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AbstractWe formulate the loal ranking problem in the framework of bipartite rankingwhere the goal is to fous on the best instanes. We propose a methodology based onthe onstrution of real-valued soring funtions. We study empirial risk minimiza-tion of dediated statistis whih involve empirial quantiles of the sores. We �rststate the problem of �nding the best instanes whih an be ast as a lassi�ationproblem with mass onstraint. Next, we develop speial performane measures for theloal ranking problem whih extend the Area Under an ROC Curve (AUC/AROC)riterion and desribe the optimal elements of these new riteria. We also highlightthe fat that the goal of ranking the best instanes annot be ahieved in a stage-wise manner where �rst, the best instanes would be tentatively identi�ed and then astandard AUC riterion ould be applied. Eventually, we state preliminary statistialresults for the loal ranking problem.
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1 IntroductionThe �rst takes all the glory, the seond takes nothing. In appliations where ranking is atstake, people often fous on the best instanes. When sanning the results from a queryon a searh engine, we rarely go beyond the one or two �rst pages on the sreen. Inthe di�erent ontext of redit risk sreening, redit establishments elaborate soring rulesas reliability indiators and their main onern is to identify risky prospets espeiallyamong the top sores. In medial diagnosis, test sores indiate the odds for a patientto be healthy given a series of measurements (age, blood pressure, ...). There againa partiular attention is given to the "best" instanes not to miss a possible diseasedpatient among the highest sores. These various situations an be formulated in the setupof bipartite ranking where one observes i.i.d. opies of a random pair (X, Y) with X beingan observation vetor desribing the instane (web page, debtor, patient) and Y a binarylabel assigning to one population or the other (relevant vs. non relevant, good vs. bad,healthy vs. diseased). In this problem, the goal is to rank the instanes instead of simplylassifying them. There is a growing literature on the ranking problem in the �eld ofMahine Learning but most of it onsiders the Area under the ROC Curve (also known asthe AUC or AROC) riterion as a measure of performane of the ranking rule [6, 13, 26, 1℄.In a previous work, we have mentioned that the bipartite ranking problem under the AUCriterion ould be interpreted as a lassi�ation problem with pairs of observations [4℄.But the limit of this approah is that it weights uniformly the pairs of items whih arebadly ranked. Therefore it does not permit to distinguish between ranking rules makingthe same number of mistakes but in very di�erent parts of the ROC urve. The AUCis indeed a global riterion whih does not allow to onentrate on the "best" instanes.Speial performane measures, suh as the Disounted Cumulative Gain (DCG) riterion,have been introdued by pratitioners in order to weight instanes aording to theirrank [16℄ (see also [25, 7℄) but providing theory for suh riteria and developing empirialrisk minimization strategies still is a very open issue. In the present paper, we extendthe results of our previous work in [4℄ and set theoretial grounds for the problem ofloal ranking. The methodology we propose is based on the seletion of a real-valuedsoring funtion for whih we formulate appropriate performane measures generalizingthe AUC riterion. We point out that ranking the best instanes is an involved task asit is a two-fold problem: (i) �nd the best instanes and (ii) provide a good ranking onthese instanes. The fat that these two goals annot be onsidered independently willbe highlighted in the paper. Despite this observation, we will �rst formulate the issue of�nding the best instanes whih is to be understood as a toy problem for our purpose. Thisproblem orresponds to a binary lassi�ation problem with a mass onstraint (wherethe proportion u0 of +1 labels predited by the lassi�ers is �xed) and it might presentan interest per se. The main ompliation here has to do with the neessity of performing2



quantile estimation whih a�ets the performane of statistial proedures. Our prooftehnique was inspired by the former work of Koul [18℄ in the ontext of R-estimationwhere similar statistis arise.The rest of the paper is organized as follows. We �rst state the problem of �ndingthe best instanes and study the performane of empirial risk minimization in this setup(Setion 2). We also explore the onditions on the distribution in order to reover fastrates of onvergene. In Setion 3 we formulate performane measures for loal rankingand provide extensions of the AUC riterion. Eventually (Setion 4), we state somepreliminary statistial results on empirial risk minimization of these new riteria.
2 Finding the best instancesIn the present setion, we have a limited goal whih is only to determine the best instaneswithout bothering of their order in the list. By onsidering this subproblem, we willidentify the main tehnial issues involved in the sequel. It also permits to introdue themain notations of the paper.Just as in standard binary lassi�ation, we onsider the pair of random variables
(X, Y) where X is an observation vetor in a measurable spae X and Y is a binary labelin {−1,+1}. The distribution of (X, Y) an be desribed by the pair (µ, η) where µ isthe marginal distribution of X and η is the a posteriori distribution de�ned by η(x) =P {Y = 1 | X = x}, 8x 2 X . We de�ne the rate of best instanes as the proportion of bestinstanes to be onsidered and denote it by u0 2 (0, 1). We denote by Q(η, 1 − u0) the
(1 − u0)-quantile of the random variable η(X). Then the set of best instanes at rate u0is given by:

C�
u0

= {x 2 X | η(x) � Q(η, 1 − u0)} .We mention two trivial properties of the set C�
u0

whih will be important in the sequel:� Mass onstraint: we have µ
�
C�

u0

�
= P{

X 2 C�
u0

}
= u0,� Invariane property: as a funtional of η, the set C�

u0
is invariant by stritlyinreasing transforms of η.The problem of �nding a proportion u0 of the best instanes boils down to the es-timation of the unknown set C�

u0
on the basis of empirial data. Before turning to thestatistial analysis of the problem, we �rst relate it to binary lassi�ation.

2.1 A classification problem with a mass constraintA lassi�er is a measurable funtion g : X → {−1,+1} and its performane is measuredby the lassi�ation error L(g) = P {Y 6= g(X)}. Let u0 2 (0, 1) be �xed. Denote by3



g�u0
= 2IC�

u0
− 1 the lassi�er prediting +1 on the set of best instanes C�

u0
and -1 on itsomplement. The next proposition shows that g�u0

is an optimal element for the problemof minimization of L(g) over the family of lassi�ers g satisfying the mass onstraintP {g(X) = 1} = u0.
Proposition 1 For any lassi�er g : X → {−1,+1} suh that g(x) = 2IC(x) − 1 forsome subset C of X and µ(C) = P {g(X) = 1} = u0, we have

L�u0
$ L

�
g�u0

� � L(g) .Furthermore, we have
L�u0

= 1 − Q(η, 1 − u0) + (1 − u0)(2Q(η, 1 − u0) − 1) − E (|η(X) − Q(η, 1 − u0)|) ,and
L(g) − L

�
g�u0

�
= 2E �|η(X) − Q(η, 1 − u0)| IC�

u0
∆C(X)

�
,where ∆ denotes the symmetri di�erene operation between two subsets of X .proof. For simpliity, we temporarily hange the notation and set q = Q(η, 1 − u0).Then, for any lassi�er g satisfying the the onstraint P {g(X) = 1} = u0, we have

L(g) = E �(η(X) − q)I[g(X)=−1] + (q − η(X))I[g(X)=+1]

�
+ (1 − u0)q + (1 − q)u0 .The statements of the proposition immediately follow.There are several progresses in the �eld of lassi�ation theory where the aim is tointrodue onstraints in the lassi�ation proedure or to adapt it to other problems. Werelate our formulation to other approahes in the following remarks.

Remark 1 (Connetion to hypothesis testing). The impliit asymmetry in theproblem due to the emphasis on the best instanes is reminisent of the statistial theoryof hypothesis testing. We an formulate a test of simple hypothesis by taking the nullassumption to be H0 : Y = +1 and the alternative assumption being H1 : Y = −1.We want to deide whih hypothesis is true given the observation X. Eah lassi�er gprovides a test statisti g(X). The performane of the test is then desribed by its type Ierror α(g) = P {g(X) = 1 | Y = −1} and its power β(g) = P {g(X) = 1 | Y = +1}. We pointout that if the lassi�er g satis�es a mass onstraint, then we an relate the lassi�ationerror with the type I error of the test de�ned by g through the relation:
L(g) = 2(1 − p)α(g) + p − u0where p = P {Y = 1}, and similarly, we have: L(g) = 2p(1 − β(g)) − p− u0. Therefore, theoptimal lassi�er minimizes the type I error (maximizes the power) among all lassi�ers4



with the same mass onstraint. In some appliations, it is more relevant to �x a onstrainton the probability of a false alarm (type I error) and maximize the power. This questionis explored in a reent paper by Sott [27℄ (see also [29℄).
Remark 2 (Connetion with regression level set estimation) We mention thatthe estimation of the level sets of the regression funtion has been studied in the statistisliterature [3℄ (see also [32℄, [38℄) as well as in the learning literature, for instane in theontext of anomaly detetion ([31, 28, 37℄). In our framework of lassi�ation with massonstraint, the threshold de�ning the level set involves the quantile of the random variable
η(X).
Remark 3 (Connetion with the minimum volume set approah) Although thepoint of view adopted in this paper is very di�erent, the problem desribed above may beformulated in the framework of minimum volume sets learning as onsidered in [30℄. Asa matter of fat, the set C�

u0
may be viewed as the solution of the onstrained optimizationproblem: min

C
P {X 2 C | Y = −1}over the lass of measurable sets C, subjet toP {X 2 C} � u0 .The main di�erene in our ase omes from the fat that the onstraint on the volume sethas to be estimated using the data while in [30℄ it is omputed from a known referenemeasure. We believe that learning methods for minimum volume set estimation mayhopefully be extended to our setting. A natural way to do it would onsist in replaingonditional distribution of X given Y = −1 by its empirial ounterpart. This is beyondthe sope of the present paper but will be the subjet of future investigation.

2.2 Empirical risk minimizationWe now investigate the estimation of the set C�
u0

of best instanes at rate u0 based ontraining data. Suppose that we are given n i.i.d. opies (X1, Y1), � � � , (Xn, Yn) of thepair (X, Y). Sine we have the ranking problem in mind, our methodology will onsist inbuilding the andidate sets from a lass S of real-valued soring funtions s : X → R.Indeed, we onsider sets of the form
Cs $ Cs,u0

= {x 2 X | s(x) � Q(s, 1 − u0)} ,where s is an element of S and Q(s, 1−u0) is the (1−u0)-quantile of the random variable
s(X). Note that suh sets satisfy the same properties of C�

u0
with respet to mass onstraintand invariane to stritly inreasing transforms of s.5



From now on, we will take the simpli�ed notation:
L(s) $ L(s, u0) $ L(Cs) = P {Y � (s(X) − Q(s, 1 − u0)) < 0} .A soring funtion minimizing the quantity

Ln(s) =
1

n

n∑

i=1

I{Yi � (s(Xi) − Q(s, 1 − u0)) < 0}.is expeted to approximately minimize the true error L(s), but the quantile dependson the unknown distribution of X. In pratie, one has to replae Q(s, 1 − u0) by itsempirial ounterpart Q̂(s, 1 − u0) whih orresponds to the empirial quantile. We willthus onsider, instead of Ln(s), the truly empirial error:
L̂n(s) =

1

n

n∑

i=1

I{Yi � (s(Xi) − Q̂(s, 1 − u0)) < 0}.Note that L̂n(s) is a ompliated statisti sine the empirial quantile involves all theinstanes X1, . . . , Xn. We also mention that L̂n(s) is a biased estimate of the lassi�ationerror L(s) of the lassi�er gs(x) = 2I{s(x)� Q(s, 1 − u0)} − 1.We introdue some more notations. Set, for all t 2 R:� Fs(t) = P {s(X) � t}� Gs(t) = P {s(X) � t | Y = +1}� Hs(t) = P {s(X) � t | Y = −1}to be the umulative distribution funtions (df) of s(X) (respetively, given Y = 1, given
Y = −1). We reall that the de�nition of the quantiles of (the distribution of) a randomvariable involves the notion of generalized inverse F−1 of a funtion F:

F−1(z) = inf{t 2 R | F(t) � z} .Thus, we have, for all v 2 (0, 1):
Q(s, v) = F−1

s (v) and Q̂(s, v) = F̂−1
s (v)where F̂s is the empirial df of s(X): F̂s(t) = 1

n

∑n
i=1I{s(Xi) � t}, 8t 2 R.Without loss of generality, we will assume that all soring funtions in S take theirvalues in (0, λ) for some λ > 0. We now turn to study the performane of minimizers of

L̂n(s) over a lass S of soring funtions de�ned by
ŝn = argmin

s2S L̂n(s).6



Our �rst main result is an exess risk bound for the empirial risk minimizer ŝn overa lass S of uniformly bounded soring funtions. In the following theorem, we onsiderthat the level sets of soring funtions from the lass S form a Vapnik-Chervonenkis (VC)lass of sets.
Theorem 2 We assume that(i) the lass S is symmetri (i.e. if s 2 S then λ − s 2 S) and is a VC major lassof funtions with VC dimension V.(ii) the family K = { Gs, Hs : s 2 S } of dfs satis�es the following property: any

K 2 K has left and right derivatives, denoted by K 0
+ and K 0

−, and there existstritly positive onstants b, B suh that 8(K, t) 2 K � (0, λ),
b � ��K 0

+(t)
�� � B and b � ��K 0

−(t)
�� � B .For any δ > 0, we have, with probability larger than 1 − δ,

L(ŝn) − inf
s2S L(s) � c1

s
V

n
+ c2

s
ln(1/δ)

n
,for some positive onstants c1, c2.We now provide some insights on onditions (i) and (ii) of the theorem.

Remark 4 (on the omplexity assumption) On the terminology of major sets andmajor lasses, we refer to Dudley [10℄. In the proof, we need to ontrol empirial proessesindexed by sets of the form {x : s(x) � t} or {x : s(x) � t}. Condition (i) guaranteesthat these sets form a VC lass of sets.
Remark 5 (on the hoie of the lass S of soring funtions) In order to graspthe meaning of ondition (ii) of the theorem, we onsider the one-dimensional ase withreal-valued soring funtions. Assume that the distribution of the random variable Xihas a bounded density f with respet to Lebesgue measure. Assume also that soringfuntions s are di�erentiable exept, possibly, at a �nite number of points, and derivativesare denoted by s 0. Denote by fs the density of s(X). Let t 2 (0, λ) and denote by x1, ...,
xp the real roots of the equation s(x) = t. We an express the density of s(X) thanks tothe hange-of-variable formula (see e.g. [24℄):

fs(t) =
f(x1)

s 0(x1)
+ . . . +

f(xp)

s 0(xp)
.This shows that the soring funtions should not present neither at nor steep parts. Wean take for instane, the lass S to be the lass of linear-by-parts funtions with a �nite7



Scoring function

x

s(
x)

Figure 1: Typial example of a soring funtion.number of loal extrema and with uniformly bounded left and right derivatives: 8s 2 S,8x, m � s 0+(x) � M and m � s 0−(x) � M for some stritly positive onstants m, and M(see Figure 1). Note that any subinterval of [0, λ] has to be in the range of soring funtions
s (if not, some elements of K will present a plateau). In fat, the proof requires suh abehavior only in the viinity of the points orresponding to the quantiles Q(s, 1 − u0) forall s 2 S.proof. Set v0 = 1 − u0. By a standard argument (see e.g. [8℄), we have:

L(ŝn) − inf
s2S L(s) � 2 sup

s2S ���L̂n(s) − L(s)
���� 2 sup

s2S ���L̂n(s) − Ln(s)
��� + 2 sup

s2S |Ln(s) − L(s)| .Note that the seond term in the bound is an empirial proess whose behavior iswell-known. In our ase, assumption (i) implies that the lass of sets {x : s(x) � Q(s, v0)}indexed by soring funtions s has a VC dimension smaller than V . Hene, we have by aonentration argument ombined with a VC bound for the expetation of the supremum(see, e.g. [20℄), for any δ > 0, with probability larger than 1 − δ,sup
s2S |Ln(s) − L(s)| � c

s
V

n
+ c 0s ln(1/δ)

nfor universal onstants c, c 0.We now show how to handle the �rst term. Following the work of Koul [18℄, we setthe following notations:
M(s, v) = P{

Y � �s(X) − Q(s, v)
�

< 0
}8



Un(s, v) =
1

n

n∑

i=1

I{Yi � �s(Xi) − Q(s, v)
�

< 0} − M(s, v) .and note that Un(s, v) is entered.We then have the following deomposition, for any s 2 S and v0 2 (0, 1):���L̂n(s) − Ln(s)
��� � ���Un(s, Fs Æ F̂−1

s (v0)) − Un(s, v0)
���+ ���M(s, Fs Æ F̂−1

s (v0)) − M(s, v0)
��� .Note that M(s, FsÆ F̂−1

s (v0)) = P{
Y � �s(X) − Q̂(s, v)

�
< 0 | Dn

} where Dn denotes thesample (X1, Y1), � � � , (Xn, Yn).Reall the notation p = P {Y = 1}. Sine M(s, v) = (1−p)(1−HsÆF−1
s (v))+pGsÆF−1

s (v)and Fs = pGs+(1−p)Hs, the mapping v 7→ M(s, v) is Lipshitz by assumption (ii). Thus,there exists a onstant κ < ∞, depending only on p, b and B, suh that:���M(s, Fs Æ F̂−1
s (v0)) − M(s, v0)

��� � κ
���Fs Æ F̂−1

s (v0) − v0)
��� .Moreover, we have, for any s 2 S:���Fs Æ F̂−1

s (v0) − v0

��� � ���Fs Æ F̂−1
s (v0) − F̂s Æ F̂−1

s (v0))
���+ ���F̂s Æ F̂−1

s (v0) − v0)
���� sup

t2(0,λ)

���Fs(t) − F̂s(t)
���+ 1

n
.Here again, we an use assumption (i) and a lassial VC bound from [20℄ in order toontrol the empirial proess, with probability larger than 1 − δ:sup

(s,t)2S�(0,λ)

���Fs(t) − F̂s(t)
��� � c

s
V

n
+ c 0s ln(1/δ)

nfor some onstants c, c 0.It remains to ontrol the term involving the proess Un:���Un(s, Fs Æ F̂−1
s (v0)) − Un(s, v0)

��� � sup
v2(0,1)

|Un(s, v) − Un(s, v0)|� 2 sup
v2(0,1)

|Un(s, v)|Using that the lass of sets of the form {x : s(x) � Q(s, v)} for v 2 (0, 1) is inluded inthe lass of sets of the form {x : s(x) � t} where t 2 (0, λ), we then havesup
v2(0,1)

|Un(s, v)| � sup
t2(0,λ)

������ 1n n∑

i=1

I{Yi � �s(Xi) − t
�

< 0} − P{
Y � �s(X) − t

�
< 0

}
������ ,whih leads again to an empirial proess indexed by a VC lass of sets and an be boundedas before. 9



2.3 Fast rates of convergenceWe now propose to examine onditions leading to fast rates of onvergene (faster than
n−1/2). It has been notied (see [21℄, [33℄, [23℄) that it is possible to derive suh rates ofonvergene in the lassi�ation setup under additional assumptions on the distribution.We propose here to adapt these assumptions for the problem of lassi�ation with massonstraint.Our onern here is to formulate the type of onditions whih render the problemeasier from a statistial perspetive. For this reason and to avoid tehnial issues, we willonsider a quite restritive setup where it is assumed that:1. the lass S of soring funtions is a �nite lass with N elements,2. an optimal soring rule s� is ontained in S.We have found that the following additional onditions on the distribution and thelass S allow to derive fast rates of onvergene for the exess risk in our problem.(iii) There exist onstants α 2 (0, 1) and B > 0 suh that, for all t � 0,P {|η(X) − Q(η, 1 − u0)| � t} � B t

α
1−α .(iv) the family K = { Gs, Hs : s 2 S } of dfs satis�es the following property: for any

s 2 S, Gs and Hs are twie di�erentiable at Q(s, 1 − u0) = F−1
s (1 − u0).We point out that onditions (ii) and (iii) are not ompletely independent. Indeed,if (Gη, Hη) belongs to the lass K ful�lling ondition (ii), then Fη = pGη + (1 − p)Hη isLipshitz and ondition (iii) is satis�ed with α = 1/2. Note that ondition (iii) simplyextends the standard low noise assumption introdued by Tsybakov [33℄ (see also [2℄ for anaount on this) where the level 1/2 is replaed by the (1 − u0)-quantile of η(X). Indeed,we have, under ondition (iii), the variane ontrol, for any s 2 S:Var(I{Y 6= 2ICs(X) − 1} − I{Y 6= 2IC�

u0
(X) − 1}) � c (L(s) − L�u0

)α ,or, equivalently, E�ICs∆C�
u0

(X)
� � c (L(s) − L�u0

)α .Now, if we denote
sn = argmin

s2S Ln(s) ,we have, by a standard argument based on Bernstein's inequality (see Setion 5.2 in [2℄),with probability 1 − δ,
L(sn) − L�u0

� c

�
log(N/δ)

n

� 1
2−α

.10



for some positive onstant c.The novel part of the analysis below lies in the ontrol of the bias indued by pluggingthe empirial quantile Q̂(s, 1 − u0) in the risk funtional. The next theorem shows thatfaster rates of onvergene an be obtained under the previous assumptions with α = 1/2.
Theorem 3 We assume that the lass S of soring funtions is a �nite lass with
N elements, and that it ontains an optimal soring rule s�. Moreover, we assumethat onditions (i)-(iv) are satis�ed. Then, for any δ > 0, we have, with probability
1 − δ:

L(ŝn) − L�u0
� c

�
log(N/δ)

n

� 2
3

,for some onstant c.
Remark 6 (on the rate n−2/3) The previous results highlights the fat that ratesfaster than the one obtained in Theorem 2 an be obtained in this setup with additionalregularity assumptions. However, it is noteworthy that the standard low noise assumption(iii) is already ontained in assumption (ii) whih is required in proving the typial n−1/2rate. The onsequene of this observation is there is no hope of getting rates up to n−1unless assumption (ii) is weakened.The proof of the previous theorem is based on two arguments: the struture of linearsigned rank statistis and the variane ontrol assumption. The situation is similar tothe one we enoutered in [5℄ where we were dealing with U-statistis and we had to invokeHoe�ding's deomposition in order to grasp the behavior of the underlying U-proesses.Here we require a similar argument to desribe the struture of the empirial risk funtional
L̂n(s) under study. This statisti an be interpreted as a linear signed rank statisti andthe key deomposition has been used in the ontext of nonparametri hypotheses testingand R-estimation. We mainly refer to H�ajek and Sidak [14℄, Dupa and H�ajek [11℄, Koul[17℄, Koul and Staudte [19℄ for an aount on rank statistis.We briey go through the main ideas, but �rst we need to introdue some notations.Set:8v 2 [0, 1] , K(s, v) = E (YI{s(X)� Q(s, v)}) = pGs(Q(s, v)) − (1 − p)Hs(Q(s, v))

K̂n(s, v) =
1

n

n∑

i=1

YiI{s(Xi) � Q̂(s, v)} .Then we an write:
L(s) = 1 − p + K(s, 1 − u0)11



L̂n(s) =
n−

n
+ K̂n(s, 1 − u0) ,where n− =

∑n
i=1I{Yi = −1}.We note that the statisti L̂n(s) is related to linear signed rank statistis.

Definition 4 [Linear signed rank statisti℄. Consider Z1, . . . , Zn an i.i.d. samplewith distribution F and a real-valued sore generating funtion Φ. Denote by R+
i =rank(|Zi|) the rank of |Zi| in the sample |Z1|, . . . , |Zn|. Then the statisti

n∑

i=1

Φ

 
R+

i

n + 1

! sgn(Zi)is a linear signed rank statisti.
Proposition 5 For �xed s and v, the statisti K̂n(s, v) is a linear signed rank statisti.proof. Take Zi = Yis(Xi). The random variables Zi have their absolute value distributedaording to Fs and have the same sign as Yi. It is easy to see that the statisti K̂n(s, v)is a linear signed rank statisti with sore generating funtion Φ(x) = I[x�v].A deomposition of Hoe�ding's type for suh statistis an be formulated. Set �rst:

Zn(s, v) =
1

n

n∑

i=1

�
Yi − K 0(s, v)� I{s(Xi) � Q(s, v)} − K(s, v) + vK 0(s, v) ,where K 0(s, v) denotes the derivative of the funtion v 7→ K(s, v). Note that Zn(s, v) is aentered random variable with variane:

σ2(s, v) = v − K(s, v)2 + v(1 − v)K 02(s, v) − 2(1 − v)K 0(s, v)K(s, v) .The next result is due to Koul [17℄ and we provide an alternate proof in the Appendix.
Proposition 6 We have, for all s 2 S and v 2 [0, 1]:

K̂n(s, v) = K(s, v) + Zn(s, v) + Λn(s) .with
Λn(s) = OP(n−1) as n → ∞ .

12



This asymptoti expansion highlights the struture of the statisti Ln(s) for �xed s.The leading term Zn(s, 1 − u0) is an empirial average of i.i.d. random variables and itprovides the asymptoti variane of Ln(s). It is worth notiing that Zn(s, 1 − u0) is notredued to the same empirial funtional with the true, instead of the empirial, quantilebut it also involves a derivative term. Sine the remainder term Λn(s) is of the order n−1,it will not a�et the �nal rate of onvergene under low noise onditions. Therefore, thevariane ontrol assumption onerns the variane of the funtion involved in the empirialaverage Zn(s, 1 − u0).We denote by:
hs(Xi, Yi) =

�
Yi − K 0(s, v)� I{s(Xi) � Q(s, v)} − K(s, v) + vK 0(s, v) ,and we then have

Zn(s, v) − Zn(s�, v) =
1

n

n∑

i=1

�
hs(Xi, Yi) − hs�(Xi, Yi)

�
.

Proposition 7 Fix v 2 [0, 1]. Assume that ondition (iii) holds. Then, we have, forall s 2 S: Var�hs(Xi, Yi) − hs�(Xi, Yi)
� � c

�
L(s) − L(s�)�α ,for some onstant c.proof. We �rst write that:

hs(Xi, Yi) − hs�(Xi, Yi) = I + II + III + IV + Vwhere
I = Yi

�I{s(Xi) � Q(s, v)} − I{s�(Xi) � Q(s�, v)}�
II = (K 0(s�, v) − K 0(s, v)) I{s�(Xi) � Q(s�, v)}
III = K 0(s, v) �I{s�(Xi) � Q(s�, v)} − I{s(Xi) � Q(s, v)}

�
IV = K(s�, v) − K(s, v)

V = v (K 0(s, v) − K 0(s�, v)) .By Cauhy-Shwarz inequality, we only need to show that the expeted value of thesquare of these quantities is smaller than (L(s)− L�)α up to some multipliative onstant.13



Note that, by de�nition of K, we have:
II = (L 0(s�, v) − L 0(s, v)) I{s�(Xi) � Q(s�, v)}
IV = L(s�) − L(s)

V = v (L 0(s, v) − L 0(s�, v))where L 0(s, v) denotes the derivative of the funtion v 7→ L(s, v). It is lear that, for any
s, we have L(s, v) = L(s�, v) implies that L 0(s, v) = L 0(s�, v) otherwise s� would not be anoptimal soring funtion at some level v 0 in the viinity of v. Therefore, sine S is �nite,there exists a onstant c suh that

(L 0(s, v) − L 0(s�, v))2 � c(L(s) − L�)αand then E�II2
� and E�V2

�2 are bounded aordingly.Moreover, we have: E�I2
� � E�ICs∆Cs� (X)

�� c(L(s) − L(s�))αfor some positive onstant c, by assumption (iii).Eventually, by assumption (ii), we have that K 0(s, v) is uniformly bounded and thus,the term E�III2
� an be handled similarly.

Proof of Theorem 3. The proof is the same as the one of Theorem 5 from [5℄ whihuses a result by Massart [22℄.
3 Performance measures for local rankingOur main interest here is to develop a setup desribing the problem of not only �nding butalso ranking the best instanes. As far as we know, this problem has not been onsideredfrom a statistial perspetive until now. In the sequel, we build on the results from Setion2 and also on our previous work on the (global) ranking problem [5℄ in order to apturesome of the features of the loal ranking problem. The present setion is devoted to theonstrution of performane measures reeting the quality of ranking rules on a restritedset of instanes. 14



3.1 ROC curves and optimality in the local ranking problemWe onsider the same statistial model as before with (X, Y) being a pair of randomvariables over X�{−1,+1} and we examine ranking rules resulting from real-valued soringfuntions s : X → (0, λ). The referene tool for assessing the performane of a soringfuntion s in separating the two populations (positive vs. negative labels) is the ReeivingOperator Charateristi known as the ROC urve ([36℄, [12℄). If we take the notations�Gs(z) = P {s(X) > z | Y = 1} (true positive rate) and �Hs(z) = P {s(X) > z | Y = −1}(false positive rate), we an de�ne the ROC urve, for any soring funtion s, as the plotof the funtion:
z 7→ ��Hs(z), �Gs(z)

�for thresholds z 2 (0, λ), or equivalently as the plot of the funtion:
t 7→ �Gs ÆH−1

s (1 − t)for t 2 (0, 1). The optimal soring funtion is the one whose ROC urve dominates allthe others for all z 2 (0, λ) (or t 2 (0, 1)) and suh a funtion atually exists. Indeed,by realling the hypothesis testing framework in the lassi�ation model (see Remark 1)and using Neyman-Pearson's Lemma, it is easy to hek that ROC urve of the funtion
η(x) = P {Y = 1 | X = x} dominates the ROC urve of any other soring funtion. Wepoint out that the ROC urve of a soring funtion s is invariant by stritly inreasingtransformations of s.In our approah, for a given soring funtion s, we fous on thresholds z orrespondingto the ut-o� separating a proportion u 2 (0, 1) of top sored instanes aording to s fromthe rest. Reall from Setion 2 that the best instanes aording to s are the elements ofthe set Cs,u = {x 2 X | s(x) � Q(s, 1 − u)} where Q(s, 1 − u) is the (1 − u)-quantile of
s(X). We set the following notations:

α(s, u) = P {s(X) � Q(s, 1 − u) | Y = −1}

β(s, u) = P {s(X) � Q(s, 1 − u) | Y = +1} .We propose to re-parameterize the ROC urve with the proportion u 2 (0, 1) and thendesribe it as the plot of the funtion:
u 7→ (α(s, u), β(s, u)) ,for eah soring funtion s. When fousing on the best instanes at rate u0, we onlyonsider the part of the ROC urve for values u 2 (0, u0).However attrative is the ROC urve as a graphial tool, it is not a pratial one fordeveloping learning proedures ahieving straightforward optimization. The most naturalapproah is to onsider risk funtionals built after the ROC urve suh as the Area Underan ROC Curve (known as the AUC or AROC, see [15℄). Our goals in this setion are:15
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Figure 2: ROC urves, line D(u0, p) and trunated AUC at rate u0 of best instanes.1. to extend the AUC riterion in order to fous on restrited parts of the ROC urve,2. to desribe the optimal elements with respet to this extended riterion.We point out the fat that extending the AUC is not trivial. Indeed, we notie that
α(s, u) and β(s, u) are related by a linear relation, for �xed u and p, when s varies:

u = pβ(s, u) + (1 − p)α(s, u)where p = P {Y = 1}. We denote the line plot of this relation by D(u, p). Hene, the partof the ROC urve of a soring funtion s orresponding to the best instanes at rate u0 isthe part going from the origin (0, 0) to the intersetion between the line D(u0, p) and theROC urve (shaded area in the left display of Figure 2). It follows that, the loser to η thesoring funtion s is, the higher the ROC urve is, but at the same time the integrationdomain shrinks (right display of Figure 2).Our guideline in de�ning risk riteria for the problem of ranking the best instanes isthe form of the optimal elements. We expet the optimal soring funtions at the rate
u0 to belong to the equivalene lass (funtions de�ned up to the omposition with anondereasing transformation) de�ned by soring funtions s� suh that:

s�(x) =






η(x) if x 2 C�
u0

< inf
C�

u0

η if x /2 C�
u0

.Suh soring funtions ful�ll the two properties of �nding the best instanes (indeed
Cs�,u0

= C�
u0
) and ranking them as well as the regression funtion. We will denote by S�the set of optimal soring funtions for the problem of ranking the best instanes at therate u0. 16



As a preliminary result, and before proposing an adequate riterion, we formulate asimple lemma.
Lemma 8 For any soring funtion s, we have for all u 2 (0, 1),

β(s, u) � β(η, u)

α(s, u) � α(η, u) .Moreover, we have equality only for those s suh that Cs,u0
= C�

u0
.proof. We show the �rst inequality. By de�nition, we have:

β(s, u) = 1 − Hs(Q(s, 1 − u)) .Observe that, for any soring funtion s,
p(1 − Hs(Q(s, 1 − u)) = P {Y = 1, s(X) > Q(s, 1 − u)}

= E (η(X)I{X 2 Cs,u}) .We thus have
p (Hs(Q(s, 1 − u) − Hη(Q(η, 1 − u))

= E (η(X)(I{X 2 C�
u} − I{X 2 Cs,u}))

= E (η(X)I{X /2 C�
u} (I{X 2 C�

u} − I{X 2 Cs,u}))

+E (η(X)I{X 2 C�
u}(I{X 2 C�

u} − I{X 2 Cs,u}))� −E (Q(η, 1 − u)I{X /2 C�
u} I{X 2 Cs,u}) + E (Q(η, 1 − u)I{X 2 C�

u}(1 − I{X 2 Cs,u}))

= Q(η, 1 − u)(1 − u − 1 + u) = 0 .The seond inequality simply follows from the identity below:
1 − u = pHs(Q(s, 1 − u)) + (1 − p)Gs(Q(s, 1 − u)) .In view of this result, a wide olletion of riteria with the set S� as the set of optimalelements ould naturally be onsidered, depending on how one wants to weight the twotypes of error 1−β(s, u) = (type II error in the hypothesis testing framework) and α(s, u)(type I error) aording to the rate u 2 [0, u0]. However, not all the riteria obtained inthis manner an be interpreted as generalizations of the AUC riterion for u0 = 1.17



3.2 Generalization of the AUC criterionIn [5℄, we have onsidered the ranking error of a soring funtion s as de�ned by:
R(s) = P{(Y − Y 0)(s(X) − s(X 0)) < 0} ,where (X 0, Y 0) is an i.i.d. opy of the random pair (X, Y).Interestingly, it an be proved that minimizing the ranking error R(s) is equivalentto maximizing the well-known AUC riterion. This is trivial one we write down theprobabilisti interpretation of the AUC:AUC(s) = P{
s(X) > s(X 0) | Y = 1, Y 0 = −1

}
= 1 −

1

2p(1 − p)
R(s) .We now propose a loal version of the ranking error on a measurable set C � X :

R(s, C) = P{
(s(X) − s(X 0))(Y − Y 0) > 0, (X,X 0) 2 C2

}
,and the loal analogue of the AUC riterion:LoAUC(s, u) = P{

s(X) > s(X 0), s(X) � Q(s, 1 − u) | Y = 1, Y 0 = −1
}

.This riterion obviously boils down to the standard riterion for u = 1. However,in the ase where u < 1, we will see that there is no equivalene between maximizingthe LoAUC riterion and minimizing the loal ranking error s 7→ R(s, u) $ R(s, Cs,u).Indeed, the loal ranking error is not a relevant performane measure for �nding the bestinstanes. Minimizing it would solve the problem of �nding the instanes that are theeasiest to rank.The following theorem states that soring funtions s� in the set S� maximize theriterion LoAUC and that the latter may be deomposed as a sum of a 'power' termand (the opposite of) a loal ranking error term.
Theorem 9 Let u0 2 (0, 1). We have, for any soring funtion s:8s� 2 S�, LoAUC(s, u0) � LoAUC(s�, u0) .Moreover, the following relation holds:8s, LoAUC(s, u0) = β(s, u0) −

1

2p(1 − p)
R(s, u0) ,where R(s, u0) = R(s, Cs,u0

). 18



proof. Set v0 = 1 − u0. Observe �rst that:LoAUC(s, u0) = E (Hs(s(X)) I{s(X)� Q(s, v0)} | Y = 1 )

=

∫+∞

Q(s,v0)

Hs(z) Gs(dz) .We use that pGs = Fs − (1 − p)Hs and we obtain:
pLoAUC(s, u0) =

∫+∞

Q(s,v0)

Hs(z) Fs(dz) − (1 − p)

∫+∞

Q(s,v0)

Hs(z) Hs(dz)

=

∫1

v0

(1 − α(s, v)) dv −
1 − p

2

�
1 − (1 − α(s, v0))

2
�

.This formula, ombined with Lemma 8, establishes the �rst part of Theorem 9.Besides, integrating by parts and making a hange of variables, we get:
∫+∞

Q(s,v0)

Hs(z) Gs(dz) = 1 − (1 − α(s, u0))(1 − β(s, u0)) −

∫α(s,u0)

0

(1 − β(s, α)) dα

=

∫α(s,u0)

0

β(s, α)dα + β(s, u0)(1 − α(s, u0)) .On the other hand, one has
α(s, u0)β(s, u0) =

1

p(1 − p)
P{

s(X) ∧ s(X 0) > Q(s, v0), Y 0 = 1, Y = −1
}

= P{
s(X 0) > s(X), s(X) ∧ s(X 0) > Q(s, v0) | Y 0 = 1, Y = −1

}

+
1

p(1 − p)
P{

s(X 0) < s(X), (X,X 0) 2 C2
s,u0

, Y 0 = 1, Y = −1
}

=

∫α(s,u0)

0

β(s, α) dα +
1

2p(1 − p)
R(s, u0) .Plugging this in the previous formula leads to the seond statement of the theorem.19



Remark 7 (Trunating the AUC) In the theorem, we obviously reover the relationbetween the standard AUC riterion and the (global) ranking error when u0 = 1. Besides,by heking the proof, one may relate the generalized AUC riterion to the trunatedAUC. As a matter of fat, we have:8s , LoAUC(s, u0) =

∫α(s,u0)

0

β(s, α) dα + β(s, u0) − α(s, u0)β(s, u0).The values α(s, u0) and β(s, u0) are the oordinates of the interseting point betweenthe ROC urve of the soring funtion s and the line D(u0, p). Thus, the integral termrepresents the area of the surfae delimited by the ROC urve, the horizontal x-axisand the line x = α(s, u0) (see Figure 2). The theorem reveals that evaluating the loalperformane of a soring statisti s(X) by the trunated AUC as proposed in [9℄ is highlyarguable sine the maximizer of the funtional s 7→ ∫α(s,u0)

0
β(s, α) dα is usually not inS�.

3.3 Generalized Wilcoxon statisticWe now propose a di�erent extension of the plain AUC riterion. Consider (X1, Y1), . . .,
(Xn, Yn), n i.i.d. opies of the random pair (X, Y). The intuition relies on a well-knownrelationship between Mann-Whitney and Wiloxon statistis. Indeed, a natural empirialestimate of the AUC is the rate of onording pairs:\AUC(s) =

1

n+n−

∑

1�i,j�n

I{Yi = −1, Yj = 1, s(Xi) < s(Xj)} ,with n+ = n − n− =
∑n

i=1I{Yi = +1}. On the other hand, we reall that the Wiloxonstatisti Tn(s) is the two-sample linear rank statisti assoiated to the sore generatingfuntion Φ(v) = v, 8v 2 (0, 1), obtained by summing the ranks orresponding to positivelabels:
Tn(s) =

n∑

i=1

I{Yi = 1}
rank(s(Xi))

n + 1
,where rank(s(Xi)) denotes the rank of s(Xi) in the sample {s(Xj), 1 � j � n}. We referto [14, 35℄ for basi results related to linear rank statistis. The following relation iswell-known:

n+n−

n + 1
\AUC(s) +

n+(n+ + 1)

2
= Tn(s) .Moreover, the statisti Tn(s)/n+ is an asymptotially normal estimate of

W(s) = E (Fs(s(X)) | Y = 1) .20



Note the theoretial ounterpart of the previous relation may be written as
W(s) = (1 − p)AUC(s) + p/2 .Now, in order to take into aount a proportion u0 of the highest ranks only, one mayonsider the riterion related to the sore generating funtion Φu0

(v) = v I{v > 1 − u0}:
W(s, u0) = E (Φu0

(Fs(s(X))) | Y = 1)whih we shall all the W-ranking error at rate u0.Note that its empirial ounterpart is given by Tn(s, u0)/n+, with
Tn(s, u0) =

n∑

i=1

I{Yi = 1} Φu0

�rank(s(Xi))

n + 1

�
.Using the results from the previous subsetion, we an easily hek that the followingtheorem holds.

Theorem 10 We have, for all s:8s� 2 S�, W(s, u0) � W(s�, u0) .Furthermore, we have:
W(s, u0) =

p

2
β(s, u0)(2 − β(s, u0)) + (1 − p)LoAUC(s, u0) .proof. The result easily follows from the following representation of µ:
W(s, u0) =

∫+∞

Q(s,1−u0)

Fs(z) Gs(dz)and from the fat that: Fs = pGs + (1 − p)Hs.
Remark 8 (On the hoie of a sore generating funtion Φ) The idea of weight-ing the empirial AUC riterion with non-uniform weights is equivalent to onsideringsmooth sore generating funtions Φ instead of our Φu0

in the W-ranking error. Derivingoptimality results for smooth riteria with our method is straightforward but we point outthat, in this ase, probabilisti interpretations are lost. In this approah, the stohastiproesses arising are rank proesses for whih there is no theory available at this moment.
21



Remark 9 (Evidene against 'divide-and-onquer' strategies) It is noteworthythat not all ombinations of β(s, u0) (or α(s, u0)) and R(s, u0) lead to a riterion with S�being the set of optimal soring funtions. We have provided two non-trivial examplesfor whih this is the ase (Theorems 9 and 10). But, in general, this remark shouldprevent from onsidering naive 'divide-and-onquer' strategies for solving the loal rankingproblem. By naive 'divide-and-onquer' strategies, we refer here to stagewise strategieswhih would, �rst, ompute an estimate Ĉ of the set ontaining the best instanes, andthen, solve the ranking problem over Ĉ as desribed in [5℄. However, this idea ombinedwith a ertain amount of iterativeness might be the key to the design of eÆient algorithms.In any ase, we stress here the importane of making use of a global riterion, synthesizingour double goal: �nding and ranking the best instanes.
4 Empirical risk minimization of the local AUC criterionIn the previous setion, we have seen that there are various performane measures whihan be onsidered for the problem of ranking the best instanes. In order to perform thestatistial analysis, we will favor the representations of LoAUC and W whih involve thelassi�ation error L(s, u0) and the loal ranking error R(s, u0). By ombining Theorems9 and 10, we an easily get:

2p(1 − p)LoAUC(s, u0) = (1 − p)(p + u0) − (1 − p)L(s, u0) − R(s, u0)and
2pW(s, u0) = C(p, u0) +

�
p + u0

2
− 1

�
L(s, u0) −

1

4
L2(s, u0) − R(s, u0)where C(p, u0) is a onstant depending only on p and u0.We exploit the �rst expression and hoose to study the minimization of the followingriterion for ranking the best instanes:

M(s) $M(s, u0) = R(s, Cs,u0
) + (1 − p)L(s, u0) .It is obvious that the elements of S� are the optimal elements of the funtional M( � , u0)and we will now onsider soring funtions obtained through empirial risk minimizationof this riterion.More preisely, given n i.i.d. opies (X1, Y1), . . . , (Xn, Yn) of (X, Y), we introdue theempirial ounterpart:

M̂n(s) $ M̂n(s, u0) = R̂n(s) +
n−

n
L̂n(s),22



with n− =
∑n

i=1 I{Yi = −1} and
R̂n(s) =

1

n(n − 1)

∑

i6=j

I{(s(Xi) − s(Xj))(Yi − Yj) > 0, s(Xi) ∧ s(Xj) � Q̂(s, 1 − u0)} .Note that R̂n(s) is expeted to be lose to the U-statisti of degree two
Rn(s) =

1

n(n − 1)

∑

i6=j

ks((Xi, Yi), (Xj, Yj)),with symmetri kernel
ks((x, y), (x 0, y 0)) = I{(s(x)− s(x 0))(y − y 0) > 0, s(x) ∧ s(x 0) � Q(s, 1 − u0)} .The statisti Rn(s) orresponds to an unbiased estimate of the loal ranking error

R(s, u0). The next result provides a standard error bound for the exess risk of theempirial risk minimizer over a lass S of soring funtions:
ŝn = argmin

s2S M̂n(s) .

Proposition 11 Assume that onditions (i)-(ii) of Theorem 2 are ful�lled. Then,there exist onstants c1 and c2 suh that, for any δ > 0, we have:
M(ŝn) − inf

s2S M(s) � c1

s
V

n
+ c2

s ln(1/δ)

nwith probability larger than 1 − δ.proof. (sketh) The proof ombines the argument used in the proof of Theorem 2 withthe tehniques used in establishing Proposition 2 in [4℄.
M(ŝn) − inf

s2S M(s) � 2

 sup
s2S ���R̂n(s) − Rn(s)

��� + sup
s2S |R(s) − Rn(s)|

!
+ 2(1 − p)

 sup
s2S ���L̂n(s) − Ln(s)

��� + sup
s2S |L(s) − Ln(s)|

!
+ 2

����n+

n
− p

���� .The middle term may be bounded by applying the result stated in Theorem 2, whilethe last one an be handled by using Bernstein's exponential inequality for an aver-age of Bernoulli random variables. By ombining Lemma 1 in [4℄ with the Cherno�method, we an deal with the U-proess term sups2S |R(s) − Rn(s)|. Finally, the term23



sups2S ���R̂n(s) − Rn(s)
��� an also be ontrolled by repeating the argument in the proof ofTheorem 2. The only di�erene here is that we have to onsider the U-proess termsup

(s,t)

������ 2

n(n − 1)

∑

i6=j

{Ks,t((Xi, Yi), (Xj, Yj)) − E [Ks,t((X, Y), (X 0, Y 0))]}������with
Ks,t((x, y), (x 0, y 0)) = I{(s(x) − s(x 0))(y − y 0) > 0, s(x) ∧ s(x 0) � t} .For deriving �rst-order results with suh a proess, we refer to the same type of argumentas used in [4℄.

Remark 10 (about the possibility of deriving fast rates) By heking the proofsketh, it turns out that sharper bounds may be ahieved for the U-proess term. In-deed, it is a simple variation of our previous work in [4℄ where we have used Hoe�ding'sdeomposition in order to grasp the deep struture of the underlying statisti. Here wewill need, in addition, ondition (iii) to hold for all u 2 (0, u0]. Indeed, if we loalize ourlow-noise assumption from [4℄, it takes the following form: there exist onstants α 2 (0, 1)and B > 0 suh that, for all t � 0, we have8x 2 C�
u0

, P {|η(X) − η(x)| � t} � B t
α

1−α .It is easy to see that this is equivalent to ondition (iii) for all u 2 (0, u0]: there existonstants α 2 (0, 1) and B > 0 suh that, for all t � 0, we have8u 2 (0, u0], P {|η(X) − Q(η, 1 − u)| � t} � B t
α

1−α .However, in the present formulation where p is assumed to be unknown, it looks like thisimprovement will be spoiled by the 'proportion term' whih will still be of the order of a
O(n−1/2).
Appendix - Proof of Proposition 6First, for all (s, v) 2 S � (0, 1) set

Vn(s, v) =
1

n

n∑

i=1

YiI{s(Xi) � Q(s, v)} − K(s, v) .We have the following deomposition:8v 2 [0, 1] , K̂n(s, v) − K(s, v) = Vn(s, Fs Æ F̂−1
s (v)) + K(s, Fs Æ F̂−1

s (v)) − K(s, v) .24



We shall �rst prove that
Vn(s, Fs Æ F̂−1

s (v0)) = Vn(s, v0) + OP(n−1).We denote by A(s, ǫ) the event {���Fs Æ F̂−1
s (v0) − v0

��� < ǫ
}. On the event A(s, ǫ), we have:���Vn(s, Fs Æ F̂−1

s (v0)) − Vn(s, v0)
��� � sup

v : |v−v0|<ǫ

|Vn(s, v) − Vn(s, v0)| .We bound the right hand side for �xed ǫ, by making use of an argument from [34℄. First,we need to put things into the right format. Set:
Vn(s, v) − Vn(s, v0) =

1

n

n∑

i=1

(ui(s, v) − ui(s, v0)) ,where ui(s, v) = YiI{s(Xi) � Q(s, v) < 0} − E (YI{s(X)� Q(s, v)}) for s 2 S and v 2 (0, 1).We observe that
|ui(s, v) − ui(s, v0)| � di(v, v0),where

di(v, v0) = I{s(Xi) 2 [Q(s, v ∧ v0),Q(s, v ∨ v0)]} + |v − v0| .Denote by
d̂(v, v0) =

1

n

n∑

i=1

I{s(Xi) 2 [Q(s, v ∧ v0),Q(s, v ∨ v0)]} + |v − v0| .a distane over R. Set also:
R̂(ǫ) = sup

v : |v−v0 |<ǫ

d̂(v, v0) .and observe that
R̂(ǫ) =

1

n

n∑

i=1

I{s(Xi) 2 [Q(s, v0 − ǫ),Q(s, v0 + ǫ)]} + ǫ .We then have, by applying Lemma 8.5 from [34℄, for nt2/R̂2(ǫ) suÆiently large,P{ sup
v : |v−v0|�ǫ

|Vn(s, v) − Vn(s, v0)| � t

���� X1, . . . , Xn

} � C exp{

−
cnt2

R̂2(ǫ)

}

,for some positive onstants c and C. It remains to integrate out and, for this purpose, weintrodue the event: 8x > 0 , ∆(x) =
{
3ǫ − x � R̂(ǫ) � 3ǫ + x

}
.25



We then have: E  exp{

−
cnt2

R̂2(ǫ)

}! � exp{

−
cnt2

(3ǫ + x)2

}

+ P{
∆(x)

}
.Now, we have, by Bernstein's inequality:P{

∆(x)
}

= 2P{
1

n
B(n, 2ǫ) − 2ǫ > x

} � 2 exp{

−
3nx2

16ǫ

}where we have used the notation B(n, 2ǫ) for a binomial (n, 2ǫ) random variable. We antake x = O(t/
p

ǫ) and assume also x = o(ǫ) to get, for nt2/ǫ2 large enough,P{ sup
v : |v−v0|�ǫ

|Vn(s, v) − Vn(s, v0)| � t

} � C exp{

−
cnt2

ǫ2

}

,for some positive onstants c and C. This an be reformulated, by writing that thefollowing bound holds, with probability larger than 1 − δ/2,sup
v : |v−v0 |�ǫ

|Vn(s, v) − Vn(s, v0)| � ǫ

s log(2C/δ)

nc
.We reall that, by the triangle inequality and Dvoretsky-Kiefer-Wolfowitz theorem, if wetake ǫ = c

q log(2/δ)
n

, we have P {A(s, ǫ)} � 1−δ/2. It follows that, with probability largerthan 1 − δ, we have, for some onstant κ:���Vn(s, Fs Æ F̂−1
s (v0)) − Vn(s, v0)

��� � κ

� log(1/δ)

n

�
,for any s 2 S. Now it remains to deal with the seond term K(s, Fs Æ F̂−1

s (v0)) − K(s, v0).Therefore, by the di�erentiability assumption, we have: 8s 2 S,sup
|v−v0|�δ

{K(s, v) − K(s, v0) − (v − v0)K
0(s, v0)} = O(δ2) , as δ → 0 .Sine |Fs Æ F̂−1

s (v0)) − v0| = OP(n−1/2), we get that
K(s, Fs Æ F̂−1

s (v0)) − K(s, v0) = K 0(s, v0)(Fs Æ F̂−1
s (v0) − v0) + OP(n−1) , as n → ∞ .Moreover, as

Fs Æ F̂−1
s (v0) − v0 = −(F̂s Æ F−1

s (v0) − v0) + OP(n−1) ,we �nally obtain that
K(s, Fs Æ F̂−1

s (v0)) − K(s, v0) = −K 0(s, v0)(F̂s Æ F−1
s (v0) − v0) + OP(n−1) .
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