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AbstractWe formulate the lo
al ranking problem in the framework of bipartite rankingwhere the goal is to fo
us on the best instan
es. We propose a methodology based onthe 
onstru
tion of real-valued s
oring fun
tions. We study empiri
al risk minimiza-tion of dedi
ated statisti
s whi
h involve empiri
al quantiles of the s
ores. We �rststate the problem of �nding the best instan
es whi
h 
an be 
ast as a 
lassi�
ationproblem with mass 
onstraint. Next, we develop spe
ial performan
e measures for thelo
al ranking problem whi
h extend the Area Under an ROC Curve (AUC/AROC)
riterion and des
ribe the optimal elements of these new 
riteria. We also highlightthe fa
t that the goal of ranking the best instan
es 
annot be a
hieved in a stage-wise manner where �rst, the best instan
es would be tentatively identi�ed and then astandard AUC 
riterion 
ould be applied. Eventually, we state preliminary statisti
alresults for the lo
al ranking problem.
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1 IntroductionThe �rst takes all the glory, the se
ond takes nothing. In appli
ations where ranking is atstake, people often fo
us on the best instan
es. When s
anning the results from a queryon a sear
h engine, we rarely go beyond the one or two �rst pages on the s
reen. Inthe di�erent 
ontext of 
redit risk s
reening, 
redit establishments elaborate s
oring rulesas reliability indi
ators and their main 
on
ern is to identify risky prospe
ts espe
iallyamong the top s
ores. In medi
al diagnosis, test s
ores indi
ate the odds for a patientto be healthy given a series of measurements (age, blood pressure, ...). There againa parti
ular attention is given to the "best" instan
es not to miss a possible diseasedpatient among the highest s
ores. These various situations 
an be formulated in the setupof bipartite ranking where one observes i.i.d. 
opies of a random pair (X, Y) with X beingan observation ve
tor des
ribing the instan
e (web page, debtor, patient) and Y a binarylabel assigning to one population or the other (relevant vs. non relevant, good vs. bad,healthy vs. diseased). In this problem, the goal is to rank the instan
es instead of simply
lassifying them. There is a growing literature on the ranking problem in the �eld ofMa
hine Learning but most of it 
onsiders the Area under the ROC Curve (also known asthe AUC or AROC) 
riterion as a measure of performan
e of the ranking rule [6, 13, 26, 1℄.In a previous work, we have mentioned that the bipartite ranking problem under the AUC
riterion 
ould be interpreted as a 
lassi�
ation problem with pairs of observations [4℄.But the limit of this approa
h is that it weights uniformly the pairs of items whi
h arebadly ranked. Therefore it does not permit to distinguish between ranking rules makingthe same number of mistakes but in very di�erent parts of the ROC 
urve. The AUCis indeed a global 
riterion whi
h does not allow to 
on
entrate on the "best" instan
es.Spe
ial performan
e measures, su
h as the Dis
ounted Cumulative Gain (DCG) 
riterion,have been introdu
ed by pra
titioners in order to weight instan
es a

ording to theirrank [16℄ (see also [25, 7℄) but providing theory for su
h 
riteria and developing empiri
alrisk minimization strategies still is a very open issue. In the present paper, we extendthe results of our previous work in [4℄ and set theoreti
al grounds for the problem oflo
al ranking. The methodology we propose is based on the sele
tion of a real-valueds
oring fun
tion for whi
h we formulate appropriate performan
e measures generalizingthe AUC 
riterion. We point out that ranking the best instan
es is an involved task asit is a two-fold problem: (i) �nd the best instan
es and (ii) provide a good ranking onthese instan
es. The fa
t that these two goals 
annot be 
onsidered independently willbe highlighted in the paper. Despite this observation, we will �rst formulate the issue of�nding the best instan
es whi
h is to be understood as a toy problem for our purpose. Thisproblem 
orresponds to a binary 
lassi�
ation problem with a mass 
onstraint (wherethe proportion u0 of +1 labels predi
ted by the 
lassi�ers is �xed) and it might presentan interest per se. The main 
ompli
ation here has to do with the ne
essity of performing2



quantile estimation whi
h a�e
ts the performan
e of statisti
al pro
edures. Our proofte
hnique was inspired by the former work of Koul [18℄ in the 
ontext of R-estimationwhere similar statisti
s arise.The rest of the paper is organized as follows. We �rst state the problem of �ndingthe best instan
es and study the performan
e of empiri
al risk minimization in this setup(Se
tion 2). We also explore the 
onditions on the distribution in order to re
over fastrates of 
onvergen
e. In Se
tion 3 we formulate performan
e measures for lo
al rankingand provide extensions of the AUC 
riterion. Eventually (Se
tion 4), we state somepreliminary statisti
al results on empiri
al risk minimization of these new 
riteria.
2 Finding the best instancesIn the present se
tion, we have a limited goal whi
h is only to determine the best instan
eswithout bothering of their order in the list. By 
onsidering this subproblem, we willidentify the main te
hni
al issues involved in the sequel. It also permits to introdu
e themain notations of the paper.Just as in standard binary 
lassi�
ation, we 
onsider the pair of random variables
(X, Y) where X is an observation ve
tor in a measurable spa
e X and Y is a binary labelin {−1,+1}. The distribution of (X, Y) 
an be des
ribed by the pair (µ, η) where µ isthe marginal distribution of X and η is the a posteriori distribution de�ned by η(x) =P {Y = 1 | X = x}, 8x 2 X . We de�ne the rate of best instan
es as the proportion of bestinstan
es to be 
onsidered and denote it by u0 2 (0, 1). We denote by Q(η, 1 − u0) the
(1 − u0)-quantile of the random variable η(X). Then the set of best instan
es at rate u0is given by:

C�
u0

= {x 2 X | η(x) � Q(η, 1 − u0)} .We mention two trivial properties of the set C�
u0

whi
h will be important in the sequel:� Mass 
onstraint: we have µ
�
C�

u0

�
= P{

X 2 C�
u0

}
= u0,� Invarian
e property: as a fun
tional of η, the set C�

u0
is invariant by stri
tlyin
reasing transforms of η.The problem of �nding a proportion u0 of the best instan
es boils down to the es-timation of the unknown set C�

u0
on the basis of empiri
al data. Before turning to thestatisti
al analysis of the problem, we �rst relate it to binary 
lassi�
ation.

2.1 A classification problem with a mass constraintA 
lassi�er is a measurable fun
tion g : X → {−1,+1} and its performan
e is measuredby the 
lassi�
ation error L(g) = P {Y 6= g(X)}. Let u0 2 (0, 1) be �xed. Denote by3



g�u0
= 2IC�

u0
− 1 the 
lassi�er predi
ting +1 on the set of best instan
es C�

u0
and -1 on its
omplement. The next proposition shows that g�u0

is an optimal element for the problemof minimization of L(g) over the family of 
lassi�ers g satisfying the mass 
onstraintP {g(X) = 1} = u0.
Proposition 1 For any 
lassi�er g : X → {−1,+1} su
h that g(x) = 2IC(x) − 1 forsome subset C of X and µ(C) = P {g(X) = 1} = u0, we have

L�u0
$ L

�
g�u0

� � L(g) .Furthermore, we have
L�u0

= 1 − Q(η, 1 − u0) + (1 − u0)(2Q(η, 1 − u0) − 1) − E (|η(X) − Q(η, 1 − u0)|) ,and
L(g) − L

�
g�u0

�
= 2E �|η(X) − Q(η, 1 − u0)| IC�

u0
∆C(X)

�
,where ∆ denotes the symmetri
 di�eren
e operation between two subsets of X .proof. For simpli
ity, we temporarily 
hange the notation and set q = Q(η, 1 − u0).Then, for any 
lassi�er g satisfying the the 
onstraint P {g(X) = 1} = u0, we have

L(g) = E �(η(X) − q)I[g(X)=−1] + (q − η(X))I[g(X)=+1]

�
+ (1 − u0)q + (1 − q)u0 .The statements of the proposition immediately follow.There are several progresses in the �eld of 
lassi�
ation theory where the aim is tointrodu
e 
onstraints in the 
lassi�
ation pro
edure or to adapt it to other problems. Werelate our formulation to other approa
hes in the following remarks.

Remark 1 (Conne
tion to hypothesis testing). The impli
it asymmetry in theproblem due to the emphasis on the best instan
es is reminis
ent of the statisti
al theoryof hypothesis testing. We 
an formulate a test of simple hypothesis by taking the nullassumption to be H0 : Y = +1 and the alternative assumption being H1 : Y = −1.We want to de
ide whi
h hypothesis is true given the observation X. Ea
h 
lassi�er gprovides a test statisti
 g(X). The performan
e of the test is then des
ribed by its type Ierror α(g) = P {g(X) = 1 | Y = −1} and its power β(g) = P {g(X) = 1 | Y = +1}. We pointout that if the 
lassi�er g satis�es a mass 
onstraint, then we 
an relate the 
lassi�
ationerror with the type I error of the test de�ned by g through the relation:
L(g) = 2(1 − p)α(g) + p − u0where p = P {Y = 1}, and similarly, we have: L(g) = 2p(1 − β(g)) − p− u0. Therefore, theoptimal 
lassi�er minimizes the type I error (maximizes the power) among all 
lassi�ers4



with the same mass 
onstraint. In some appli
ations, it is more relevant to �x a 
onstrainton the probability of a false alarm (type I error) and maximize the power. This questionis explored in a re
ent paper by S
ott [27℄ (see also [29℄).
Remark 2 (Conne
tion with regression level set estimation) We mention thatthe estimation of the level sets of the regression fun
tion has been studied in the statisti
sliterature [3℄ (see also [32℄, [38℄) as well as in the learning literature, for instan
e in the
ontext of anomaly dete
tion ([31, 28, 37℄). In our framework of 
lassi�
ation with mass
onstraint, the threshold de�ning the level set involves the quantile of the random variable
η(X).
Remark 3 (Conne
tion with the minimum volume set approa
h) Although thepoint of view adopted in this paper is very di�erent, the problem des
ribed above may beformulated in the framework of minimum volume sets learning as 
onsidered in [30℄. Asa matter of fa
t, the set C�

u0
may be viewed as the solution of the 
onstrained optimizationproblem: min

C
P {X 2 C | Y = −1}over the 
lass of measurable sets C, subje
t toP {X 2 C} � u0 .The main di�eren
e in our 
ase 
omes from the fa
t that the 
onstraint on the volume sethas to be estimated using the data while in [30℄ it is 
omputed from a known referen
emeasure. We believe that learning methods for minimum volume set estimation mayhopefully be extended to our setting. A natural way to do it would 
onsist in repla
ing
onditional distribution of X given Y = −1 by its empiri
al 
ounterpart. This is beyondthe s
ope of the present paper but will be the subje
t of future investigation.

2.2 Empirical risk minimizationWe now investigate the estimation of the set C�
u0

of best instan
es at rate u0 based ontraining data. Suppose that we are given n i.i.d. 
opies (X1, Y1), � � � , (Xn, Yn) of thepair (X, Y). Sin
e we have the ranking problem in mind, our methodology will 
onsist inbuilding the 
andidate sets from a 
lass S of real-valued s
oring fun
tions s : X → R.Indeed, we 
onsider sets of the form
Cs $ Cs,u0

= {x 2 X | s(x) � Q(s, 1 − u0)} ,where s is an element of S and Q(s, 1−u0) is the (1−u0)-quantile of the random variable
s(X). Note that su
h sets satisfy the same properties of C�

u0
with respe
t to mass 
onstraintand invarian
e to stri
tly in
reasing transforms of s.5



From now on, we will take the simpli�ed notation:
L(s) $ L(s, u0) $ L(Cs) = P {Y � (s(X) − Q(s, 1 − u0)) < 0} .A s
oring fun
tion minimizing the quantity

Ln(s) =
1

n

n∑

i=1

I{Yi � (s(Xi) − Q(s, 1 − u0)) < 0}.is expe
ted to approximately minimize the true error L(s), but the quantile dependson the unknown distribution of X. In pra
ti
e, one has to repla
e Q(s, 1 − u0) by itsempiri
al 
ounterpart Q̂(s, 1 − u0) whi
h 
orresponds to the empiri
al quantile. We willthus 
onsider, instead of Ln(s), the truly empiri
al error:
L̂n(s) =

1

n

n∑

i=1

I{Yi � (s(Xi) − Q̂(s, 1 − u0)) < 0}.Note that L̂n(s) is a 
ompli
ated statisti
 sin
e the empiri
al quantile involves all theinstan
es X1, . . . , Xn. We also mention that L̂n(s) is a biased estimate of the 
lassi�
ationerror L(s) of the 
lassi�er gs(x) = 2I{s(x)� Q(s, 1 − u0)} − 1.We introdu
e some more notations. Set, for all t 2 R:� Fs(t) = P {s(X) � t}� Gs(t) = P {s(X) � t | Y = +1}� Hs(t) = P {s(X) � t | Y = −1}to be the 
umulative distribution fun
tions (
df) of s(X) (respe
tively, given Y = 1, given
Y = −1). We re
all that the de�nition of the quantiles of (the distribution of) a randomvariable involves the notion of generalized inverse F−1 of a fun
tion F:

F−1(z) = inf{t 2 R | F(t) � z} .Thus, we have, for all v 2 (0, 1):
Q(s, v) = F−1

s (v) and Q̂(s, v) = F̂−1
s (v)where F̂s is the empiri
al 
df of s(X): F̂s(t) = 1

n

∑n
i=1I{s(Xi) � t}, 8t 2 R.Without loss of generality, we will assume that all s
oring fun
tions in S take theirvalues in (0, λ) for some λ > 0. We now turn to study the performan
e of minimizers of

L̂n(s) over a 
lass S of s
oring fun
tions de�ned by
ŝn = argmin

s2S L̂n(s).6



Our �rst main result is an ex
ess risk bound for the empiri
al risk minimizer ŝn overa 
lass S of uniformly bounded s
oring fun
tions. In the following theorem, we 
onsiderthat the level sets of s
oring fun
tions from the 
lass S form a Vapnik-Chervonenkis (VC)
lass of sets.
Theorem 2 We assume that(i) the 
lass S is symmetri
 (i.e. if s 2 S then λ − s 2 S) and is a VC major 
lassof fun
tions with VC dimension V.(ii) the family K = { Gs, Hs : s 2 S } of 
dfs satis�es the following property: any

K 2 K has left and right derivatives, denoted by K 0
+ and K 0

−, and there existstri
tly positive 
onstants b, B su
h that 8(K, t) 2 K � (0, λ),
b � ��K 0

+(t)
�� � B and b � ��K 0

−(t)
�� � B .For any δ > 0, we have, with probability larger than 1 − δ,

L(ŝn) − inf
s2S L(s) � c1

s
V

n
+ c2

s
ln(1/δ)

n
,for some positive 
onstants c1, c2.We now provide some insights on 
onditions (i) and (ii) of the theorem.

Remark 4 (on the 
omplexity assumption) On the terminology of major sets andmajor 
lasses, we refer to Dudley [10℄. In the proof, we need to 
ontrol empiri
al pro
essesindexed by sets of the form {x : s(x) � t} or {x : s(x) � t}. Condition (i) guaranteesthat these sets form a VC 
lass of sets.
Remark 5 (on the 
hoi
e of the 
lass S of s
oring fun
tions) In order to graspthe meaning of 
ondition (ii) of the theorem, we 
onsider the one-dimensional 
ase withreal-valued s
oring fun
tions. Assume that the distribution of the random variable Xihas a bounded density f with respe
t to Lebesgue measure. Assume also that s
oringfun
tions s are di�erentiable ex
ept, possibly, at a �nite number of points, and derivativesare denoted by s 0. Denote by fs the density of s(X). Let t 2 (0, λ) and denote by x1, ...,
xp the real roots of the equation s(x) = t. We 
an express the density of s(X) thanks tothe 
hange-of-variable formula (see e.g. [24℄):

fs(t) =
f(x1)

s 0(x1)
+ . . . +

f(xp)

s 0(xp)
.This shows that the s
oring fun
tions should not present neither 
at nor steep parts. We
an take for instan
e, the 
lass S to be the 
lass of linear-by-parts fun
tions with a �nite7



Scoring function

x

s(
x)

Figure 1: Typi
al example of a s
oring fun
tion.number of lo
al extrema and with uniformly bounded left and right derivatives: 8s 2 S,8x, m � s 0+(x) � M and m � s 0−(x) � M for some stri
tly positive 
onstants m, and M(see Figure 1). Note that any subinterval of [0, λ] has to be in the range of s
oring fun
tions
s (if not, some elements of K will present a plateau). In fa
t, the proof requires su
h abehavior only in the vi
inity of the points 
orresponding to the quantiles Q(s, 1 − u0) forall s 2 S.proof. Set v0 = 1 − u0. By a standard argument (see e.g. [8℄), we have:

L(ŝn) − inf
s2S L(s) � 2 sup

s2S ���L̂n(s) − L(s)
���� 2 sup

s2S ���L̂n(s) − Ln(s)
��� + 2 sup

s2S |Ln(s) − L(s)| .Note that the se
ond term in the bound is an empiri
al pro
ess whose behavior iswell-known. In our 
ase, assumption (i) implies that the 
lass of sets {x : s(x) � Q(s, v0)}indexed by s
oring fun
tions s has a VC dimension smaller than V . Hen
e, we have by a
on
entration argument 
ombined with a VC bound for the expe
tation of the supremum(see, e.g. [20℄), for any δ > 0, with probability larger than 1 − δ,sup
s2S |Ln(s) − L(s)| � c

s
V

n
+ c 0s ln(1/δ)

nfor universal 
onstants c, c 0.We now show how to handle the �rst term. Following the work of Koul [18℄, we setthe following notations:
M(s, v) = P{

Y � �s(X) − Q(s, v)
�

< 0
}8



Un(s, v) =
1

n

n∑

i=1

I{Yi � �s(Xi) − Q(s, v)
�

< 0} − M(s, v) .and note that Un(s, v) is 
entered.We then have the following de
omposition, for any s 2 S and v0 2 (0, 1):���L̂n(s) − Ln(s)
��� � ���Un(s, Fs Æ F̂−1

s (v0)) − Un(s, v0)
���+ ���M(s, Fs Æ F̂−1

s (v0)) − M(s, v0)
��� .Note that M(s, FsÆ F̂−1

s (v0)) = P{
Y � �s(X) − Q̂(s, v)

�
< 0 | Dn

} where Dn denotes thesample (X1, Y1), � � � , (Xn, Yn).Re
all the notation p = P {Y = 1}. Sin
e M(s, v) = (1−p)(1−HsÆF−1
s (v))+pGsÆF−1

s (v)and Fs = pGs+(1−p)Hs, the mapping v 7→ M(s, v) is Lips
hitz by assumption (ii). Thus,there exists a 
onstant κ < ∞, depending only on p, b and B, su
h that:���M(s, Fs Æ F̂−1
s (v0)) − M(s, v0)

��� � κ
���Fs Æ F̂−1

s (v0) − v0)
��� .Moreover, we have, for any s 2 S:���Fs Æ F̂−1

s (v0) − v0

��� � ���Fs Æ F̂−1
s (v0) − F̂s Æ F̂−1

s (v0))
���+ ���F̂s Æ F̂−1

s (v0) − v0)
���� sup

t2(0,λ)

���Fs(t) − F̂s(t)
���+ 1

n
.Here again, we 
an use assumption (i) and a 
lassi
al VC bound from [20℄ in order to
ontrol the empiri
al pro
ess, with probability larger than 1 − δ:sup

(s,t)2S�(0,λ)

���Fs(t) − F̂s(t)
��� � c

s
V

n
+ c 0s ln(1/δ)

nfor some 
onstants c, c 0.It remains to 
ontrol the term involving the pro
ess Un:���Un(s, Fs Æ F̂−1
s (v0)) − Un(s, v0)

��� � sup
v2(0,1)

|Un(s, v) − Un(s, v0)|� 2 sup
v2(0,1)

|Un(s, v)|Using that the 
lass of sets of the form {x : s(x) � Q(s, v)} for v 2 (0, 1) is in
luded inthe 
lass of sets of the form {x : s(x) � t} where t 2 (0, λ), we then havesup
v2(0,1)

|Un(s, v)| � sup
t2(0,λ)

������ 1n n∑

i=1

I{Yi � �s(Xi) − t
�

< 0} − P{
Y � �s(X) − t

�
< 0

}
������ ,whi
h leads again to an empiri
al pro
ess indexed by a VC 
lass of sets and 
an be boundedas before. 9



2.3 Fast rates of convergenceWe now propose to examine 
onditions leading to fast rates of 
onvergen
e (faster than
n−1/2). It has been noti
ed (see [21℄, [33℄, [23℄) that it is possible to derive su
h rates of
onvergen
e in the 
lassi�
ation setup under additional assumptions on the distribution.We propose here to adapt these assumptions for the problem of 
lassi�
ation with mass
onstraint.Our 
on
ern here is to formulate the type of 
onditions whi
h render the problemeasier from a statisti
al perspe
tive. For this reason and to avoid te
hni
al issues, we will
onsider a quite restri
tive setup where it is assumed that:1. the 
lass S of s
oring fun
tions is a �nite 
lass with N elements,2. an optimal s
oring rule s� is 
ontained in S.We have found that the following additional 
onditions on the distribution and the
lass S allow to derive fast rates of 
onvergen
e for the ex
ess risk in our problem.(iii) There exist 
onstants α 2 (0, 1) and B > 0 su
h that, for all t � 0,P {|η(X) − Q(η, 1 − u0)| � t} � B t

α
1−α .(iv) the family K = { Gs, Hs : s 2 S } of 
dfs satis�es the following property: for any

s 2 S, Gs and Hs are twi
e di�erentiable at Q(s, 1 − u0) = F−1
s (1 − u0).We point out that 
onditions (ii) and (iii) are not 
ompletely independent. Indeed,if (Gη, Hη) belongs to the 
lass K ful�lling 
ondition (ii), then Fη = pGη + (1 − p)Hη isLips
hitz and 
ondition (iii) is satis�ed with α = 1/2. Note that 
ondition (iii) simplyextends the standard low noise assumption introdu
ed by Tsybakov [33℄ (see also [2℄ for ana

ount on this) where the level 1/2 is repla
ed by the (1 − u0)-quantile of η(X). Indeed,we have, under 
ondition (iii), the varian
e 
ontrol, for any s 2 S:Var(I{Y 6= 2ICs(X) − 1} − I{Y 6= 2IC�

u0
(X) − 1}) � c (L(s) − L�u0

)α ,or, equivalently, E�ICs∆C�
u0

(X)
� � c (L(s) − L�u0

)α .Now, if we denote
sn = argmin

s2S Ln(s) ,we have, by a standard argument based on Bernstein's inequality (see Se
tion 5.2 in [2℄),with probability 1 − δ,
L(sn) − L�u0

� c

�
log(N/δ)

n

� 1
2−α

.10



for some positive 
onstant c.The novel part of the analysis below lies in the 
ontrol of the bias indu
ed by pluggingthe empiri
al quantile Q̂(s, 1 − u0) in the risk fun
tional. The next theorem shows thatfaster rates of 
onvergen
e 
an be obtained under the previous assumptions with α = 1/2.
Theorem 3 We assume that the 
lass S of s
oring fun
tions is a �nite 
lass with
N elements, and that it 
ontains an optimal s
oring rule s�. Moreover, we assumethat 
onditions (i)-(iv) are satis�ed. Then, for any δ > 0, we have, with probability
1 − δ:

L(ŝn) − L�u0
� c

�
log(N/δ)

n

� 2
3

,for some 
onstant c.
Remark 6 (on the rate n−2/3) The previous results highlights the fa
t that ratesfaster than the one obtained in Theorem 2 
an be obtained in this setup with additionalregularity assumptions. However, it is noteworthy that the standard low noise assumption(iii) is already 
ontained in assumption (ii) whi
h is required in proving the typi
al n−1/2rate. The 
onsequen
e of this observation is there is no hope of getting rates up to n−1unless assumption (ii) is weakened.The proof of the previous theorem is based on two arguments: the stru
ture of linearsigned rank statisti
s and the varian
e 
ontrol assumption. The situation is similar tothe one we en
outered in [5℄ where we were dealing with U-statisti
s and we had to invokeHoe�ding's de
omposition in order to grasp the behavior of the underlying U-pro
esses.Here we require a similar argument to des
ribe the stru
ture of the empiri
al risk fun
tional
L̂n(s) under study. This statisti
 
an be interpreted as a linear signed rank statisti
 andthe key de
omposition has been used in the 
ontext of nonparametri
 hypotheses testingand R-estimation. We mainly refer to H�ajek and Sidak [14℄, Dupa
 and H�ajek [11℄, Koul[17℄, Koul and Staudte [19℄ for an a

ount on rank statisti
s.We brie
y go through the main ideas, but �rst we need to introdu
e some notations.Set:8v 2 [0, 1] , K(s, v) = E (YI{s(X)� Q(s, v)}) = pGs(Q(s, v)) − (1 − p)Hs(Q(s, v))

K̂n(s, v) =
1

n

n∑

i=1

YiI{s(Xi) � Q̂(s, v)} .Then we 
an write:
L(s) = 1 − p + K(s, 1 − u0)11



L̂n(s) =
n−

n
+ K̂n(s, 1 − u0) ,where n− =

∑n
i=1I{Yi = −1}.We note that the statisti
 L̂n(s) is related to linear signed rank statisti
s.

Definition 4 [Linear signed rank statisti
℄. Consider Z1, . . . , Zn an i.i.d. samplewith distribution F and a real-valued s
ore generating fun
tion Φ. Denote by R+
i =rank(|Zi|) the rank of |Zi| in the sample |Z1|, . . . , |Zn|. Then the statisti


n∑

i=1

Φ

 
R+

i

n + 1

! sgn(Zi)is a linear signed rank statisti
.
Proposition 5 For �xed s and v, the statisti
 K̂n(s, v) is a linear signed rank statisti
.proof. Take Zi = Yis(Xi). The random variables Zi have their absolute value distributeda

ording to Fs and have the same sign as Yi. It is easy to see that the statisti
 K̂n(s, v)is a linear signed rank statisti
 with s
ore generating fun
tion Φ(x) = I[x�v].A de
omposition of Hoe�ding's type for su
h statisti
s 
an be formulated. Set �rst:

Zn(s, v) =
1

n

n∑

i=1

�
Yi − K 0(s, v)� I{s(Xi) � Q(s, v)} − K(s, v) + vK 0(s, v) ,where K 0(s, v) denotes the derivative of the fun
tion v 7→ K(s, v). Note that Zn(s, v) is a
entered random variable with varian
e:

σ2(s, v) = v − K(s, v)2 + v(1 − v)K 02(s, v) − 2(1 − v)K 0(s, v)K(s, v) .The next result is due to Koul [17℄ and we provide an alternate proof in the Appendix.
Proposition 6 We have, for all s 2 S and v 2 [0, 1]:

K̂n(s, v) = K(s, v) + Zn(s, v) + Λn(s) .with
Λn(s) = OP(n−1) as n → ∞ .

12



This asymptoti
 expansion highlights the stru
ture of the statisti
 Ln(s) for �xed s.The leading term Zn(s, 1 − u0) is an empiri
al average of i.i.d. random variables and itprovides the asymptoti
 varian
e of Ln(s). It is worth noti
ing that Zn(s, 1 − u0) is notredu
ed to the same empiri
al fun
tional with the true, instead of the empiri
al, quantilebut it also involves a derivative term. Sin
e the remainder term Λn(s) is of the order n−1,it will not a�e
t the �nal rate of 
onvergen
e under low noise 
onditions. Therefore, thevarian
e 
ontrol assumption 
on
erns the varian
e of the fun
tion involved in the empiri
alaverage Zn(s, 1 − u0).We denote by:
hs(Xi, Yi) =

�
Yi − K 0(s, v)� I{s(Xi) � Q(s, v)} − K(s, v) + vK 0(s, v) ,and we then have

Zn(s, v) − Zn(s�, v) =
1

n

n∑

i=1

�
hs(Xi, Yi) − hs�(Xi, Yi)

�
.

Proposition 7 Fix v 2 [0, 1]. Assume that 
ondition (iii) holds. Then, we have, forall s 2 S: Var�hs(Xi, Yi) − hs�(Xi, Yi)
� � c

�
L(s) − L(s�)�α ,for some 
onstant c.proof. We �rst write that:

hs(Xi, Yi) − hs�(Xi, Yi) = I + II + III + IV + Vwhere
I = Yi

�I{s(Xi) � Q(s, v)} − I{s�(Xi) � Q(s�, v)}�
II = (K 0(s�, v) − K 0(s, v)) I{s�(Xi) � Q(s�, v)}
III = K 0(s, v) �I{s�(Xi) � Q(s�, v)} − I{s(Xi) � Q(s, v)}

�
IV = K(s�, v) − K(s, v)

V = v (K 0(s, v) − K 0(s�, v)) .By Cau
hy-S
hwarz inequality, we only need to show that the expe
ted value of thesquare of these quantities is smaller than (L(s)− L�)α up to some multipli
ative 
onstant.13



Note that, by de�nition of K, we have:
II = (L 0(s�, v) − L 0(s, v)) I{s�(Xi) � Q(s�, v)}
IV = L(s�) − L(s)

V = v (L 0(s, v) − L 0(s�, v))where L 0(s, v) denotes the derivative of the fun
tion v 7→ L(s, v). It is 
lear that, for any
s, we have L(s, v) = L(s�, v) implies that L 0(s, v) = L 0(s�, v) otherwise s� would not be anoptimal s
oring fun
tion at some level v 0 in the vi
inity of v. Therefore, sin
e S is �nite,there exists a 
onstant c su
h that

(L 0(s, v) − L 0(s�, v))2 � c(L(s) − L�)αand then E�II2
� and E�V2

�2 are bounded a

ordingly.Moreover, we have: E�I2
� � E�ICs∆Cs� (X)

�� c(L(s) − L(s�))αfor some positive 
onstant c, by assumption (iii).Eventually, by assumption (ii), we have that K 0(s, v) is uniformly bounded and thus,the term E�III2
� 
an be handled similarly.

Proof of Theorem 3. The proof is the same as the one of Theorem 5 from [5℄ whi
huses a result by Massart [22℄.
3 Performance measures for local rankingOur main interest here is to develop a setup des
ribing the problem of not only �nding butalso ranking the best instan
es. As far as we know, this problem has not been 
onsideredfrom a statisti
al perspe
tive until now. In the sequel, we build on the results from Se
tion2 and also on our previous work on the (global) ranking problem [5℄ in order to 
apturesome of the features of the lo
al ranking problem. The present se
tion is devoted to the
onstru
tion of performan
e measures re
e
ting the quality of ranking rules on a restri
tedset of instan
es. 14



3.1 ROC curves and optimality in the local ranking problemWe 
onsider the same statisti
al model as before with (X, Y) being a pair of randomvariables over X�{−1,+1} and we examine ranking rules resulting from real-valued s
oringfun
tions s : X → (0, λ). The referen
e tool for assessing the performan
e of a s
oringfun
tion s in separating the two populations (positive vs. negative labels) is the Re
eivingOperator Chara
teristi
 known as the ROC 
urve ([36℄, [12℄). If we take the notations�Gs(z) = P {s(X) > z | Y = 1} (true positive rate) and �Hs(z) = P {s(X) > z | Y = −1}(false positive rate), we 
an de�ne the ROC 
urve, for any s
oring fun
tion s, as the plotof the fun
tion:
z 7→ ��Hs(z), �Gs(z)

�for thresholds z 2 (0, λ), or equivalently as the plot of the fun
tion:
t 7→ �Gs ÆH−1

s (1 − t)for t 2 (0, 1). The optimal s
oring fun
tion is the one whose ROC 
urve dominates allthe others for all z 2 (0, λ) (or t 2 (0, 1)) and su
h a fun
tion a
tually exists. Indeed,by re
alling the hypothesis testing framework in the 
lassi�
ation model (see Remark 1)and using Neyman-Pearson's Lemma, it is easy to 
he
k that ROC 
urve of the fun
tion
η(x) = P {Y = 1 | X = x} dominates the ROC 
urve of any other s
oring fun
tion. Wepoint out that the ROC 
urve of a s
oring fun
tion s is invariant by stri
tly in
reasingtransformations of s.In our approa
h, for a given s
oring fun
tion s, we fo
us on thresholds z 
orrespondingto the 
ut-o� separating a proportion u 2 (0, 1) of top s
ored instan
es a

ording to s fromthe rest. Re
all from Se
tion 2 that the best instan
es a

ording to s are the elements ofthe set Cs,u = {x 2 X | s(x) � Q(s, 1 − u)} where Q(s, 1 − u) is the (1 − u)-quantile of
s(X). We set the following notations:

α(s, u) = P {s(X) � Q(s, 1 − u) | Y = −1}

β(s, u) = P {s(X) � Q(s, 1 − u) | Y = +1} .We propose to re-parameterize the ROC 
urve with the proportion u 2 (0, 1) and thendes
ribe it as the plot of the fun
tion:
u 7→ (α(s, u), β(s, u)) ,for ea
h s
oring fun
tion s. When fo
using on the best instan
es at rate u0, we only
onsider the part of the ROC 
urve for values u 2 (0, u0).However attra
tive is the ROC 
urve as a graphi
al tool, it is not a pra
ti
al one fordeveloping learning pro
edures a
hieving straightforward optimization. The most naturalapproa
h is to 
onsider risk fun
tionals built after the ROC 
urve su
h as the Area Underan ROC Curve (known as the AUC or AROC, see [15℄). Our goals in this se
tion are:15
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Figure 2: ROC 
urves, line D(u0, p) and trun
ated AUC at rate u0 of best instan
es.1. to extend the AUC 
riterion in order to fo
us on restri
ted parts of the ROC 
urve,2. to des
ribe the optimal elements with respe
t to this extended 
riterion.We point out the fa
t that extending the AUC is not trivial. Indeed, we noti
e that
α(s, u) and β(s, u) are related by a linear relation, for �xed u and p, when s varies:

u = pβ(s, u) + (1 − p)α(s, u)where p = P {Y = 1}. We denote the line plot of this relation by D(u, p). Hen
e, the partof the ROC 
urve of a s
oring fun
tion s 
orresponding to the best instan
es at rate u0 isthe part going from the origin (0, 0) to the interse
tion between the line D(u0, p) and theROC 
urve (shaded area in the left display of Figure 2). It follows that, the 
loser to η thes
oring fun
tion s is, the higher the ROC 
urve is, but at the same time the integrationdomain shrinks (right display of Figure 2).Our guideline in de�ning risk 
riteria for the problem of ranking the best instan
es isthe form of the optimal elements. We expe
t the optimal s
oring fun
tions at the rate
u0 to belong to the equivalen
e 
lass (fun
tions de�ned up to the 
omposition with anonde
reasing transformation) de�ned by s
oring fun
tions s� su
h that:

s�(x) =






η(x) if x 2 C�
u0

< inf
C�

u0

η if x /2 C�
u0

.Su
h s
oring fun
tions ful�ll the two properties of �nding the best instan
es (indeed
Cs�,u0

= C�
u0
) and ranking them as well as the regression fun
tion. We will denote by S�the set of optimal s
oring fun
tions for the problem of ranking the best instan
es at therate u0. 16



As a preliminary result, and before proposing an adequate 
riterion, we formulate asimple lemma.
Lemma 8 For any s
oring fun
tion s, we have for all u 2 (0, 1),

β(s, u) � β(η, u)

α(s, u) � α(η, u) .Moreover, we have equality only for those s su
h that Cs,u0
= C�

u0
.proof. We show the �rst inequality. By de�nition, we have:

β(s, u) = 1 − Hs(Q(s, 1 − u)) .Observe that, for any s
oring fun
tion s,
p(1 − Hs(Q(s, 1 − u)) = P {Y = 1, s(X) > Q(s, 1 − u)}

= E (η(X)I{X 2 Cs,u}) .We thus have
p (Hs(Q(s, 1 − u) − Hη(Q(η, 1 − u))

= E (η(X)(I{X 2 C�
u} − I{X 2 Cs,u}))

= E (η(X)I{X /2 C�
u} (I{X 2 C�

u} − I{X 2 Cs,u}))

+E (η(X)I{X 2 C�
u}(I{X 2 C�

u} − I{X 2 Cs,u}))� −E (Q(η, 1 − u)I{X /2 C�
u} I{X 2 Cs,u}) + E (Q(η, 1 − u)I{X 2 C�

u}(1 − I{X 2 Cs,u}))

= Q(η, 1 − u)(1 − u − 1 + u) = 0 .The se
ond inequality simply follows from the identity below:
1 − u = pHs(Q(s, 1 − u)) + (1 − p)Gs(Q(s, 1 − u)) .In view of this result, a wide 
olle
tion of 
riteria with the set S� as the set of optimalelements 
ould naturally be 
onsidered, depending on how one wants to weight the twotypes of error 1−β(s, u) = (type II error in the hypothesis testing framework) and α(s, u)(type I error) a

ording to the rate u 2 [0, u0]. However, not all the 
riteria obtained inthis manner 
an be interpreted as generalizations of the AUC 
riterion for u0 = 1.17



3.2 Generalization of the AUC criterionIn [5℄, we have 
onsidered the ranking error of a s
oring fun
tion s as de�ned by:
R(s) = P{(Y − Y 0)(s(X) − s(X 0)) < 0} ,where (X 0, Y 0) is an i.i.d. 
opy of the random pair (X, Y).Interestingly, it 
an be proved that minimizing the ranking error R(s) is equivalentto maximizing the well-known AUC 
riterion. This is trivial on
e we write down theprobabilisti
 interpretation of the AUC:AUC(s) = P{
s(X) > s(X 0) | Y = 1, Y 0 = −1

}
= 1 −

1

2p(1 − p)
R(s) .We now propose a lo
al version of the ranking error on a measurable set C � X :

R(s, C) = P{
(s(X) − s(X 0))(Y − Y 0) > 0, (X,X 0) 2 C2

}
,and the lo
al analogue of the AUC 
riterion:Lo
AUC(s, u) = P{

s(X) > s(X 0), s(X) � Q(s, 1 − u) | Y = 1, Y 0 = −1
}

.This 
riterion obviously boils down to the standard 
riterion for u = 1. However,in the 
ase where u < 1, we will see that there is no equivalen
e between maximizingthe Lo
AUC 
riterion and minimizing the lo
al ranking error s 7→ R(s, u) $ R(s, Cs,u).Indeed, the lo
al ranking error is not a relevant performan
e measure for �nding the bestinstan
es. Minimizing it would solve the problem of �nding the instan
es that are theeasiest to rank.The following theorem states that s
oring fun
tions s� in the set S� maximize the
riterion Lo
AUC and that the latter may be de
omposed as a sum of a 'power' termand (the opposite of) a lo
al ranking error term.
Theorem 9 Let u0 2 (0, 1). We have, for any s
oring fun
tion s:8s� 2 S�, Lo
AUC(s, u0) � Lo
AUC(s�, u0) .Moreover, the following relation holds:8s, Lo
AUC(s, u0) = β(s, u0) −

1

2p(1 − p)
R(s, u0) ,where R(s, u0) = R(s, Cs,u0

). 18



proof. Set v0 = 1 − u0. Observe �rst that:Lo
AUC(s, u0) = E (Hs(s(X)) I{s(X)� Q(s, v0)} | Y = 1 )

=

∫+∞

Q(s,v0)

Hs(z) Gs(dz) .We use that pGs = Fs − (1 − p)Hs and we obtain:
pLo
AUC(s, u0) =

∫+∞

Q(s,v0)

Hs(z) Fs(dz) − (1 − p)

∫+∞

Q(s,v0)

Hs(z) Hs(dz)

=

∫1

v0

(1 − α(s, v)) dv −
1 − p

2

�
1 − (1 − α(s, v0))

2
�

.This formula, 
ombined with Lemma 8, establishes the �rst part of Theorem 9.Besides, integrating by parts and making a 
hange of variables, we get:
∫+∞

Q(s,v0)

Hs(z) Gs(dz) = 1 − (1 − α(s, u0))(1 − β(s, u0)) −

∫α(s,u0)

0

(1 − β(s, α)) dα

=

∫α(s,u0)

0

β(s, α)dα + β(s, u0)(1 − α(s, u0)) .On the other hand, one has
α(s, u0)β(s, u0) =

1

p(1 − p)
P{

s(X) ∧ s(X 0) > Q(s, v0), Y 0 = 1, Y = −1
}

= P{
s(X 0) > s(X), s(X) ∧ s(X 0) > Q(s, v0) | Y 0 = 1, Y = −1

}

+
1

p(1 − p)
P{

s(X 0) < s(X), (X,X 0) 2 C2
s,u0

, Y 0 = 1, Y = −1
}

=

∫α(s,u0)

0

β(s, α) dα +
1

2p(1 − p)
R(s, u0) .Plugging this in the previous formula leads to the se
ond statement of the theorem.19



Remark 7 (Trun
ating the AUC) In the theorem, we obviously re
over the relationbetween the standard AUC 
riterion and the (global) ranking error when u0 = 1. Besides,by 
he
king the proof, one may relate the generalized AUC 
riterion to the trun
atedAUC. As a matter of fa
t, we have:8s , Lo
AUC(s, u0) =

∫α(s,u0)

0

β(s, α) dα + β(s, u0) − α(s, u0)β(s, u0).The values α(s, u0) and β(s, u0) are the 
oordinates of the interse
ting point betweenthe ROC 
urve of the s
oring fun
tion s and the line D(u0, p). Thus, the integral termrepresents the area of the surfa
e delimited by the ROC 
urve, the horizontal x-axisand the line x = α(s, u0) (see Figure 2). The theorem reveals that evaluating the lo
alperforman
e of a s
oring statisti
 s(X) by the trun
ated AUC as proposed in [9℄ is highlyarguable sin
e the maximizer of the fun
tional s 7→ ∫α(s,u0)

0
β(s, α) dα is usually not inS�.

3.3 Generalized Wilcoxon statisticWe now propose a di�erent extension of the plain AUC 
riterion. Consider (X1, Y1), . . .,
(Xn, Yn), n i.i.d. 
opies of the random pair (X, Y). The intuition relies on a well-knownrelationship between Mann-Whitney and Wil
oxon statisti
s. Indeed, a natural empiri
alestimate of the AUC is the rate of 
on
ording pairs:\AUC(s) =

1

n+n−

∑

1�i,j�n

I{Yi = −1, Yj = 1, s(Xi) < s(Xj)} ,with n+ = n − n− =
∑n

i=1I{Yi = +1}. On the other hand, we re
all that the Wil
oxonstatisti
 Tn(s) is the two-sample linear rank statisti
 asso
iated to the s
ore generatingfun
tion Φ(v) = v, 8v 2 (0, 1), obtained by summing the ranks 
orresponding to positivelabels:
Tn(s) =

n∑

i=1

I{Yi = 1}
rank(s(Xi))

n + 1
,where rank(s(Xi)) denotes the rank of s(Xi) in the sample {s(Xj), 1 � j � n}. We referto [14, 35℄ for basi
 results related to linear rank statisti
s. The following relation iswell-known:

n+n−

n + 1
\AUC(s) +

n+(n+ + 1)

2
= Tn(s) .Moreover, the statisti
 Tn(s)/n+ is an asymptoti
ally normal estimate of

W(s) = E (Fs(s(X)) | Y = 1) .20



Note the theoreti
al 
ounterpart of the previous relation may be written as
W(s) = (1 − p)AUC(s) + p/2 .Now, in order to take into a

ount a proportion u0 of the highest ranks only, one may
onsider the 
riterion related to the s
ore generating fun
tion Φu0

(v) = v I{v > 1 − u0}:
W(s, u0) = E (Φu0

(Fs(s(X))) | Y = 1)whi
h we shall 
all the W-ranking error at rate u0.Note that its empiri
al 
ounterpart is given by Tn(s, u0)/n+, with
Tn(s, u0) =

n∑

i=1

I{Yi = 1} Φu0

�rank(s(Xi))

n + 1

�
.Using the results from the previous subse
tion, we 
an easily 
he
k that the followingtheorem holds.

Theorem 10 We have, for all s:8s� 2 S�, W(s, u0) � W(s�, u0) .Furthermore, we have:
W(s, u0) =

p

2
β(s, u0)(2 − β(s, u0)) + (1 − p)Lo
AUC(s, u0) .proof. The result easily follows from the following representation of µ:
W(s, u0) =

∫+∞

Q(s,1−u0)

Fs(z) Gs(dz)and from the fa
t that: Fs = pGs + (1 − p)Hs.
Remark 8 (On the 
hoi
e of a s
ore generating fun
tion Φ) The idea of weight-ing the empiri
al AUC 
riterion with non-uniform weights is equivalent to 
onsideringsmooth s
ore generating fun
tions Φ instead of our Φu0

in the W-ranking error. Derivingoptimality results for smooth 
riteria with our method is straightforward but we point outthat, in this 
ase, probabilisti
 interpretations are lost. In this approa
h, the sto
hasti
pro
esses arising are rank pro
esses for whi
h there is no theory available at this moment.
21



Remark 9 (Eviden
e against 'divide-and-
onquer' strategies) It is noteworthythat not all 
ombinations of β(s, u0) (or α(s, u0)) and R(s, u0) lead to a 
riterion with S�being the set of optimal s
oring fun
tions. We have provided two non-trivial examplesfor whi
h this is the 
ase (Theorems 9 and 10). But, in general, this remark shouldprevent from 
onsidering naive 'divide-and-
onquer' strategies for solving the lo
al rankingproblem. By naive 'divide-and-
onquer' strategies, we refer here to stagewise strategieswhi
h would, �rst, 
ompute an estimate Ĉ of the set 
ontaining the best instan
es, andthen, solve the ranking problem over Ĉ as des
ribed in [5℄. However, this idea 
ombinedwith a 
ertain amount of iterativeness might be the key to the design of eÆ
ient algorithms.In any 
ase, we stress here the importan
e of making use of a global 
riterion, synthesizingour double goal: �nding and ranking the best instan
es.
4 Empirical risk minimization of the local AUC criterionIn the previous se
tion, we have seen that there are various performan
e measures whi
h
an be 
onsidered for the problem of ranking the best instan
es. In order to perform thestatisti
al analysis, we will favor the representations of Lo
AUC and W whi
h involve the
lassi�
ation error L(s, u0) and the lo
al ranking error R(s, u0). By 
ombining Theorems9 and 10, we 
an easily get:

2p(1 − p)Lo
AUC(s, u0) = (1 − p)(p + u0) − (1 − p)L(s, u0) − R(s, u0)and
2pW(s, u0) = C(p, u0) +

�
p + u0

2
− 1

�
L(s, u0) −

1

4
L2(s, u0) − R(s, u0)where C(p, u0) is a 
onstant depending only on p and u0.We exploit the �rst expression and 
hoose to study the minimization of the following
riterion for ranking the best instan
es:

M(s) $M(s, u0) = R(s, Cs,u0
) + (1 − p)L(s, u0) .It is obvious that the elements of S� are the optimal elements of the fun
tional M( � , u0)and we will now 
onsider s
oring fun
tions obtained through empiri
al risk minimizationof this 
riterion.More pre
isely, given n i.i.d. 
opies (X1, Y1), . . . , (Xn, Yn) of (X, Y), we introdu
e theempiri
al 
ounterpart:

M̂n(s) $ M̂n(s, u0) = R̂n(s) +
n−

n
L̂n(s),22



with n− =
∑n

i=1 I{Yi = −1} and
R̂n(s) =

1

n(n − 1)

∑

i6=j

I{(s(Xi) − s(Xj))(Yi − Yj) > 0, s(Xi) ∧ s(Xj) � Q̂(s, 1 − u0)} .Note that R̂n(s) is expe
ted to be 
lose to the U-statisti
 of degree two
Rn(s) =

1

n(n − 1)

∑

i6=j

ks((Xi, Yi), (Xj, Yj)),with symmetri
 kernel
ks((x, y), (x 0, y 0)) = I{(s(x)− s(x 0))(y − y 0) > 0, s(x) ∧ s(x 0) � Q(s, 1 − u0)} .The statisti
 Rn(s) 
orresponds to an unbiased estimate of the lo
al ranking error

R(s, u0). The next result provides a standard error bound for the ex
ess risk of theempiri
al risk minimizer over a 
lass S of s
oring fun
tions:
ŝn = argmin

s2S M̂n(s) .

Proposition 11 Assume that 
onditions (i)-(ii) of Theorem 2 are ful�lled. Then,there exist 
onstants c1 and c2 su
h that, for any δ > 0, we have:
M(ŝn) − inf

s2S M(s) � c1

s
V

n
+ c2

s ln(1/δ)

nwith probability larger than 1 − δ.proof. (sket
h) The proof 
ombines the argument used in the proof of Theorem 2 withthe te
hniques used in establishing Proposition 2 in [4℄.
M(ŝn) − inf

s2S M(s) � 2

 sup
s2S ���R̂n(s) − Rn(s)

��� + sup
s2S |R(s) − Rn(s)|

!
+ 2(1 − p)

 sup
s2S ���L̂n(s) − Ln(s)

��� + sup
s2S |L(s) − Ln(s)|

!
+ 2

����n+

n
− p

���� .The middle term may be bounded by applying the result stated in Theorem 2, whilethe last one 
an be handled by using Bernstein's exponential inequality for an aver-age of Bernoulli random variables. By 
ombining Lemma 1 in [4℄ with the Cherno�method, we 
an deal with the U-pro
ess term sups2S |R(s) − Rn(s)|. Finally, the term23



sups2S ���R̂n(s) − Rn(s)
��� 
an also be 
ontrolled by repeating the argument in the proof ofTheorem 2. The only di�eren
e here is that we have to 
onsider the U-pro
ess termsup

(s,t)

������ 2

n(n − 1)

∑

i6=j

{Ks,t((Xi, Yi), (Xj, Yj)) − E [Ks,t((X, Y), (X 0, Y 0))]}������with
Ks,t((x, y), (x 0, y 0)) = I{(s(x) − s(x 0))(y − y 0) > 0, s(x) ∧ s(x 0) � t} .For deriving �rst-order results with su
h a pro
ess, we refer to the same type of argumentas used in [4℄.

Remark 10 (about the possibility of deriving fast rates) By 
he
king the proofsket
h, it turns out that sharper bounds may be a
hieved for the U-pro
ess term. In-deed, it is a simple variation of our previous work in [4℄ where we have used Hoe�ding'sde
omposition in order to grasp the deep stru
ture of the underlying statisti
. Here wewill need, in addition, 
ondition (iii) to hold for all u 2 (0, u0]. Indeed, if we lo
alize ourlow-noise assumption from [4℄, it takes the following form: there exist 
onstants α 2 (0, 1)and B > 0 su
h that, for all t � 0, we have8x 2 C�
u0

, P {|η(X) − η(x)| � t} � B t
α

1−α .It is easy to see that this is equivalent to 
ondition (iii) for all u 2 (0, u0]: there exist
onstants α 2 (0, 1) and B > 0 su
h that, for all t � 0, we have8u 2 (0, u0], P {|η(X) − Q(η, 1 − u)| � t} � B t
α

1−α .However, in the present formulation where p is assumed to be unknown, it looks like thisimprovement will be spoiled by the 'proportion term' whi
h will still be of the order of a
O(n−1/2).
Appendix - Proof of Proposition 6First, for all (s, v) 2 S � (0, 1) set

Vn(s, v) =
1

n

n∑

i=1

YiI{s(Xi) � Q(s, v)} − K(s, v) .We have the following de
omposition:8v 2 [0, 1] , K̂n(s, v) − K(s, v) = Vn(s, Fs Æ F̂−1
s (v)) + K(s, Fs Æ F̂−1

s (v)) − K(s, v) .24



We shall �rst prove that
Vn(s, Fs Æ F̂−1

s (v0)) = Vn(s, v0) + OP(n−1).We denote by A(s, ǫ) the event {���Fs Æ F̂−1
s (v0) − v0

��� < ǫ
}. On the event A(s, ǫ), we have:���Vn(s, Fs Æ F̂−1

s (v0)) − Vn(s, v0)
��� � sup

v : |v−v0|<ǫ

|Vn(s, v) − Vn(s, v0)| .We bound the right hand side for �xed ǫ, by making use of an argument from [34℄. First,we need to put things into the right format. Set:
Vn(s, v) − Vn(s, v0) =

1

n

n∑

i=1

(ui(s, v) − ui(s, v0)) ,where ui(s, v) = YiI{s(Xi) � Q(s, v) < 0} − E (YI{s(X)� Q(s, v)}) for s 2 S and v 2 (0, 1).We observe that
|ui(s, v) − ui(s, v0)| � di(v, v0),where

di(v, v0) = I{s(Xi) 2 [Q(s, v ∧ v0),Q(s, v ∨ v0)]} + |v − v0| .Denote by
d̂(v, v0) =

1

n

n∑

i=1

I{s(Xi) 2 [Q(s, v ∧ v0),Q(s, v ∨ v0)]} + |v − v0| .a distan
e over R. Set also:
R̂(ǫ) = sup

v : |v−v0 |<ǫ

d̂(v, v0) .and observe that
R̂(ǫ) =

1

n

n∑

i=1

I{s(Xi) 2 [Q(s, v0 − ǫ),Q(s, v0 + ǫ)]} + ǫ .We then have, by applying Lemma 8.5 from [34℄, for nt2/R̂2(ǫ) suÆ
iently large,P{ sup
v : |v−v0|�ǫ

|Vn(s, v) − Vn(s, v0)| � t

���� X1, . . . , Xn

} � C exp{

−
cnt2

R̂2(ǫ)

}

,for some positive 
onstants c and C. It remains to integrate out and, for this purpose, weintrodu
e the event: 8x > 0 , ∆(x) =
{
3ǫ − x � R̂(ǫ) � 3ǫ + x

}
.25



We then have: E  exp{

−
cnt2

R̂2(ǫ)

}! � exp{

−
cnt2

(3ǫ + x)2

}

+ P{
∆(x)

}
.Now, we have, by Bernstein's inequality:P{

∆(x)
}

= 2P{
1

n
B(n, 2ǫ) − 2ǫ > x

} � 2 exp{

−
3nx2

16ǫ

}where we have used the notation B(n, 2ǫ) for a binomial (n, 2ǫ) random variable. We 
antake x = O(t/
p

ǫ) and assume also x = o(ǫ) to get, for nt2/ǫ2 large enough,P{ sup
v : |v−v0|�ǫ

|Vn(s, v) − Vn(s, v0)| � t

} � C exp{

−
cnt2

ǫ2

}

,for some positive 
onstants c and C. This 
an be reformulated, by writing that thefollowing bound holds, with probability larger than 1 − δ/2,sup
v : |v−v0 |�ǫ

|Vn(s, v) − Vn(s, v0)| � ǫ

s log(2C/δ)

nc
.We re
all that, by the triangle inequality and Dvoretsky-Kiefer-Wolfowitz theorem, if wetake ǫ = c

q log(2/δ)
n

, we have P {A(s, ǫ)} � 1−δ/2. It follows that, with probability largerthan 1 − δ, we have, for some 
onstant κ:���Vn(s, Fs Æ F̂−1
s (v0)) − Vn(s, v0)

��� � κ

� log(1/δ)

n

�
,for any s 2 S. Now it remains to deal with the se
ond term K(s, Fs Æ F̂−1

s (v0)) − K(s, v0).Therefore, by the di�erentiability assumption, we have: 8s 2 S,sup
|v−v0|�δ

{K(s, v) − K(s, v0) − (v − v0)K
0(s, v0)} = O(δ2) , as δ → 0 .Sin
e |Fs Æ F̂−1

s (v0)) − v0| = OP(n−1/2), we get that
K(s, Fs Æ F̂−1

s (v0)) − K(s, v0) = K 0(s, v0)(Fs Æ F̂−1
s (v0) − v0) + OP(n−1) , as n → ∞ .Moreover, as

Fs Æ F̂−1
s (v0) − v0 = −(F̂s Æ F−1

s (v0) − v0) + OP(n−1) ,we �nally obtain that
K(s, Fs Æ F̂−1

s (v0)) − K(s, v0) = −K 0(s, v0)(F̂s Æ F−1
s (v0) − v0) + OP(n−1) .
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