
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

1-1-2015 

Insights and Characterization of l1-norm Based Sparsity Learning Insights and Characterization of l1-norm Based Sparsity Learning 

of a Lexicographically Encoded Capacity Vector for the Choquet of a Lexicographically Encoded Capacity Vector for the Choquet 

Integral Integral 

Titilope Adeola Adeyeba 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Adeyeba, Titilope Adeola, "Insights and Characterization of l1-norm Based Sparsity Learning of a 
Lexicographically Encoded Capacity Vector for the Choquet Integral" (2015). Theses and Dissertations. 
2744. 
https://scholarsjunction.msstate.edu/td/2744 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2744?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Automated Template A: Created by James Nail 2011 V2.02 

Insights and characterization of l1-norm based sparsity learning of a lexicographically 

encoded capacity vector for the Choquet Integral 

 By 
 

Titilope Adeola Adeyeba 

A Thesis 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Master of Science 

in Electrical and Computer Engineering 
in the Department of Electrical and Computer Engineering 

Mississippi State, Mississippi 

May 2015 



Automated Template A: Created by James Nail 2011 V2.02 

Copyright by 
 

Titilope Adeola Adeyeba 
 

2015 



Automated Template A: Created by James Nail 2011 V2.02 

Insights and characterization of l1-norm based sparsity learning of a lexicographically 

encoded capacity vector for the Choquet Integral 

 
 
By 

 
Titilope Adeola Adeyeba 

 
 
Approved: 
 
 

________________________________________ 
Derek T. Anderson  
(Major Professor) 

 
 

________________________________________ 
Nicholas H. Younan  

(Committee Member) 
 
 

________________________________________ 
Sherif Abdelwahed  

(Committee Member) 
 
 

_______________________________________ 
James E. Fowler  

(Graduate Coordinator) 
 
 

_______________________________________ 
Jason Keith  

Interim Dean 
Bagley College of Engineering 

 

 

 

 



Automated Template A: Created by James Nail 2011 V2.02 

Name: Titilope Adeola Adeyeba 
 
Date of Degree: May 8, 2015 
 
Institution: Mississippi State University 
 
Major Field: Electrical and Computer Engineering 
 
Major Professor: Dr. Derek T. Anderson 
 
Title of Study: Insights and characterization of l1-norm based sparsity learning of a 

lexicographically encoded capacity vector for the Choquet Integral 
 
Pages in Study: 43 
 
Candidate for Degree of Master of Science 

This thesis aims to simultaneously minimize function error and model complexity 

for data fusion via the Choquet integral (CI). The CI is a generator function, i.e., it is 

parametric and yields a wealth of aggregation operators based on the specifics of the 

underlying fuzzy measure. It is often the case that we desire to learn a fusion from data 

and the goal is to have the smallest possible sum of squared error between the trained 

model and a set of labels. However, we also desire to learn as “simple’’ of solutions as 

possible. Herein, L1-norm regularization of a lexicographically encoded capacity vector 

relative to the CI is explored. The impact of regularization is explored in terms of what 

capacities and aggregation operators it induces under different common and extreme 

scenarios. Synthetic experiments are provided in order to illustrate the propositions and 

concepts put forth. 
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CHAPTER I 

INTRODUCTION 

Overview 

In many fields, multiple sources (e.g., sensors, humans or algorithms) are needed 

in order to achieve some goal. The data (or information) from these sources can be large, 

potentially heterogeneous and fusion often changes from one application to another. 

Data/information aggregation is the study of intelligent ways to combine inputs to reach a 

single result that is hopefully more accurate or reliable than an answer obtained from just 

one input alone. Aggregation is not fusion, meaning fusion is something much more than 

just aggregation. However, fusion is an extremely hard concept to define and it is often 

very illusive. Aggregation on the other hand is a more specific topic and something that 

can be better defined and a science built around. One of the extreme challenges of fusion 

is discovering functions to carry out aggregation and subsequently identifying ways to 

tailor these functions to different problems and application domains. Therefore, it is of 

great interest to rigorously study different mathematics to learn and tailor aggregation 

based on information such as training labels and a desire to have as simple of solutions as 

possible for task at hand due to reasons such as financial and/or computational concerns. 

Many authors have defined aggregation differently based on the specifics of their 

respective fields. In [1], Grabisch defines it as the fusion of several inputs values into a 

single output. In [2], L.Hu et al. describe it as a tool that can be used in kernel theory to 



Automated Template A: Created by James Nail 2011 V2.02 

2 

provide an elegant way to map multi-source heterogeneous data into a single combined 

homogeneous (implicit) space for pattern recognition (feature level fusion). In [3], Joint 

Directors Laboratory (JDL) define fusion as “data fusion is the process of combining data 

to refine state estimates and predictions”. Other definitions and models exist as well, e.g., 

Dasarthy’s functional model [4], the TRIP model [5] and the Omnibus model [6]. The 

point is, many have tried to define fusion and have come up short due to being overly 

general or overly specific. Regardless of its lack of sufficient definition, aggregation and 

fusion are basic concerns for all kinds of knowledge based systems like signal/image 

processing, decision making, pattern recognition and machine learning. This impacts a 

number of fields such as multi-criteria decision making [7], sensor fusion [7], decision-

making [7] and data mining [7]. The mechanics of fusion can, and do change, e.g., the 

form of rules, neural networks and variation in terms of underlying theory such as 

probability, possibility and/or evidence theory. 

Common examples of algorithms for fusion include Bayes-based techniques and 

the fuzzy integral (FI). In this work, the Choquet integral (CI) (a specific type of FI) is 

used [8, 9, 10, 11]. The CI is a well-known aggregation operator that is a function 

generator, i.e., it is a parametric function that yields a wealth of aggregation operators 

based on the particulars of the underlying fuzzy measure (FM), aka monotone and normal 

capacity [8, 9, 10, 11]. One of its major advantages is that it models and uses rich 

information about the various interactions across different inputs. 

The uses of the FI cannot be over stated. It has been used in different domains and 

problems such as image processing [12], multi-criteria decision making [13], skeletal 

age-at-death estimation in forensic anthropology [14], multi-source (e.g., feature, 
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algorithm, sensor, confidence) fusion [15,16], used as a distance metric [17], 

classification [18], and pattern recognition [19, 20]. The FI is most often used to combine 

the (often objective) support in some hypothesis, e.g., algorithm outputs or confidences, 

from multiple inputs with the (often subjective) worth of the different subsets of sources, 

encoded in a FM. However, it is also of great utility for combining evidence as well as 

signal data/information. Most applications rely on the real-valued integrand and capacity, 

however numerous extension exist for higher-order uncertainty, e.g., unrestricted type-1 

fuzzy set-valued integrands [21] and type-2 valued integrands [22].  

In [23], a technique was put forth to learn the FI, specifically the CI from data. 

That work is unique because it attempts to also minimize model complexity. However, 

that article focused solely on the mechanics of carrying out the task in the context of 

quadratic programming (QP), not the true meaning and characterization under different 

scenarios. Herein, the goal of this thesis is to formally study and characterize the 

proposed methods so as to know what it is really doing in different cases. This aids in 

understanding what complexity means relative to the CI, when one should use such a 

procedure and when it breaks down and new research is needed. Figure 1 is a high-level 

illustration of this thesis and sub-sections are labeled relative to the different concepts.  
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Figure 1 High level overview of thesis. 
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Figure 1 illustrates the major components of this thesis. First, data or information 

is generated from a source (human, sensor or algorithm). Next, each input provides some 

data/information for a task at hand. This data/information is fused using the CI (Section 

2.2.3.2). However, the “worth” of different combinations is studied in terms of FM theory 

(Section 2.2.1). As I also seek low complexity models (FMs), Section 2.2.6 details what 

low complexity means and how that is measured on the FM. Last, the focus of this thesis 

is to learn the FM relative to the CI. Section 3 outlines a learning algorithm.   

Challenges 

The focus of this thesis is the use of regularization to define complexity for a FM 

and algorithms to use it to learn the FM from data. Specifically, my focus is the formal 

identification and analysis of different important conditions, in the form of remarks and 

propositions, regarding what happens when this procedure is used to seek low complexity 

solutions in conjunction with a criteria like the sum of squared error (SSE). There are a 

number of challenges that this thesis had to address, however the following three are the 

major challenges that had to be overcome.  

 How to measure the complexity of a FM: A capacity is a set-valued 

function with    values for   inputs. It is not trivial to summarize this 

(exponentially large) structure. Regularization is sought in order to 

summarize the information content of a capacity. 

 Analysis and insights: If we measure the complexity of a capacity using 

regularization, then (at least) two questions arise. What impact does 

regularization under different scenarios have in terms of measure theory? 

Also, what is the impact of regularization under different scenarios in 
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terms of aggregation operators that the CI induces? This thesis studies 

these two questions in great depth. 

 Recommendations: After analysis and insights are discovered, we must 

transition into understanding how the procedure operates under different 

conditions. This thesis tries to inform a reader about when to seek 

regularization and under what conditions is it not optimal (or does not 

produce a result that I otherwise would desire). 

Contributions 

Numerous works have been put forth for FM learning relative to the FI (the 

subject of Section 2.1.2). However, only one other recent work [24] (a conference 

proceeding) explored the minimization of SSE and model complexity simultaneously. 

They also took the approach of regularization and used a Gibbs sampler. Specifically, no 

rigor or analysis was provided in that work. The other related work is from Anderson et 

al. [23], in which a   -norm regularizer was introduced in conjunction with QP.  In this 

thesis, I go beyond these two preliminary works and formally study this subject in greater 

depth. Specifically, my contributions to this topic include the following.   

 Characterization: the formal study, in terms of both remarks and 

propositions, of common and extreme scenarios encountered in    -norm 

regularization of a lexicographically encoded capacity vector for the CI. I 

study the cases of when an exact capacity is required and when irrelevant 

and low quality inputs exist. 
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 Insights and recommendations: this thesis also sheds light on what types 

of measures are discovered under what conditions, what aggregation 

operators are unearthed, and ultimately under what scenarios does this 

type of approach make sense to use and how can one decide when to use it 

or detect undesirable conditions and avoid them.  

Publications  

I submitted the following conference paper to FUZZ-IEEE 2015. 

 T. A. Adeyeba, D. T. Anderson and T. C. Havens “Insights and 

Characterization of   -Norm Based Sparsity Learning of a 

Lexicographically Encoded Capacity Vector for the Choquet Integral” 

FUZZ-IEEE, submitted Feb, 2015. 

I am also a co-author of the following journal article (currently under review). 

   D. T. Anderson, A. Zare, T. C. Havens, T. A. Adeyeba, “Information 

Theoretic Regularization of the Choquet Fuzzy Integral”, IEEE Trans. 

Fuzzy Systems, submitted Jan, 2015. 

Thesis Organization   

In Chapter II, important concepts are defined and reviewed. In section III, the new 

methods put forth are discussed. Table I is the notation used throughout this thesis. 
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CHAPTER II 

BACKGROUND 

Background Work 

In this background section, I review different related works. First, I discuss the 

basic theories and applications of the FI. Next, I review methods for learning the FM. It 

should be mentioned up front that the FI has been applied to numerous applications. As a 

result, the nature of the data/information can (and does) vary. Inputs to the FI range from 

low-level signal information to multi-spectral information to features and decisions. 

There are also many FI works focused on fusing uncertain data/information, e.g., 

interval-valued, set-valued (probability or possibility distributions), etc. The versatility of 

the FI is one of the benefits of this fusion philosophy. As a result, I have studied core 

topics in FM and FI theory and as applications to date have shown, their applicability of 

what I have found to different signal and image processing and computer vision tasks is 

already well established.  

Theories and applications of the fuzzy integral 

In addition to what was discussed in the introduction section, here are some 

examples of how the FI has been applied in different domains. In [8], Sugeno showed 

that the Sugeno integral can be applied to fuzzy inference. A fuzzy inference system 

(FIS) uses fuzzy set theory to map inputs (e.g., features for classification) to outputs (or 
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classes in classification) [25]. FIS is useful for tasks like prediction even in light of 

knowledge of the underlying physical process [26]. In light of the FIS adopting the use of 

fuzzy sets to map inputs, I proceed next to the importance of integration of information 

from a variety of sources. In [11], Keller et al. developed a new method of evidence 

fusion based on the FI that combines objective evidence (fuzzy membership functions) 

with the subjective worth of the sources. One of the properties of this method is its 

applicability to information fusion in computer vision. Decision making is a note-worthy 

process that has benefitted from the FI. In [27] Grabisch studied the properties of FMs 

and integrals inside the framework of multicriteria decision making (MCDM). He 

compared the FI to other aggregation operators. Other tools like the weighted sum, min, 

max and ordered weighted average (OWA) are too easily interpretable on the semantic 

point of view and also no one has been able to represent them in a way that is easily 

understandable. The FI is void of these drawbacks and therefore relatively works better 

for decision making.  

Even fields outside the engineering community have not been left out in the good 

of the FI. In [14], Anderson et al. introduced a novel method to estimate adult skeletal 

age-at-death estimation using the Sugeno FI for forensic science in Anthropology. They 

did this by taking a multi-hypothesis testing approach to make the classical FI yield a 

fuzzy set-valued result based on interval-valued sources of information (aging methods). 

It was shown that quantitative results for summarizing the FS and comparing the single 

decision to a known age-at-death. They generated linguistic descriptions to establish 

domain standardization for assisting forensic and biological anthropologists.  
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Many researches today thrive on measuring distances (proximity measures and 

metrics) for different purposes. The FI has been a useful tool in this domain. Gader et al. 

proposed a method of how to apply the CI to this end. In [28], they showed that the 

discrete CI defines a metric if the corresponding measure satisfies certain monotonicity 

constraints, thereby completely characterizing the class of measures that induce a metric 

with the CI. In addition, the kernel-trick is a well-known way to map data from lower 

dimensions into higher dimensions in order to measure the similarity (inner product) of 

the data elements without ever explicitly performing the mapping. This is an important 

concept in pattern recognition (clustering and classification). The FI has also been a 

useful tool in this area. In [2] L.Hu et al. proposed the use of the FI for multiple kernel 

aggregation (FI-MK). After studying various FI formulations, they concluded that the CI 

for matrix wise sorting works whereas the SI does not work for per-element and matrix-

wise sorting.  

Recently, a number of data-driven fuzzy measure (FM) learning techniques have 

been introduced for the FI. Examples include, QP and evolutionary optimization. In [23], 

Anderson and Price explore a regularization approach to learning the FM for the Choquet 

FI. They put forth a   --norm regularization approach to reduce the complexity of a 

learned capacity in combination with minimization of SSE. As mentioned earlier, this 

thesis is a theoretical further investigation of the preliminary work put forth in [23]. 

Now that I have discussed a few of the different applications and theories of the 

FI, learning the FM for the FI will be reviewed. Specifically, I discuss past works that are 

related to this thesis. 
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Different Methods for Learning the Fuzzy Measure 

The FM determines the behavior (what specific aggregation operator is induced) 

of the FI. There are different types of measures e.g., the S-Decomposable FM, the 

Sugeno λ-FM [8], and Grabisch’s k-additive FM [29]. Also, there are different 

approaches that exist to learn the FM from data. For example, Grabisch introduced the 

use of the QP in [9]. QP involves optimizing (minimizing or maximizing) an objective 

function subject to bounds, linear equality, and inequality constraints. Grabisch has 

shown that the measure for each class can be learned using the QP. This approach is 

useful but it requires a least squares objective function to derive a QP. The problem with 

the QP is that it is computationally prohibitive with large data sets and non-robust in light 

of noisy data. Other approaches include the use of gradient descent [30] and penalty and 

reward [31]. Keller et al. talked about the chain of uncertainties that develop from using 

the FI in a decision making environment. To overcome such uncertainties, they presented 

a neuron model for using the FI in multiclass decision making. They also created a way 

to train the fuzzy densities (measure on just the individual inputs, not any combinations 

of inputs) from labeled data. This training algorithm uses a reward and punishment 

scheme to increase the reliability of the decision making process. Furthermore, Gader 

used a Gibbs sampler to learn the entire FM [24]. He presented a novel algorithm for 

learning FMs for the CI. His method uses a hierarchical model that implements a sparsity 

promotion algorithm through a Gibbs sampler. In [21], Anderson et al. introduced a 

genetic algorithm (GA) for higher-order (type-1) fuzzy set-valued FMs relative to (type-1 

valued) integrands. In [15], Anderson et al. put forth a new method to automatically 

acquire, and subsequently aggregate, measures of specificity and agreement based on the 
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notion of crowd sourcing. That specific approach is of benefit when the worth of the 

individuals is not known but has to be extracted from data based on agreement (conflict). 

In the next section I review basic concepts and mathematics in FM and FI theory. 

Review of Fuzzy Measures and Fuzzy Integrals 

Fuzzy Measure (aka Monotone and Normal Capacity) 

Measures are a fundamental concept in mathematics, especially as it relates to 

integrals with respect to a measure. A key property of FMs is that they require the 

property of monotonicity with respect to set inclusion, a far weaker property than the 

additive property of a probability measure. Specifically, the FM, a normal and monotone 

capacity, is a set-valued function,             where               is our various 

data or information source, that has the following properties. 

P1.  (Boundary condition)         (and often        ); 

P2.   (Monotonicity) If                           . 

Note, there is a third condition in the case of infinite sets but it is a moot point for 

finite sets (which are of interest here because I always work with a finite set of inputs in 

real-world applications). As already stated, the capacity has    values, actually       

due to the two boundary conditions, that must be specified or learned. As the number of 

values is exponential in N, it is not typically the case that one specifies the FM. Figure 2 

is an illustration of the lattice induced by the FM. 
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Figure 2 Lattice depicting a FM for N=3.  

Notes: The first layer consists of the singletons. The second layer is the tuples and the 
third layer is all inputs. 

A common way of acquiring the FM is to provide the value of the different 

singletons (which are often called the densities), i.e.,       , then use a method like the 

Sugeno λ-fuzzy measure [1]; which has the following additional property, 

 If         and         (1) 

                                   , (2) 

where    is found from just the densities by solving Sugeno’s famous polynomial [1]. 

Other note-worthy examples of measures are S-Decomposable FMs, Belief and 

Plausibility theory, Grabisch’s k-additive FM [29]. For example, Let   be a t-conorm 

(generalization of an union operator). An FM   is called an S-decomposable measure if 

                (3) 

and for all     such that          
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                       (4) 

One famous example is the possibility measure, a W* decomposable measure, where W* 

is the Lukasiewicz t-conorm.  

Aggregation Operators 

Before diving into the CI, I first review some basic concepts related to 

aggregation. First, there are numerous different aggregation operators in the literature. A 

selective set has been identified and are discussed below.  

The aggregation of N numbers is typically a function                 Note, I 

have restricted my analysis to the interval [0,1] here for notation simplicity and 

convention (as many decision makers provide numbers between 0 and 1 in support of a 

hypothesis or I am concerned with probabilities in [0,1]). However, without loss of 

generality,   can (and has been) used to combine data/information in many ranges, e.g., 

      . Applied to values             function   produces a new number    i.e., 

                . (5) 

 

Some important properties include the following. 

 Continuity: i.e.,   is a continuous function. 

 Boundedness: i.e.,                    . For example, a common 

case is                                                . 

 Idempotency: i.e.,             , then                . 

 Monotonicy: i.e., for               and              , if       for all 

i, then                             . 
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The following sub-sections are examples, not a comprehensive list, of different 

commonly encountered aggregator operators. 

Averaging operators:  

Commonly encountered, but important nonetheless, averaging operators include 

the following.      

    Generalized means:  

               =    
    

      
 

 
 
  
 

  (6) 

for      and      and for          

     Geometric mean:  

                                  
 

 
  (7) 

  Harmonic mean:  

                  
 

 

  
 
 

  
   

 

  

 (8) 

 Arithmetic mean:  

                 
 

 
           ) (9) 

Ordered Weighted Averaging Operations (OWA) 

For a (weighting) vector  = (       ), where          and    
 
   =1, 

consider a permutation on                      such that      ,    . An OWA is 

                                 . (10) 

Common OWAs include the maximum, i.e.,             , the minimum, i.e., 
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            , the mean,                   , trimmed mean, median, soft 

maximum and minimum, etc. 

Now that I have briefly described different types of aggregation operators, I move 

onto the FI. The FI is a parametric function, with respect to the FM, which often 

reproduces common aggregator operators such as the ones listed above. 

Fuzzy Integral 

Choquet Integral with Respect to Training Data 

Let a set of training data, T, be 

                      (11) 

where               is a set of objects and    are the labels. The discrete CI for a 

finite X and object    is 

                  
 
                                

    (12) 

for                          and permutation   such that 

     ;              ;         (13) 

The FM and CI are not trivial to understand. For example, I am interested in 

determining what the “worth’’ is of a single input or what the “interaction’’ strength is 

between two (or more) inputs. In order to summarize complex capacity behaviors, 

information theoretic indices have been put forth. In the next sub-section, I explore one 

such index that helps us ultimately better understand the impact of ℓ1-norm regularization 

of lexicographically encoded measure vectors.  

(

1) 

) 
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Fuzzy Measure Information Theoretic Index 

The Shapley index of   are 

                                        (14) 

where   

        
                 

    
  (15) 

Note       denotes all subsets from   that do not include input  . The Shapley 

value of   is a vector                     such that       
 
   =1. The Shapley 

values can be interpreted as the average amount of “contribution’’ of source   across all 

coalitions. Basically, Equation 14 is the weighted sum (positive-valued) of the numeric 

differences between consecutive steps (layers) in the measure (a lattice).   

In many cases, our goal is to seek and eliminate irrelevant or low quality inputs to 

find less complex solutions. The Shapley values give us a notion of the worth of each 

input. However, I really need an index that provides a scalar number that is   when there 

is no complexity and a   when we have the most complex model (FM). I introduce the 

following index as a measure of model complexity, 

                
 
                (16) 

Note, this function, Shannon’s entropy of the Shapley values, is 0 for the case of 

all inputs required, i.e.,          , and 1 when only a single input is of value 1 and all 

other values are 0. 

Now that we know what the Shapley does, i.e. identify the worth of each input, 

we are pointed towards what inputs can be “safely” eliminated. In the next subsection, I 

(

3) 
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review the un-regularized way to learn the CI based on QP. This gives us an idea of what 

is going on when all inputs are included in the measure.  

Un-Regularized Learning of Choquet Integral   

Let the SSE between the CI and T defined with respect to capacity g, be 

                      
 

  
     (17) 

Equation (17) can be expanded as follows; 

           
       

 
 
    (18) 

where 

     

 

 
 
 

 
                       

 
 
 

             
  

 
 
 

, (19) 

which is of size           The function differences, i.e.,             

             , corresponds to their respective   locations in  , the lexicographically 

encoded measure vector, 

                       
   (20) 

which is of size         . Expanding Equation 17 further, 

                
         

     
   

        (21) 

                
  

     

           
  

                 
 
         (22) 

(

5) 

(

6) 
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In addition, the capacity has           monotonicity constraints, which can be 

represented in a compact linear form.  

        , (23) 

where 

   

 

 
 
 
 

  
 

  
 

 
    
 

 
 
          
 

 

 
 
 
 

  (24) 

where    is a vector representation of constraint 1,            . For         one 

recovers        . Thus, C is nothing more than a matrix of          values, 

    

         
 
 
 

 
 
 

 
 
 

 
 
 

  
 
 

 
 
 

 
 
 

 
 
  

   (25) 

which is of size                   . In addition,   is a vector of all  s. Note, in 

some works,   is of size       , as         and          Therefore, vector   is 

typically a vector of  s and the last   entries are of value   . I used the        

notation as it simplifies (notationally) the subsequent Shapley mathematics. Given  , the 

search for   reduces to a QP of the form 

     
 

 
            (26) 

subject to 

                            (27) 
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Note, Equation 21 and 26 d ffer only in the fact that       and our inequality 

need only be multiplied by   . Now what happens when regularization term is included? 

The next subsection answers this question. 

Optimization for   -Norm Regularization Term  

There has been a lot of work on solving the problem of convex unconstrained 

optimization in areas of machine learning, statistics and signal processing. In general, the 

problem of interest is one of  

       
 

 
       

        
   (28) 

where                 is a      matrix,   is a non-negative parameter and       is 

the   -norm of  . The inclusion of the regularizer term works to produce solutions of 

  that also have a small      . When    , this drives the elements of   to   (promoting 

sparsity in the solution). Another common choice is the case of    , which counts the 

number of non-zero values. The basic idea behind regularization is to seek solutions that 

have the fewest number of parameters as possible, it is often used for parameter selection, 

but it can also be used to help seek simpler solutions and address overfitting. It has been 

shown that the   -norm versus   -norm leads to sparser models that can often be (more) 

easily interpreted [28]. In general, the   -norm does not promote sparsity. Also, higher   

values for the   -norm tend to force the coefficients to actually be more similar to each 

other (to jointly minimize the 2-norm). In [33], it was shown that a weighted iterative 

approach to   -norm regularization can be taken to find even more sparse solutions (in 

which a different    is used for each regularization term). In [23], Anderson et al.  used 

(

8) 
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LASSO to solve measure learning relative to the Choquet integral and the  -norm of a 

lexicographically encoded measure vector. We discussed the Tibshirani Method [34] and 

the Non-Negative Variable Method (NNVM) [23]. They elected to use NNVM as it is a 

more efficient method. In summary, in [23] we put forth a procedure to optimize 

Equation 17 for regularization-based measure learning, 

                 
          

     
   

          
    (29) 

subject to 

                            (30) 

Specifically, the objective function in this minimization is convex and the constraints 

define a convex set (giving rise to a convex optimization task). Two simple, but not 

necessarily scalable, optimization solutions were proposed by Tibshirani [35]. Numerous 

solutions exist to solve this problem, e.g., active set method and local linearization [36, 

37], iterated ridge regression [38], grafting [39], shooting [40], etc. 

One solution (aka Tibshirani’s Method) is to convert the regularization term into a 

set of inequalities. One linear inequality is created for each combination of the signs of 

elements in  , i.e.,  

              

               (31) 

              

where   is inversely proportional to  . For a vector of length l, there is therefore    linear 

inequalities. Again, the above is simple to understand, but not that scalable. A second, 
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and more efficient, solution (aka the Non- Negative Variable Method [26]) involves 

doubling the number of variables in  , i.e.,    
    

      
    

     where        

  
 . There are      constraints. 

      
      

     
  (32) 

    
    

     

 

   

 

Another well-known formulation (basis pursuit criterion) is 

           
  (33) 

subject to 

               (34) 

a linear program subject to quadratic inequalities. In some applications   can often be 

easier to specify (versus  ). 
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CHAPTER III 

INSIGHTS AND CHARACTERIZATION 

In this section, I dig deeper and investigate the theoretical impact of ℓ -norm 

regularization of lexicographically encoded capacity vectors. Specifically, I ask a number 

of questions to help gauge what is going on with respect to measure theory and the CI (in 

terms of what aggregations are induced by a learned capacity). A range of different 

scenarios encountered in practice are explored to help the reader better understand when 

and why to apply such a technique. These insights and characterizations are important 

and unique to the CI. That is, they differ from regularization of support vector machines, 

sparsity learning for machine learning, signal processing and statistics.  

CASE 1: Exact Capacity Required  

The idea behind Case 1 is that the solution at hand requires a specific capacity, 

and therefore specific aggregation operator with respect to the CI, and any other answer 

leads to an increase in SSE. This scenario is addressed on two fronts: (Case 1.A) the 

general case of any capacity and (Case 1.B) the specific case of an OWA [13]. I am 

interested in studying how regularization responds to such a scenario. Ideally, 

regularization would be kind in such a condition and it would not make us deviate away 

from the desired solution. I would like for regularization to help with factors such as 

removing low quality and/or irrelevant inputs and with overfitting, but I do not want 
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regularization to otherwise hinder other commonly encountered and natural scenarios 

(such as the desire to learn an OWA, an extremely common aggregation operator 

encountered in practice).  

Before I dive into the following two sub-sections, I must first review the OWA. 

An OWA is defined as  

   
                     

 
    (35) 

where       is a permutation on the inputs   such that               and 

 =(       )t is a vector of (positive valued) weights that sum to 1. In terms of the 

Choquet integral [43], an OWA is simply a capacity with the following property: 

           for        when        . (36) 

Common OWAs include; maximum,             , minimum,   

          , mean,                   , trimmed mean, median, soft maximum 

and minimum, etc. The point is, the OWA is an extremely common set of operators used 

in practice and valid operators that may be learned for a given task in the context of CI 

learning. Next, I review the general case of regularization for a specific capacity. 

CASE 1.A: Regularization Impact on Capacities 

We start our analysis by considering Proposition 1.    

Proposition 1.  

Let    be the minimum SSE solution for the task at hand. If any   -norm 

regularization of a lexicographically encoded capacity vector is used, i.e.,    , then the 

result is an increase in the SSE.   
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Proof.  

Trivial. Any ℓ -norm regularization, i.e.,    , drives one or more of the      

(for       ) terms to 0, meaning it lessens one or more capacity values moving us 

away from the minimum SSE solution,   .                                                                       ■ 

While simple, Proposition 1 tells us that any use of regularization works to 

promote sparsity and it is not selective in the respect that if a specific capacity is required 

it will try to keep driving capacity values towards 0 regardless. The next few remarks 

give us insight into what regularization is actually doing. 

Remark 1.  

As   → 0,      reduces to     , i.e., I am minimizing SSE (when  =0, Equation 

29  is Equation 21).             

Remark 2.  

As      the regularizer term in      dominates the objective value, resulting in 

a capacity vector of 0s (except       ). As      the regularizer term dwarfs the 

SSE term. The result therefore has a unique minimum with respect to the regularizer: 

           s.t.      What is interesting (but well-known by some) is this informs 

us that optimization is driven by   and ultimately the regularizer and the SSE term are not 

complementary but competing.  

Remark 3.  

The result of ℓ -norm regularization as     is the minimum operator. As 

shown in [41], a CI for a capacity of all  s, except       , is a minimum operator with 

weights           . Remark 2 shows us that as     this is what the regularizer 
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promotes. However, I note that it is not just at     that I get this behavior. As 

Experiment 1 will show, this is the case when the regularizer term is relatively large in 

comparison to the SSE term. Figure 1(f) shows that we get essentially get all  s at the 

simpler case of       .           

Remark 4.  

Remark 1 described what aggregation operator is being promoted as   becomes 

relatively large (minimum operator). In a measure theoretic respect, this is a state of total 

ignorance, as we have        yet            s.t.    . While this seems 

extreme, it is rationalized as such. In lue of knowledge about the SSE, we have no truly 

helpful information to exploit. Therefore, the solution is to take a pessimistic route. It is 

interesting to note that the extreme case is an OWA (a minimum operator). 

CASE 1.B: Ordered Weighted Average 

As already discussed, the aim of regularization is to seek less complex, but still 

accurate, models. However, if a problem truly requires all inputs and if the required 

aggregation operator is an OWA, which means that all inputs are equally important, then 

by definition I have the highest possible model complexity (in terms of the Shannon 

entropy of the Shapley values). The problem I am faced with is this: I want to acquire 

minimum SSE, but we cannot simultaneously obtain it and minimum model complexity. 

The result is that any   -norm regularization gives sub-optimal performance. However, if 

I am learning the capacity from data and do not know that the answer requires an OWA, 

then the take away is that the use of any ℓ -norm regularization negatively impacts 

performance and I am not privileged to know this ahead of time. This is a downfall of   -
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norm regularization of a lexicographically encoded capacity vector. Proposition 1 already 

informed us about this behavior (in the general case). It told us that any use of 

regularization has the impact of working to promote sparsity and it is not selective in the 

respect that if a specific capacity is required then it will try to keep driving those values 

towards zero regardless. While I am discussing the familiar scenario of OWAs in Case 

1.B, other well-known fuzzy measures exhibit this property on occasion, e.g., those 

derived from the densities in which the densities have equal value, including the Sugeno 

 -FM and the S-Decomposable measure. 

Experiment 1 

In this first experiment, I explore the case of three inputs with 500 randomly 

selected data points. I use an OWA with weights (0.5, 0.5, 0)t to generate the labels. I 

vary the   -norm regularizer from 0 to 10 in step sizes of 0.001 (and an extreme case of 

       ). Some of these values are selected for visualization in Figure 2. Figure 3 

shows plots of SSE against the regularizer value and Shannon entropy of the Shapley. 
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Figure 3 The effect of different   values  

Notes: (a)        , (b)       ,        , (d)    ,         , (f)       . The 
x-axis is lexicographically ordered capacity terms and y-axis is capacity values. 
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Figure 4 Plot showing relationship between  the    , the Shapley entropy &  .  

Notes: (a) Plot showing relationship between   and the Shapley entropy. (b) Plot showing 
relationship between   and the SSE. (c) Plot showing relationship between the     and 
Shapley entropy. Last, (d) plot showing relationship between the    , the Shapley 
entropy and  . 

In Figure 3, we see that with little-to-no regularization we obtain the target OWA, 

(0.5, 0.5, 0)t. However, as   grows the capacity drives towards all zeros (which is still an 

OWA). Figure 4 shows that as the regularizer increases, the SSE also rises. Furthermore, 

we see that as the regularizer increases, the Shapley entropy remains constant (as at each 

step I effectively have an OWA which is by definition the most complex model in the 

Shannon error of the Shapley index). Next, we review an index of similarity to an OWA.  

Definition 1  

[42]. The distance of   to an OWA is     

      
 

   
    
   
     (37) 

(

b) 
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  (38) 

    
           

      
 
             

        
  (39) 

where layer k in the measure is given by     , i.e.,  

                  , 

                                 , (40) 

                  , 

for N = 3. The value           . It is up to the user to determine what value of   to use 

or how to determine   automatically (as OWA-like is a fuzzy concept).   

Remark 5.  

If the answer to some problem is an OWA, then any ℓ -norm regularization 

pushes us away from such a goal. In order to address this challenge, I propose the 

following. First, learn the capacity without regularization. After this, measure the degree 

to which the resultant capacity is an OWA. If the degree is below a threshold,  , then 

declare the capacity too much like an OWA and do not use regularization. However, if 

the degree is above   and the user wants to still seek a simpler model, then regularization 

can still be used.  

CASE 2: Irrelevant and Low Quality Inputs  

First, I introduce notation to help us compactly express the following remarks. Let 

  be the set of relevant inputs (specifically a set of indices), let   be the set of irrelevant 

inputs, and let   be the set of low quality inputs. Input   is referred to as low quality if 

            , where                  and         . Thus, low quality inputs 
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have Shapley values that are relatively small. Input   is irrelevant if        ; thus, the 

input has no benefit towards answering the question.  

In this sub-section, I discuss the effect of ℓ -norm regularization on capacities that 

represent sets of sources that contain irrelevant and low quality inputs. The focus here, 

versus [23], is not experimentation but rigorous analysis (characterization and insights).  

Remark 6.  

When there are       irrelevant inputs, then       , where    , and 

           ; proof follows directly from Equation 14. This remark is relatively 

simple to understand but it needs stating. It informs us about the conditions that must 

occur for        . Furthermore, it tells us that if I have any irrelevant inputs, then   -

norm regularization is once again not intelligent enough to identify such a condition and 

respond kindly. It instead continues to drive terms toward zero, which may not be the 

intended goal but it is what that technique is mathematically designed to do.  

Remark 7.  

I use a procedure similar to that in Remark 5. A QP can be run without 

regularization to identify inputs that have a Shapley value below a threshold. I remove 

these inputs and go back seeking a regularization solution. 

Next, I explore the impact and behavior of regularization in the case of low 

quality inputs. These are inputs that provide relatively little benefit towards solving a 

task. They have some contribution toward achieving minimum SSE, however, if they are 

removed (excluded as an input), then SSE changes only slightly. Hence, we can often 

achieve a “good enough” SSE and a lower model complexity by removing these low 
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quality inputs. The point is this, lower model complexity can give rise to a solution that 

requires less memory storage, less computational resources, less financial cost (e.g., 

fewer sensors), etc. In many situations we are willing to sacrifice some SSE for lower 

model complexity. I start this exploration with Proposition 2, which enables us to better 

understand how low quality inputs can be addressed.   

Proposition 2.  

As             dominates Equation 29 and forces the capacity to     , except 

      , resulting in a Shapley value of       
 

 
,           . 

Proof.  

From Equation 14, the Shapley values,        are simply the sum of differences 

in the capacity. Specifically, it is a weighted sum of differences between all sets in which 

  is an element,       , and the sets excluding  ,     . The regularization term is 

minimized when all capacity terms are 0, except for        (Remark 2). All Shapley 

value differences are 0 except one term,   

                                                        , 

  (41) 
           . 

Thus, each Shapley value is  

                 

    
 
                   

  
 

  (42) 
  

      

  
 

 

 
  

which concludes the proof.                                                           ■ 
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Proposition 2 tells us the following story. The ℓ -norm regularizer gives rise to a 

model with all inputs of equal worth, i.e., Shapley values of    . This is confusing as 

one would likely assume that a simpler model would be one such that           

         . The ℓ -norm regularization on the lexicographically coded capacity vector 

does not produce the intuitive low-complexity model that we often desire.  

Empirical results tell a different story; the use of this regularization scheme 

appears to result in lower complexity models. This is confusing, i.e., the ability to 

identify results with fewer number of inputs when the regularizer is actually striving for 

the most complex model. It turns out that it sort of does this, but it is a difficult behavior 

to characterize. When one uses an adequately valued  , it gives rise to interesting results 

due to the interplay between the SSE and regularizer term. Meaning, when  =0, we do 

not perform any regularization; we just minimize SSE. However, as   starts to grow in 

value the optimization procedure begins to attack the lower quality inputs first, as they 

contribute less to the task. It drives their values down first, resulting in a lower 

complexity model with respect to the Shapley. However, as   continues to grow, the 

regularizer term becomes relatively large and drives the capacity towards a measure of 

ignorance—the minimum operator—and uniformly equal Shapley values. Thus, 

particular   selections seem to result in the desired behavior of reducing model 

complexity. However, there is a point of diminishing return. As   is increased to seek 

even simpler models—again with respect to the entropy of the Shapley values—the 

method starts to prefer the minimum. This is a unique behavior specific to CI learning. 

Overall, we can conclude the following with respect to low quality inputs. ℓ -

norm regularization helps remove the influence of these low quality inputs; however, 
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there is no guarantee that the procedure will kill them before reducing the influence of 

relevant inputs. However, the regularizer eventually results in the learning of a minimum 

operator and ignorance measure, which is a complex measure in the entropic respect. 

Experiment 2 illustrates the stated behavior for the case of irrelevant and low quality 

inputs.       

Experiment 2 

In Experiment 2, I use three inputs and 500 randomly selected training points. The 

reason for once again picking only three inputs is so we can easily visualize the algorithm 

output (as the number of capacity terms grows exponentially). Input 1 is given a worth of 

0.85 and is therefore required to solve the task at hand. Furthermore, input 2 is a low 

quality input and has a worth of 0.15. Last, we let input 3 have a worth of 0; it is 

irrelevant to the task at hand. A possibility measure is used, thus the value at each 2- and 

3-tuple is the max of the densities with respect to the elements in that set. We expect a 

quality learner to ignore the third input and we would like to see regularization drive the 

worth of the second input before attacking the first. In addition, we expect to observe a 

rise in SSE as we force out input two. Figures 3 and 4 illustrate the experiment. 
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Figure 5 The lexicographically ordered FM variables learned by the QP subject to 
  -norm regularization.  

Notes: (a)        , (b)    ,       , (d)    ,         , (f)       . The x-
axis is lexicographically ordered capacity variables and the y-axis is the capacity value. 
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Figure 6 Plot showing relationship between  the    , the Shapley entropy &   

Notes: (a) Plot showing relationship between   and the Shapley entropy. (b) Plot showing 
relationship between   and the SSE. (c) Plot showing relationship between the     and 
Shapley entropy. Last, (d) plot showing relationship between    , the Shapley entropy 
and  . 

Figures 6 and 7 tell the following story. First, we find the target possibility 

measure for a value  =0.001. However, inputs two and three are still included and make 

for a more complex model. As we increase  , we eliminate the third then second input. 

We also see that eventually we obtain a result of all zeros (the regularizer seeks a 

minimum operator). This experiment reinforces the propositions and remarks made 

earlier.   

(

d) 

(

c) 
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CHAPTER IV 

CONCLUSION AND FUTURE WORK 

In this thesis, I focused on the simultaneous minimization of function error and 

model complexity for the CI. I explored the impact of   -norm regularization with 

respect to a lexicographically encoded capacity vector in terms of what specific measures 

and aggregation operators it strives to induce. I put forth a number of propositions and 

remarks that showed what happens and methods to help address and remedy problems 

with such an approach. Overall, it is shown that such a method tries to achieve a measure 

of ignorance, a minimum operator and equal Shapley values. Furthermore, the true 

benefit of such an approach appears to be the removal of low quality inputs, which occurs 

at particular values of a regularizer, but it is not entirely the case as the regularizer term is 

increased. 

This thesis helped to motivate an exploration of a more intelligent way to use an 

improved regularizer, versus the   -norm regularization with respect to a 

lexicographically encoded capacity vector [44]. This new research is aimed at 

intentionally forcing out low quality inputs and it is well-suited for relevant and irrelevant 

inputs. This work has been documented in a paper titled “Information Theoretic 

Regularization of the Choquet Fuzzy Integral” that is currently under review now in the 

IEEE Transactions on Fuzzy Systems (submitted in Jan, 2015). We put forth two 
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algorithms, one based on minimization of the entropy of the Shapley values through the 

Gini index and another method based on direct minimization of the   -norm of the 

Shapley values. The Gini index is a measure of entropy and we consider it on the Shapley 

index values, 

             
 
         (43) 

Note that         iff there is a single Shapley value equal to   (thus all other 

values are  ). Also, the maximum of       occurs when all Shapley values are equal. 

We also show that this formula can be further simplified (conceptually) and one can 

achieve enhanced sparsity through reweighted   -norm regularization of the Shapley 

values themselves (which gives rise to a useful iterative regularization procedure). The 

second approach is based on minimizing the SSE with weighted   -norm of Shapley 

values and different regularization weights [44]. The SSE weighted   -norm of Shapley 

values and different regularization weights is 

     
            

  
                   

  u, (44) 

The goal is 

      
                       

 
   (45) 

subject to  

                     (46) 

In [44] we showed outstanding progress towards arguably more reasonably low 

complexity models that a human/expert might prefer.   
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In the future, I plan to investigate the impact of noise and over fitting on both of 

the methodologies outlined in this thesis. Specifically, I would like to characterize these 

types of phenomena and see how the ideas put forth react (theoretically versus 

experimentally). Furthermore, my next step will be to take the theory developed in this 

thesis and apply it to different signal/image processing problems and data sets. However, 

we now know how these tools behave in general, so application is just a demonstration 

for a problem domain. Nevertheless, it will be interesting to explore different creative 

ways of applying it to different tasks such as signal, spectrum, algorithm and decision 

level fusion. 
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