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ABSTRACT

Geometric Fault Detection and Isolation of Infinite Dimensional Systems

Amir Baniamerian, Ph.D.

Concordia Unviersity, 2016

A broad class of dynamical systems from chemical processes to flexible mechan-
ical structures, heat transfer and compression processes in gas turbine engines are
represented by a set of partial differential equations (PDE). These systems are known
as infinite dimensional (Inf-D) systems. Most of Inf-D systems, including PDEs and
time-delayed systems can be represented by a differential equation in an appropriate
Hilbert space. These Hilbert spaces are essentially Inf-D vector spaces, and there-
fore, they are utilized to represent Inf-D dynamical systems. Inf-D systems have
been investigated by invoking two schemes, namely approximate and exact meth-
ods. Both approaches extend the control theory of ordinary differential equation
(ODE) systems to Inf-D systems, however by utilizing two different methodologies.
In the former approach, one needs to first approximate the original Inf-D system by
an ODE system (e.g. by using finite element or finite difference methods) and then
apply the established control theory of ODEs to the approximated model. On the
other hand, in the exact approach, one investigates the Inf-D system without using
any approximation. In other words, one first represents the system as an Inf-D sys-
tem and then investigates it in the corresponding Inf-D Hilbert space by extending
and generalizing the available results of finite-dimensional (Fin-D) control theory.

It is well-known that one of the challenging issues in control theory is devel-
opment of algorithms such that the controlled system can maintain the required
performance even in presence of faults. In the literature, this property is known as

fault tolerant control. The fault detection and isolation (FDI) analysis is the first
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step in order to achieve this goal. For Inf-D systems, the currently available results
on the FDI problem are quite limited and restricted. This thesis is mainly concerned
with the FDI problem of the linear Inf-D systems by using both approximate and
exact approaches based on the geometric control theory of Fin-D and Inf-D sys-
tems. This thesis addresses this problem by developing a geometric FDI framework
for Inf-D systems. Moreover, we implement and demonstrate a methodology for ap-
plying our results to mathematical models of a heat transfer and a two-component
reaction-diffusion processes.

In this thesis, we first investigate the development of an FDI scheme for
discrete-time multi-dimensional (nD) systems that represent approximate models
for Inf-D systems. The basic invariant subspaces including unobservable and un-
observability subspaces of one-dimensional (1D) systems are extended to nD mod-
els. Sufficient conditions for solvability of the FDI problem are provided, where an
LMI-based approach is also derived for the observer design. The capability of our
proposed FDI methodology is demonstrated through numerical simulation results
to an approximation of a hyperbolic partial differential equation system of a heat
exchanger that is represented as a two-dimensional (2D) system.

In the second part, an FDI methodology for the Riesz spectral (RS) system is
investigated. RS systems represent a large class of parabolic and hyperbolic PDE
in Inf-D systems framework. This part is mainly concerned with the equivalence
of different types of invariant subspaces as defined for RS systems. Necessary and
sufficient conditions for solvability of the FDI problem are developed. Moreover, for
a subclass of RS systems, we first provide algorithms (for computing the invariant
subspaces) that converge in a finite and known number of steps and then derive the
necessary and sufficient conditions for solvability of the FDI problem.

Finally, by generalizing the results that are developed for RS systems necessary
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and sufficient conditions for solvability of the FDI problem in a general Inf-D sys-
tem are derived. Particularly, we first address invariant subspaces of Fin-D systems
from a new point of view by invoking resolvent operators. This approach enables
one to extend the previous Fin-D results to Inf-D systems. Particularly, necessary
and sufficient conditions for equivalence of various types of conditioned and con-
trolled invariant subspaces of Inf-D systems are obtained. Duality properties of
Inf-D systems are then investigated. By introducing unobservability subspaces for
Inf-D systems the FDI problem is formally formulated, and necessary and sufficient

conditions for solvability of the FDI problem are provided.
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Chapter 1

Introduction

The fault detection and isolation (FDI) problem has attracted a considerable re-
search interest during the past few decades [1-5]. Advancements in the control
theory have resulted in development of various robust control algorithms for sys-
tems that are subject to disturbances and modeling uncertainties. Consequently,
as a result of the introduced robustness of these controllers the task of early fault
detection has now become even more challenging, and more advanced FDI methods
should be developed and considered. During the past three decades, significant ef-
forts have been made to address control of infinite dimensional (Inf-D) systems [6-9].
However, due to the complexity of Inf-D systems, research on FDI problem of these
systems is quite limited and developing an FDI methodology for Inf-D systems is

still a very active area of research.

1.1 Fault Detection and Isolation Problem

Nowadays, control algorithms need to be as reliable as possible. For example, con-
sider a gas turbine power plant where one needs a highly accurate and reliable
control algorithm to ensure that the generated power has an exact frequency (i.e.,

60 Hz). Since shutting down a generator can be costly due to its effect on all power



networks [1], another important issue is that one needs to minimize the maintenance
time. One of the main measures that defines reliability is performance of control
algorithms in presence of faults. In other words, the system can still be operational
for a certain set of faults and the maintenance action is not urgent. In other words,
one of the challenging issues in control theory is the development of algorithms such
that the controlled system can maintain the required performance even in presence
of faults. In the literature, this property is known as fault tolerant control (FTC)
(refer to [1,10] and references therein).

FTC algorithms are categorized into passive and active schemes. In the former
approach, the corresponding controller is designed such that it is robust to certain
set of faults. Whereas, in the active FTC, the controller is reconfigured such that
the effects of faults can be rectified as much as possible [1,10,11]. For handling
faulty scenarios, a passive FTC scheme yields a conservative result due to nature of
the design framework. To overcome this drawback, active FTC methods have been
proposed in the literature [1,11].

Specifically, an active FTC approach is the methodology that is mainly con-
cerned with reconfiguring the controllers based on the available fault information
[10]. A generic FTC is depicted in Figure 1.1, where u(t) and y(t) denote input
and output signals of the plant, respectively. As can be observed, the FDI unit
plays a crucial role in an active FTC module and is a cornerstone for active FTC
system. Indeed, The FDI analysis is the first step in order to achieve the FTC
goal. Moreover, the FDI unit can provide required information for condition-based
maintenance that results in a significant maintenance cost reduction [1,10].

The main goal of an FDI unit is to generate a set of signals, so-called residual
signals, such that these signals provide as much information as possible regarding
the fault signals [10, 12]. More precisely, by using a residual signal the decision

making unit should be able to:
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Figure 1.1: General fault-tolerant control methodology.

1. Detect the occurrence of a fault.

2. Determine the location (i.e. which actuator or sensor) the fault has occurred

in, which known as the fault isolation.

Therefore, the main part of the FDI problem can be summarized as that of residual

generation that is subsequently addressed.

1.1.1 Residual Generation

A residual is a signal that is sensitive to certain set of faults and decoupled from the
other inputs of the plant and faults [5,10] . In this thesis, we derive residuals that
are decoupled from all but one fault, and consequently the decision making unit
(refer to Figure 1.1) is restricted to a threshold comparison. Figure 1.2 depicts the
schematic of the residual generators where the following logic is used in the decision
making unit,

if r; > th; = f; has occured. (1.1)

with th; is the threshold corresponding to r;. Thresholds can be determined by uti-

lizing Monte Carlo simulations [13], and this issue is formally addressed in Chapters
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Figure 1.2: General residual generation part, where u(t) and y(t) denote input and
output signals of the plant, respectively.

It should be pointed out that one of most prominent issues related to the resid-
ual signals is the residual generator realization. For example, a residual generator
can be an observer or a parameter estimator. The type of realization identifies the
FDI approach (refer to Figure 1.3). However, before reviewing the approaches for

FDI, we provide the motivation of the research pursued in this thesis.

1.2 Motivation

There are certain classes of engineering process that cannot be modeled as finite
dimensional (Fin-D) systems. For example, heat distribution of a heat exchanger
and voltage substations in a distributed transmission system are generally modeled
by a set of partial differential equations (PDEs) and time-delay systems, respec-
tively. Indeed, a large class of dynamical systems from the compression process in

gas turbine engines to reaction processes in solid-fuel rockets are mathematically



represented as Inf-D dynamical systems. A given Inf-D dynamical system is usually
modeled by a differential equation in an appropriate Hilbert space [14, Chapter 1],
which is an Inf-D vector space.

Although, certain set of Inf-D systems can be approximated by Fin-D systems,
the approximation error may result in a significant performance degradation. For
example, consider a neutral time-delay system that models a traffic network, where
the delay is not negligible and cannot be assumed to be zero. This system cannot be
represented by a Fin-D dynamical system that is governed by an ordinary differential
equation (ODE) with no delays. Therefore, development of control theory for Inf-D
systems is an emerging field of interest and research.

The mathematical control theory of Inf-D systems has seen a considerable
progress during the past four decades [6-9]. Particularly, PDE systems have been
investigated by using two schemes that are called approximate and exact methods.
Both approaches extend the control theory of ODE systems to Inf-D systems, how-
ever by invoking two different methodologies. By using the approximation approach,
by using finite element or finite difference methods one needs first to approximate
the original PDE by an ODE system and then apply the established control the-
ory of ODE systems to the approximated model [15-17]. On the other hand, the
exact approach investigates the PDE system without any approximation [14, 18].
In other words, one first represents the PDE system as an Inf-D system and then
investigates this system in the corresponding Inf-D Hilbert space by extending the
available results of Fin-D control theory. This approach is also applicable to other
distributed parameter systems such as time-delayed system (for more detail, refer
to [14, chapters 1 and 2]).

In contrast to Fin-D systems, research on the FDI problem for Inf-D systems
is quite limited due to the complicated structure of these systems. Recently, some

efforts have been made to address the FDI problem for PDEs [19-21]. In this thesis,



we address the FDI problem of Inf-D systems, as follows

e How and under what conditions can one detect a fault in the system? In other
words, by referring to Figure 1.2 under what conditions one can generate the

residual signal r; such that it is sensitive to f;?

e Under what conditions can one isolate the detected fault? More precisely,
under what conditions one can generate the residual signal r; that is decoupled

from all the faults but f; (refer to the condition (1.1)).

In order to answer these questions, one needs to derive the necessary and sufficient
conditions for the solvability of the FDI problem for Inf-D systems. For Fin-D
systems, the geometric FDI approach is one of the main approaches that addresses
the solvability of the FDI problem by using observers. The main motivation for this

thesis can therefore be summarized in the following question:

e How and under what conditions can one extend the existing geometric theories
on the FDI of Fin-D systems to Inf-D ones?
As reviewed subsequently, the FDI problem of Fin-D systems has extensively
been addressed in the literature. Therefore, one approach to tackle the FDI
problem of Inf-D systems is to generalize the existence theory to Inf-D sys-
tems. This thesis tries to investigate the FDI problem of Inf-D systems by
using the available geometric theories on the Fin-D ones as a guide. More
precisely, we generalize the results by using two main methodologies; namely
the approximate and the exact methods. As stated earlier, in the former one
we first approximate the Inf-D system and then apply the FDI theory of Fin-D
system to the approximated model with certain modifications (refer to Chap-
ter 3 for more details), whereas in the exact approach we first formulate the
Inf-D system as a differential equation in an appropriate Inf-D vector space

and then the FDI problem is addressed (refer to Chapters 4 and 5 for more
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details).

1.3 Literature Review

In this section, we first review the literature on FDI approaches for Fin-D systems

followed by a description of the FDI problem of Inf-D systems.

1.3.1 FDI Methods for Fin-D Systems

In the literature, there are various methods that have been developed to tackle the
FDI problem of Fin-D systems. These approaches can be categorized into two main
schemes known as data driven and model-based methodologies [11,22,23]. Figure

1.3 depicts these two schemes.

Data Driven-based Approaches

In the case that the mathematical model of the system is not available or it is very
complicated, data driven-based approaches provide the sufficient infrastructure to
address the FDI problem [24,25]. Patton et al. proposed a neural network multiple
model approach in [26]. The FDI problem was addressed by using feed-forward
neural networks in [27]. A dynamic neural network is successfully applied to the gas
turbines for performing fault diagnosis in [28,29]. In [30], a Bayesian neural network
was used to optimize the wavelet transform of input-output signals, and then this
transformation is used for FDI.

A pattern recognition approach that is based on the fuzzy logic was also applied
to the FDI problem in [31]. In [32] a framework for the fault diagnosis problem
by using an expert system was developed. Fault diagnosis methods based on the
qualitative trend analysis were reviewed in [23]. Moreover, in the literature, the

statistical analysis-based methods are also utilized for the FDI purpose. A nonlinear
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principle component analysis (PCA) and a recursive PCA were used in [33] and [34],
respectively. Also, independent component analysis was applied to the FDI problem
in [35,36]. In [37,38], support vector machines (SVM) were utilized for performing
health monitoring purposes.

It should be pointed out that since data-driven approaches are model indepen-
dent, they can be applied to Fin-D and with certain modification to Inf-D systems.
For example refer to [39] where a singular value decomposition was utilized for

identification purpose that represents the approximated model of an Inf-D system.

Model-based FDI Approaches

In the literature, model-based FDI includes variety of techniques such as particle
filters [40], observer-based [41], and parity equations [42]. The parity equation
approaches use a set of functions that are so-called parity functions to extract the
fault information from the measured input-output data [2,42,43]. However, these
approaches are sensitive to measurement noise [44]. Observer-based methods that
are established tools for model-based fault diagnosis include various approaches such
as multiple model [45-47], high-gain observer [48], sliding mode observer [49], and
geometric methods [3,41,50].

Due to uncertainties in modeling complex systems, a perfect mathematical
model is generally not feasible. Neglected dynamics, noise, and disturbances are
examples of model uncertainty [51,52]. Since in model-based approaches the model
is utilized for designing detection filters, to minimize the effect of the uncertainties
that is decreasing the accuracy of the FDI algorithm and increasing the false alarms,
one needs to apply robust FDI algorithms. The FDI of linear systems using robust
filters in presence of disturbances were considered in [53-55]. Also, a robust FDI
approach for a Lipschitz nonlinear system was provided in [56]. Other important

FDI approaches include parameter estimation techniques [2], particle filtering [40,57]



and maximum likelihood estimation techniques [58,59].

Hybrid FDI Approaches

The drawbacks of model-based and data-driven based methods can be addressed
by applying a hybrid method of fault diagnosis by integrating the model-based and
data-driven based approaches [12]. The hybrid method enables one to detect and iso-
late faults in presence of different uncertainties due to the modeling errors, parameter
variations, unknown external disturbances and measurement noise. In [60], a parity
based approach is integrated with a neural network to increase the efficiency of the
fault detection. For a nonlinear system, an observer-based approach is modified by
using the SVM for the fault isolation purposes. In [61], a hybrid FDI approach was
developed, where a data-driven approach is combined with wavelet transformation

analysis. Morevoer, various types of hybrid approaches were reviewed in [62].

Geometric FDI Methods

Since this thesis is specifically concerned with geometric approaches for the FDI
problem, in this subsection we review the geometric FDI approach. The geometric
FDI approach [3] is a model-based method, where necessary and sufficient condi-
tions for solvability of the FDI problem are obtained based on geometric concepts
such as invariant subspaces. For the FDI problem of Fin-D systems, the geometric
approach developed by Massoumnia [3] has provided a valuable tool for studying the
FDI problem not only for basic linear dynamical systems but also for more general
cases such as Markovian jump systems [63,64], time-delay systems [65,66], linear
parameter varying (LPV) systems [67,68], linear periodic systems [69] and linear
impulsive systems [70]. Moreover, the geometric approach has been also extended
to affine nonlinear systems in [4,71]. Furthermore, hybrid geometric FDI approaches

for linear and nonlinear systems have been provided in [72] and [73], where a set of
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residual generators are equipped with a discrete-event based system fault diagnoser
to solve the FDI problem.

The geometric approach is based on invariant subspaces, such as unobservable
and conditioned invariant subspaces that are formally defined in the next Chap-
ters. These subspaces can fully characterize the behavior of the investigated linear
system [74]. The geometric approach also has its application in the control of distur-
bance decoupling problem [74]. Therefore, development of this framework for Inf-D
systems allows us to have not only a novel tool for the FDI purpose of Inf-D systems

but also a better understanding of the nature and behavior of these systems.

1.3.2 The FDI Approach for Inf-D Systems

As stated earlier, from the system theory point of view, there are two main ap-
proaches to investigate Inf-D systems, namely approximate and exact methods. In
approximate approaches, that are applicable to PDE systems, the original PDE is
approximated by using a finite element [15,20,21] or a finite difference method [75]
and then this approximated model is used for designing a controller or FDI unit.
However, in exact approaches the system is reformulated as a linear system in an
appropriate Inf-D Hilbert space and a controller or FDI unit is designed for this
abstract differential equation [14,76]. In this thesis, we cover both approaches by
providing necessary and sufficient conditions for solvability of the FDI problem, in

each case.

The FDI Approach Based on the Approximated Model

Two approaches to approximate a PDE system are the finite element (particularly
Galerkin) [77] approach and the finite difference method [78]. Finite element-based
approaches are applicable to dissipative parabolic PDE systems, for which the eigen-

spectrum of the spatial differential operators can be partitioned into a finite subset
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containing all unstable eigenvalues (and a finite subset of stable eigenvalues) and an
infinite subset of stable eigenvalues such that the gap between these two sets is suffi-
ciently large. If such a partition exists, a Fin-D ODE could approximate the original
PDE [77] which can be employed for designing the FDI filters [15, Assumption 1].
This assumption enables one to apply the singular perturbation theory to approx-
imate the model and derive sufficient condition for solvability of the FDI problem.
In [20,21], it was assumed that the number of actuators (/) is equal to the number
of Fin-D states (n). For the situation (I < n), the approach that is presented in [20]
(Remark 6) is not applicable since the introduced transformation is not invertible.
To solve this problem, in [15] we utilized a nonlinear geometric FDI approach as
described in [4]. It was shown that the FDI system that is designed based on the
approximated Fin-D system can detect almost all the faults injected in the original
system. However, since this thesis is mainly concerned with linear Inf-D system, the
results of [15] are not presented here.

In this thesis, a finite difference approach is used to approximate the original

PDE system. The main reason lies on the following observ