8,960 research outputs found

    New Archive-Based Ant Colony Optimization Algorithms for Learning Predictive Rules from Data

    Get PDF
    Data mining is the process of extracting knowledge and patterns from data. Classification and Regression are among the major data mining tasks, where the goal is to predict a value of an attribute of interest for each data instance, given the values of a set of predictive attributes. Most classification and regression problems involve continuous, ordinal and categorical attributes. Currently Ant Colony Optimization (ACO) algorithms have focused on directly handling categorical attributes only; continuous attributes are transformed using a discretisation procedure in either a preprocessing stage or dynamically during the rule creation. The use of a discretisation procedure has several limitations: (i) it increases the computational runtime, since several candidates values need to evaluated; (ii) requires access to the entire attribute domain, which in some applications all data is not available; (iii) the values used to create discrete intervals are not optimised in combination with the values of other attributes. This thesis investigates the use of solution archive pheromone model, based on Ant Colony Optimization for mixed-variable (ACOMV) algorithm, to directly cope with all attribute types. Firstly, an archive-based ACO classification algorithm is presented, followed by an automatic design framework to generate new configuration of ACO algorithms. Then, we addressed the challenging problem of mining data streams, presenting a new ACO algorithm in combination with a hybrid pheromone model. Finally, the archive-based approach is extended to cope with regression problems. All algorithms presented are compared against well-known algorithms from the literature using publicly available data sets. Our results have been shown to improve the computational time while maintaining a competitive predictive performance

    MACOC: a medoid-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    Discovering Regression Rules with Ant Colony Optimization

    Get PDF
    The majority of Ant Colony Optimization (ACO) algorithms for data mining have dealt with classification or clustering problems. Regression remains an unexplored research area to the best of our knowledge. This paper proposes a new ACO algorithm that generates regression rules for data mining applications. The new algorithm combines components from an existing deterministic (greedy) separate and conquer algorithm—employing the same quality metrics and continuous attribute processing techniques—allowing a comparison of the two. The new algorithm has been shown to decrease the relative root mean square error when compared to the greedy algorithm. Additionally a different approach to handling continuous attributes was investigated showing further improvements were possible

    Training a Feed-forward Neural Network with Artificial Bee Colony Based Backpropagation Method

    Full text link
    Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feed forward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-free solution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristic algorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and this algorithm is implemented in several applications for an improved optimized outcome. The proposed method in this paper includes an improved artificial bee colony algorithm based back-propagation neural network training method for fast and improved convergence rate of the hybrid neural network learning method. The result is analysed with the genetic algorithm based back-propagation method, and it is another hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the light of efficiency of proposed method in terms of convergence speed and rate.Comment: 14 Pages, 11 figure

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms
    corecore