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Abstract

We formulate the local ranking problem in the framework of bipartite ranking
where the goal is to focus on the best instances. We propose a methodology based on
the construction of real-valued scoring functions. We study empirical risk minimiza-
tion of dedicated statistics which involve empirical quantiles of the scores. We first
state the problem of finding the best instances which can be cast as a classification
problem with mass constraint. Next, we develop special performance measures for the
local ranking problem which extend the Area Under an ROC Curve (AUC/AROC)
criterion and describe the optimal elements of these new criteria. We also highlight
the fact that the goal of ranking the best instances cannot be achieved in a stage-
wise manner where first, the best instances would be tentatively identified and then a
standard AUC criterion could be applied. Eventually, we state preliminary statistical
results for the local ranking problem.
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1 Introduction

The first takes all the glory, the second takes nothing. In applications where ranking is at
stake, people often focus on the best instances. When scanning the results from a query
on a search engine, we rarely go beyond the one or two first pages on the screen. In
the different context of credit risk screening, credit establishments elaborate scoring rules
as reliability indicators and their main concern is to identify risky prospects especially
among the top scores. In medical diagnosis, test scores indicate the odds for a patient
to be healthy given a series of measurements (age, blood pressure, ...). There again
a particular attention is given to the "best” instances not to miss a possible diseased
patient among the highest scores. These various situations can be formulated in the setup
of bipartite ranking where one observes i.i.d. copies of a random pair (X,Y) with X being
an observation vector describing the instance (web page, debtor, patient) and Y a binary
label assigning to one population or the other (relevant vs. non relevant, good vs. bad,
healthy vs. diseased). In this problem, the goal is to rank the instances instead of simply
classifying them. There is a growing literature on the ranking problem in the field of
Machine Learning but most of it considers the Area under the ROC Curve (also known as
the AUC or AROC) criterion as a measure of performance of the ranking rule [6, 13, 26, 1].
In a previous work, we have mentioned that the bipartite ranking problem under the AUC
criterion could be interpreted as a classification problem with pairs of observations [4].
But the limit of this approach is that it weights uniformly the pairs of items which are
badly ranked. Therefore it does not permit to distinguish between ranking rules making
the same number of mistakes but in very different parts of the ROC curve. The AUC
is indeed a global criterion which does not allow to concentrate on the ”"best” instances.
Special performance measures, such as the Discounted Cumulative Gain (DCG) criterion,
have been introduced by practitioners in order to weight instances according to their
rank [16] (see also [25, 7]) but providing theory for such criteria and developing empirical
risk minimization strategies still is a very open issue. In the present paper, we extend
the results of our previous work in [4] and set theoretical grounds for the problem of
local ranking. The methodology we propose is based on the selection of a real-valued
scoring function for which we formulate appropriate performance measures generalizing
the AUC criterion. We point out that ranking the best instances is an involved task as
it is a two-fold problem: (i) find the best instances and (ii) provide a good ranking on
these instances. The fact that these two goals cannot be considered independently will
be highlighted in the paper. Despite this observation, we will first formulate the issue of
finding the best instances which is to be understood as a toy problem for our purpose. This
problem corresponds to a binary classification problem with a mass constraint (where
the proportion wy of +1 labels predicted by the classifiers is fixed) and it might present
an interest per se. The main complication here has to do with the necessity of performing



quantile estimation which affects the performance of statistical procedures. Our proof
technique was inspired by the former work of Koul [18] in the context of R-estimation
where similar statistics arise.

The rest of the paper is organized as follows. We first state the problem of finding
the best instances and study the performance of empirical risk minimization in this setup
(Section 2). We also explore the conditions on the distribution in order to recover fast
rates of convergence. In Section 3 we formulate performance measures for local ranking
and provide extensions of the AUC criterion. Eventually (Section 4), we state some
preliminary statistical results on empirical risk minimization of these new criteria.

2 Finding the best instances

In the present section, we have a limited goal which is only to determine the best instances
without bothering of their order in the list. By considering this subproblem, we will
identify the main technical issues involved in the sequel. It also permits to introduce the
main notations of the paper.

Just as in standard binary classification, we consider the pair of random variables
(X,Y) where X is an observation vector in a measurable space X and Y is a binary label
in {—1,41}. The distribution of (X,Y) can be described by the pair (pu,n) where p is
the marginal distribution of X and 1 is the a posteriori distribution defined by n(x) =
P{Y=1]| X =x}, Vx € X. We define the rate of best instances as the proportion of best
instances to be considered and denote it by up € (0,1). We denote by Q(n,1 — ug) the
(1 —wup)-quantile of the random variable 1n(X). Then the set of best instances at rate ug
is given by:

Cly =x € X n(x) > QM,T—wo)}.
We mention two trivial properties of the set CJ, | which will be important in the sequel:

e MASS CONSTRAINT: we have u(C} ) =P{X € C}, } =uo,

e INVARIANCE PROPERTY: as a functional of n, the set Cj, is invariant by strictly
increasing transforms of 1.

The problem of finding a proportion uy of the best instances boils down to the es-
timation of the unknown set C},  on the basis of empirical data. Before turning to the
statistical analysis of the problem, we first relate it to binary classification.

2.1 A classification problem with a mass constraint

A classifier is a measurable function g : X — {—1,+1} and its performance is measured
by the classification error L(g) = P{Y # g(X)}. Let up € (0,1) be fixed. Denote by



gy, =21 Chy — 1 the classifier predicting +1 on the set of best instances Cj, and -1 on its
complement. The next proposition shows that g7, is an optimal element for the problem
of minimization of [(g) over the family of classifiers g satisfying the mass constraint
P{g(X) =1} = uo.

Proposition 1 For any classifier g : X — {—1,+1} such that g(x) = 2lc(x) — 1 for
some subset C of X and u(C) =P{g(X) =1} = up, we have

L, = L(g%,) <Llg) .
Furthermore, we have

L, =1-QMm, 1T —uo) + (1 —uo)(2Q(M, T —up) = 1) —E((X) = Qn, T —uo)l),

and
L(g) — L(g%,) = 2E(M(X) — Q1 —uo)l Ty ac(X)),

where A denotes the symmetric difference operation between two subsets of X.

PROOF. For simplicity, we temporarily change the notation and set ¢ = Q(n,1 — uo).
Then, for any classifier g satisfying the the constraint P{g(X) = 1} = up, we have

L(g) = E((H(X) — q)Tigx)=—1 + (g —Tl(X))]I[g(X):+1]) + (1 —=uo)g + (T —qluo .
The statements of the proposition immediately follow. |

There are several progresses in the field of classification theory where the aim is to
introduce constraints in the classification procedure or to adapt it to other problems. We
relate our formulation to other approaches in the following remarks.

Remark 1 (CONNECTION TO HYPOTHESIS TESTING). The implicit asymmetry in the
problem due to the emphasis on the best instances is reminiscent of the statistical theory
of hypothesis testing. We can formulate a test of simple hypothesis by taking the nuil
assumption to be Hyp : Y = +1 and the alternative assumption being Hy : Y = —1.
We want to decide which hypothesis is true given the observation X. HEach classifier g
provides a test statistic g(X). The performance of the test is then described by its type I
error (g) =P{g(X) =1]Y = —1} and its power B(g) =P{g(X) =1|Y = +1}. We point
out that if the classifier g satisfies a mass constraint, then we can relate the classification
error with the type I error of the test defined by g through the relation:

L(g) =2(1 —plx(g) +p —uo

where p = P{Y = 1}, and similarly, we have: L(g) = 2p(1 —p(g)) —p — up. Therefore, the
optimal classifier minimizes the type I error (maximizes the power) among all classifiers



with the same mass constraint. In some applications, it is more relevant to fix a constraint
on the probability of a false alarm (type I error) and maximize the power. This question
is explored in a recent paper by Scott [27] (see also [29]).

Remark 2 (CONNECTION WITH REGRESSION LEVEL SET ESTIMATION) We mention that
the estimation of the level sets of the regression function has been studied in the statistics
literature [3] (see also [32], [38]) as well as in the learning literature, for instance in the
context of anomaly detection ([31, 28, 37]). In our framework of classification with mass
constraint, the threshold defining the level set involves the quantile of the random variable

n(Xx).

Remark 3 (CONNECTION WITH THE MINIMUM VOLUME SET APPROACH) Although the
point of view adopted in this paper is very different, the problem described above may be
formulated in the framework of minimum volume sets learning as considered in [30]. As
a matter of fact, the set C7, | may be viewed as the solution of the constrained optimization
problem:

mén]P’{X eClY=-1}

over the class of measurable sets C, subject to
P{XeC}>up.

The main difference in our case comes from the fact that the constraint on the volume set
has to be estimated using the data while in [30] it is computed from a known reference
measure. We believe that learning methods for minimum volume set estimation may
hopefully be extended to our setting. A natural way to do it would consist in replacing
conditional distribution of X given Y = —1 by its empirical counterpart. This is beyond
the scope of the present paper but will be the subject of future investigation.

2.2 Empirical risk minimization

We now investigate the estimation of the set Cj  of best instances at rate uo based on
training data. Suppose that we are given n ii.d. copies (X1,Y1),: -, (Xn,Yn) of the
pair (X,Y). Since we have the ranking problem in mind, our methodology will consist in
building the candidate sets from a class S of real-valued scoring functions s : X — R
Indeed, we consider sets of the form

Cs = Cs,uo :{XE X | S(X) Z Q(5>1 _uO)}>

where s is an element of S and Q(s, 1 —up) is the (1 —ug)-quantile of the random variable
s(X). Note that such sets satisfy the same properties of C},| with respect to mass constraint
and invariance to strictly increasing transforms of s.



From now on, we will take the simplified notation:
L(s) = L(s,u0) = L(Cs) =P{Y - (s(X) = Q(s,T —uo)) <0} .

A scoring function minimizing the quantity
] n
La(s) == > T{Yi- (s(Xs) = Q(s,1 —uo)) < O}
g

is expected to approximately minimize the true error L(s), but the quantile depends
on the unknown distribution of X. In practice, one has to replace Q(s,1 — up) by its
empirical counterpart Q(s,] — up) which corresponds to the empirical quantile. We will
thus consider, instead of L, (s), the truly empirical error:

Bals) =+ > TV (s06) — Qls, 1~ o)) < 0}
i=1

Note that [.(s) is a complicated statistic since the empirical quantile involves all the
instances Xj,...,X,,. We also mention that fn(s) is a biased estimate of the classification
error L(s) of the classifier gs(x) = 2[{s(x) > Q(s, T —ug)} — 1.

We introduce some more notations. Set, for all t € R:
o F(t) =P{s(X) <t}

o Gs(t) =P{s(X) <t|Y=+1}

o Hi(t) =P{s(X) <t|Y=-1}

to be the cumulative distribution functions (cdf) of s(X) (respectively, given Y =1, given
Y = —1). We recall that the definition of the quantiles of (the distribution of) a random
variable involves the notion of generalized inverse F~! of a function F:

F'(z) =inf{t e R | F(t) >z} .
Thus, we have, for all v € (0,1):
Q(s,v) =F,'(v) and Q(s,v) =F'(v)
where F; is the empirical cdf of s(X): Fq(t) = LT Is(Xy) <t VteR
Without loss of generality, we will assume that all scoring functions in S take their

values in (0,A) for some A > 0. We now turn to study the performance of minimizers of
L,.(s) over a class S of scoring functions defined by

$,, = arg min Tals).
seS
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Our first main result is an excess risk bound for the empirical risk minimizer §;, over
a class S of uniformly bounded scoring functions. In the following theorem, we consider
that the level sets of scoring functions from the class S form a Vapnik-Chervonenkis (VC)
class of sets.

Theorem 2 We assume that

(i) the class S 1s symmetric (i.e. if s €S then A\—s € S) and is a VC major class
of functions with VC dimension V.

(1) the family K ={ Gs,Hs : s € S } of cdfs satisfies the following property: any
K € K has left and right derivatives, denoted by K! and XK', and there ezist
strictly positive constants b, B such that V(K,t) € K x (0,A),

b<|KL(t)|<B and b<IKL(t)]<B.

For any 6 > 0, we have, with probability larger than 1 — 9,

L(8n) —inf L(s) < C1\/Y+CZW’
sES n n

for some positive constants c1,cs.

We now provide some insights on conditions (i) and (ii) of the theorem.

Remark 4 (ON THE COMPLEXITY ASSUMPTION) On the terminology of major sets and
major classes, we refer to Dudley [10]. In the proof, we need to control empirical processes
indexed by sets of the form {x : s(x) > t}or {x : s(x) < t}. Condition (i) guarantees
that these sets form a VC class of sets.

Remark 5 (ON THE CHOICE OF THE CLASS S OF SCORING FUNCTIONS) In order to grasp
the meaning of condition (ii) of the theorem, we consider the one-dimensional case with
real-valued scoring functions. Assume that the distribution of the random variable X;
has a bounded density f with respect to Lebesgue measure. Assume also that scoring
functions s are differentiable except, possibly, at a finite number of points, and derivatives
are denoted by s’. Denote by fg the density of s(X). Let t € (0,A) and denote by x1, ...,
xp the real roots of the equation s(x) =t. We can express the density of s(X) thanks to
the change-of-variable formula (see e.g. [24]):

This shows that the scoring functions should not present neither flat nor steep parts. We
can take for instance, the class S to be the class of linear-by-parts functions with a finite



Scoring function

s(x)

X

Figure 1: Typical example of a scoring function.

number of local extrema and with uniformly bounded left and right derivatives: Vs € S,
Vx, m < s’ (x) <M and m < s’ (x) <M for some strictly positive constants m, and M
(see Figure 1). Note that any subinterval of [0, A] has to be in the range of scoring functions
s (if not, some elements of K will present a plateau). In fact, the proof requires such a
behavior only in the vicinity of the points corresponding to the quantiles Q(s, T —wg) for
all s € S.

PROOF. Set vo =1—up. By a standard argument (see e.g. [8]), we have:

L(8,) — inf L(s) <2sup‘f )‘
sES sES
§2sup‘f )‘—l—ZsuplL (s) —L(s)| .
sES sES

Note that the second term in the bound is an empirical process whose behavior is
well-known. In our case, assumption (i) implies that the class of sets {x : s(x) > Q(s,vo)}
indexed by scoring functions s has a VC dimension smaller than V. Hence, we have by a
concentration argument combined with a VC bound for the expectation of the supremum
(see, e.g. [20]), for any & > 0, with probability larger than 1 — 3,

sup |Ln(s) s)| < C\/7 H
sES

for universal constants c,c’.

We now show how to handle the first term. Following the work of Koul [18], we set
the following notations:

M(s,v) = P{Y- (s(X) — Q(s,v)) <0}



= %iﬂm- (s(Xi) — Q(s,v)) < 0} — M(s,V) .

and note that U, (s,Vv) is centered.
We then have the following decomposition, for any s € S and vy € (0, 1):
Lals) = Lals)] < |Unls, Fs 0 75 (v0)) = Un(s, vo)| + [M(s, Fs o B3 (vo)) — M(s, vo)
Note that M(s, FsoF 1 (vo)) =P {Y-(s(X)— Q(s,v)) <0 Dy} where D,, denotes the
sample (X1,Y1), -+, (Xn, Yn).

Recall the notation p = P{Y = 1}. Since M(s,Vv) = (1—p)(1—HoF;'(v))+pGsoF; ' (v)
and Fs = pGs+(1—p)Hs, the mapping v — M(s, V) is Lipschitz by assumption (ii). Thus,
there exists a constant k < co, depending only on p, b and B, such that:

[M(s, Fs o P (o)) = M(s,vo)| < &

Vo) — Vo)‘ .
Moreover, we have, for any s € S:

S (vo) = Fs o M (vo)) | +

5" (vo) = vo| < o 51 (vo) = vo))|

< sup
t€(0,A)

(
Fo(t) — Fy(t)| *% .

Here again, we can use assumption (i) and a classical VC bound from [20] in order to
control the empirical process, with probability larger than 1T — b:

\% n(1/%
sup Fs(t)—?s(t)‘ <o L4 n(1/9)
(s,t)ESX(0,A) n n

for some constants c,c’.

It remains to control the term involving the process U;:
Un(s, Fs 0 75T (v0)) = Un(s, vo)| < sup. ILin(s, V) = Un(s,vo)
ve (0,1

<2 sup [Un(s,V)|
ve(0,1)

Using that the class of sets of the form {x : s(x) > Q(s,Vv)} for v € (0, 1) is included in
the class of sets of the form {x : s(x) > t} where t € (0,A), we then have

sup [Un(s,v)| < sup ZH{Y Xi)—t) <0} —=P{Y-(s(X)—t) <0}
ve(0,1) te(ON)

which leads again to an empirical process indexed by a VC class of sets and can be bounded
as before. |



2.3 Fast rates of convergence

We now propose to examine conditions leading to fast rates of convergence (faster than
n~1/2). 1t has been noticed (see [21], [33], [23]) that it is possible to derive such rates of
convergence in the classification setup under additional assumptions on the distribution.
We propose here to adapt these assumptions for the problem of classification with mass
constraint.

Our concern here is to formulate the type of conditions which render the problem
easier from a statistical perspective. For this reason and to avoid technical issues, we will
consider a quite restrictive setup where it is assumed that:

1. the class S of scoring functions is a finite class with N elements,

2. an optimal scoring rule s* is contained in S.

We have found that the following additional conditions on the distribution and the
class S allow to derive fast rates of convergence for the excess risk in our problem.

(iii) There exist constants o € (0,1) and B > 0 such that, for all t > 0,

P{n(X) — Qm,1 —uo)| < t} <BtT= .

(iv) the family K ={ Gs,Hs : s € S } of cdfs satisfies the following property: for any
s € S, G5 and H; are twice differentiable at Q(s,1 —up) = FS_1(1 —Up).

We point out that conditions (ii) and (iii) are not completely independent. Indeed,
if (Gy, Hyy) belongs to the class K fulfilling condition (ii), then F,, = pGy, + (1 — p)H,, is
Lipschitz and condition (iii) is satisfied with o« = 1/2. Note that condition (iii) simply
extends the standard low noise assumption introduced by Tsybakov [33] (see also [2] for an
account on this) where the level 1/2 is replaced by the (1 —up)-quantile of n(X). Indeed,
we have, under condition (iii), the variance control, for any s € S:

Var (I{Y # 2[ ¢, (X) = 1} = I{Y # 2l ¢;_(X) —1}) <c (L(s) = L3,)%,

or, equivalently,
E(Lc,act, (X)) < c (L(s) — Lk,
Now, if we denote

sn=argminl(s) ,
seS

we have, by a standard argument based on Bernstein’s inequality (see Section 5.2 in [2]),
with probability 1 — 9,

n

<C<M>’—“.
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for some positive constant c.

The novel part of the analysis below lies in the control of the bias induced by plugging
the empirical quantile Q(s,] — Up) in the risk functional. The next theorem shows that
faster rates of convergence can be obtained under the previous assumptions with o = 1/2.

Theorem 3 We assume that the class S of scoring functions is a finite class with
N elements, and that it contains an optimal scoring rule s*. Moreover, we assume
that conditions (i)-(w) are satisfied. Then, for any & > 0, we have, with probability
1-06:

1og(N/5))%
n )

Lisn) — Lty < (
for some constant c.

Remark 6 (ON THE RATE n~2/3) The previous results highlights the fact that rates
faster than the one obtained in Theorem 2 can be obtained in this setup with additional
regularity assumptions. However, it is noteworthy that the standard low noise assumption
(iii) is already contained in assumption (ii) which is required in proving the typical n—'/2
rate. The consequence of this observation is there is no hope of getting rates up to n~'
unless assumption (ii) is weakened.

The proof of the previous theorem is based on two arguments: the structure of linear
signed rank statistics and the variance control assumption. The situation is similar to
the one we encoutered in [5] where we were dealing with U-statistics and we had to invoke
Hoeffding’s decomposition in order to grasp the behavior of the underlying U-processes.
Here we require a similar argument to describe the structure of the empirical risk functional
fn(s) under study. This statistic can be interpreted as a linear signed rank statistic and
the key decomposition has been used in the context of nonparametric hypotheses testing
and R-estimation. We mainly refer to Hajek and Sidak [14], Dupac and Héjek [11], Koul
[17], Koul and Staudte [19] for an account on rank statistics.

We briefly go through the main ideas, but first we need to introduce some notations.
Set:

W e, Kis,v) = B(VIES(X) < Qls, V) = pGs(Qls,v)) — (1~ pIHy(Qls, V)
Rafs:v) = - 3 Vills(X0) < Qls,vi).
Then we can write:

L(s)=1—p+K(s,1T—up)

11



Ln(s) = — + Rnls, T—1uo) ,

where n_ =) ' I{Y; = —1}.

We note that the statistic fn(s) is related to linear signed rank statistics.

Definition 4 [Linear signed rank statistic/. Consider Zi,...,Zn an 1.1.d. sample
with distribution F and a real-valued score generating function ®. Denote by R;L =
rank(|Zi|) the rank of |Zi| in the sample |Z4|,...,|Zn|. Then the statistic

n Rj_
Z ) " sgn(Zy)

i=1

18 a linear signed rank statistic.

Proposition 5 For fized s and v, the statistic Rn(s,v) is a linear signed rank statistic.

PROOF. Take Z; = Y;s(Xi). The random variables Z; have their absolute value distributed
according to Fs and have the same sign as Y;i. It is easy to see that the statistic Kn(s,v)
is a linear signed rank statistic with score generating function ®(x) = Ijx<y. |

A decomposition of Hoeffding’s type for such statistics can be formulated. Set first:

n

Zn(S>V) = %Z (YI_ KI(S>V)) H{S(Xl) S Q(S>V)} - K(S)V) +VKI(S>V) )
i=1

where K’(s,v) denotes the derivative of the function v — K(s,v). Note that Z,,(s,v) is a
centered random variable with variance:

Gz(s,v) =v— K(s,v)2 +v(1 —v)K'z(s,v) —2(1 =v)K'(s,v)K(s,V) .

The next result is due to Koul [17] and we provide an alternate proof in the Appendix.
Proposition 6 We have, for all s € S and v € [0,1]:
Rn(s,v) =K(s,v) + Zn(s,v) + Anls) .

with
An(s) =0p(n™") as n— oo .

12



This asymptotic expansion highlights the structure of the statistic [, (s) for fixed s.
The leading term Z,(s,1T —ug) is an empirical average of i.i.d. random variables and it
provides the asymptotic variance of L, (s). It is worth noticing that Z, (s, 1 — up) is not

reduced to the same empirical functional with the true, instead of the empirical, quantile

but it also involves a derivative term. Since the remainder term A, (s) is of the order n—',

it will not affect the final rate of convergence under low noise conditions. Therefore, the
variance control assumption concerns the variance of the function involved in the empirical
average Zn(s,1 —up).

We denote by:
h’S(Xi)Yi) = (YI_ KI(S>V)) H{S(Xl) S Q(S>V)} - K(S)V) +VKI(S>V) y

and we then have

Zn(s,v) — Zn(s*,v) = Tll i(hs(Xin) —he (Xy, Y1) -

i=1

Proposition 7 Fiz v € [0,1]. Assume that condition (w11) holds. Then, we have, for
alls € S:
Var (hs(Xi, Yi) — e (Xq, Yi)) < e(L(s) —L(s%)",

for some constant c.

PROOF. We first write that:
hs(Xi,Yi) —he(Xy,Yi) =1+ 11+ 1T+ IV+V

where
I = Y (I{s(Xy) <Q(s,v)} —I{s*(X;) < Q(s*,v)})

I = (K'(s*v) = K'(s,v)) I{s*(Xi) < Q(s*,v)}
I = K'(s,v) (I{s*(Xq) < Q(s*,v)} = {s(Xi) < Q(s,v)})
IV. = K(s*,v)—K(s,v)

V = v (K'(s,v) = K'(s*V)) .

By Cauchy-Schwarz inequality, we only need to show that the expected value of the
square of these quantities is smaller than (L(s) —L*)* up to some multiplicative constant.

13



Note that, by definition of K, we have:

I = (L'(s*,v) = L'(s,v)) I{s*(Xi) < Q(s*,V)}
IV. = L(s*)—1L(s)

V = v (L(s,v) —L'(s*V))

where L'(s,v) denotes the derivative of the function v — L(s,v). It is clear that, for any
s, we have L(s,v) = L(s*,v) implies that L'(s,v) = L’(s*,v) otherwise s* would not be an
optimal scoring function at some level v’ in the vicinity of v. Therefore, since S is finite,
there exists a constant c such that

(L'(s,v) — L'(s*,v))* < ¢(L(s) — L*)*

and then F(112) and E(V2)? are bounded accordingly.

Moreover, we have:

E(1%) < E(Ic,ac.. (X))

< c(L(s) — L(s*)*

for some positive constant ¢, by assumption (iii).

Eventually, by assumption (ii), we have that K’(s,v) is uniformly bounded and thus,
the term E(I11%) can be handled similarly. |

Proof of Theorem 3. The proof is the same as the one of Theorem 5 from [5] which
uses a result by Massart [22]. |

3 Performance measures for local ranking

Our main interest here is to develop a setup describing the problem of not only finding but
also ranking the best instances. As far as we know, this problem has not been considered
from a statistical perspective until now. In the sequel, we build on the results from Section
2 and also on our previous work on the (global) ranking problem [5] in order to capture
some of the features of the local ranking problem. The present section is devoted to the
construction of performance measures reflecting the quality of ranking rules on a restricted
set of instances.
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3.1 ROC curves and optimality in the local ranking problem

We consider the same statistical model as before with (X,Y) being a pair of random
variables over X x{—1,+1} and we examine ranking rules resulting from real-valued scoring
functions s : X — (0,A). The reference tool for assessing the performance of a scoring
function s in separating the two populations (positive vs. negative labels) is the Receiving
Operator Characteristic known as the ROC curve ([36], [12]). If we take the notations
Gs(z) = P{s(X) >z | Y =1} (true positive rate) and Hs(z) = P{s(X) >z | Y= -1}
(false positive rate), we can define the ROC curve, for any scoring function s, as the plot
of the function:
z— (Hs(2), Gs(2))

for thresholds z € (0,A), or equivalently as the plot of the function:
ts GgoHy'(1—1)

for t € (0,1). The optimal scoring function is the one whose ROC curve dominates all
the others for all z € (0,A) (or t € (0,1)) and such a function actually exists. Indeed,
by recalling the hypothesis testing framework in the classification model (see Remark 1)
and using Neyman-Pearson’s Lemma, it is easy to check that ROC curve of the function
n(x) = P{Y =1 | X=x} dominates the ROC curve of any other scoring function. We
point out that the ROC curve of a scoring function s is invariant by strictly increasing
transformations of s.

In our approach, for a given scoring function s, we focus on thresholds z corresponding
to the cut-off separating a proportion u € (0, 1) of top scored instances according to s from
the rest. Recall from Section 2 that the best instances according to s are the elements of
the set Cs, =1{x € X | s(x) > Q(s,T —u)} where Q(s,1 —u) is the (1 —u)-quantile of
s(X). We set the following notations:

a(s,u) = P{s(X)
B(s,u) =P{s(X)

We propose to re-parameterize the ROC curve with the proportion u € (0,1) and then
describe it as the plot of the function:

Qls,1—u)|Y=-T1}
Q

>
>Q(s,T—u)|Y=+41}.

u = (s, u),B(s,u)),

for each scoring function s. When focusing on the best instances at rate uy, we only
consider the part of the ROC curve for values u € (0, up).

However attractive is the ROC curve as a graphical tool, it is not a practical one for
developing learning procedures achieving straightforward optimization. The most natural
approach is to consider risk functionals built after the ROC curve such as the Area Under
an ROC Curve (known as the AUC or AROC, see [15]). Our goals in this section are:
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Figure 2: ROC curves, line D(up,p) and truncated AUC at rate uy of best instances.

1. to extend the AUC criterion in order to focus on restricted parts of the ROC curve,

2. to describe the optimal elements with respect to this extended criterion.

We point out the fact that extending the AUC is not trivial. Indeed, we notice that
a(s,u) and B(s,u) are related by a linear relation, for fixed u and p, when s varies:

u=pp(s,u) + (T —pafs,u)

where p = P{Y = 1}. We denote the line plot of this relation by D(u,p). Hence, the part
of the ROC curve of a scoring function s corresponding to the best instances at rate vy is
the part going from the origin (0,0) to the intersection between the line D(up,p) and the
ROC curve (shaded area in the left display of Figure 2). It follows that, the closer to 1 the
scoring function s is, the higher the ROC curve is, but at the same time the integration
domain shrinks (right display of Figure 2).

Our guideline in defining risk criteria for the problem of ranking the best instances is
the form of the optimal elements. We expect the optimal scoring functions at the rate
up to belong to the equivalence class (functions defined up to the composition with a
nondecreasing transformation) defined by scoring functions s* such that:

n(x) if x € CY,
s*(x) =
< ic.%fn ifx ¢ Cy, -

0

Such scoring functions fulfill the two properties of finding the best instances (indeed
Csr o = C7,,) and ranking them as well as the regression function. We will denote by S*
the set of optimal scoring functions for the problem of ranking the best instances at the
rate uo.
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As a preliminary result, and before proposing an adequate criterion, we formulate a
simple lemma.

Lemma 8 For any scoring function s, we have for all u € (0,1),

B(s,u) < B(m,u)
ofs,u) > afm,u) .

Moreover, we have equality only for those s such that Cs.,, = Cj.

PROOF. We show the first inequality. By definition, we have:

B(s,u) =1 —Hg(Q(s,T—u)) .

Observe that, for any scoring function s,

P(1—Hg(Q(s, T —u)) =P{Y =1,s5(X) > Q(s, 1 —u)}
=EMXHXe Csul) -

We thus have

p (Hs(Q(s, T —u) —Hp(Qn, 1 —u))

=EMX)(I{X e Ci) —TX € Csul))
=EMmXIX ¢ CL (I{X € CL} — I{X € Csu}))
+EMX)H{X e CiHI{X e Ci) —I{X € Cs}))
> —E(QMm, T —uw{X ¢ Ci} I{Xe Cou}) + E(QM, T —uw)I{X e CH(1 —{X € Csul))

=Qm,1—uw(l—-u—-1+4+u)=0.

The second inequality simply follows from the identity below:

T—u=pHsQ(s,T—u)) + (1 —p)Gs(Q(s,T—u)) . 1

In view of this result, a wide collection of criteria with the set S* as the set of optimal
elements could naturally be considered, depending on how one wants to weight the two
types of error 1— (s, u) = (type II error in the hypothesis testing framework) and (s, u)
(type I error) according to the rate u € [0,up]. However, not all the criteria obtained in
this manner can be interpreted as generalizations of the AUC criterion for uy = 1.
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3.2 Generalization of the AUC criterion

In [5], we have considered the ranking error of a scoring function s as defined by:
R(s) = P{(Y — Y')(s(X) — s(X")) < 0},

where (X', Y’) is an i.i.d. copy of the random pair (X,Y).

Interestingly, it can be proved that minimizing the ranking error R(s) is equivalent
to maximizing the well-known AUC criterion. This is trivial once we write down the

probabilistic interpretation of the AUC:
1
AUC(s) =P{s(X)>s(X) | Y=1Y =—-1} =1— ——R(s) .
{ J 2p(1—p)

We now propose a local version of the ranking error on a measurable set C C X
R(s,C) = P{(s(X) = s(X')(Y =Y > 0, (X,X') € €2} ,
and the local analogue of the AUC criterion:
LocAUC(s,u) =P {s(X) > s(X'), s(X) > Q(s,1—u) | Y=1Y' =-1} .

This criterion obviously boils down to the standard criterion for w = 1. However,
in the case where u < 1, we will see that there is no equivalence between maximizing
the LocAUC criterion and minimizing the local ranking error s — R(s,u) = R(s, Cs1,).
Indeed, the local ranking error is not a relevant performance measure for finding the best
instances. Minimizing it would solve the problem of finding the instances that are the
easiest to rank.

The following theorem states that scoring functions s* in the set S* maximize the
criterion LocAUC and that the latter may be decomposed as a sum of a 'power’ term
and (the opposite of) a local ranking error term.

Theorem 9 Let ug € (0,1). We have, for any scoring function s:
Vs* € S*, LocAUC(s,ug) < LocAUC(s*, up) .

Moreover, the following relation holds:

1

Vs, LocAUC(s,ug) = p(s,up) — 2p(1—p)

R(s,uo) ,

where R(s,up) = R(s, Csy )-

18



PROOF. Set vo =1 —ug. Observe first that:

LocAUC(s, up) = E(Hs(s(X)) I{s(X) > Q(s,vo)} |Y=1)

+o0
=J He(z) G(dz) .
Q(s,vo)

We use that pGs = Fs — (1 — p)H and we obtain:

oo ~+o00

He(2) Foldz) — (1 —p)J Ho(z) Ho(dz)

pLOCcAUC (s, up) :J
Q(s,vo)

Q(s,vo)

[ atsn av 1P (10— ats o)

Vo
This formula, combined with Lemma 8, establishes the first part of Theorem 9.

Besides, integrating by parts and making a change of variables, we get:

400 o(s,ug)
J He(z) Ge(dz) = T— (1 — (s, uo)) (1 — B(s, o)) —J (1—B(s,«)) dot
Q(S,V()) 0

a(s,uo)
_Jo B(s, o) doc + B(s,10)(1 — (s, up)) .

On the other hand, one has

(s, ug)B(s, ug) = ¥P{S(X) As(X')>Q(s,v), Y=1,Y=-1}
p(1—p)

=P {s(X') > s(X), s(X)As(X')>Q(s,v0) | Y =1, Y=-1}

1 ! ! 2 I _ _
—|—p7(1_p)P{s(X)<s(X), (X,X) € Cyy, Y =1, ¥ =1}

o(s,u0) 1
= Jo B(s, ) dee + mR(s,uo) .

Plugging this in the previous formula leads to the second statement of the theorem.
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Remark 7 (TRUNCATING THE AUC) In the theorem, we obviously recover the relation
between the standard AUC criterion and the (global) ranking error when uy = 1. Besides,
by checking the proof, one may relate the generalized AUC criterion to the truncated
AUC. As a matter of fact, we have:

«(s,
Vs, LocAUC(s,up) :J o B(s,a) doe+ B(s,uo) — (s, uo)B(s,up).

0
The values «(s,up) and B(s,up) are the coordinates of the intersecting point between
the ROC curve of the scoring function s and the line D(ug,p). Thus, the integral term
represents the area of the surface delimited by the ROC curve, the horizontal x-axis
and the line x = «(s,up) (see Figure 2). The theorem reveals that evaluating the local
performance of a scoring statistic s(X) by the truncated AUC as proposed in [9] is highly
arguable since the maximizer of the functional s — [J (su0) g5 o) do is usually not in
S*.

3.3 Generalized Wilcoxon statistic

We now propose a different extension of the plain AUC criterion. Consider (X1,Y7), ...,
(Xn, Yn), niid. copies of the random pair (X,Y). The intuition relies on a well-known
relationship between Mann-Whitney and Wilcoxon statistics. Indeed, a natural empirical
estimate of the AUC is the rate of concording pairs:

—

AUC(s) =

1
Z HYi=—1,Y; = 1,s(Xy) < s(Xj)},
= Gn

with ny =n—n_ =3, I{Y; = +1}. On the other hand, we recall that the Wilcoxon
statistic T, (s) is the two-sample linear rank statistic associated to the score generating

function ®(v) =v, ¥Yv € (0,1), obtained by summing the ranks corresponding to positive

labels:
B ° o rank(s(Xj))
Ta(s) = § HY;=1; n1

i=T
where rank(s(X;)) denotes the rank of s(X;) in the sample {s(X;),1 < j < nj. We refer
to [14, 35] for basic results related to linear rank statistics. The following relation is
well-known:

)

nn_—m—— n+(n+ + ])
A - r
— UC(s) + bl

Moreover, the statistic T, (s)/n. is an asymptotically normal estimate of

=Tu(s) .

W(s) =E(Fs(s(X)) [Y=1) .

20



Note the theoretical counterpart of the previous relation may be written as
W(s) = (1—p)AUC(s)+p/2.

Now, in order to take into account a proportion uy of the highest ranks only, one may
consider the criterion related to the score generating function @, (v) =v I{v>1—up}:

W(s, uo) = E( Dy (Fs(s(X))) | Y =1)

which we shall call the W-ranking error at rate uo.

Note that its empirical counterpart is given by T, (s, up)/n, with

rank(s(Xj)) )

Tals, o) = Y 1% =1} @ |
— n+1

Using the results from the previous subsection, we can easily check that the following
theorem holds.

Theorem 10 We have, for all s:
Vs* € 8*, W(s,ug) < W(s*,ug) .
Furthermore, we have:

W(s,up) = =B (s,uo)(2 —B(s,uo)) + (1 —p)LocAUC(s,uop) .

(S]]

PROOF. The result easily follows from the following representation of p:

—+o00
W(s, o) —J Fo(z) Go(dz)
Q(s,1—up)

and from the fact that: F; =pGs+ (1 —p)Hs. 1

Remark 8 (ON THE CHOICE OF A SCORE GENERATING FUNCTION @) The idea of weight-
ing the empirical AUC criterion with non-uniform weights is equivalent to considering
smooth score generating functions @ instead of our ®,,, in the W-ranking error. Deriving
optimality results for smooth criteria with our method is straightforward but we point out
that, in this case, probabilistic interpretations are lost. In this approach, the stochastic
processes arising are rank processes for which there is no theory available at this moment.
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Remark 9 (EVIDENCE AGAINST 'DIVIDE-AND-CONQUER’ STRATEGIES) It is noteworthy
that not all combinations of 3(s,up) (or (s, o)) and R(s,up) lead to a criterion with S*
being the set of optimal scoring functions. We have provided two non-trivial examples
for which this is the case (Theorems 9 and 10). But, in general, this remark should
prevent from considering naive ’divide-and-conquer’ strategies for solving the local ranking
problem. By naive ’divide-and-conquer’ strategies, we refer here to stagewise strategies
which would, first, compute an estimate C of the set containing the best instances, and
then, solve the ranking problem over C as described in [5]. However, this idea combined
with a certain amount of iterativeness might be the key to the design of efficient algorithms.
In any case, we stress here the importance of making use of a global criterion, synthesizing
our double goal: finding and ranking the best instances.

4 Empirical risk minimization of the local AUC criterion

In the previous section, we have seen that there are various performance measures which
can be considered for the problem of ranking the best instances. In order to perform the
statistical analysis, we will favor the representations of LocAUC and W which involve the
classification error L(s,up) and the local ranking error R(s,1p). By combining Theorems
9 and 10, we can easily get:

2p(1 —p)LocAUC(s,up) = (1 —p)(p +uo) — (1 —p)L(s,uo) — R(s,uop)

and

+ u,
ZNW&wﬂ—Cm&d+<p2°

— 1) L(s,up) — %Lz(s,uo) —R(s,up)

where C(p,up) is a constant depending only on p and wuy.

We exploit the first expression and choose to study the minimization of the following
criterion for ranking the best instances:

M(s) = M(s,up) = R(s, Cs o) + (T —p)L(s,uo) .

It is obvious that the elements of S* are the optimal elements of the functional M( - ,uo)
and we will now consider scoring functions obtained through empirical risk minimization
of this criterion.

More precisely, given n i.i.d. copies (X1,Y1),...,(Xn, Yn) of (X,Y), we introduce the
empirical counterpart:

Mals) = Mn(s,u0) = Rals) + ~=Lanls),
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with n_ = Z?:] I{Yi= —1} and
Ru(s) = _1 ;H{ X))(Yi=Y5) > 0, s(Xi) As(X;) > Q(s, 1 — o)} .
i#)

Note that ﬁn(s) is expected to be close to the U-statistic of degree two

Rn(s) = = 3 Kl (X6, Y0, 06, Y5)),

( i#

with symmetric kernel

ks((x,u), (x",y") =I{(s(x) —s(x"))(y —y’) >0, s(x) As(x') > Q(s, 1 —up)} .

The statistic Ry (s) corresponds to an unbiased estimate of the local ranking error
R(s,up). The next result provides a standard error bound for the excess risk of the
empirical risk minimizer over a class S of scoring functions:

$n = arg min My (s)
seS

Proposition 11 Assume that conditions (i)-(12) of Theorem 2 are fulfilled. Then,
there ezist constants c1 and c, such that, for any 6 > 0, we have:

MG = gt < e 20

with probability larger than 1 — 9.

PROOF. (SKETCH) The proof combines the argument used in the proof of Theorem 2 with
the techniques used in establishing Proposition 2 in [4].

M(8,) — 1nf M(s) (sup‘ﬁ (s)‘ +sup|R(s)—Rn(s)|>
SES sES
+2(1 — <sup‘t )‘—I—suplL( ) — Ln(s)|> —I-Z‘E—p‘ )
sES sES n

The middle term may be bounded by applying the result stated in Theorem 2, while
the last one can be handled by using Bernstein’s exponential inequality for an aver-
age of Bernoulli random variables. By combining Lemma 1 in [4] with the Chernoff
method, we can deal with the U-process term sup,.g|R(s) — Rn(s)[. Finally, the term
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SUDgc s ‘ﬁn(s) — Rn(s)‘ can also be controlled by repeating the argument in the proof of
Theorem 2. The only difference here is that we have to consider the U-process term

sup s iZﬁ{l<s,t((><i,vi), (X5, Y3)) — ElKs 1 (X, V), (X', )}

with
Ks,e((x,4), (x",y") = {(s(x) —s(x"))(y —y') >0, s(x) As(x') >t} .

For deriving first-order results with such a process, we refer to the same type of argument
as used in [4]. 1

Remark 10 (ABOUT THE POSSIBILITY OF DERIVING FAST RATES) By checking the proof
sketch, it turns out that sharper bounds may be achieved for the U-process term. In-
deed, it is a simple variation of our previous work in [4] where we have used Hoeffding’s
decomposition in order to grasp the deep structure of the underlying statistic. Here we
will need, in addition, condition (iii) to hold for all u € (0,uo]. Indeed, if we localize our
low-noise assumption from [4], it takes the following form: there exist constants o € (0, 1)
and B > 0 such that, for all t > 0, we have

Vx € Ch,,  P{M(X)—nx)| <t} <BtTw .

It is easy to see that this is equivalent to condition (iii) for all u € (0,upl: there exist
constants o € (0,1) and B > 0 such that, for all t > 0, we have

vue (0,u0l,  P{M(X)—Qm,1—u) <t} <BtT= .

However, in the present formulation where p is assumed to be unknown, it looks like this
improvement will be spoiled by the 'proportion term’ which will still be of the order of a
on~12).

Appendix - Proof of Proposition 6

First, for all (s,v) € S x (0,1) set
Vals,) = 1 ;m{s(xi) < Qls,v)) — Kls,v) .

We have the following decomposition:

Yv e [0,1], Kn(s,v) —K(s,v) = Vn(s, Fg o?j (v)) + K(s, Fs 0?5*1 (v)) = K(s,v) .
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We shall first prove that
Vi(s, Fs o Fo1(vo)) = Vals,vo) + Op(n ).

We denote by A(s, €) the event {

Fo o F (vo) —vo‘ < e}. On the event A(s, €), we have:
Vi(s, Fo o B3 (vo)) = Va(s,vo)| < sup  [Vials,v) = Vals,vo)l -
v jv—vol<e

We bound the right hand side for fixed €, by making use of an argument from [34]. First,
we need to put things into the right format. Set:

Vals,v) = Vals,vo) = - 3 (uils,v) —usls,vo)) |

i=1

where ui(s,v) = Yil{s(X;i) < Q(s,v) < 0} —E(YI{s(X) < Q(s,v)}) fors € Sand v € (0, 1).
We observe that
lwi(s,v) —ui(s,vo)| < di(v,vo),

where
di(V,VO) = ]I{S(Xl) € [Q(S,V /\VO)) Q(S,V \/VO)]} + |V - VO| .

Denote by
A, v0) = = 3 Hs(X0) € [Q(s, v Avo), Qls, vV voll) + v —val
i=1

a distance over R. Set also:

ﬁ(e) = sup a(v,vo) .

v vy l<e

and observe that
-I n
Rle) == ) M{s(Xy) € [Q(s,vo—¢€),Q[s,vo+ €} + €.
S
We then have, by applying Lemma 8.5 from [34], for nt?/R%(¢) sufficiently large,

ent?
P sup |Vn(5)v)_vn(3>"'0)| Zt X])"')Xn S CeXp _2— )
v lv—wl<e R (e)

for some positive constants ¢ and C. It remains to integrate out and, for this purpose, we
introduce the event:

Vx>0, A(x):{Se—xgﬁ(e)g?)ewLx}.
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We then have:

2 2 -
E (exp {—é?—;)}) < exp {—%} —I—P{A(x)} .

Now, we have, by Bernstein’s inequality:

2

where we have used the notation B(n, 2¢) for a binomial (n,2¢) random variable. We can

take x = O(t/+/€) and assume also x = o(e) to get, for nt?/e? large enough,

.tZ
]P{ sup |VT1(S)V) _VTI(S>VO)| Z t} S CeXp {_%} )

v v—yl<e

for some positive constants ¢ and C. This can be reformulated, by writing that the
following bound holds, with probability larger than 1 —5/2,

log(2
SUp  [Vals,v) — Via(s, vo)| < ey | 2BE/)
v jv—v|<e ne

We recall that, by the triangle inequality and Dvoretsky-Kiefer-Wolfowitz theorem, if we

take e =c 4/ %, we have P{A(s,e)} > 1—56/2. It follows that, with probability larger
than 1 — 0, we have, for some constant «:

Vals,Foo F; o)) = Vals,vo)| <k (ZECLL)

for any s € S. Now it remains to deal with the second term K(s, F¢ o ?S_] (vo)) — K(s,vo).
Therefore, by the differentiability assumption, we have: Vs € S,

sup {K(s,v) —K(s,vo) — (v —vo)K'(s,v0)} = O(8%), asd—0.

v—vo <8
Since |Fs o £ (vo)) — vo| = Op(n—"/2), we get that
K(s,Fs o F5T(vo)) — K(s,vo) = K'(s,vo)(Fs 0 F5 1 (vo) —vo) + Op(n™"), asn—oo.

Moreover, as
Foo F5T(vo) —vo = —(Fs o F5 ' (vo) — vo) + Op(n™")

we finally obtain that
K(s,Fso Fy1(vo)) — K(s,v0) = —K'(s,vo)(Fs o Fg ' (vo) —vo) + Op(n~1) . I
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