1,932,131 research outputs found

    Ranking the best instances

    Get PDF
    We formulate the local ranking problem in the framework of bipartite ranking where the goal is to focus on the best instances. We propose a methodology based on the construction of real-valued scoring functions. We study empirical risk minimization of dedicated statistics which involve empirical quantiles of the scores. We first state the problem of finding the best instances which can be cast as a classification problem with mass constraint. Next, we develop special performance measures for the local ranking problem which extend the Area Under an ROC Curve (AUC/AROC) criterion and describe the optimal elements of these new criteria. We also highlight the fact that the goal of ranking the best instances cannot be achieved in a stage-wise manner where first, the best instances would be tentatively identified and then a standard AUC criterion could be applied. Eventually, we state preliminary statistical results for the local ranking problem.Comment: 29 page

    Physical Instances of Noncommuting Coordinates

    Get PDF
    Noncommuting spatial coordinates and fields can be realized in actual physical situations. Plane wave solutions to noncommuting photodynamics exhibit violaton of Lorentz invariance (special relativity).Comment: 13 pp., using sprocl and amsmath macros; Email correspondence to [email protected]; talk given at Feza Gursey Institute, Istanbul, Turkey -- June 2001; "Symmetry Methods in Physics", Yerevan, Armenia -- July 2001; "CPT and Lorentz Symmetry II", Bloomington, IN -- August 2001; "Particles and Strings", Trento, Italy -- September 2001; "VIII Adriatic Meeting", Dubrovnik, Croatia -- September 200

    Edge Elimination in TSP Instances

    Full text link
    The Traveling Salesman Problem is one of the best studied NP-hard problems in combinatorial optimization. Powerful methods have been developed over the last 60 years to find optimum solutions to large TSP instances. The largest TSP instance so far that has been solved optimally has 85,900 vertices. Its solution required more than 136 years of total CPU time using the branch-and-cut based Concorde TSP code [1]. In this paper we present graph theoretic results that allow to prove that some edges of a TSP instance cannot occur in any optimum TSP tour. Based on these results we propose a combinatorial algorithm to identify such edges. The runtime of the main part of our algorithm is O(n2logn)O(n^2 \log n) for an n-vertex TSP instance. By combining our approach with the Concorde TSP solver we are able to solve a large TSPLIB instance more than 11 times faster than Concorde alone

    Scale-Free Random SAT Instances

    Full text link
    We focus on the random generation of SAT instances that have properties similar to real-world instances. It is known that many industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in general, with classical randomly generated instances. We provide a different generation model of SAT instances, called \emph{scale-free random SAT instances}. It is based on the use of a non-uniform probability distribution P(i)iβP(i)\sim i^{-\beta} to select variable ii, where β\beta is a parameter of the model. This results into formulas where the number of occurrences kk of variables follows a power-law distribution P(k)kδP(k)\sim k^{-\delta} where δ=1+1/β\delta = 1 + 1/\beta. This property has been observed in most real-world SAT instances. For β=0\beta=0, our model extends classical random SAT instances. We prove the existence of a SAT-UNSAT phase transition phenomenon for scale-free random 2-SAT instances with β<1/2\beta<1/2 when the clause/variable ratio is m/n=12β(1β)2m/n=\frac{1-2\beta}{(1-\beta)^2}. We also prove that scale-free random k-SAT instances are unsatisfiable with high probability when the number of clauses exceeds ω(n(1β)k)\omega(n^{(1-\beta)k}). %This implies that the SAT/UNSAT phase transition phenomena vanishes when β>11/k\beta>1-1/k, and formulas are unsatisfiable due to a small core of clauses. The proof of this result suggests that, when β>11/k\beta>1-1/k, the unsatisfiability of most formulas may be due to small cores of clauses. Finally, we show how this model will allow us to generate random instances similar to industrial instances, of interest for testing purposes

    Community Structure in Industrial SAT Instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on complex networks has developed techniques of analysis and algorithms to study real-world graphs that can be used by the SAT community. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, inspired by the results on complex networks, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. In our analysis, we represent SAT instances as graphs, and we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erd\"os-R\'enyi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver. In particular, we use the community structure to detect that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. This is, learned clauses tend to contain variables of distinct communities

    OV Graphs Are (Probably) Hard Instances

    Get PDF
    © Josh Alman and Virginia Vassilevska Williams. A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors v1, . . ., vn ∈ {0, 1}d such that nodes i and j are adjacent in G if and only if hvi, vji = 0 over Z. In this paper, we study a number of basic graph algorithm problems, except where one is given as input the vectors defining an OV graph instead of a general graph. We show that for each of the following problems, an algorithm solving it faster on such OV graphs G of dimension only d = O(log n) than in the general case would refute a plausible conjecture about the time required to solve sparse MAX-k-SAT instances: Determining whether G contains a triangle. More generally, determining whether G contains a directed k-cycle for any k ≥ 3. Computing the square of the adjacency matrix of G over Z or F2. Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect matching, when G is a dynamically updating OV graph. We also prove some complementary results about OV graphs. We show that any problem which is NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(log n), and we give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and Online Matrix-Vector Multiplication

    Community structure in industrial SAT instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. It is believed that most of these successful techniques exploit the underlying structure of industrial instances. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. Representing SAT instances as graphs, we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erdös-Rényi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver, and observe that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. Motivated by this observation, we finally present an application that exploits the community structure to detect relevant learned clauses, and we show that detecting these clauses results in an improvement on the performance of the SAT solver. Empirically, we observe that this improves the performance of several SAT solvers on industrial SAT formulas, especially on satisfiable instances.Peer ReviewedPostprint (published version
    corecore