6 research outputs found

    Insights and Characterization of l1-norm Based Sparsity Learning of a Lexicographically Encoded Capacity Vector for the Choquet Integral

    Get PDF
    This thesis aims to simultaneously minimize function error and model complexity for data fusion via the Choquet integral (CI). The CI is a generator function, i.e., it is parametric and yields a wealth of aggregation operators based on the specifics of the underlying fuzzy measure. It is often the case that we desire to learn a fusion from data and the goal is to have the smallest possible sum of squared error between the trained model and a set of labels. However, we also desire to learn as “simple’’ of solutions as possible. Herein, L1-norm regularization of a lexicographically encoded capacity vector relative to the CI is explored. The impact of regularization is explored in terms of what capacities and aggregation operators it induces under different common and extreme scenarios. Synthetic experiments are provided in order to illustrate the propositions and concepts put forth

    Efficient Data Driven Multi Source Fusion

    Get PDF
    Data/information fusion is an integral component of many existing and emerging applications; e.g., remote sensing, smart cars, Internet of Things (IoT), and Big Data, to name a few. While fusion aims to achieve better results than what any one individual input can provide, often the challenge is to determine the underlying mathematics for aggregation suitable for an application. In this dissertation, I focus on the following three aspects of aggregation: (i) efficient data-driven learning and optimization, (ii) extensions and new aggregation methods, and (iii) feature and decision level fusion for machine learning with applications to signal and image processing. The Choquet integral (ChI), a powerful nonlinear aggregation operator, is a parametric way (with respect to the fuzzy measure (FM)) to generate a wealth of aggregation operators. The FM has 2N variables and N(2N − 1) constraints for N inputs. As a result, learning the ChI parameters from data quickly becomes impractical for most applications. Herein, I propose a scalable learning procedure (which is linear with respect to training sample size) for the ChI that identifies and optimizes only data-supported variables. As such, the computational complexity of the learning algorithm is proportional to the complexity of the solver used. This method also includes an imputation framework to obtain scalar values for data-unsupported (aka missing) variables and a compression algorithm (lossy or losselss) of the learned variables. I also propose a genetic algorithm (GA) to optimize the ChI for non-convex, multi-modal, and/or analytical objective functions. This algorithm introduces two operators that automatically preserve the constraints; therefore there is no need to explicitly enforce the constraints as is required by traditional GA algorithms. In addition, this algorithm provides an efficient representation of the search space with the minimal set of vertices. Furthermore, I study different strategies for extending the fuzzy integral for missing data and I propose a GOAL programming framework to aggregate inputs from heterogeneous sources for the ChI learning. Last, my work in remote sensing involves visual clustering based band group selection and Lp-norm multiple kernel learning based feature level fusion in hyperspectral image processing to enhance pixel level classification

    Insights and characterization of l1-norm based sparsity learning of a lexicographically encoded capacity vector for the Choquet integral

    No full text
    The aim of this paper is the simultaneous minimization of model error and model complexity for the Choquet integral. The Choquet integral is a generator function, that is, a parametric function that yields a wealth of aggregation operators based on the specifics of the underlying fuzzy measure (aka normal and monotonic capacity). It is often the case that we desire to learn an aggregation operator from data and the goal is to have the smallest possible sum of squared error (SSE) between the trained model and a set of labels or function values. However, we also desire to learn the “simplest” solution possible, viz., the model with the fewest number of inputs. Previous works focused on the use of l 1 -norm regularization of a lexicographically encoded capacity vector relative to the Choquet integral, describing how to carry out the procedure and demonstrating encouraging results. However, no characterization or insights into the capacity and integral were provided. Herein, we investigate the impact of l 1 -norm regularization of a lexicographically encoded capacity vector in terms of what capacities and aggregation operators it strives to induce in different scenarios. Ultimately, this provides insight into what the regularization is really doing and when to apply such a method. Synthetic experiments are performed to illustrate the remarks, propositions, and concepts put forth

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore