29 research outputs found

    Finite-region stabilization via dynamic output feedback for 2-D Roesser models

    Get PDF
    Finite-region stability (FRS), a generalization of finite-time stability, has been used to analyze the transient behavior of discrete two-dimensional (2-D) systems. In this paper, we consider the problem of FRS for discrete 2-D Roesser models via dynamic output feedback. First, a sufficient condition is given to design the dynamic output feedback controller with a state feedback-observer structure, which ensures the closed-loop system FRS. Then, this condition is reducible to a condition that is solvable by linear matrix inequalities. Finally, viable experimental results are demonstrated by an illustrative example

    On the Control of Distributed Parameter Systems using a Multidimensional Systems Setting

    No full text
    The unique characteristic of a repetitive process is a series of sweeps, termed passes, through a set of dynamics defined over a finite duration with resetting before the start of the each new one. On each pass an output, termed the pass profile is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This leads to the possibility that the output, i.e. the sequence of pass profiles, will contain oscillations which increase in amplitude in the pass-to-pass direction. Such behavior cannot be controlled by standard linear systems approach and instead they must be treated as a multidimensional system, i.e. information propagation in more than one independent direction. Physical examples of such processes include long-wall coal cutting and metal rolling. In this paper, stability analysis and control systems design algorithms are developed for a model where a plane, or rectangle, of information is propagated in the passto- pass direction. The possible use of these in the control of distributed parameter systems is then described using a fourthorder wavefront equation

    Convolutional Neural Networks as 2-D systems

    Full text link
    This paper introduces a novel representation of convolutional Neural Networks (CNNs) in terms of 2-D dynamical systems. To this end, the usual description of convolutional layers with convolution kernels, i.e., the impulse responses of linear filters, is realized in state space as a linear time-invariant 2-D system. The overall convolutional Neural Network composed of convolutional layers and nonlinear activation functions is then viewed as a 2-D version of a Lur'e system, i.e., a linear dynamical system interconnected with static nonlinear components. One benefit of this 2-D Lur'e system perspective on CNNs is that we can use robust control theory much more efficiently for Lipschitz constant estimation than previously possible

    Finite-region stability of 2-D singular Roesser systems with directional delays

    Get PDF
    In this paper, the problem of finite-region stability is studied for a class of two-dimensional (2-D) singular systems described by using the Roesser model with directional delays. Based on the regularity, we first decompose the underlying singular 2-D systems into fast and slow subsystems corresponding to dynamic and algebraic parts. Then, with the Lyapunov-like 2-D functional method, we construct a weighted 2-D functional candidate and utilize zero-type free matrix equations to derive delay-dependent stability conditions in terms of linear matrix inequalities (LMIs). More specifically, the derived conditions ensure that all state trajectories of the system do not exceed a prescribed threshold over a pre-specified finite region of time for any initial state sequences when energy-norms of dynamic parts do not exceed given bounds

    Stability and Stabilization of the Wave Model.

    Get PDF
    The stability properties of 2-D systems are an important aspect of the design of acoustic, seismic, image and sonar signal processors. This research utilizes the Wave model format to transport 1-D stability techniques to the 2-D setting. The research studies stability through multistep growth bounds on the Wave state. The use of Lyapunov theory is also considered. The research considers also the problem of stabilizing a 2-D system using state and/or output information feedback to interior and/or boundary controls. Finally the problem of observer design for 2-D systems is considered, with the new stability criteria being used to assure observer/system convergence. New results based on symmetrizability are also discussed. The principal results are illustrated by a number of examples. The results are also interpreted in the context of other contemporary local state models

    Dissipative stability theory for linear repetitive processes with application in iterative learning control

    Get PDF
    Abstract-This paper develops a new set of necessary and sufficient conditions for the stability of linear repetitive processes, based on a dissipative setting for analysis. These conditions reduce the problem of determining whether a linear repetitive process is stable or not to that of checking for the existence of a solution to a set of linear matrix inequalities (LMIs). Testing the resulting conditions only requires computations with matrices whose entries are constant in comparison to alternatives where frequency response computations are required

    Dissipative stability theory for linear repetitive processes with application in iterative learning control

    Get PDF
    Abstract-This paper develops a new set of necessary and sufficient conditions for the stability of linear repetitive processes, based on a dissipative setting for analysis. These conditions reduce the problem of determining whether a linear repetitive process is stable or not to that of checking for the existence of a solution to a set of linear matrix inequalities (LMIs). Testing the resulting conditions only requires computations with matrices whose entries are constant in comparison to alternatives where frequency response computations are required

    Geometric Fault Detection and Isolation of Infinite Dimensional Systems

    Get PDF
    A broad class of dynamical systems from chemical processes to flexible mechanical structures, heat transfer and compression processes in gas turbine engines are represented by a set of partial differential equations (PDE). These systems are known as infinite dimensional (Inf-D) systems. Most of Inf-D systems, including PDEs and time-delayed systems can be represented by a differential equation in an appropriate Hilbert space. These Hilbert spaces are essentially Inf-D vector spaces, and therefore, they are utilized to represent Inf-D dynamical systems. Inf-D systems have been investigated by invoking two schemes, namely approximate and exact methods. Both approaches extend the control theory of ordinary differential equation (ODE) systems to Inf-D systems, however by utilizing two different methodologies. In the former approach, one needs to first approximate the original Inf-D system by an ODE system (e.g. by using finite element or finite difference methods) and then apply the established control theory of ODEs to the approximated model. On the other hand, in the exact approach, one investigates the Inf-D system without using any approximation. In other words, one first represents the system as an Inf-D system and then investigates it in the corresponding Inf-D Hilbert space by extending and generalizing the available results of finite-dimensional (Fin-D) control theory. It is well-known that one of the challenging issues in control theory is development of algorithms such that the controlled system can maintain the required performance even in presence of faults. In the literature, this property is known as fault tolerant control. The fault detection and isolation (FDI) analysis is the first step in order to achieve this goal. For Inf-D systems, the currently available results on the FDI problem are quite limited and restricted. This thesis is mainly concerned with the FDI problem of the linear Inf-D systems by using both approximate and exact approaches based on the geometric control theory of Fin-D and Inf-D systems. This thesis addresses this problem by developing a geometric FDI framework for Inf-D systems. Moreover, we implement and demonstrate a methodology for applying our results to mathematical models of a heat transfer and a two-component reaction-diffusion processes. In this thesis, we first investigate the development of an FDI scheme for discrete-time multi-dimensional (nD) systems that represent approximate models for Inf-D systems. The basic invariant subspaces including unobservable and unobservability subspaces of one-dimensional (1D) systems are extended to nD models. Sufficient conditions for solvability of the FDI problem are provided, where an LMI-based approach is also derived for the observer design. The capability of our proposed FDI methodology is demonstrated through numerical simulation results to an approximation of a hyperbolic partial differential equation system of a heat exchanger that is represented as a two-dimensional (2D) system. In the second part, an FDI methodology for the Riesz spectral (RS) system is investigated. RS systems represent a large class of parabolic and hyperbolic PDE in Inf-D systems framework. This part is mainly concerned with the equivalence of different types of invariant subspaces as defined for RS systems. Necessary and sufficient conditions for solvability of the FDI problem are developed. Moreover, for a subclass of RS systems, we first provide algorithms (for computing the invariant subspaces) that converge in a finite and known number of steps and then derive the necessary and sufficient conditions for solvability of the FDI problem. Finally, by generalizing the results that are developed for RS systems necessary and sufficient conditions for solvability of the FDI problem in a general Inf-D system are derived. Particularly, we first address invariant subspaces of Fin-D systems from a new point of view by invoking resolvent operators. This approach enables one to extend the previous Fin-D results to Inf-D systems. Particularly, necessary and sufficient conditions for equivalence of various types of conditioned and controlled invariant subspaces of Inf-D systems are obtained. Duality properties of Inf-D systems are then investigated. By introducing unobservability subspaces for Inf-D systems the FDI problem is formally formulated, and necessary and sufficient conditions for solvability of the FDI problem are provided
    corecore