12] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 1–12.
ACM, 2000.

[13] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures. In
ACM/IEEE international symposium on Microarchitecture (MICRO),
pages 245–257. ACM, 2000.

[14] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1319–1360, 1994.

[15] BEA. BEA JRockit: Java for the enterprise technical white paper.
http://www.bea.com, Jan. 2006.

[16] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with JMTk. In International
Conference on Software Engineering (ICSE), pages 137–146, 2004.

[17] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Eliot, B. Moss,
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