308 research outputs found

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Deep learning of curvature features for shape completion

    Get PDF
    The paper presents a novel solution to the issue of incomplete regions in 3D meshes obtained through digitization. Traditional methods for estimating the surface of missing geometry and topology often yield unrealistic outcomes for intricate surfaces. To overcome this limitation, the paper proposes a neural network-based approach that generates points in areas where geometric information is lacking. The method employs 2D inpainting techniques on color images obtained from the original mesh parameterization and curvature values. The network used in this approach can reconstruct the curvature image, which then serves as a reference for generating a polygonal surface that closely resembles the predicted one. The paper’s experiments show that the proposed method effectively fills complex holes in 3D surfaces with a high degree of naturalness and detail. This paper improves the previous work in terms of a more in-depth explanation of the different stages of the approach as well as an extended results section with exhaustive experiments.Spanish Ministry of Science and Technology under projects PID2020-119478GB-I00TED2021-132702B-C21MCIN/AEI/10.13039/501100 011033European Regional Development Fund (ERDF

    Deep spatial and tonal data optimisation for homogeneous diffusion inpainting

    Get PDF
    Difusion-based inpainting can reconstruct missing image areas with high quality from sparse data, provided that their location and their values are well optimised. This is particularly useful for applications such as image compression, where the original image is known. Selecting the known data constitutes a challenging optimisation problem, that has so far been only investigated with model-based approaches. So far, these methods require a choice between either high quality or high speed since qualitatively convincing algorithms rely on many time-consuming inpaintings. We propose the frst neural network architecture that allows fast optimisation of pixel positions and pixel values for homogeneous difusion inpainting. During training, we combine two optimisation networks with a neural network-based surrogate solver for difusion inpainting. This novel concept allows us to perform backpropagation based on inpainting results that approximate the solution of the inpainting equation. Without the need for a single inpainting during test time, our deep optimisation accelerates data selection by more than four orders of magnitude compared to common model-based approaches. This provides real-time performance with high quality results

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    FocalDreamer: Text-driven 3D Editing via Focal-fusion Assembly

    Full text link
    While text-3D editing has made significant strides in leveraging score distillation sampling, emerging approaches still fall short in delivering separable, precise and consistent outcomes that are vital to content creation. In response, we introduce FocalDreamer, a framework that merges base shape with editable parts according to text prompts for fine-grained editing within desired regions. Specifically, equipped with geometry union and dual-path rendering, FocalDreamer assembles independent 3D parts into a complete object, tailored for convenient instance reuse and part-wise control. We propose geometric focal loss and style consistency regularization, which encourage focal fusion and congruent overall appearance. Furthermore, FocalDreamer generates high-fidelity geometry and PBR textures which are compatible with widely-used graphics engines. Extensive experiments have highlighted the superior editing capabilities of FocalDreamer in both quantitative and qualitative evaluations.Comment: Project website: https://focaldreamer.github.i

    Integrating View Conditions for Image Synthesis

    Full text link
    In the field of image processing, applying intricate semantic modifications within existing images remains an enduring challenge. This paper introduces a pioneering framework that integrates viewpoint information to enhance the control of image editing tasks. By surveying existing object editing methodologies, we distill three essential criteria, consistency, controllability, and harmony, that should be met for an image editing method. In contrast to previous approaches, our method takes the lead in satisfying all three requirements for addressing the challenge of image synthesis. Through comprehensive experiments, encompassing both quantitative assessments and qualitative comparisons with contemporary state-of-the-art methods, we present compelling evidence of our framework's superior performance across multiple dimensions. This work establishes a promising avenue for advancing image synthesis techniques and empowering precise object modifications while preserving the visual coherence of the entire composition
    • …
    corecore