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ABSTRACT

LEARNING TO SEE WITH MINIMAL HUMAN 
SUPERVISION

SEPTEMBER 2023

ZEZHOU CHENG

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Subhransu Maji

Deep learning has significantly advanced computer vision in the past decade, 

paving the way for practical applications such as facial recognition and autonomous 

driving. However, current techniques depend heavily on human supervision, limit-

ing their broader deployment. This dissertation tackles this problem by introducing 

algorithms and theories to minimize human supervision in three key areas: data, 

annotations, and neural network architectures, in the context of various visual under-

standing tasks such as object detection, image restoration, and 3D generation.

First, we present self-supervised learning algorithms to handle in-the-wild images 

and videos that traditionally require time-consuming manual curation and labeling. 

We demonstrate that when a deep network is trained to be invariant to geometric and 

photometric transformations, representations from its intermediate layers are highly 

predictive of object semantic parts such as eyes and noses. This insight offers a simple 

unsupervised learning framework that significantly improves the efficiency and accu-

racy of few-shot landmark prediction and matching. We then present a technique for 

learning single-view 3D object pose estimation models by utilizing in-the-wild videos
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where objects turn (e.g., cars in roundabouts). This technique achieves competitive

performance with respect to existing state-of-the-art without requiring any manual

labels during training. We also contribute an Accidental Turntables Dataset, con-

taining a challenging set of 41,212 images of cars in cluttered backgrounds, motion

blur, and illumination changes that serve as a benchmark for 3D pose estimation.

Second, we address variations in labeling styles across different annotators, which

leads to a type of noisy label referred to as heterogeneous label. This variability

in human annotation can cause subpar performance during both the training and

testing phases. To mitigate this, we have developed a framework that models the

labeling styles of individual annotators, reducing the impact of human annotation

variations and enhancing the performance of standard object detection models. We

have also applied this framework to analyze ecological data, which are often collected

opportunistically across different case studies without consistent annotation guide-

lines. Through this application, we have obtained several insightful observations into

large-scale bird migration behaviors and their relationship to climate change.

Our next study explores the challenges of designing neural networks, an area that

lacks a comprehensive theoretical understanding. By linking deep neural networks

with Gaussian processes, we propose a novel Bayesian interpretation of the deep

image prior, which parameterizes a natural image as the output of a convolutional

network with random parameters and random input. This approach offers valuable

insights to optimize the design of neural networks for various image restoration tasks.

Lastly, we introduce several machine-learning techniques to reconstruct and edit

3D shapes from 2D images with minimal human effort. We first present a generic

multi-modal generative model that bridges 2D images and 3D shapes via a shared

latent space, and demonstrate its applications on versatile 3D shape generation and

manipulation tasks. Additionally, we develop a framework for joint estimation of

3D neural scene representation and camera poses. This approach outperforms prior
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works and allows us to operate in the general SE(3) camera pose setting, unlike the

baselines. The results also indicate this method can be complementary to classical

structure-from-motion (SfM) pipelines as it compares favorably to SfM on low-texture

and low-resolution images.
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CHAPTER 1

INTRODUCTION

Over the past decade, the field of computer vision has made remarkable progress

thanks to deep learning techniques. These techniques typically involve a simple recipe:

collecting source data, annotating data, and designing neural network architectures.

However, each step requires significant human effort, which has limited the adoption

and performance of deep learning in novel and complex visual reasoning tasks.

While there is an abundance of images and videos available on the internet, plat-

forms like Instagram and YouTube host mostly unlabeled data, and labeling all of it is

infeasible. Moreover, the distribution of objects in the real world is often long-tailed.

Benchmarks commonly used in computer vision research, such as ImageNet [53], are

carefully curated to be well-balanced, diversified, and human-annotated. This cura-

tion process demands considerable human resources.

Most importantly, the gap between these benchmarks and real-world data raises

concerns about the generalizability of research findings to real-world applications.

The substantial human effort involved in data curation and the potential disconnect

between curated benchmarks and real-world scenarios highlight the need for more

efficient and generalizable deep learning techniques.

The cost of collecting human annotations is a significant barrier in many vision

tasks. For example, annotating the landmarks or semantic parts of an object is

much more time-consuming than categorizing the image (Fig. 1.1a,b); annotating the

3D pose of an object is often done by reasoning with 3D model’s projection to the

2D image (Fig. 1.1c); annotating objects with fine-grained labels (e.g., Grasshopper
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(a) Landmark detection (b) Part segmentation (c) 3D pose estimation (e) Fine-grained recognition
Lincoln’s sparrowGrasshopper sparrow 

(d) Object detection

Annotator #1

Annotator #2

Figure 1.1: Visual understanding tasks. For these tasks, human annotations are
time-consuming (a-c), noisy due to the labeling variation across different annotations
(d), and even require domain-specific expertise (e). (c) presents the pose annotation
interface from the PASCAL3D+ dataset [260]. In (d), annotators are asked to label
the swallow roosts (i.e., ring-like patterns) in weather radar data.

sparrow vs. Lincoln’s sparrow) requires strong domain-specific expertise (Fig. 1.1e).

In addition, labeling without clearly defined protocols leads to a variation in labeling

styles of different annotators (i.e., heterogeneous labels), which can make subsequent

learning harder (e.g., noise in bounding box annotations (Fig. 1.1d)).

Designing neural network architectures also demands substantial human supervi-

sion. Over the past decade, numerous diverse neural networks have been developed

for computer vision tasks (e.g., VGG [203], ResNet [96]), but our understanding of

these networks relies heavily on empirical studies. Designing a neural network for

a novel visual reasoning task typically involves an expensive, time-consuming trial-

and-error process. Therefore, understanding deep models theoretically is essential for

designing neural network architectures more effectively.

In addition to the substantial costs associated with obtaining high-quality human

annotations and designing neural networks, data collection itself can be a costly en-

deavor. This is particularly true for the creation and modification of 3D objects, which

demands significant human effort and expertise compared to working with 2D images

or videos. Given these challenges, the reconstruction and manipulation of 3D assets

from 2D images have emerged as a focal problem within the field of computer vision.

This is evidenced by decades of dedicated research into Structure-from-Motion (SfM)

algorithms [90]. However, SfM algorithms often falter when dealing with sparse 2D

observations and surfaces with low texture, leading to a significant decrease in per-
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formance. Furthermore, SfM, when combined with multi-view stereo (MVS), only

offers a rudimentary description of 3D geometry and texture. As a result, there is

considerable scope for enhancing the efficacy of current techniques within this domain.

In this dissertation, we explore four research questions: (1) how can we learn from

in-the-wild images or videos with minimal data curation and labeling? (2) how can

we learn from heterogeneous labels induced by variations in labeling styles amongst

different annotators? (3) how can we theoretically understand neural network archi-

tectures? (4) how can we reconstruct and edit 3D shapes with minimal human effort?

To address these questions, we develop unsupervised learning algorithms for various

vision tasks [38, 225]; we provide a general machine learning framework to learn from

annotations with different labeling styles and demonstrate its application in a series

of ecological studies [17, 55, 174, 224]; we introduce a theoretical understanding of

deep convolutional neural networks through the lens of Gaussian processes [226]; and

we propose several techniques to reconstruct and manipulate 3D shapes from 2D

images [222, 223].

1.1 Contributions

In Chapter 3, we introduce a simple and effective self-supervised learning approach

by combining instance-discriminative and spatially-discriminative contrastive learn-

ing. We show that the proposed approach surpasses prior state-of-the-art on few-shot

landmark prediction and landmark matching tasks [38]. Next, we propose to learn

single-view 3D object pose estimation models by utilizing a new source of data —

in-the-wild videos where objects turn [225]. We also contribute an Accidental Turnta-

bles Dataset which serves as a challenging benchmark for 3D pose estimation. Our

technique achieves competitive performance with existing state-of-the-art on standard

benchmarks without requiring any pose labels during training.

List of publications related to Chapter 3:
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• [38] Cheng, Z., Su, J. C., & Maji, S. (2021). On equivariant and invariant learning of

object landmark representations. In Proceedings of the IEEE/CVF International Conference

on Computer Vision.

• [225] Cheng, Z., Gadelha, M., & Maji, S. (2022). Accidental Turntables: learning 3D pose

by watching objects turn. In Proceedings of the IEEE/CVF International Conference on

Computer Vision Workshop.

In Chapter 4, we introduce an EM framework for learning from heterogeneous

labels [224] (Fig. 1.1d). We apply this framework to build an integrated system for

large-scale ecological studies — detecting and tracking communal birds in weather

radar data [224]. This system has provided biologists insights about the migration

behavior of birds in relation to environmental change and yielded many insightful

ecological findings [17, 55, 174].

List of publications related to Chapter 4:

• [224] Cheng, Z., Gabriel, S., Bhambhani, P., Sheldon, D., Maji, S., Laughlin, A., & Winkler,

D. (2020, April). Detecting and tracking communal bird roosts in weather radar data. In

Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 378-385).

• [174] Pérez, G., Zhao, W., Cheng, Z., Belotti, M., Deng, Y., Simons, V., Tielens, E., Kelly, J.,

Horton, K., Maji, S., Sheldon, D. Using spatiotemporal information in weather radar data to

detect and track communal bird roosts. BioRxiv, 2022, doi: https://doi.org/10.1101/2022.10.

28.513761.

• [55] Deng, Y., Belotti, M., Zhao, W., Cheng, Z., Pérez, G., Tielens, E., Simons, V., Sheldon,

D., Maji, S., Kelly, J., Horton, K. Quantifying long-term phenological patterns of aerial in-

sectivores roosting in the Great Lakes region using weather surveillance radar. Global Change

Biology, 2022, 00, 1– 13. doi.org/10.1111/gcb.16509.

• [17] Belotti, M., Deng, Y., Zhao, W., Simons, V., Cheng, Z., Pérez, G., Tielens, E., Maji, S.,

Sheldon, D., Kelly, J., Horton, K. Long-term analysis of persistence and size of swallow and
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martin roosts in the US Great Lakes. Remote Sensing in Ecology and Conservation, 2023;

doi.org/10.1002/rse2.323.

In Chapter 5, we provide a theoretical analysis of the inductive bias of a random

CNN in the context of unsupervised image restoration. We show that the Deep Image

Prior (DIP) [237] is asymptotically equivalent to a Gaussian process (GP) as the net-

work width goes to infinity, and we avoid the need for early stopping using stochastic

gradient Langevin dynamics (SGLD) [247] for unsupervised image restoration tasks.

List of publications related to Chapter 5:

• [226] Cheng, Z., Gadelha, M., Maji, S., & Sheldon, D. (2019). A bayesian perspective on

the deep image prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition.

In Chapter 6, we introduce a generic multi-modal generative model that couples

the 2D modalities (e.g., natural images or sketches) and implicit 3D representations

(e.g., signed distance functions) through shared latent spaces, enabling versatile 3D

generation and manipulation tasks. We also present a local-to-global framework that

jointly estimates 3D neural scene representation [145] and camera poses, and demon-

strates its complementary performance to classical Structure-from-Motion algorithms.

List of publications related to Chapter 6:

• [222] Cheng, Z., Chai, M., Ren, J., Lee, H. Y., Olszewski, K., Huang, Z., ... & Tulyakov,

S. (2022). Cross-modal 3d shape generation and manipulation. In European Conference on

Computer Vision.

• [223] Cheng, Z., Esteves, C., Jampani, V., Kar, A., Maji, S., & Makadia, A. (2023). LU-

NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs. In Proceedings

of the IEEE/CVF International Conference on Computer Vision.

Finally, future works will focus on three essential areas to advance the development

of intelligent agents capable of understanding and interacting with the 3D visual

world: holistic 3D scene understanding and reconstruction, multi-modal perception,
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and learning from real-world data distributions. I will also strengthen collaborations

with researchers from the industry, graphics, robotics, ecology, and other scientific

fields to apply AI techniques to solve real-world problems and promote the practical

application of AI across various domains.

Source codes and datasets. In addition to publishing my research in confer-

ences and journals, I have actively contributed to the open-source community. The

datasets and codes developed or collected in this dissertation can be accessed on

GitHub (https://github.com/cvl-umass), which is maintained by the members of

the computer vision lab at UMass Amherst.
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CHAPTER 2

BACKGROUND & LITERATURE REVIEW

In this chapter, we provide the background information related to several research

topics covered in this dissertation. We begin by reviewing unsupervised learning al-

gorithms that exploit unlabeled images or videos in Section 2.1. We then explore

previous work on learning from noisy labels in Section 2.2. We discuss the literature

on designing and theoretically understanding neural network architectures in Sec-

tion 2.3. Lastly, we illustrate existing works on 3D reconstruction and manipulation

in Section 2.4. We present additional related works that are specific to only certain

chapters later.

2.1 Learning from unlabeled data

The main breakthrough in computer vision in the past decade is achieved by

supervised learning which heavily relies on costly human annotations. This is mani-

fested in the huge efforts in the community to collect a large corpus of image datasets

with detailed annotations such as ImageNet [53] and MS-COCO [127]. However, su-

pervised learning is not scalable, and the natural learning of our humans is largely

unsupervised. For these reasons, unsupervised learning that exploits unlabeled data

has gained great attention in the deep learning era.

The goal of unsupervised learning is to discover patterns or structures within the

data without explicit labels. Common unsupervised learning techniques include clus-

tering which groups similar instances and dimensionality reduction which projects the

data into a low dimensional space. In particular, unsupervised (or self-supervised)
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representation learning learns data representations that are useful for downstream

tasks, without explicit human supervision. A wide range of self-supervised represen-

tation learning methods trains a neural network to recover the missing information

such as colorization [279] and inpainting [171] or predict the spatial context such as

rotation prediction [73] and jigsaw puzzle [159]. More recent works show that the

unsupervised contrastive learning methods [10, 34, 35, 36, 60, 93, 100, 163, 232, 257]

outperforms algorithms based on aforementioned pretext tasks. These contrastive

learning objectives [86] are often expressed in terms of noise-contrastive estimation

(NCE) [85] (or maximizing mutual information [100, 163]) between different views

obtained by geometrically and photometrically transforming an image. The learned

representations thus encode invariances to these transformations while preserving in-

formation relevant to downstream tasks.

However, the effectiveness of unsupervised learning depends on how well these

invariances relate to those desired for end tasks. Despite recent advances, existing

methods for unsupervised learning significantly lack in comparison to their supervised

counterparts in the few-shot setting [79]. Moreover, their effectiveness for detailed

visual understanding tasks (e.g., landmark detection) has not been sufficiently studied

in the literature. This motivates us to explore unsupervised learning to understand

object structure and pose described in Chapter 3.

2.2 Learning from noisy annotations

Despite the rapid progress in unsupervised learning, supervised learning remains

the dominant method in practical applications due to its superior and robust per-

formance. However, large annotated datasets often suffer from noisy or incorrect

labels, which, if not handled appropriately, can significantly degrade the performance

of machine learning models [157]. The typical source of noisy labels includes am-

biguous image content, poor image quality, or labeling mistakes by annotators. Var-
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ious methods have been proposed to learn models from noisy annotations, rang-

ing from noise-robust loss functions [72, 241] to data cleaning [24] and bootstrap-

ping [146, 150, 172, 219, 264]. Techniques that explicitly model the noise process

have also been proposed in the literature [146, 172]. Despite the vast literature on

this topic, most prior works are designed for the classification task.

This dissertation addresses learning from a specific type of noisy labels which

are induced by the variations in the labeling style across different annotators in the

object detection task, i.e., heterogeneous labels. Related to our work, Jiang et al.

[107] discuss how systematic differences in labeling style across face-detection bench-

marks significantly complicate evaluation, and proposes fine-tuning techniques for

style adaptation. Differently, we propose a principled method that explicitly models

the annotators’ labeling style in Chapter 4.

2.3 Neural network architectures and Gaussian process

Designing neural network architectures has been one of the major research top-

ics in the deep learning era. Extensive variants of network architectures have been

proposed in the past decade. Seminar works include AlexNet [116], VGG [204], In-

ception [216], ResNet [96], U-Net [180], and Vision Transformer [59]. Despite the vast

work in this field, designing neural networks remains an art instead of a science —

it usually requires extensive trial and error to build a suitable network architecture

for a novel task. Efforts have been made to theoretically understand neural network

architectures, with the target of designing the network principally. Here we briefly

describe prior works that interpret the neural network architectures through the lens

of Gaussian processes.

Back in 1995, Neal [156] showed that a two-layer network converges to a Gaus-

sian process as its width goes to infinity. Later, Williams [251] provided expressions

for the covariance function of networks with Sigmoid and Gaussian transfer func-
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tions. Cho and Saul [41] presented kernels for the ReLU and the Heaviside step

non-linearities and investigated their effectiveness with kernel machines. More re-

cently, several works [119, 144] have extended these results to deep networks and

derived covariance functions for the resulting GPs. Similar analyses have also been

applied to convolutional networks. Garriaga-Alonso et al. [69] investigated the GP

behavior of convolutional networks with residual layers while Borovykh [21] analyzed

the covariance functions in the limit when the filter width approaches infinity. No-

vak et al. [160] evaluated the effect of pooling layers in the resulting GP. Much of this

work has been applied to prediction tasks, where given a dataset D = {(xi, yi)}ni=1,

a covariance function induced by a deep network is used to estimate the posterior

p(y|x,D) using standard GP machinery. Similar to these works, we make a connec-

tion between the neural network architectures with the Gaussian process, however, the

network architectures and the tasks are both different from prior works, as described

in Chapter 5.

2.4 3D reconstruction and manipulation

Structure from Motion (SfM). Jointly recovering 3D scenes and estimating cam-

era poses from multiple views of a scene is a classic problem in computer vision [91].

Numerous techniques have been proposed for SfM [167, 196] with unordered im-

age collections and visual-SLAM for sequential data [153, 218]. These techniques are

largely built upon local features [56, 139, 184, 213] and require accurate detection and

matching across images. The success of these techniques has led to their widespread

adoption, and existing deep-learning approaches for scene representation and novel

view synthesis are designed with the implicit assumption that the SfM techniques

provide accurate poses in the wild. For example, NeRF [149] and its many successors

(e.g., [12, 13, 152]) utilize poses estimated offline with COLMAP [130, 196]. However,

COLMAP can fail on textureless regions and low-resolution images. Chapter 6 in-
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troduces a novel approach that jointly estimates 3D scenes and camera poses, which

shows complementary performance to SfM.

Machine learning for 3D reconstruction. Extensive works have explored the

problem of 3D reconstruction from different modalities, such as RGB images [43, 109],

videos [271], sketches [83, 108, 283, 288], or even text [32], using machine learning

techniques. This problem has also been explored under diverse representations [37,

43, 64, 74, 133, 147, 170, 205, 244, 269] and different levels of supervision [43, 74, 75,

109, 271]. Despite the diverse settings of this problem, the encoder-decoder network,

which maps the source modalities to 3D shape directly in a feed-forward manner,

remains the most popular 3D reconstruction model [43, 109, 170, 244]. However,

such feed-forward networks are not robust to input domain shift (e.g., incomplete

data). We introduce a generic multi-model generative model to tackle this issue in

Chapter 6.

Shape and appearance manipulation. Numerous interactive tools have been

developed for image editing [81, 120, 122, 124, 183, 282] and 3D shape manipula-

tions [5, 51, 173, 193]. More recently, generative modeling of natural images [77, 207]

has became a “Swiss knife” for image editing problems [1, 14, 15, 82, 168, 187, 199,

200, 291]. Novel interactive tools have also been proposed recently to edit implicit

3D representations [149, 170]. For example, DualSDF [87] edits the SDFs [170] via

shape primitives (e.g., spheres). Sketch2Mesh [83] reconstructs shapes from sketch

with an encoder-decoder network and refines 3D shapes via differentiable rendering.

EditNeRF [134] edits the radiance field [149] by fine-tuning the network weights based

on the user’s scribbles.
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CHAPTER 3

LEARNING FROM UNLABELED IMAGES AND VIDEOS

Understanding object pose and its structure is a long-standing computer vision

task with wide applications in practice, such as monitoring animal behaviors or hu-

man activities. The object pose can be annotated in various forms, depending on the

object categories. For rigid objects (e.g., cars), the pose is usually represented by 3D

rotation and translation, while the pose of non-rigid objects is typically characterized

by 2D landmarks (e.g., eyes, noses). Undoubtedly, the manual annotation process

is labor-intensive and prone to unavoidable human annotation errors. To tackle this

issue, we present a self-supervised representation learning approach for learning land-

mark representation from unlabeled images in Section 3.1. We also develop a novel

unsupervised method for training 3D pose estimation models from unlabeled videos

in Section 3.2.

3.1 Learning landmark representations from unlabeled images

Given a collection of images, humans are able to discover landmarks by modeling

the shared geometric structure across instances. This idea of geometric equivariance

has been widely used for the unsupervised discovery of object landmark representa-

tions. In this work, we develop a simple and effective approach by combining instance-

discriminative and spatially-discriminative contrastive learning. We show that when

a deep network is trained to be invariant to geometric and photometric transforma-

tions, representations emerge from its intermediate layers that are highly predictive

of object landmarks. Stacking these across layers in a “hypercolumn” and project-
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ing them using spatially-contrastive learning further improves their performance on

matching and few-shot landmark regression tasks. We also present a unified view of

existing equivariant and invariant representation learning approaches through the lens

of contrastive learning, shedding light on the nature of the invariances learned. Exper-

iments on standard benchmarks for landmark learning, as well as a new challenging

one we propose, show that the proposed approach surpasses prior state-of-the-art.

3.1.1 What is landmark?

The term “landmark” does not hold a consistent definition across various litera-

ture. Many previous studies, particularly in the domain of supervised learning, define

landmarks as points of interest within an image that are manually annotated or chosen

by humans [66, 262, 286, 287]. These landmarks, commonly known as human-defined

landmarks, are denoted using 2D pixel coordinates and typically represent identifiable

parts of objects, such as the eyes and noses of human or animal faces.

However, a broader definition of landmarks exists, one that is founded on the

principles of equivariance and invariance [229, 230, 231]. Primarily, a landmark should

exhibit equivariance toward image transformations. A representation Φ : X → RC

is considered to be equivariant or covariant with respect to a transformation g for

input x ∈ X if a corresponding map Mg : RC → RC exists, satisfying the condition:

∀x ∈ X : Φ(gx) ≈ MgΦ(x). This condition essentially states that the representation

should transform predictably in response to the input transformation.

These transformations in natural images could take various forms - geometric

(such as translation, scaling, and rotation), photometric (like color changes), or even

more complex transformations (including occlusion, viewpoint, or instance varia-

tions). Computer vision boasts a long history of designing covariant representations,

exemplified by techniques such as SIFT [138]. Contrary to these classical equivariant

descriptors, a landmark should display invariance to intra-category variations, which
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include the variation in eye shapes across different identities. In our study, we utilize

this more general definition of landmarks and aim at learning landmark representa-

tions that fulfill the outlined equivariant and invariant properties, which can be used

to establish correspondences across objects and to predict landmarks such as eyes and

noses when provided with a few labeled examples.

3.1.2 Overview

In the previous section, we define landmarks based on the property of equivari-

ance. This leads to a natural method for discovering landmarks, namely to learn a

representation that geometrically transforms in the same way as the object, a prop-

erty known as geometric equivariance (Fig. 3.1a) [229, 230, 231]. However, useful

invariances may not be learned (e.g., the raw pixel representation itself is equivari-

ant), limiting their applicability in the presence of clutter, occlusion, and inter-image

variations.

A different line of work has proposed instance discriminative contrastive learning

as an unsupervised objective [10, 34, 60, 86, 93, 98, 100, 163, 232, 257, 293]. The

goal is to learn a representation Φ that has higher similarity between an image x and

its transformation x′ than with a different one z, ⟨Φ(x),Φ(x′)⟩ ≫ ⟨Φ(x),Φ(z)⟩, as

illustrated in Fig. 3.1b. A combination of geometric (e.g., cropping and scaling) and

photometric (e.g., color jittering and blurring) transformations are used to encourage

the representation to be invariant to these transformations while being distinctive

across images. Recent work [34, 35, 36, 93] has shown that contrastive learning is

effective, even outperforming ImageNet [53] pre-training on various tasks. However,

to predict landmarks a representation cannot be invariant to geometric transforma-

tions. This work asks the question: are equivariant losses necessary for unsupervised

landmark discovery? In particular, do representations predictive of object landmarks

automatically emerge in intermediate layers of a deep network trained to be invariant
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to image transformations? While empirical evidence suggests that semantic parts

emerge when deep networks are trained on supervised tasks [76, 289], is it also the

case for unsupervised learning?

This work aims to address these by presenting a unified view of the equivariant

and invariant learning approaches. We show that when a deep network is trained

to be invariant to geometric and photometric transformations, its intermediate-layer

representations are highly predictive of landmarks (Fig. 3.1b). The emergence of

invariance and the loss of geometric equivariance is gradual in the representation

hierarchy, a phenomenon that has been studied empirically [121, 277] and theoret-

ically [2, 233, 234]. This observation motivates a hypercolumn representation [88],

which we find to be more effective for landmark predictions (Fig. 3.1c).

We also observe that objectives used in equivariant learning can be seen as a

contrastive loss between representations across locations within the same image, as

opposed to invariant learning where the loss is applied across images (Fig. 3.1). This

observation sheds light on the nature of the invariances learned by the two approaches.

It also allows us to obtain a compact representation of the high-dimensional hyper-

columns simply by learning a linear projection under the spatially contrastive objec-

tive. The projection results in spatially distinctive representations and significantly

improves the landmark matching performance (Tab. 3.1 and Fig. 3.2).

To validate these claims, we perform experiments by training deep networks using

Momentum Contrast (MoCo) [93] on several landmark matching and detection bench-

marks. Other than commonly used ones, we also present a comparison by learning on

a challenging dataset of birds from the iNaturalist dataset [240] and evaluating on the

CUB dataset [242]. We show that the contrastive-learned representations (without

supervised regression) can be predictive in landmark matching experiments. For land-

mark detection, we adapt the commonly used linear evaluation setting by varying the

number of labeled examples (Fig. 3.3 & 3.4). Our approach is simple, yet it offers con-
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sistent improvements over prior approaches [105, 229, 230, 231, 284] (Tab. 3.2). While

the hypercolumn representation leads to a larger embedding dimension, it comes at a

modest cost as our approach outperforms the prior state-of-the-art [229], with as few

as 50 annotated training examples on the AFLW benchmark [115] (Fig. 3.4). Further-

more, we use dimensionality reduction based on the equivariant learning to improve

the performance on landmark matching (Tab. 3.1), as well as landmark prediction in

the low data regime (Tab. 3.4).

3.1.3 Related works

Deep representations. Invariance and equivariance in deep network representations

result from both the architecture (e.g., convolutions lead to translational equivariance

while pooling leads to translational invariance) and learning (e.g., invariance to cate-

gorical variations). Lenc et al. [121] showed that early-layer representations of a deep

network are nearly equivariant as they can be “inverted” to recover the input, while

later layers are more invariant. Similar observations have been made by visualizing

these representations [140, 277]. The gradual emergence of invariance can also be

theoretically understood in terms of a “information bottleneck” in the feed-forward

hierarchy [2, 233, 234]. While equivariance to geometric transformations is relevant

for landmark representations, the notion can be generalized to other transformation

groups [46, 71].

Landmark discovery. Empirical evidence [164, 289] suggests that semantic parts

emerge when deep networks are trained on supervised tasks. This has inspired archi-

tectures for image classification that encourage part-based reasoning, such as those

based on texture representations [6, 45, 128] or spatial attention [67, 198, 263]. In

contrast, our work shows that parts also emerge when models are trained in an unsu-

pervised manner. When no labels are available, equivariance to geometric transforma-

tions provides a natural self-supervisory signal. The equivariance constraint requires
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Φu(x), the representation of x at location u, to be invariant to the geometric transfor-

mation g of the image, i.e., ∀x, u : Φgu(gx) = Φu(x) (Fig. 6.1a). This alone is not suffi-

cient since both Φu(x) = xu and Φu(x) = constant satisfy this property. Constraints

based on locality [229, 230] and diversity [231] have been proposed to avoid this

pathology. Yet, inter-image invariance is not directly enforced. Another line of work

is based on a generative modeling approach [18, 105, 106, 137, 189, 202, 249, 270, 284].

These methods implicitly incorporate equivariant constraints by modeling objects as

deformation (or flow) of a shape template together with appearance variation in a

disentangled manner.

3.1.4 Approach

Let x ∈ RH×W×3 denote an image of an object, and u ∈ Ω = {0, . . . , H − 1} ×

{0, . . . ,W − 1} denote pixel coordinates. The goal is to learn a function Φu(x) :

Ω → RC that outputs a pixel representation at spatial location u of input x that is

predictive for object landmarks. We assume C ≫ 3 aiming to learn a high-dimensional

representation of landmarks. This is similar to [229] which learns a local descriptor

for each landmark, and unlike those that represent them as a discrete set [287], or on

a planar (C = 2) [231, 284] or spherical (C = 3) [230] coordinate system. In other

words the representation should be predictive of landmarks or effective for matching,

without requiring compactness or topology in the embedding space. Note that this is

in contrast to some work on literature where a fixed set of landmarks are discovered

(e.g., [105, 231, 284]). One may obtain this, for instance, by clustering the landmark

representations in the embedding space.

We describe commonly used equivariance constraints for unsupervised landmark

discovery [229, 230, 231], followed by models based on invariant learning [93, 163].

We then present our approach that integrates the equivariant and invariant learning

approaches.
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(b) Invariant learning
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Figure 3.1: Equivariant and invariant learning. (a) Equivariant learning re-
quires representations across locations to be invariant to a geometric transformation
g while being distinctive across locations. (b) Invariant learning encourages the rep-
resentations to be invariant to transformations while being distinctive across images.
Thus both can be seen as instances of contrastive learning. (c) A hypercolumn feature
and its compact representation are highly predictive of object landmarks.
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Equivariant learning. The equivariance constraint requires Φu(x), the represen-

tation of x at location u, to be invariant to the geometric deformation of the image

(Fig. 3.1a). Given a geometric warping function g : Ω → Ω, the representation of x at

u should be same as the representation of the transformed image x′ = gx at v = gu,

that is, ∀x, u ∈ Ω : Φv(x
′) = Φu(x). This constraint can be captured by the loss:

Lequi =
1

|Ω|
∑
u∈Ω

∥Φu(x)− Φv(x
′)∥2. (3.1)

A diversity (or locality) constraint is necessary to encourage the representation to be

distinctive across locations. For example, Thewlis et al. [230] proposed the following:

Ldiv =
1

|Ω|
∑
u∈Ω

∥gu− argmax
v

⟨Φu(x),Φv(x
′)⟩∥2, (3.2)

which they replaced by a probabilistic version that combines both the losses as:

L′
equi =

1

|Ω|2
∑
u∈Ω

∑
v∈Ω

∥gu− v∥ p(v|u; Φ,x,x′). (3.3)

Here p(v|u; Φ,x,x′) is the probability of pixel u in image x matching v in image x′

with Φ as the encoder shared by x and x′ computed as below, and τ ∈ R+ is a scale

parameter:

p(v|u; Φ,x,x′) =
exp(⟨Φu(x),Φv(x

′)⟩/τ)∑
t∈Ω exp(⟨Φu(x),Φt(x′)⟩/τ) . (3.4)

Invariant learning. Contrastive learning is based on the similarity over pairs of

inputs (Fig. 3.1b). Given an image x and its transformation x′ as well as other

images zi, i ∈ {1, 2...N}, the InfoNCE [163] loss minimizes:

Linv = − log
exp (⟨Φ(x),Φ(x′)⟩)∑N
i=1 exp(⟨Φ(x),Φ(zi)⟩)

. (3.5)

The objective encourages representations to be invariant to transformations while be-

ing distinctive across images. To address the computational bottleneck in evaluating
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the denominator, Momentum Contrast (MoCo) [93] computes the loss over negative

examples using a dictionary queue and updates the parameters based on momentum.

Transformations. The space of transformations used to generate image pairs (x,x′)

plays an important role in learning. A common approach is to apply a combination of

geometric transformations, such as cropping, resizing, and thin-plate spline warping,

as well as photometric transformations, such as color jittering and adding JPEG noise.

Transformations can also denote channels of an image or modalities such as depth

and color [232].

Hypercolumns. A deep network of n layers (or blocks1) can be written as Φ(x) =

Φ(n) ◦ Φ(n−1) ◦ · · · ◦ Φ(1)(x). A representation Φ(x) of size H ′ × W ′ × C can be

spatially interpolated to the input size H ×W ×C to produce a pixel representation

Φu(x) ∈ RC . The hypercolumn representation of layers k1, k2, . . . , kn is obtained

by concatenating the interpolated features from the corresponding layers, that is,

Φu(x) = Φ
(k1)
u (x)⊕ Φ

(k2)
u (x)⊕ · · · ⊕ Φ

(kn)
u (x).

Our approach. Given a large unlabeled dataset, we first train representations using

the instance-discriminative contrastive learning framework of MoCo [93]. A combi-

nation of geometric and photometric transformations are applied to generate pairs

(x,x′). We then extract single layer or hypercolumn representations from the trained

network to represent landmarks (Fig. 3.1c). Subsequently, we incorporate spatial

contrastive learning to reduce dimensionality and induce spatial diversity by training

a linear projector over the frozen landmark representation. Let w ∈ RC×d, where

d ≪ C, used to project the landmark representation as Φ′
u(x) = wTΦu(x). The goal

that the projected embeddings are spatially distinct within the same image,

∀u, v ∈ Ω : u ̸= v ⇔ Φ′
u(x) ̸= Φ′

v(x), (3.6)

1Due to skip-connections, we cannot decompose the encoding over layers, but can across blocks.
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is obtained by optimizing objective in Eqn. 3.3 with x′ = x.

Discussion. Note that since the linear projection is location-wise, spatial equivari-

ance is preserved but intra-image contrast is improved. The projected embeddings

are equally effective as the hypercolumn representations for landmark regression, but

are significantly better for landmark matching (Tab. 3.1). The intuition is that the

hypercolumn features contain sufficient information about landmarks, but the projec-

tion step makes them spatially distinct which is more suitable for matching. Novotny

et al. [161] proposed a similar approach to extract compact representations for cross-

instance semantic matching from a network pre-trained with class labels. In compari-

son, we only use unsupervised representations. The idea of spatially contrastive learn-

ing has also been shown to be effective for learning scene-level representations [175].
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Figure 3.2: Landmark matching with cosine distance using 3840-D hyper-
column and 256-D features projected from hypercolumn. Failure cases of
using hypercolumns include (Left) mismatching between two eyes and (Middle) lack
of robustness to the large viewpoint or (Right) appearance changes across different
identities. The proposed feature projection method alleviates these issues.

3.1.5 Experiments

3.1.5.1 Benchmarks and implementation details

Human faces. We first compare the proposed model with prior art on the existing

human face landmark detection benchmarks. Following DVE [229], we train our

model on aligned CelebA dataset [136] and evaluate on MAFL [287], AFLW [115],

and 300W [185]. The overlapping images with MAFL are excluded from CelebA.

MAFL comprises 19,000 training images and 1000 test images with annotations on
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5 face landmarks. Two versions of AFLW are used: AFLWM which contains 10,122

training images and 2995 testing images, which are crops from MTFL [286]; AFLWR

which contains tighter crops of face images with 10,122 for training and 2991 for

testing. 300W provides 68 annotated face landmarks with 3148 training images and

689 test images. We apply the same image pre-processing procedures as in DVE,

the current state-of-the-art, for a direct comparison. We also train our model on the

unaligned raw CelebA dataset to evaluate the efficiency of representation learning on

in-the-wild unlabeled images.

Birds. We collect a challenging dataset of birds where objects appear in clutter and

occlusion and exhibit wider pose variation. We randomly select 100K images of birds

from the iNaturalist 2017 dataset [240] under the “Aves” class to train unsupervised

representations. For the performance in the few-shot setting, we collect a subset

of the CUB dataset [242] containing 35 species of Passeroidea2 super-family, each

annotated with 15 landmarks. We sample at most 60 images per class which result

in 1241 images as our training set, 382 as the validation set, and 383 as the test set.

Evaluation. We use landmark matching and detection as the end tasks for evalua-

tion. In landmark matching, following DVE [229], we generate 1000 pairs of images

from the MAFL test set as the benchmark, among which 500 are pairs of the same

identity obtained by warping images with thin-plate spline (TPS) deformation, and

others are pairs of different identities. Each pair of images consists of a reference

image with landmark annotations and a target image. We use the nearest neighbor

matching with cosine distance between pixel representations for landmark matching,

and report the mean pixel error between the predicted landmarks and the ground-

truth landmarks.

2This is the biggest Aves taxa in iNaturalist.
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Method Dim. Aligned In-the-wild
Same Diff. Same Diff.

DVE 64 0.92 2.38 1.27 3.52
Ours 3840 0.73 6.16 0.78 5.58

Ours + proj. 256 0.71 2.06 0.96 3.03
Ours + proj. 128 0.82 2.19 0.98 3.05
Ours + proj. 64 0.92 2.62 0.99 3.06

Table 3.1: Landmark matching results. We report the mean pixel error between
the predicted landmarks and the ground-truth across 1000 pairs of images from MAFL
(lower is better). The test set consists of 500 same-identity and 500 different-identity
pairs. We compare DVE [229] with Hourglass net and our models with ResNet50
trained from aligned or in-the-wild CelebA dataset. We also evaluate the effect of
feature projection (+proj.) with different output dimensions. Our results better than
DVE’s [229] are marked in bold.

In the landmark regression task, following [229, 230], we train a linear regressor to

map the representations to landmark annotations while keeping the representations

frozen. The landmark regressor is a linear regressor per target landmark. Each re-

gressor consists of K filters of size 1×1×C on top of a C-dimensional representation

to generate K intermediate heatmaps, which are then converted to spatial coordi-

nates by soft-argmax operation. These K coordinates are finally converted to the

target landmark by a linear layer. We use K = 50 to keep the evaluation consis-

tent with prior works [229, 230], but we find that this hyperparameter is not critical

(see Sec. 3.1.5.4). We report errors in the percentage of inter-ocular distance on face

benchmarks and the percentage of correct keypoints (PCK) on CUB. A prediction

is considered correct according to the PCK metric if its distance to the groundtruth

is within 5% of the longer side of the image. The occluded landmarks are ignored

during evaluation.

Implementation details. We use MoCo [93] to train our models on CelebA or iNat

Aves for 800 epochs with a batch size of 256 and a dictionary size of 4096. ResNet18

or ResNet50 [96] are used as our backbones. We extract hypercolumns [88] per pixel

by stacking activations from the second (conv2_x) to the last convolutional block
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(conv5_x). We resize the feature maps from the selected convolutional blocks to the

same spatial size as DVE [229] (i.e., 48×48). We also follow DVE (with Hourglass

network) to resize the input image to 136×136 then center-crop the image to 96×96

for face datasets. Images are resized to 96 × 96 without any cropping on the bird

dataset. For a comparison with DVE on the CUB dataset we used their publicly

available implementation.

3.1.5.2 Landmark matching

Quantitative results. Tab. 3.1 compares the proposed method with DVE [229]

quantitatively. We train DVE and our models on both aligned and in-the-wild un-

aligned versions of the CelebA dataset, and report the mean pixel error on aligned face

images from MAFL. Our hypercolumn representation has high performance in same-

identity matching but is not robust to cross-identity variations. However, the pro-

posed feature projection makes the hypercolumn more suitable for landmark match-

ing. We experiment with different feature dimensions after projection and find that

our method with 128 or higher dimensional features achieves the state-of-art. DVE

outperforms ours with 64-D features when the representations are learned on the

aligned CelebA dataset. This is because the architecture of the Hourglass network

and the joint training of the backbone and feature extractor enables DVE to learn a

more compact representation than our method. However, to lift the feature dimen-

sion from 64 to 256, DVE requires re-training the entire model while we only need

to re-train a linear feature projector. Moreover, when the representation is learned

from the in-the-wild CelebA dataset, our model outperforms DVE by a large margin.

This suggests our representation is more invariant to nuisance factors than that of

DVE. We also observe that our method with smaller networks (e.g., ResNet18 [96])

with 128-D projected features outperforms DVE, and both DVE and our methods

outperform representations from ImageNet pretrained networks.
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Method # Params. Unsuper. MAFL AFLWM AFLWR 300W CUB
Millions Inter-ocular Distance (%) ↓ PCK ↑

TCDCN [287] – × 7.95 7.65 – 5.54 –
RAR [262] – × – 7.23 – 4.94 –
MTCNN [286] – × 5.39 6.90 – – –
Wing Loss [66] – × – – – 4.04 –

Generative modeling based
Structural Repr. [284] – ✓ 3.15 – 6.58 – –
FAb-Net [249] – ✓ 3.44 – – 5.71 –
Deforming AE [202] – ✓ 5.45 – – – –
ImGen. [105] – ✓ 2.54 – 6.31 – –
ImGen.++ [106] – ✓ – – – 5.12 –

Equivariance based
Sparse [231] – ✓ 6.67 10.53 – 7.97 –
Dense 3D [230] – ✓ 4.02 10.99 10.14 8.23 –
DVE SmallNet [229] 0.35 ✓ 3.42 8.60 7.79 5.75 –
DVE Hourglass [229] 12.61 ✓ 2.86 7.53 6.54 4.65 61.91

Invariance based
Ours (ResNet18) 11.24 ✓ 2.57 8.59 7.38 5.78 62.24
Ours (ResNet18 + proj.) 11.24 ✓ 2.71 7.23 6.30 5.20 58.49
Ours (ResNet50) 23.77 ✓ 2.44 6.99 6.27 5.22 68.63
Ours (ResNet50 + proj.) 23.77 ✓ 2.64 7.17 6.14 4.99 62.55

Table 3.2: Results on landmark detection. Comparison on face benchmarks,
including MAFL, AFLWM , AFLWR, and 300W, and CUB dataset. We report the
error in the percentage of inter-ocular distance on the human face dataset (lower is
better), and the percentage of correct keypoints (PCK) on the CUB dataset (higher
is better). We project the hypercolumn (i.e., + proj.) to 256-D features on the face
and 512-D on the bird dataset. Our results better than DVE’s [229] are marked in
bold.

Qualitative results. Fig. 3.2 presents the qualitative results of landmark matching.

Our method with hypercolumn for matching is not robust to viewpoint and appear-

ance changes and frequently mismatches the left and right eyes. Incorporating the

proposed feature projection adds diversity effectively and solves these issues.

3.1.5.3 Landmark detection

Quantitative results. Tab. 3.2 presents a quantitative evaluation of multiple bench-

marks. On faces, our model with a ResNet50 achieves state-of-the-art results on all

benchmarks except for 300W. On iNat Aves → CUB, out approach outperforms prior

state-of-the-art [229] by a large margin, suggesting improved invariance to nuisance
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factors. Incorporating the feature projection results in small performance degradation

in some cases but remains the state-of-art. Our method with ResNet18 is comparable

with DVE and benefits from using a deeper network.

Qualitative results. Fig. 3.3 shows qualitative results of landmark regression on

human faces and birds. We notice that both DVE and our model with hypercolumn

representations are able to localize the foreground object accurately. However, our

model localizes many keypoints better (e.g., on the tails of the birds) and is more

robust to the background clutter (e.g., the last column of Fig. 3.3b).
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Figure 3.3: Detected landmarks (a) on faces (blue: predictions, green: ground
truth) and (b) on CUB. Notice that our method localizes the tails of birds (circled)
much better. Zoom in for details.

Limited annotations. Fig. 3.4a and 3.4b compare our model with DVE [229] using

a limited number of annotations on AFLWM and CUB dataset respectively. With-

out feature projection, our performance is better as soon as a few training examples

are available (e.g., 50 on AFLWM and 250 on CUB). This can be attributed to the

higher dimensional embedding of the hypercolumn representation. The scheme can

be improved by using a single-layer representation as shown in the yellow line. Our

feature projection further improves the performance in the low-data regime as shown

in the black line. Interestingly, this improvement is not solely due to the dimension
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Figure 3.4: The effect of dataset size. (a) A comparison of our model
with DVE [229] by varying the number of annotations for landmark regression on
AFLWM dataset. Random-SmallNet†: is a randomly initialized “small network” taken
from [229]. Ours-ResNet50: is based on hypercolumn, or its compact representations,
or fourth-layer features trained using contrastive learning. (b) Similar results on CUB
dataset. Random-ResNet18: is trained from scratch on the CUB dataset. (c) Results
of landmark regression on AFLWM using different numbers of unlabeled images from
CelebA for training.

reduction: increasing the dimension of the projected feature from 256 to 1280 im-

proves the performance across different dataset sizes on CUB (see Fig. 3.4b). Note

that all unsupervised learning models (including DVE and our model) outperform

the randomly initialized baseline on both the human face and bird datasets.

Dataset
Single layer Hypercolumn

#1 #2 #3 #4 #5 #4 - #5 #3 - #5 #2 - #5 #1 - #5
(64) (256) (512) (1024) (2048) (3072) (3584) (3840) (3904)

MAFL 5.77 4.58 3.03 2.73 3.66 2.73 2.65 2.44 2.51
AFLWM 24.20 21.34 11.95 8.83 11.55 8.14 8.31 6.99 7.40
AFLWR 16.27 14.15 9.66 7.37 8.83 6.95 6.24 6.27 6.34
300W 16.45 13.08 7.66 6.01 7.70 5.68 5.28 5.22 5.21

Table 3.3: Landmark detection using single layer and hypercolumn repre-
sentations. The error is reported in the percentage of inter-ocular distance using lin-
ear regression over individual layers (left) and combinations (right), with a ResNet50.
The embedding dimension for each is shown in parentheses. Layer #4 performs the
best across datasets, while hypercolumns offer an improvement.

Limited unlabeled data. Fig. 3.4c shows that our model with hypercolumn repre-

sentation matches the performance of DVE on AFLWM using only 40% of the images
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on the CelebA dataset. This suggests that invariances are acquired more efficiently

in our framework.

3.1.5.4 Ablation studies and discussions

Hypercolumns. Tab. 3.3 compares the performance of using individual layer and

hypercolumn representations. The activations from the fourth convolutional block

consistently outperform those from the other layers. For an input of size 96×96, the

spatial dimension of the representation is 48× 48 at Layer #1 and 3×3 at Layer #5,

reducing by a factor of two at each successive layer. Thus, while the representation

loses geometric equivariance with depth, contrastive learning encourages invariance,

resulting in Layer #4 with the optimal trade-off for this task. While the best layer

can be selected with some labeled validation data, the hypercolumn representation

provides further benefits everywhere except the very small data regime (Tab. 3.3 and

Fig. 3.4a).

Dimensionality and linear regressor. In Tab. 3.4, we reduce the size of the

landmark regressor to evaluate its effect on the landmark regression performance.

We chose 50 intermediate landmarks to keep the evaluation consistent with DVE.

However, the choice is not critical as seen by the performance of a smaller linear

regressor. There is a small drop in performance, while it remains comparable to

DVE. The proposed feature projection with equivariant learning is more effective than

non-negative matrix factorization (NMF), a classical dimension reduction method.

Effectiveness of unsupervised learning. Tab. 3.5 compares representations using

the linear evaluation setting for randomly initialized, ImageNet pretrained, and con-

trastively learned networks using a hypercolumn representation. Contrastive learn-

ing provides significant improvements over ImageNet pretrained models, which is less

surprising since the domain of ImageNet images is quite different from faces. Inter-

estingly, random networks have competitive performances with respect to some prior
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Method C K #P MAFL AFLWM AFLWR 300W

DVE 64 50 17 2.86 7.53 6.54 4.65
Ours 3840 50 961 2.44 6.99 6.27 5.22
Ours 3840 10 192 2.40 7.27 6.30 5.40

Ours+proj. 256 50 65 2.64 7.17 6.14 4.99
Ours+proj. 256 10 13 2.67 7.24 6.23 5.07
Ours+proj. 64 50 17 2.77 7.21 6.22 5.19
Ours+NMF 64 50 17 2.80 7.60 6.69 5.62

Table 3.4: The effect of landmark regressor on landmark regression. We
vary the number of parameters (#P in thousands) in the landmark regressor by
changing the number of intermediate landmarks (K) and feature dimensions (C).
We compare the proposed feature projection (i.e., +proj.) with non-negative matrix
factorization (NMF) for dimension reduction. Our results better than DVE’s [229]
are marked in bold.

work in Tab. 3.2. For example, [230] achieve 4.02% on MAFL, while a randomly

initialized ResNet18 with hypercolumns achieves 4.00%.

Network Supervision MAFL AFLWM AFLWR 300W

Res. 18
Random 4.00 14.20 10.11 9.88
ImageNet 2.85 8.76 7.03 6.66

Contrastive 2.57 8.59 7.38 5.78

Res. 50
Random 4.72 16.74 11.23 11.70
ImageNet 2.98 8.88 7.34 6.88

Contrastive 2.44 6.99 6.27 5.22

Table 3.5: Effectiveness of unsupervised learning. Error using randomly
initialized, ImageNet pretrained, and contrastively trained ResNet50 for landmark
detection. Frozen hypercolumn representations with linear regression were used for
all methods.

Are the learned representations semantically meaningful? We found that

parts can be reliably distilled from the learned representation using non-negative

matrix factorization (NMF) (see [47] for another application of NMF for visualizing

semantic parts from deep network activations). Fig. 3.5 shows two such components

and a “map” of several components, which are indicative of parts (left) and are robust
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Figure 3.5: Semantic parts distillation. The object parts distilled from our
representation using NMF are semantically meaningful and consistent across different
instances (left). The parts are also robust to geometric transformations (right).

to image transformations (right). Additionally, Fig. 3.2 shows that the correspondence

obtained using nearest neighbor matching are semantically meaningful.

Commonalities and differences. Equivariance is necessary but not sufficient for

an effective landmark representation. It also needs to be distinctive or invariant

to nuisance factors. This is enforced in the equivariance objective (Eqn. 3.3) as a

contrastive term over locations within the same image, as the loss is minimized when

p(v|u; Φ,x,x′) is maximized at v = gu. This encourages intra-image invariance,

unlike the objective of contrastive learning (Eqn. 3.5) which encourages inter-image

invariance. However, a single image may contain enough variety to guarantee some

invariance. This is supported by its empirical performance and recent work showing

that representation learning is possible even from a single image [274]. However, our

experiments suggest that inter-image invariance can be more effective on datasets

with greater clutter, occlusion, and pose variations.

Is there any advantage of one approach over the other? Our experiments show

that for a deep network of the same size, invariant representation learning can be just

as effective (Tab. 3.2). However, invariant learning is conceptually simpler and scales

better than equivariance approaches, as the latter maintains high-resolution feature

maps across the hierarchy. Using a deeper network (e.g., ResNet50 vs. ResNet18)
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gives consistent improvements, outperforming DVE [229] on four out of five datasets,

as shown in Tab. 3.2. A drawback of our approach is that the hypercolumn represen-

tation is not directly interpretable or compact, which results in lower performance in

the extreme few-shot case. However, as seen in Fig. 3.4a, the advantage disappears

with as few as 50 training examples on the AFLW benchmark. This problem can be

effectively alleviated by learning a compact representation using equivariant learn-

ing which further reduces the number of required training examples to 20. Invariant

learning is also more data-efficient and can achieve the same performance with half

the unlabeled examples, as seen in Fig. 3.4c.

3.1.6 Conclusion and subsequent works

We show that intermediate layer representations of a deep network trained us-

ing instance-discriminative contrastive learning outperform landmark representation

learning approaches that are based on unsupervised equivariant learning alone. We

also show that equivariant learning approaches can be viewed through the lens of

(spatial) contrastive learning, resulting in weaker generalization than inter-image in-

variances for landmark recognition tasks. However, these two forms of contrastive

learning are complementary and we use the latter to learn a compact representation

that is better suited for landmark matching tasks. We illustrate our results on exist-

ing benchmarks and a new challenging one where there is a larger variation in pose

and viewpoint, where the improvements using our approach are more pronounced.

Following the publication of our research in 2021, there have been several note-

worthy advancements in the field. Our work shares a broad relation with studies ex-

ploring emergent properties of training deep neural networks without explicit human

annotations, particularly those aimed at understanding object structures. Herein, we

provide a brief overview of these recent developments.
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Xu et al. [268] demonstrated that object-level and part-level semantic corre-

spondence emerges when the ResNet [96] is trained with the image-level contrastive

learning, resonating our observations. In parallel, Zhang et al. [285] showed that

the intermediate features from a pretrained StyleGAN [111] are highly predictive of

semantic parts and developed a few-shot part segmentation framework.

Naturally, this brings up the question of which unsupervised pretraining strategy,

StyleGAN or contrastive learning, is more effective and efficient in understanding ob-

ject structure. We sought to answer this question in collaboration with colleagues,

conducting extensive evaluations which revealed the contrastive learning approach

to be superior to StyleGAN-based methods on standard few-shot part segmentation

benchmarks [186]. More recently, the diffusion model [101, 207] has greatly advanced

the field of generative modeling. Baranchuk et al. [11] have demonstrated that inter-

nal representations from pretrained diffusion models [101] outperform previous state-

of-the-art methods, including GANs [111] and self-supervised learning models [92].

As of July 2023, DINO [26], a self-supervised learning strategy, stands as the leading

method for understanding semantic parts, as demonstrated by Amir et al. [4].

In addition to the aforementioned pretraining strategies, another critical com-

ponent of our framework is the feature projection (Eqn. 3.6), which significantly

improves landmark matching performance over raw hypercolumn features (Tab. 3.1).

Most recently, Aygun et al. [9] conducted extensive evaluations of various feature

projection algorithms (including ours) across multiple benchmarks, further verifying

the efficacy of our method and introducing an improved approach.

3.2 Learning 3D pose estimators from unlabeled videos

In this section, we introduce a technique for learning single-view 3D object pose

estimation models by utilizing a new source of data — in-the-wild videos where ob-

jects turn. Such videos are prevalent in practice (e.g., cars in roundabouts, airplanes
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Figure 3.6: Classic turntable vs. accidental turntable. (a) Classic turntables
rotate and scan objects in a controlled environment to estimate their 3D pose and
shape. (b) A turning object in a video leads to an accidental turntable. Structure-
from-motion, coupled with object detection [95] and feature matching [191], pro-
vides surprisingly accurate relative 3D pose estimation (top) and 3D reconstruc-
tion (bottom) — the red pyramids indicate the estimated relative poses of video
frames. We utilize a collection of such videos to train and evaluate models for single-
frame 3D pose estimation in realistic settings. See more accidental turntables here:
https://www.youtube.com/watch?v=8rFNRri8-TI

near runways) and easy to collect. We show that classical structure-from-motion algo-

rithms, coupled with the recent advances in instance detection and feature matching,

provide surprisingly accurate relative 3D pose estimation on such videos. We propose

a multi-stage training scheme that first learns a canonical pose across a collection of

videos and then supervises a model for single-view pose estimation. The proposed

technique achieves competitive performance with respect to the existing state-of-the-

art on standard benchmarks for 3D pose estimation without requiring any pose labels

during training. We also contribute an Accidental Turntables Dataset, containing a

challenging set of 41,212 images of cars in cluttered backgrounds, motion blur, and

illumination changes that serve as a benchmark for 3D pose estimation.

3.2.1 Overview

Mechanical devices that precisely change an object’s pose are widely utilized when

performing high-precision 3D scanning. They allow a particular object to have its
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pose modified in a controlled manner while capturing its appearance through a va-

riety of image sensors. One of the simplest devices of this kind is a turntable – a

rotating platform that slowly changes the pose of an object through an electric motor

(Fig. 3.6a). Unfortunately, despite its simplicity, turntables are not very practical.

They need to be as large as the object at hand, e.g., setting up turntables for cars or

airplanes would require a lot of work.

Fortunately, we don’t need to place those objects in actual turntables. Many are

already performing similar motions on their own (Fig. 3.6b) — cars moving along

roundabouts, airplanes landing and parking, ships maneuvering across canals, and

so on. In the real world, video recordings of objects performing these types of mo-

tions depict them in uncontrolled environments; i.e., cluttered background, occluders,

changes in illuminations, motion blur, unpredictable pose changes, and many other

nuisance factors. Thanks to many recent advances in computer vision, we show that

we are able to bypass many of those nuisance factors and apply Structure from Motion

(SfM) to reliably and precisely recover relative pose estimation from videos of real

objects (Fig. 3.6b). We call these types of videos Accidental Turntables – objects

presenting motion patterns that allow us to observe them from (almost) all possible

angles. We demonstrate that these videos, after suitable automatic pre-processing,

are an excellent source of supervision for pose estimation models and, perhaps more

importantly, can be mined from the internet, enabling the creation of bigger and more

diverse datasets.

However, using the supervision from SfM does not allow us to directly perform

pose estimation with respect to a canonical object frame. To this end, we propose

to learn a relative pose estimation model and show that its training leads to the

emergence of a canonical object pose. In the second stage, we propose a calibration

and training procedure that allows pose estimation in a canonical frame. We show

that models trained in this fashion only using our newly collected dataset from real
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videos significantly outperform other models trained on SfM and perform on par with

existing unsupervised approaches on standard benchmarks, e.g., the Freiburg and

ImageNet cars datasets.

We summarize our contributions as follows. 1) a procedure for automatically

processing accidental turntable videos and annotating its frames with relative pose

transformations; 2) a multi-stage training scheme that allows training accurate pose

estimation models with respect to arbitrary canonical frames; and 3) a new dataset

with 41,212 real images of cars from turntable videos with their corresponding pose

annotation.

3.2.2 Related works

Datasets for 3D pose estimation. A number of datasets provide 3D pose an-

notations for objects in the wild [3, 70, 208, 214, 259, 260] or in controlled environ-

ments [65, 102, 243, 248, 261]. These datasets have been widely used for training

supervised pose estimation models [80, 125, 141, 236]. However, manually annotat-

ing 3D poses is very tedious and thus not scalable. Unsupervised pose estimation

models [143, 155, 162, 197] learn to predict 3D pose without any human annotations.

Videos [166, 197] that capture multiple views of objects have been the main source

of training data in prior works [143, 162, 197]. However, to acquire such videos, a

person needs to hold a camera and slowly move around a static object. This is a

time-consuming procedure, especially for large-size objects (e.g., cars, and airplanes),

and has limited the size of existing video datasets. For example, the Freiburg Cars

dataset [197] consists of 52 car videos, and EPFL car dataset [166] only provides 20

cars. Such limited data may further constrain the performance of prior methods.

Supervised 3D pose estimation. With groundtruth 3D pose annotations, super-

vised pose estimation works have been focusing on developing novel representations

of 3D pose [125, 154, 290], learning objectives [125, 236, 265, 266], or network ar-
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chitectures [61, 62]. The difficulty in annotating 3D poses results in the scarcity of

pose annotations. This issue is partially relieved by augmenting the existing datasets

with synthetic data [210]. The integration of pose estimation and object detection

has been explored in the task of 3D object detection [57, 70].

Unsupervised 3D pose estimation. Unsupervised pose estimation models learn

3D object pose without any human annotations. Prior works are either based on

analysis-by-synthesis [143, 155] or SfM [162, 197]. The analysis-by-synthesis frame-

works train a pose estimation model by reconstructing the input images in a pose-

aware manner. The SfM-based methods start by estimating the pose labels with SfM

on videos that capture 360◦ views of static objects. However, SfM only provides rel-

ative pose estimations among video frames. The absolute pose estimations from SfM

are not consistent across videos (i.e., objects in the same pose from two videos may

have quite different absolute pose representations). To tackle this issue, Sedaghat et

al. [197] calibrate the SfM pose estimations via aligning 3D reconstructions of ob-

jects; Novotny et al. [162] train a model to estimate the relative pose and observe

that canonical poses emerge in the models trained in this manner.

3.2.3 Accidental Turntables dataset

In this section, we provide the details of our data collection and the generation

of 3D pose annotations with SfM algorithms on our dataset. We name the collected

video dataset as Accidental Turntables dataset, highlighting its connections to

classic turntables (Fig. 3.6).

Data source. The main criterion of our data collection is that the object turns in

the video. Such videos are abundant on the Internet and quite easy to acquire. In

this work, we focus on the car category which is one of the most common moving

objects in the wild (at least in America). We leave the extension to other categories

(e.g., airplanes and boats) in our future work but include some examples of the
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Figure 3.7: Samples from Accidental Turntables dataset. Accident turntables
are prevalent in practice. For instance, a car donuts (1st row), a car moves along a
roundabout (2nd and 3rd row), or a car does not turn but passes by a camera (4th
row). All car instances exhibit at least 180◦ azimuth changes relative to the camera.

reconstructions in Sec.3.2.5.3. We collect 313 car video clips from YouTube containing

a total of 141,784 frames. Each video consists of a single moving car instance that

exhibits multiple views in motion. Fig. 3.7 provides video samples from our dataset.

Challenges. Even though our dataset consists of a large number of car videos serving

as a new source of training data for machine learning models, in-the-wild videos

pose technical challenges for the automatic extraction of 3D poses using SfM. For

example, to exploit the classical SfM algorithms to estimate the object pose, object

segmentation is required to remove the background; Motion blur and texture-free

object surfaces necessitate robust interest points detection; Discriminative feature

description and robust feature matching are needed to avoid the ambiguity of pose

estimation on symmetric objects (e.g., cars).

Pose estimation with SfM. To tackle the above-mentioned challenges, we use the

MaskRCNN [95] pretrained on MS-COCO dataset [127] to remove the background

clutter. We find that the MaskRCNN provides highly accurate object detection

and segmentation on in-the-wild car videos. We use SfM algorithms implemented

by COLMAP [194, 195] with SuperPoint [56] as the feature extractor and Super-

GLUE [191] as the feature matcher to estimate the object pose on cropped object
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images. We sequentially match the next 10 frames per video frame, instead of ex-

haustively matching every pair of frames in a video. Sequential matching reduces

the ambiguity in matching repeated patterns (e.g., left and right wheels of a car).

SfM, coupled with MaskRCNN, SuperPoint, and SuperGLUE, provides surprisingly

accurate pose estimation, in comparison with classical SIFT [138] and nearest neigh-

bor matching. We provide a detailed study on the effect of feature extraction and

matching on SfM in Sec.3.2.5.3.

Statistics. Our dataset consists of 313 car videos with 141,784 frames in total. SfM

automatically samples frames with sufficient large relative pose change and reliable

feature matching. Adjacent frames in a video usually have tiny differences in the

pose. Thus, most of the frames are filtered out by SfM. We end up collecting 41,212

frames with SfM pose estimations. Our dataset covers cars with diverse shapes, colors,

textures, and poses (see examples in Fig. 3.7).

3.2.4 Approach

This section introduces our framework for learning 3D object pose from the pro-

posed Accidental Turntables dataset. Fig. 3.8 illustrates an overview of the proposed

framework. SfM estimates the relative pose of objects with respect to the object in

the first frame per video, followed by optimizing the pose parameters with the bundle

adjustment. However, the object pose in the first frame may vary dramatically across

videos. It is thus meaningless to train a model directly on the absolute pose labels

from SfM. Instead, we start by training a model to estimate the relative pose of frame

pairs (Fig. 3.8 left). We observe that a canonical pose emerges in our pose estimation

model train in this way (see Sec.3.2.5.3). This provides us a tool to calibrate the pose

estimation from SfM to a canonical frame (Fig. 3.8 middle). In the second stage, we

train a pose estimation model directly on the calibrated absolute pose annotations

similar to standard supervised learning methods [210, 236, 265] (Fig. 3.8 right). We
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Figure 3.8: Approach overview. Left: a pose estimation model f(x) is trained to
predict the relative pose of image pairs (denoted by ∆Rij). Middle: the emergence of
the canonical pose in f(x) enables us to calibrate the pose estimations from SfM to
a uniform frame. The model f(x) is frozen in the pose calibration step. Right: after
the pose calibration, a pose estimation model g(x) is trained on the absolute pose
annotations.

denote our model trained in the first stage as f(x) and the model in the second stage

as g(x), where x is the input image. Our Accidental Turntables dataset is denoted

by {(xi, Ri)}, where R ∈ SO(3) is the SfM pose estimation.

Relative pose estimation. In this stage, we train a single-view pose estimation

network f(x) to predict the relative pose between pairs of video frames. The loss

function is defined as

Lrelative =
N∑

(i,j)

dist(RiR
T
j , R̂iR̂

T
j ) with R̂i = f(xi) (3.7)

where dist(·, ·) is a distance function between two rotation matrices (e.g., L2 or

geodesic distance). R̂i is a 3 × 3 rotation matrix predicted from the model f(xi)

on the input xi. The frame pair xi and xj are sampled from the same video. N is

the total number of frame pairs sampled from our video dataset. ∆Rij = RiR
T
j is the

relative rotation matrix that transforms the pose of the frame xj to xi. We use the

6D continuous rotation representation [290] as the intermediate output of our model
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f(x), from which the 3 × 3 rotation matrices R̂ are recovered by the Gram-Schmidt

orthogonalization [290]. Our first training stage is similar to the learning strategy

proposed by Novotny et al. [162]. Differently, we only use the model f(x) trained in

this stage as a tool to calibrate the SfM pose annotations (Sec. 3.2.4). Moreover, we

demonstrate that the model g(x) trained in our second stage significantly outperforms

the stage-one model f(x) as well as Novotny et al. [162].

Pose calibration. The pose predictor f(x) trained in the first stage provides us a tool

to calibrate the pose annotations from SfM into a uniform pose frame, thanks to the

emergence of canonical pose (see Sec.3.2.5.3 for more details). If the pretrained f(x)

provides perfectly accurate pose estimation per input x, there exists a global rotation

∆R for each video that aligns our pose annotations {Ri} to the pose predictions {R̂i}:

R̂i = ∆RRi ∀i ∈ 1, . . . , K (3.8)

Where K is the number of frames in the target video, however, the pose predictions

{R̂i} are inaccurate in practice due to the limited performance of the pretrained pose

predictor f(x). We thus target at a rotation matrix ∆R∗ that aligns {Ri} and {R̂i}

with minimal calibration error. We define the calibration error as,

L∗
cali =

1

K

K∑
i

dist(R̂i,∆R∗Ri) (3.9)

where dist(·, ·) is a distance function between two rotation matrices. We adopt the

geodesic distance ∥ logRT R̂∥F/
√
2 in our implementation. The pose calibration is

then formulated as an optimization problem:

min
∆R

Lcali(R̂,∆RR) (3.10)

s.t. ∆R ∈ SO(3) (3.11)
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This problem can be solved by the classical Procrustes analysis [78]. In practice,

we find that a simple search-based optimization method works reliably. Concretely,

the optimal global rotation ∆R∗ is searched from the set {∆Rj : ∆Rj = R̂jR
T
j }.

Moreover, the calibration error L∗
cali is closely related to the noise level of the calibrated

pose annotations. Large calibration error typically means the failure of calibration

and a higher level of noise in the calibrated pose annotations (see Sec.3.2.5.3 for our

empirical studies). Therefore, the calibration error L∗
cali may serve as a heuristic to

filter out noisy pose labels.

Absolute pose estimation. We now could apply any supervised learning methods

for pose estimation on our calibrated dataset {(xi, R
cali
i )}. In this work, we adopt the

framework proposed by Xiao et al. [265, 266] to train our pose estimator. Concretely,

we use three Euler angles as our pose representation, including azimuth α ∈ [−π, π],

elevation β ∈ [−π/2, π/2], and roll γ ∈ [−π, π]. The Euler angles are decomposed

from the rotation matrices Rcali and divided into Zθ disjoint angular bins with bin

size Bθ = π/12. The model is trained to predict the bin indices yθ ∈ {1, . . . , Zθ} via

a classification loss and within-bin offsets δθ via a regression loss:

Labs =
∑

θ∈α,β,γ

Lcls(yθ, pθ) + λLreg(δθ, δ̂θ) (3.12)

where pθ is the probability of the object pose in the bin yθ; δ̂θ ∈ [0, 1] is the predicted

offsets within the bin yθ; (pθ, δ̂θ) = g(x) are both outputs of our pose estimation model

g(x). We use the cross-entropy loss as the classification loss Lcls and the smooth-L1

loss as the regression loss Lreg; λ is the weight on the regression loss (λ = 1 by

default).

At the inference time, the pose prediction θ̂ on the input x is obtained by com-

bining the prediction of the bin classifier and the offsets within the predicted angular

bin:
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θ̂ = (j + δ̂θ,j)Bθ with j = argmax
i

pθ,i (3.13)

where pθ,i is the probability of object pose in the i-th bin, and δ̂θ,j is the predicted

offsets within the i-th bin.

3.2.5 Experiments

3.2.5.1 Benchmark and implementation details

Implementation details. We use a standard ResNet50 network with three fully-

connected layers as our pose estimation model. We initialize our model with ImageNet

pretrained weights and fine-tune it during training. In the first training stage, we do

not apply any data augmentation. In the second training stage, we use standard data

augmentations including in-plane rotation and flipping. We conduct hyperparameter

search and checkpoint selection on a validation set separate from our training and test

set. The validation set consists of 338 non-truncated and non-occluded car images

from PASCAL3D+ [260]. Similar to prior work [143, 155, 265, 266], we use a tightly

cropped object image as the input to our pose estimation model. The input image is

resized and padded to 224 × 224. We use the Adam optimizer [112] with a learning

rate of 1E-4 and weight decay of 5E-4. In the second training stage, we train our

model on videos with a calibration error L∗
cali (Eqn. 3.9) lower than 7◦.

Benchmarks. We evaluate the performance of our model on the PASCAL3D+

dataset [260] which is a standard benchmark for 3D pose estimation. The test split in

the PASCAL3D+ dataset consists of 308 non-occluded and non-truncated car images

collected from the PASCAL VOC dataset [63]. More recently, Mariotti et al. [143]

reports their results on the ImageNet validation set included in PASCAL3D+ which

consists of 2712 test images of cars. To make a comparison with Mariotti et al. , we

provide results on both test splits. Following prior works, we measure the prediction

error using the standard geodesic distance ∆R = ∥ logRT
gtRpred∥F/

√
2 between the

estimated rotation matrix Rpred and the groundtruth Rgt. We report the median
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geodesic error (Med.) and the percentage of predictions with error less than π/6

(Acc.) relative to the groundtruth.

Pose calibration for evaluation. The pose predictions from our model align with

human annotations up to a global rotation, due to the difference between the coordi-

nate frame of our model and that of pose annotation tools adopted by the benchmarks.

To evaluate our model on the benchmarks, similar to prior unsupervised learning

methods [143, 155], we need to calibrate our pose estimations to the groundtruth

annotations. Such pose calibration for evaluation is exactly the same as our pose

calibration step described in Sec 3.2.4. Specifically, we estimate a global calibration

matrix ∆R such that ∆RRpred equals the human annotations Rgt. We formulate

the pose calibration as an optimization problem and solve it via a simple search-

based method (see more details in Sec 3.2.4). The calibration matrix ∆R is obtained

by solving the optimization problem on 100 car images randomly sampled from the

training set of PASCAL3D+.

3.2.5.2 Single-view 3D pose estimation

Quantitative results. Tab. 3.6 provides quantitative comparisons with prior unsu-

pervised pose estimation works on PASCAL3D+ test set. Our method significantly

outperforms the existing SfM-based methods [162, 197]. Similar to ours, these mod-

els are trained on video data with pose annotations from SfM. However, they rely

on SfM with SIFT [138] and nearest neighbor (NN) matching, which fails to pro-

vide high-quality pose estimations (see more details in Sec.3.2.5.3). For this reason,

prior SfM-based models collect videos by slowly moving a camera around static cars

to avoid large motion blur. This tedious procedure limits the size of existing car

video datasets. For example, the FreiburgCars dataset [197] consists of 52 car videos;

the EPFL car dataset [166] provides only 20 car videos. In comparison, our video

dataset (consisting of 313 videos) is easy to collect and prevalent on the Internet.
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Methods Supervision Trainset Testset Acc.(%) ↑ Med.(◦) ↓

Su
pe

r.

Tulsiani et al. [236] Anno. PASCAL3D+ VOC 89 9.1
Mahendran et al. [141] Anno. PASCAL3D+ VOC – 8.1
Liao et al. [125] Anno. PASCAL3D+ VOC 93 5.2
Grabner et al. [80] Anno. PASCAL3D+ VOC 94 5.1

U
ns

up
er

vi
se

d

VPNet [197] SfM FreiburgCars VOC – 49.6
VpDRNet [162] SfM FreiburgCars VOC – 29.6
SSV [155] AbS CompCars VOC 67 10.1
Ours SfM FreiburgCars VOC 72 15.7
Ours SfM Acci.Turn. VOC 75 15.8
ViewNet∗ [143] AbS ShapeNet ImageNet 88 5.6
ViewNet∗ [143] AbS FreiburgCars ImageNet 61 16.1
Ours SfM FreiburgCars ImageNet 84 15.0
Ours SfM Acci.Turn. ImageNet 86 14.8

Table 3.6: Pose estimation on PASCAL3D+ test sets. We make comparisons
with supervised learning methods trained with human annotations (dubbed Anno.)
and unsupervised pose estimation models based on Structure-from-Motion (dubbed
SfM) or Analysis-by-Synthesis (dubbed AbS). ∗ViewNet ignores the in-plane rotation
in the evaluation and reports the results on the ImageNet validation set.

SfM, coupled with the recent progress in object detection [95] and feature match-

ing [191], provides robust and accurate pose estimations on our in-the-wild videos,

which is the key to the success of our framework. Our model trained on the Acciden-

tal Turntables dataset achieves higher pose prediction accuracy than when trained on

the FreiburgCars dataset.

In comparison with analysis-by-synthesis frameworks [143, 155], our prediction

accuracy is significantly higher than that of SSV model [155] which is trained on

the CompCars dataset [272] (consisting of 137,000 real car images). ViewNet [143]

achieves the highest performance on PASCAL3D+ among existing unsupervised learn-

ing methods. However, this method relies on 3D models from ShapeNet [28] to gen-

erate a highly curated dataset with controlled variations in viewpoint, translation,

lighting, background, etc. In contrast, ViewNet has a harder time learning from real

videos (e.g., FreiburgCars [197]) where its performance drops remarkably.
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Qualitative results. Fig. 3.9 visualizes our pose predictions on the Pascal3D+

test set. Our model provides accurate pose estimation on diverse cars in terms of

appearance, poses, and shapes. The performance of our model drops in several cases:

the object is highly occluded; the image is in low resolution; the domain gap between

the input and our dataset is large (e.g., cartoon cars, snow-covered cars). These issues

can be potentially relieved by collecting more videos to further enrich the diversity

of cars in our dataset.

Figure 3.9: Pose prediction on Pascal3D+ test set. Left: our model achieves
high accuracy of pose estimation on cars in diverse appearances, poses, and shapes.
Right: the performance drops on large, occluded objects (1st row), low-resolution
images (2nd row) or out-of-domain data (last two rows). The solid arrows indicate
the pose predictions from our model and the dashed arrows are the groundtruth
annotations. The blue arrow directs towards the frontal side of cars and the red
points toward the right side. The angular distances between the predictions and the
groundtruth are less than 7◦ for examples on the left while higher than 90◦ on the
failure cases.

3.2.5.3 Analysis

The emergence of a canonical pose. The key to the success of the proposed

model is the emergence of the canonical pose in our first training stage. Fig. 3.10

provides images from our dataset with similar pose annotations after the calibration

step (Sec. 3.2.4). On the one hand, Fig. 3.10 clearly demonstrates that the calibrated

pose annotations align well in a uniform frame. On the other hand, the calibration
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Figure 3.10: Canonical pose emerges in our first training stage (Sec. 3.2.4).
For each reference image (top), we present four matches (including one failure case) of
which the pose annotations have less than 5◦ angular distance to that of the reference
frame. The calibration error L∗

cali (Eqn. 3.9) is higher than 25◦ on these failure cases
while lower than 10◦ on the well-calibrated video instances. This provides us with a
heuristic to filter out noisy annotations.

fails on several videos due to the limited performance of our stage-one model (Fig. 3.10

bottom). A typical failure case is that the pose predictor misidentifies the frontal

view of a car as the rear view. Such failure cases of pose calibration introduce noisy

pose annotations into our dataset. Fortunately, we find that the noise level of the

annotations is closely correlated with the calibration error L∗
cali (Eqn. 3.9). We thus

use the calibration error L∗
cali as a heuristic to filter out noisy annotations in our

second training stage. We provide a detailed analysis below.

The effect of the noise level in the annotations. We use the calibration error

L∗
cali (Eqn. 3.9) as an indicator of the noise level of the pose annotations. A higher

threshold on the calibration error corresponds to a larger number of training images

yet more noisy annotations, and vice versa. Fig. 3.11 presents the performance of our

model under different noise levels of the annotations. It demonstrates that neither
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Figure 3.11: The effect of annotation noise level on 3D pose prediction. We
report the performance of our pose estimation model under different noise levels of
pose annotations. A higher level of annotation noise corresponds to a larger number
of training images. We report both prediction accuracy (left panel) and median error
(right panel) on two test splits included in PASCAL3D+.

clean-yet-small data nor large-yet-noisy data lead to higher performance than mid-size

data with mid-level noise.

The effect of two-stage training. As demonstrated in Fig 3.10, the model trained

in the first stage provides a tool to calibrate the pose annotations of our dataset.

However, the performance of the stage-one model lags behind the state-of-the-art

analysis-by-synthesis frameworks (e.g., SSV [155] and ViewNet [143]). We hypothesize

that training to predict the relative pose is a suboptimal learning strategy for the

task of absolute pose estimation. As shown in Tab. 3.7, the model trained in our

second training stage significantly outperforms the one trained in the first stage.

This suggests that learning with absolute pose annotations is a more effective training

method. However, our stage-two training is not possible without the pose calibration

and stage-one model. Therefore, the proposed two training stages are complementary

and both play an important role in our framework.

The effect of network initialization. The recent self-supervised learning (SSL) [36,

94] has significantly improves the unsupervised pose estimation [38] and part dis-

covery [186]. We initialize our pose estimation network with ImageNet-pretrained
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Table 3.7: The effect of two-stage training on 3D pose prediction. The
second stage trains the model to regress to absolute pose after using the first stage
model to calibrate the relative pose annotations. This procedure leads to a significant
improvement in pose estimation accuracy (%) and median error (◦), in spite of the
training datasets.

Trainset Stage PASCAL VOC ImageNet
Acc. ↑ Med. ↓ Acc. ↑ Med. ↓

Acci. Turn. 1 42 38.8 46 32.9
2 75 15.8 86 14.8

FreiburgCars 1 36 44 47 31.9
2 72 15.7 84 15.0

Table 3.8: The effect of network initialization on 3D pose prediction. Im-
ageNet pretrained models provide a significant improvement over random initialized
ones but self-supervised counterparts are competitive alternatives without having to
resort to extra human annotations.

Initialization PASCAL VOC ImageNet
Acc. ↑ Med. ↓ Acc. ↑ Med. ↓

Random 58 25 70 20.2
Contrastive [94] 74 15.7 85 14.3
ImageNet 75 15.8 86 14.8

models by default. However, ImageNet classification labels require extensive human

labor. A natural question is how the recent SSL methods help us further reduce the

requirement of human annotations. Tab. 3.8 provides a comparison of different ini-

tialization strategies. Supervised ImageNet pretraining and unsupervised contrastive

pretraining [36, 94] have similar performance in the task of pose estimation, while

both outperform the random initialization in a large margin.

Pose distribution. Figure 3.12 compares the pose distribution of the Acci- dental

Turntables dataset and PASCAL3D+. The distribution of azimuth is more balanced

in our dataset, where PASCAL3D+ has more cars with large elevations.
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Figure 3.12: Distribution of the poses in the proposed Accidental Turnta-
bles dataset and the PASCAL3D+.

Feature extraction and matching for SfM. Feature extraction and matching

are the core of SfM algorithms. The classical SIFT [138] and simple nearest neigh-

bor matching (NN) remain the default components in popular SfM packages (e.g.,

COLMAP [194, 195]), despite of the recent success of learning-based methods [56,

191]. We observe that SfM with SIFT and NN does not work reliably on our in-the-

wild video dataset. Fig. 3.13 compares the 3D reconstruction and pose estimation

from COLMAP under different feature extraction and matching algorithms on two

videos from our dataset. SfM with SIFT and NN only provides partial 3D recon-

struction and pose estimation on a small subset of frames. Its performance drops

significantly on texture-free objects (Fig. 3.13 bottom). Simply replacing SIFT with

Superpoint [56] leads to more complete 3D reconstruction and pose estimations. SfM

with Superpoint and SuperGlue [191] provides the highest quality of shape reconstruc-

tion and pose estimations. Our experimental results can be explained by the following

observations: SIFT detects few interest points on most cars due to the texture-free

surface; SIFT extracts feature in a small local region, which results in large ambi-

guity in matching duplicated patterns (e.g., frontal and rear wheels of a car); large

motion blur further destabilizes the feature-matching process; In comparison, Super-

point provides rich interest points even in texture-free regions; Lastly, SuperGLUE

aggregates long-range contextual information via an attention mechanism, which we
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find significantly reduces the ambiguity in matching repeated patterns. Fig. 3.14

provides more examples from our Accidental Turntables dataset. The performance

of SfM may drop on highly-occluded objects (e.g., the car is occluded by smoke in

Fig. 3.14 bottom).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Video Frame Samples SIFT+NN Superpoint+NN Superpoint+S.G.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.13: Feature extraction and matching for structure-from-motion.
Left: video samples from the proposed Accidental Turntables dataset. Right: pose
estimations (top) and dense 3D reconstruction (bottom) under different feature ex-
traction (SIFT [138] or Superpoint [56]) and matching (nearest neighbor (NN) or
SuperGlue (S.G.) [191]) algorithms. The red square pyramids indicate the location
of the estimated camera pose. Each video consists of more than 200 frames and the
car turns around 720◦.

Extension to other categories. There are a fair number of turntable videos for

other categories on Youtube. For example, airplanes turn along the runway (e.g.,

video1, video2); landing or takeoff of airplanes usually induces more than 90-degree

pose changes relative to the camera (e.g., video3, video4); cruises turn (e.g., video7).

Fig. 3.15 shows SfM with Superpoint, and SuperGlue provides reasonable pose esti-
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Figure 3.14: More examples from the Accidental Turntables dataset. SfM
provides accurate 3D reconstructions and pose estimations on either texture-rich (1st
row) or texture-free (2nd row) objects, as well as objects moving along a straight
line without any turns (3rd row). The performance drops on highly-occluded objects
(bottom).

Figure 3.15: Accidental Turntables for airplanes and cruise. Left: video
frame samples. Right: pose estimation and 3D reconstruction from structure-from-
motion.
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mation and 3D reconstruction on these categories. Even though we focus on cars in

this work, our dataset is much larger, easier to collect, and more useful to train a

pose estimator than existing car datasets (e.g., FreiburgCars).

3.2.6 Conclusion and subsequent works

We propose to learn 3D pose estimation models from a new source of data: videos

where objects turn. We demonstrate that classical structure-from-motion algorithms,

coupled with the recent advances in feature matching and object detection, pro-

vide surprisingly accurate pose estimations and 3D reconstructions on in-the-wild

car videos. We also provide a novel learning framework that successfully trains a

high-quality 3D pose predictor on the collected video datasets.

Subsequent to this work, more recently, we propose a method to jointly estimate

3D scene representation and camera poses from a collection of unposed images or

in-the-wild videos [223] (see Chapter 6 for more details). This method demonstrates

complementary performance to the SfM pipeline adopted in our current work. Future

research will aim to generalize the proposed method to encompass a wider range of

categories, as well as explore the feasibility of training category-agnostic models for

3D pose estimation.
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CHAPTER 4

LEARNING FROM HETEROGENEOUS LABELS

Besides the prohibitive annotation cost, another common issue regarding human

annotations is the label noise, which may significantly hurt the performance of ma-

chine learning models [157]. A common practice of collecting labels is to distribute the

annotation task to many annotators through online tools such as Amazon Mechanical

Turk. However, different annotators may have quite different understandings of the

annotation policy. This could lead to inconsistent annotations, resulting in what are

referred to as heterogeneous labels.

One way to relieve the issue of heterogeneous labels is to collect multiple annota-

tions per instance from different annotators and filter labels based on the agreement

among the annotators [127]. However, this increases annotation costs and is not ap-

plicable when the annotations are collected opportunistically across different studies

without consistent annotation guidelines. For example, Jiang et al. [107] observed

that the style of the bounding box annotations for human faces changes dramatically

across different benchmarks — the face annotations from the IJB-A benchmark [114]

include the whole head while the annotations from WIDER [273] exclude the top of

the head (see Fig. 4.1a). A similar issue appears in the bird roost annotations on

the weather radar images, collected from different researchers and naturalists in prior

research studies [118] (see Fig. 4.1b and Sec. 4.2). This annotation variation makes

evaluation using held-out data very difficult and inhibits learning due to inconsistent

supervision.
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(a) WIDER and IJB-A face dataset (b) Tree Swallow roost dataset

Figure 4.1: Heterogeneous labels. (a) shows the face annotations from WIDER
(left) [273] and IJB-A benchmark (right) [114]. Examples are taken from the work of
Jiang et al. [107]. (b) presents the Tree Swallow roost annotations (i.e., the ring-like
patterns) from three different annotators. Observe the variations in the tightness of
bounding boxes across different benchmarks and annotators.

In this chapter, we consider such a specific type of noisy annotation that is caused

by the variations of labeling styles across annotators or benchmarks, dubbed hetero-

geneous labels. Despite the sheer volume of prior works on learning from noisy labels

(see Sec. 2.2), learning from heterogeneous labels is yet under-explored in the litera-

ture. Sec. 4.1 presents a principled learning method, and Sec. 4.2 introduces a novel

application of our framework in an ecological study. We focus on the object detection

task in this chapter and leave its extension to other tasks as our future work.

4.1 Approach

Our goal is a generic and principled approach that can leverage standard detec-

tion frameworks (e.g., Faster RCNN [178]) with little or no modification. To model

variability due to annotation styles we use the following graphical model:

x
<latexit sha1_base64="XgHaDTN3DhMWTklqOFDj6gnNIHM="></latexit><latexit sha1_base64="eZ3xUDwXBW7ZiO72L6boHIF5zXk="></latexit>

x
<latexit sha1_base64="XgHaDTN3DhMWTklqOFDj6gnNIHM="></latexit><latexit sha1_base64="eZ3xUDwXBW7ZiO72L6boHIF5zXk="></latexit>

y
<latexit sha1_base64="Vu30PPryq8vt/oP6OjwXcC68JHk="></latexit><latexit sha1_base64="g9aFKlZGOfndkXIq2WcxH0w2+3A="></latexit>

y
<latexit sha1_base64="Vu30PPryq8vt/oP6OjwXcC68JHk="></latexit><latexit sha1_base64="g9aFKlZGOfndkXIq2WcxH0w2+3A="></latexit>

u
<latexit sha1_base64="5Hbn4/KcZ+CB3R8tubh6QZUNpvQ="></latexit><latexit sha1_base64="T0cClPFddZ5OTDeWg1ymF7jHhYg="></latexit>

u
<latexit sha1_base64="5Hbn4/KcZ+CB3R8tubh6QZUNpvQ="></latexit><latexit sha1_base64="T0cClPFddZ5OTDeWg1ymF7jHhYg="></latexit>

ŷ
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where x is the image, y represents the unobserved “true” or gold-standard label, u is

the user (or features thereof), and ŷ is the observed label in user u’s labeling style.

In this model
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• pθ(y|x) is the detection model, with parameters θ. We generally assume the

negative log-likelihood of the detection model is equal to the loss function of

the base detector. For example, in our application, − log pθ(y|x) = Lcnn(θ|y),

the loss function of Faster R-CNN.1

• pβ(ŷ | x, y, u) is the forward user model for the labeling style of user u, with

parameters β. In our application, much of the variability can be captured

by user-specific scaling of the bounding boxes, so we adopt the following user

model: for each bounding box, we model the observed radius as pβ(r̂ | r, u) =

N (r̂; βur, σ
2) where r is the unobserved true radius and βu is the user-specific

scaling factor. In this model, the bounding-box centers are unmodified and the

user model does not depend on the image x, even though our more general

framework allows both.

• pθ,β(y | x, ŷ, u) is the reverse user model. It is determined by the previous

two models and is needed to reason about the true labels given the noisy ones

during training. Since this distribution is generally intractable, we use instead

a variational reverse user model qϕ(y | x, ŷ, u), with parameters ϕ. In our

application, qϕ(r | r̂, u) = N (r;ϕur̂, σ
2), which is another user-specific rescaling

of the radius.

We train the user models jointly with Faster R-CNN using variational EM. We

initialize the Faster R-CNN parameters θ by training for 50K iterations starting from

the ImageNet pretrained VGG-M model using the original uncorrected labels. We

then initialize the forward user model parameters β using the Faster R-CNN predic-

tions: if a predicted roost with radius ri overlaps sufficiently with a labeled roost

(intersection-over-union > 0.2) and has a high enough detection score (> 0.9), we

1Faster R-CNN includes a region proposal network to detect and localize candidate objects and a
classification network to assign class labels. The networks share parameters and are trained jointly
to minimize a sum of several loss functions; we take the set of all parameters as θ and the sum of
loss functions as Lcnn(θ|y).
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generate a training pair (ri, r̂i) where r̂i is the labeled radius. We then estimate the

forward regression model parameters as a standard linear regression with these pairs.

After initialization, we repeat the following steps (in which i is an index for an-

notations):

• Update parameters ϕ of the reverse user model by minimizing the combined loss

Eri∼qϕ(ri|r̂i,ui)

[
Lcnn(θ|{ri})−

∑
i log pβ(r̂i|ri, ui)

]
. The optimization is performed

separately to determine the reverse scaling factor ϕu for each user using Brent’s

method with search boundary [0.1, 2] and black-box access to Lcnn.

• Resample annotations on the training set by sampling ri ∼ qϕ(·|r̂i, ui) for all i,

then update θ by training Faster R-CNN for 50K iterations using the resampled

annotations.

• Update β by training the forward user models using pairs (ri, r̂i), where ri is

the radius of the imputed label.

Formally, each step can be justified as maximizing the evidence lower bound

(ELBO) [20] of the log marginal likelihood log pθ,β(ŷ|x, u) = log
∫
pθ,β(ŷ, y|x, u)dy

with respect to the variational distribution qϕ. Steps 1, 2, and 3 maximize the ELBO

with respect to ϕ, θ, and β, respectively. Steps 1 and 2 require samples from the re-

verse user model; we found that using the maximum a posteriori y instead of sampling

is simple and performs well in practice, so we used this in our application.

We assume y is a structured label that includes all bounding boxes for an image.

This justifies equating − log pθ(y|x) with the loss function L(θ) of an existing detection

framework that predicts bounding boxes simultaneously for an entire image (e.g.,

using heuristics like non-maximum suppression). This is important because it is

modular. We can use any detection framework that provides a loss function with no

other changes. A typical user model will then act on y (a set of bounding boxes) by

acting independently on each of its components, as in our application.
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We anticipate this framework can be applied to a range of applications. More

sophisticated user models may also depend on the image x to capture different label-

ing biases, such as different thresholds for labeling objects or tendencies to mislabel

objects of a certain class or appearance. However, it is an open question of how to de-

sign more complex user models and we caution about the possibility of very complex

user models “explaining away” true patterns in the data.

4.2 Application: detecting and tracking Tree Swallow roosts

We evaluate our framework in a novel application of computer vision in ecology

— detecting and tracking Tree Swallow roosts in weather radar data. We provide

a background of this application in Sec. 4.2.1, introduce a detection and tracking

system in Sec. 4.2.2, and demonstrate that our approach significantly improves the

performance of this system trained on heterogeneous annotations in Sec. 4.2.3, which

enables a series of large-scale ecological studies, as described in Sec. 4.2.4.

Radar data Top-down view

(a) Communal roost exodus (b) Radar geometry and roost appearance

(c) Roost detectionsFigure 4.2: Radar background. (a) Illustration of roost exodus. (b) A radar
traces out cone-shaped slices of the atmosphere (left), which are rendered as top-
down images (center). This image from the Dover, DE radar station at 6:52 am on
Oct 2, 2010 shows at least 8 roosts. Several are shown in more detail to the right,
together with crops of one roost from five consecutive reflectivity and radial velocity
images over a period of 39 minutes. These show the distinctive expanding ring and
“red-white-green” diverging velocity patterns.

4.2.1 Background

Radar Data. We use radar data from the US NEXRAD network of over 140 radars

operated by the National Weather Service [48]. They have ranges of several hundred
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kilometers and cover nearly the entire US. Data is available from the 1990s to the

present in the form of raster data products summarizing the results of radar volume

scans, during which a radar scans the surrounding airspace by rotating the antenna

360◦ at different elevation angles (e.g., 0.5◦, 1.5◦) to sample a cone-shaped “slice” of

airspace (Fig. 4.2b). Radar scans are available every 4–10 minutes at each station.

Conventional radar images are top-down views of these sweeps; we will also render

data this way for processing.

Standard radar scans collect 3 data products at 5 elevation angles for 15 total

channels. We focus on data products that are most relevant for detecting roosts. Re-

flectivity is the base measurement of the density of objects in the atmosphere. Radial

velocity uses the Doppler shift of the returned signal to measure the speed at which

objects are approaching or departing the radar. Copolar cross-correlation coefficient

is a newer data product, available since 2013, that is useful for discriminating rain

from biology [209]. We use it for post-processing, but not training, since most of our

labels are from before 2013.

Roosts. A roost exodus (Fig. 4.2a) is the mass departure of a large flock of birds from

a nighttime roosting location. They occur 15–30 minutes before sunrise and are very

rarely witnessed by humans. However, roost signatures are visible on the radar as

birds fly upward and outward into the radar domain. Fig. 4.2b, center, shows a radar

reflectivity image with at least 8 roost signatures in a 300 × 300km area. Swallow

roosts, in particular, have a characteristic signature shown in Fig. 4.2b, right. The

center row shows reflectivity images of one roost expanding over time. The bottom

row shows the characteristic radial velocity pattern of birds dispersing away from

the center of the roost. Birds moving toward the radar station (bottom left) have

negative radial velocity (green) and birds moving away from the radar station (top

right) have positive radial velocity (red).
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Annotations. We obtained a data set of manually annotated roosts collected for

prior ecological research [118]. They are believed to be nearly 100% Tree Swallow

roosts. Each label records the position and the radius of a circle within a radar image

that best approximates the roost. We restricted to seven stations in the eastern

US and to month-long periods that were exhaustively labeled, so we could infer the

absence of roosts in scans with no labels. We restricted scans from 30 minutes before

to 90 minutes after sunrise, leading to a data set of 63691 labeled roosts in 88972

radar scans. A significant issue with this data set is systematic differences in labeling

style by different researchers. This poses serious challenges to building and evaluating

a detection model.

Roost detection and tracking. There is a long history to the study of roosting

behavior with the radar data, almost entirely based on human interpretation of im-

ages [23, 118, 252]. That work is therefore restricted to analyzing only limited regions,

short-time periods, or coarse-grained information about the roosts. Chilson et al. [39]

developed a deep-learning image classifier to identify radar images that contain roosts.

While useful, this provides only limited biological information.

4.2.2 A roost detection and tracking system

Our overall approach consists of four steps (see Fig. 4.3): we render radar scans as

multi-channel images, run a single-frame detector, assemble and rescore tracks, and

then post-process detections using other geospatial data to filter specific sources of

false positives.

Detection architecture. Our single-frame detector is based on Faster R-CNNs [178].

Region-based CNN detectors such as Faster R-CNNs are state-of-the-art on several

object detection benchmarks.

A significant advantage of these architectures comes from pretraining parts of the

network on large labeled image datasets such as ImageNet [53]. To make radar data
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NEXRAD data RGB image Detection

Top-down view

Tracking

Figure 4.3: Detection and tracking pipeline. A final step (not shown) uses
auxiliary data to filter rain and wind farms.

compatible with these networks, we must select only 3 of the 15 available channels

to feed into the RGB-based models. We select the radar products that are most

discriminative for humans: reflectivity at 0.5◦, radial velocity at 0.5◦ degrees, and

reflectivity at 1.5◦. Roosts appear predominantly in the lowest elevations and are dis-

tinguished by the ring pattern in reflectivity images and distinctive velocity pattern.

These three data products are then rendered as a 1200 × 1200 image in the “top-

down” Cartesian-coordinate view (out to 150km from the radar station) resulting in

a 3-channel 1200× 1200 image. The three-channel images are fed into Faster R-CNN

initialized with a pretrained VGG-M network [29]. All detectors are trained for the

single “roost” object class, using bounding boxes derived from the labeled dataset

described above.

Although radar data is visually different from natural images, we found ImageNet

pretraining is quite useful; without pretraining the networks took significantly longer

to converge and resulted in a 15% lower performance. We also experimented with

models that map 15 radar channels down to 3 using a learned transformation. These

networks were not consistently better than ones using hand-selected channels. Models

trained with shallower networks that mimic handcrafted features, such as those based

on gradient histograms, performed 15-20% worse depending on the architecture.

Training details. Preliminary experiments revealed that systematic variations in

labeling style were a significant barrier to training and evaluating a detector. Fig. 4.4

shows example detections that correctly locate and circumscribe the ring-like pat-
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Figure 4.4: Labeling style variation leads to inaccurate evaluation and
suboptimal detectors. All of these detections (pink boxes) are misidentified as
false positives because of insufficient overlap with annotations of one user (green
boxes) with a tight labeling style. Label variation also hurts training and leads to
suboptimal models.

terns in the weather radar images (i.e., Tree Swallow roosts, see for Sec. 4.2 more

details). but are classified as false positives because the annotator used labels (orig-

inally circles) to “trace” roosts instead of circumscribing them. Although it is clear

upon inspection that these detections are “correct”, with 63691 labels and a range of

labeling styles, there is no simple adjustment to accurately judge the performance

of a system. Furthermore, labeling variation also inhibits learning and leads to sub-

optimal models. This motivates our approach to jointly learn a detector along with

user-specific models of labeling style, as described in Sec. 4.1. We provide a detailed

ablation study that shows the effectiveness of our training method in Sec. 4.2.3.

Roost tracking and rescoring. Associating and tracking detections across frames

is important for several reasons. It helps rule out false detections due to rain and other

phenomena that have different temporal properties than roosts. Detection tracks are

also associated directly with the biological entity—a single flock of birds—so they are

needed to estimate biological parameters such as roost size, rate of expansion, loca-

tion, and habitat of first appearance, etc. We employ a greedy heuristic to assemble

detections from individual frames into tracks [179], starting with high-scoring detec-

tions and incrementally adding unmatched detections with high overlap in nearby

frames. Detections that match multiple tracks are assigned to the longest one. After

associating detections, we apply a Kalman smoother to each track using a linear dy-
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namical system model for the bounding box center and radius. This model captures

the dynamics of roost formation and growth with parameters estimated from ground-

truth annotations. We then conduct a final rescoring step where track-level features

(e.g., number of frames, average detection score of all bounding boxes in track) are

associated with individual detections, which are then rescored using a linear SVM.

This step suppresses false positives that appear roost-like in single frames but do not

behave like roosts.

Postprocessing with auxiliary information. In preliminary experiments, the

majority of high-scoring tracks were roosts, but there were also a significant number

of high-scoring false positives caused by specific phenomena, especially wind farms

and precipitation. We found it was possible to reliably reject these false positives

using auxiliary information. To eliminate rain in modern data, we use the radar

measurement of the copolar cross-correlation coefficient, ρHV , which is available since

2013 [209]. Biological targets have much lower ρHV values than precipitation due to

their high variance in orientation, position and shape over time. A common rule is to

classify pixels as rain if ρHV > 0.95 [58]. We classify a roost detection as precipitation

if a majority of pixels inside its bounding box have ρHV > 0.95. For historical data

one may use automatic methods for segmenting precipitation in radar images such

as [129]. For wind farms, we can use recorded turbine locations from the U.S. Wind

Turbine Database [103]. A detection is identified as a wind farm if any turbine from

the database is located inside its bounding box.

4.2.3 Experiments

Dataset. We divided the 88972 radar scans from the manually labeled dataset into

training, validation, and test sets. Tab. 4.1 gives details of training and test data by

the station. The validation set (not shown) is roughly half the size of the test set and

was used to set the hyper-parameters of the detector and the tracker.
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Evaluation metric. To evaluate the detector we use established evaluation metrics

for object detection employed in common computer vision benchmarks. A detection

is a true positive if its overlap with an annotated bounding box, measured using the

intersection-over-union (IoU) metric, is greater than 0.5. The mean average precision

(MAP) is computed as the area under the precision-recall curve. For the purposes of

evaluating the detector, we mark roosts smaller than 30× 30 in a 1200× 1200 radar

image as difficult and ignore them during evaluation. Humans typically detect such

roosts by looking at adjacent frames. As discussed previously (Fig. 4.4), evaluation is

unreliable when user labels have different labeling styles. To address this, we propose

an evaluation metric (“+User”) that rescales predictions on a per-user basis prior to

computing MAP. Scaling factors are estimated following the same procedure used to

initialize variational EM. This assumes that the user information is known for the

test set, where it is only used for rescaling predictions and not by the detector.

Results: roost detector and user model. Tab. 4.1 shows the performance of

various detectors across radar stations. We trained two detector variants, one a

standard Faster R-CNN, and another trained with the variational EM algorithm. We

evaluated the detectors based on whether annotation bias was accounted for during

testing (Tab. 4.1, “+User”).

The noisy annotations cause inaccurate evaluation. A large number of the de-

tections on KDOX are misidentified as negatives because of the low overlap with the

annotations, which are illustrated in Fig. 4.4, leading to a low MAP score of 9.1%.

This improves to 44.8% when the annotation biases are accounted for during testing.

As a sanity check, we trained and evaluated a detector on annotations of a single user

on KDOX and found its performance to be in the mid-fifties. However, the score was

low when this model was evaluated on annotations from other users or stations.

The detector trained jointly with user-models using variational EM further im-

proves performance across all stations (Tab. 4.1, “+EM+User”), with larger improve-
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Station Test Train R-CNN +User +EM+User
KMLB 9133 19998 47.5 47.8 49.2
KTBW 7195 16382 47.3 50.0 50.8
KLIX 4077 10192 32.4 35.1 35.7
KOKX 1404 2994 23.2 27.3 29.9
KAMX 860 1898 29.9 30.8 31.6
KDOX 639 902 9.1 44.8 50.2
KLCH 112 441 32.1 39.8 43.1
entire 23.7k 53.6k 41.0 44.2 45.5

Table 4.1: Roost detection MAP for detector variants. We use Faster
RCNN [178] (dubbed “R-CNN”) as our object detection model.

ments for stations with less training data. Overall MAP improves from 44.2% to

45.5%. To verify the statistical significance of this result, we drew 20 sets of boot-

strap resamples from the entire test set (containing 23.7k images) and computed the

MAP of the model trained with EM and without EM on each set. The mean and stan-

dard error of MAPs for the model trained with EM is 45.5% and 0.12% respectively,

while they are 44.4% and 0.11% for the model trained without EM.

Results: tracking and rescoring. After obtaining the roost detections from our

single-frame detector, we can apply our roost tracking model to establish roost tracks

over time. Fig. 4.5 shows an example radar sequence where roost detections have been

successfully tracked over time and some false positives removed. We also systemati-

cally evaluated the tracking and rescoring model on scans from the KOKX station. For

this study, we performed a manual evaluation of the top 800 detections before and

after the contextual rescoring. The manual evaluation was necessary due to human

labeling biases, especially the omission of labels at the beginning or end of a roost

sequence when roost signatures are not as obvious. Fig. 4.5, the middle panel, shows

that the tracking and rescoring improve the precision across the entire range of k. Our

tracking model also enables us to study the roost dynamics over time (see Sec. 4.2.4

and Fig. 4.5 right panel).
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Figure 4.5: Roost tracking. Left: tracking example, with raw detections (top)
and track (bottom). Transient false positives in several frames lead to poor tracks and
are removed by the rescoring step. Middle: precision@k before and after rescoring.
Right: Roost radius relative to time after sunrise.

Oct 01-15 Oct 16-31 Nov 01-15 Nov 16-30 Dec 01-15

WaterCroplandWetland Urban Forest Shrubland Grassland Barren

Figure 4.6: Tree Swallow fall migration in 2013. The color circles show detected
roost locations with each half-month period. The location of each roost is determined
by the center of the first bounding box in the track when the airborne birds are closest
to their location on the ground. Faint gray triangles show radar station locations.

4.2.4 Case study

We conducted a case study to use our detector and tracker to synthesize knowledge

about continent-scale movement patterns of swallows. We applied our pipeline to 419k

radar scans collected from 86 radar stations in the Eastern US (see Figure 4.6) from

October 2013 through March 2014. During these months, Tree Swallows are the only

(fall/winter) or predominant (early spring) swallow species in the US and responsible

for the vast majority of radar roost signatures. This case study is therefore the first

system to obtain comprehensive measurements of a single species of bird across its

range on a daily basis. We ran our detector and tracking pipeline on all radar scans

from 30 minutes before sunrise to 90 minutes after sunrise. We kept tracks having at

least two detections with a detector score of 0.7 or more and then ranked tracks by

the sum of the detector score for each detection in the track.
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Pre Post Pre Post
Swallow roost 454 449 Other roost 38 38
Precipitation 109 5 Clutter 22 21
Wind farm 47 0 Unknown 8 8

Table 4.2: Detections by type pre- and post-filtering with auxiliary data.
Post-processing effectively removes false positives due to precipitation and wind farms.

Error analysis. There were several specific phenomena that were frequently detected

as false positives prior to post-processing. We reviewed and classified all tracks with

a total detection score of 5 or more prior to postprocessing (678 tracks total) to

evaluate detector performance “in the wild” and the effectiveness of post-processing.

This also served to vet the final data used in the biological analysis. Tab. 4.2 shows

the number of detections by category before and after post-processing. Roughly two-

thirds of initial high-scoring detections were swallow roosts, with another 5.6% being

communal roosts of some bird species.

The most false positives were due to precipitation, which appears as highly com-

plex and variable patterns in radar images, so it is common to find small image

patches that share the general shape and velocity pattern of roosts (Fig. 4.7, fourth

column). Humans recognize precipitation from larger-scale patterns and movement.

Filtering using ρHV nearly eliminates rain false positives. The second leading source

of false positives was wind farms. Surprisingly, these share several features of roosts:

they appear as small high-reflectivity “blobs” and have a diverse velocity field due to

spinning turbine blades (Fig. 4.7 last column). Humans can easily distinguish wind

farms from roosts using temporal properties. All wind farms are filtered successfully

using the wind turbine database. Since our case study focuses on Tree Swallows, we

marked as “other roost” detections that were believed to be from other communally

roosting species (e.g., American Robins, blackbirds, crows). These appear in radar

less frequently and with a different appearance (usually “blobs” instead of “rings”;
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Figure 4.7: Visualization of roost detections. Some detections are visualized
on the reflectivity (top) and radial velocity (bottom) channels of different scans. The
first three columns show swallow roost detections while the next three columns show
detections due to rain, roosts of other species, and windmills.

Fig. 4.7, fifth column) due to behavioral differences. Humans use appearance cues as

well as habitat, region, and time of year to judge the likely species of a roost. We

marked uncertain cases as “other roost”.

Migration and habitat use. Fig. 4.6 shows swallow roost locations and habitat

types for five half-month periods starting in October to illustrate the migration pat-

terns and seasonal habitat use of Tree Swallows. Habitat assignments are based on

the majority of habitat classes from the National Land Cover Database (NLCD) [238]

within a 10× 10km area surrounding the roost center, following the approach of [23]

for Purple Martins. Unlike Purple Martins, the dominant habitat type for Tree Swal-

lows is wetlands (38% of all roosts), followed by croplands (29%). These reflect the

known habits of Tree Swallows to roost in reedy vegetation—either natural wetlands

(e.g., cattails and phragmites) or agricultural fields (e.g., corn, sugar cane) [253].

In early October, Tree Swallows have left their breeding territories and formed

migratory and pre-migratory roosts throughout their the breeding range across the

northern US [253]. Agricultural roosts are widespread in the upper Midwest. Some

birds have begun their southbound migration, which is evident by the presence of

roosts along the Gulf Coast, which is outside the breeding range. In late October,

roosts concentrate along the eastern seaboard (mostly wetland habitat) and in the
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central US (mostly cropland). Most of the central US roosts occur near major rivers

(e.g., the Mississippi) or other water bodies. The line of wetland roosts along the

eastern seaboard likely delineates a migration route followed by a large number of

individuals who make daily “hops” from roost to roost along this route [252]. By early

November, only a few roosts linger near major water bodies in the central US. Some

birds have left the US entirely to points farther south, while some remain in staging

areas along the Gulf Coast [118]. By December, Gulf Coast activity has diminished,

and roosts concentrate more in Florida, where a population of Tree Swallows will

spend the entire winter.

Widespread statistics of roost locations and habitat usage throughout a migratory

season has not previously been documented but are enabled by our AI system to

automatically detect and track roosts. Our results are a starting point for better

understanding and conserving these populations. They highlight the importance of

the eastern seaboard and Mississippi valley as migration corridors, with different

patterns of habitat use (wetland vs. agricultural) in each. The strong association

with agricultural habitats during the harvest season suggests interesting potential

interactions between humans and the migration strategy of swallows.

Roost emergence dynamics. Our AI system also enables us to collect more de-

tailed information about roosts than previously possible, such as their dynamics over

time to answer questions about their behavior. Fig. 4.5 shows the roost radius relative

to time after sunrise for roosts detected by our system. Roosts appear around 1000

seconds before sunrise and expand at a fairly consistent rate. The best-fit line corre-

sponds to swallows dispersing from the center of the roost with an average airspeed

velocity of 6.61m s−1 (unladen).
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4.3 Conclusion and subsequent works

In this chapter, we show that user-specific label noise is a significant hurdle to do-

ing machine learning with the available data set, and present a principled approach

to overcome this. We demonstrate the effectiveness of our approach in a novel appli-

cation of computer vision in ecology — detecting communal bird roosts using weather

radar. Our system reveals new insights into the continental-scale roosting behavior

of migratory Tree Swallows.

Building upon this work, we conduct a historical analysis using 20+ years of

archived radar data to study the long-term bird population patterns in comparison

with climate and land use change in the Great Lakes region of the US [17, 55]. We

also incorporate spatial and temporal information using novel adaptor layers into the

detection model, further improving the accuracy of our system and extending to other

species such as bats [174]. As an ongoing project, we are collaborating with ecologists

to collect more fine-grained measurements of birds — across the continent, at a daily

time scale — from the entire 20-year radar archive. We will hopefully gain some of

the first insights into the ecosystem and conservation.
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CHAPTER 5

A BAYESIAN PERSPECTIVE ON NEURAL NETWORKS

In the deep learning era, one fundamental research problem is how to design

neural network architectures that are efficient and effective for the target tasks (e.g.,

image classification, object detection). Despite the sheer volume of existing works on

this topic [59, 96, 178, 180, 204, 216], designing network architectures highly relies

on extensive trial and error. To design the networks in a principled manner, it is

necessary to understand the neural networks theoretically.

In this chapter, we provide a theoretical interpretation of neural network architec-

tures through the lens of Gaussian processes, to demystify the surprising performance

of deep image prior [237] in image restoration tasks. The deep image prior was intro-

duced as a prior for natural images. It represents images as the output of a convolu-

tional network with random inputs. For “inference”, gradient descent is performed to

adjust network parameters to make the output match observations. This approach

yields good performance on a range of image reconstruction tasks. We show that the

deep image prior is asymptotically equivalent to a stationary Gaussian process prior

in the limit as the number of channels in each layer of the network goes to infinity,

and derive the corresponding kernel. This informs a Bayesian approach to inference.

We show that by conducting posterior inference using stochastic gradient Langevin

dynamics we avoid the need for early stopping, which is a drawback of the current

approach, and improve results for denoising and impainting tasks. We illustrate these

intuitions on a number of 1D and 2D signal reconstruction tasks.
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5.1 Overview

It is well known that deep convolutional networks trained on large datasets provide

a rich hierarchical representation of images. Surprisingly, several works have shown

that convolutional networks with random parameters can also encode non-trivial im-

age properties. For example, second-order statistics of filter responses of random

convolutional networks are effective for style transfer and synthesis tasks [239]. On

small datasets, features extracted from random convolutional networks can work just

as well as trained networks [192]. Along these lines, the “deep image prior" proposed

by Ulyanov et al. [237] showed that the output of a suitably designed convolutional

network on random inputs tends to be smooth and induces a natural image prior,

so that the search over natural images can be replaced by gradient descent to find

network parameters and inputs to minimize a reconstruction error of the network out-

put. Remarkably, no prior training is needed and the method operates by initializing

the parameters randomly.

Our work provides a novel Bayesian view of the deep image prior. We prove that a

convolutional network with random parameters operating on a stationary input, e.g.,

, white noise, approaches a two-dimensional Gaussian process (GP) with a stationary

kernel in the limit as the number of channels in each layer goes to infinity (Theo-

rem 5.1). While prior work [21, 144, 156, 160, 250] has investigated the GP behavior

of infinitely wide networks and convolutional networks, our work is the first to ana-

lyze the spatial covariance structure induced by a convolutional network on stationary

inputs. We analytically derive the kernel as a function of the network architecture

and input distribution by characterizing the effects of convolutions, non-linearities,

up-sampling, down-sampling, and skip connections on the spatial covariance. These

insights could inform choices of network architecture for designing 1D or 2D priors.

We then use a Bayesian perspective to address the drawbacks of current estimation

techniques for the deep image prior. Estimating parameters in a deep network from
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Figure 5.1: Denoising and inpainting results with the deep image prior.
(a) Mean Squared Error (MSE) of the inferred image with respect to the noisy input
image as a function of iteration for two different noise levels. SGD converges to zero
MSE resulting in overfitting while SGLD roughly converges to the noise level in the
image. This is also illustrated in panel (b) where we plot the MSE of SGD and
SGLD as a function of the noise level σ2 after convergence. See Section 5.4.2 for
implementation details. (c) An inpainting result where parts of the image inside the
blue boundaries are masked out and inferred using SGLD with the deep image prior.
(d) An estimate of the variance obtained from posterior samples visualized as a heat
map. Notice that the missing regions near the top left have lower variance as the area
is uniform.

a single image poses a huge risk of overfitting. In prior work the authors relied on

early stopping to avoid this. Bayesian inference provides a principled way to avoid

overfitting by adding suitable priors over the parameters and then using posterior

distributions to quantify uncertainty. However, posterior inference with deep networks

is challenging. One option is to compute the posterior of the limiting GP. For small

networks with enough channels, we show this closely matches the deep image prior

but is computationally expensive. Instead, we conduct posterior sampling based on

stochastic gradient Langevin dynamics (SGLD) [247], which is both theoretically well-

founded and computationally efficient since it is based on standard gradient descent.

We show that posterior sampling using SGLD avoids the need for early stopping and

performs better than vanilla gradient descent on image denoising and inpainting tasks

(see Figure 5.1). It also allows us to systematically compute variances of estimates

as a measure of uncertainty. We illustrate these ideas on a number of 1D and 2D

reconstruction tasks.
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5.2 Bayesian interpretation of deep image prior

5.2.1 Limiting Gaussian Process for convolutional networks

Previous work focused on the covariance of (scalar-valued) network outputs for

two different inputs (i.e., images). For the deep image prior, we are interested in

the spatial covariance structure within each layer of a convolutional network. As a

basic building block, we consider a multi-channel input image X transformed through

a convolutional layer, an elementwise non-linearity, and then a second convolution

to yield a new multi-channel “image” Z, and derive the limiting distribution of a

representative channel z as the number of input channels and filters go to infinity.

First, we derive the limiting distribution when X is fixed, which mimics derivations

from previous work. We then let X be a stationary random process and show how

the spatial covariance structure propagates to z, which is our main result. We then

apply this argument inductively to analyze multi-layer networks and also analyze

other network operations such as upsampling, downsampling, etc.

5.2.2 Limiting distribution for fixed input

For simplicity, consider an image X ∈ Rc×T with c channels and only one spatial

dimension. The derivations are essentially identical for two or more spatial dimen-

sions. The first layer of the network has H filters denoted by U = (u1, u2, . . . , uH)

where uk ∈ Rc×d and the second layer has one filter v ∈ RH (corresponding to a single

channel of the output of this layer). The output of this network is:

z = v ∗ h(X ∗ U) =
H∑
k=1

vkh(X ∗ uk).

The output z = (z(1), z(2), . . . , z(T ′)) also has one spatial dimension. Following [156,

251] we derive the distribution of z when U ∼ N(0, σ2
uI) and v ∼ N(0, σ2

vI). The

mean is
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E[z(t)] = E

[
H∑
k=1

vkh ((X ∗ uk)(t))

]

= E

[
H∑
k=1

vkh

(
c,d∑

i=1,j=1

x(i, t+ 1− j)uk(i, j)

)]
.

By linearity of expectation and independence of u and v,

E[z(t)] =
H∑
k=1

E[vk]E [h ((X ∗ uk)(t))] = 0,

since v has a mean of zero. The central limit theorem (CLT) can be applied when

h is bounded to show that z(t) approaches in distribution to a Gaussian as H → ∞

and σ2
v is scaled as 1/H. Note that u and v don’t need to be Gaussian for the CLT

to apply, but we will use this property to derive the covariance. This is given by

Kz(t1, t2) = E[z(t1)z(t2)]

= E

[
H∑
k=1

v2kh
(
(X ∗ uk)(t1)

)
h
(
(X ∗ uk)(t2)

)]

= Hσ2
vE
[
h
(
(X ∗ u1)(t1)

)
h
(
(X ∗ u1)(t2)

)]
.

The last two steps follow from the independence of u and v and that v is drawn from

a zero mean Gaussian. Let x̄(t) = vec ([X(:, t), X(:, t− 1), . . . , X(:, t− d+ 1)]) be

the flattened tensor with elements within the window of size d at position t of X.

Similarly denote ū = vec(u). Then the expectation can be written as

Kz(t1, t2) = Hσ2
vEu

[
h(x̄(t1)

T ū)h(x̄(t2)
T ū)
]
. (5.1)

Williams [251] showed V (x, y) = Eu

[
h(xTu)h(yTu)

]
can be computed analytically

for various transfer functions. For example, when h(x) = erf(x) = 2/
√
π
∫ x

0
e−s2ds,

then

Verf(x, y) =
2

π
sin−1 xTΣy√

(xTΣx) (yTΣy)
. (5.2)

Here Σ = σ2I is the covariance of u. Williams also derived kernels for the Gaussian

transfer function h(x, u) = exp{−(x− u)T (x− u)/2σ2}. For the ReLU non-linearity,

i.e., h(t) = max(0, t), Cho and Saul [41] derived the expectation as:
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Vrelu(x, y) =
1

2π
∥x∥∥y∥

(
sin θ + (π − θ) cos θ

)
, (5.3)

where θ = cos−1
(

xT y
∥x∥∥y∥

)
. We refer the reader to [41, 251] for expressions correspond-

ing to other transfer functions.

Thus, letting σ2
v scale as 1/H and H → ∞ and for any input X, the output z of

our basic convolution-nonlinearity-convolution building block converges to a Gaussian

distribution with zero mean and covariance

Kz(t1, t2) = V (x̄(t1), x̄(t2)) . (5.4)

5.2.3 Limiting distribution for stationary input

We now consider the case when channels of X are drawn i.i.d. from a stationary

distribution. A signal x is stationary (in the weak- or wide-sense) if the mean is

position invariant and the covariance is shift-invariant, i.e.,

mx = E[x(t)] = E[x(t+ τ)], ∀τ (5.5)

and

Kx(t1, t2) = E[(x(t1)−mx)(x(t2)−mx)]

= Kx(t1 − t2),∀t1, t2.
(5.6)

An example of a stationary distribution is white noise where x(i) is i.i.d. from a

zero mean Gaussian distribution N(0, σ2) resulting in a mean mx = 0 and covariance

Kx(t1, t2) = σ21[t1 = t2]. Note that the input for the deep image prior is drawn from

this distribution.

Theorem 5.1. Let each channel of X be drawn independently from a zero mean

stationary distribution with covariance function Kx. Then the output of a two-layer

convolutional network with the sigmoid non-linearity, i.e., h(t) = erf(t), converges to

a zero mean stationary Gaussian process as the number of input channels c and filters

H go to infinity sequentially. The stationary covariance Kz is given by

Kerf
z (t1, t2) = Kz(r) =

2

π
sin−1 Kx(r)

Kx(0)
.
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where r = t2 − t1.

The full proof is obtained by applying the continuous mapping thorem [142] on

the formula for the sigmoid non-linearity. The theorem implies that the limiting

distribution of Z is a stationary GP if the input X is stationary.

Lemma 5.1. Assume the same conditions as Theorem 5.1 except the non-linearity

is replaced by ReLU. Then the output converges to a zero mean stationary Gaussian

process with covariance Kz

Krelu
z (t1, t2) =

Kx(0)

2π

(
sin θxt1,t2 + (π − θxt1,t2) cos θ

x
t1,t2

)
, (5.7)

where θxt1,t2 = cos−1 (Kx(t1, t2)/Kx(0)). In terms of the angles we get the following:

cos θzt1,t2 =
1

π

(
sin θxt1,t2 + (π − θxt1,t2) cos θ

x
t1,t2

)
.

This can be proved by applying the recursive formula for ReLU non-linearity [41].

One interesting observation is that, for both non-linearities, the output covariance

Kz(r) at a given offset r only depends on the input covariance Kx(r) at the same

offset and on Kx(0).

Two or more dimensions. The results of this section hold without modification

and essentially the same proofs for inputs with c channels and two or more spatial

dimensions by letting t1, t2, and r = t2 − t1 be vectors of indices.

5.2.4 Beyond two layers

So far we have shown that the output of our basic two-layer building block con-

verges to a zero mean stationary Gaussian process as c → ∞ and then H → ∞.

Below we discuss the effect of adding more layers to the network.

Convolutional layers. A proof of GP convergence for deep networks was presented

in [144], including the case for transfer functions that can be bounded by a linear

envelope, such as ReLU. In the convolutional setting, this implies that the output

converges to GP as the number of filters in each layer simultaneously goes to infinity.
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The covariance function can be obtained by recursively applying Theorem 5.1 and

Lemma 5.1; stationarity is preserved at each layer.

Bias term. Our analysis holds when a bias term b sampled from a zero-mean Gaus-

sian is added, i.e., zbias = z + b. In this case the GP is still zero-mean but the

covariance function becomes Kbias
z (t1, t2) = σ2

b +Kz(t1, t2), which is still stationary.

Upsampling and downsampling layers. Convolutional networks have upsampling

and downsampling layers to induce hierarchical representations. It is easy to see

that downsampling (decimating) the signal preserves stationarity since K↓
x(t1, t2) =

Kx(τt1, τ t2) where τ is the downsampling factor. Downsampling by average pooling

also preserves stationarity. The resulting kernel can be obtained by applying a uniform

filter corresponding to the size of the pooling window, which results in a stationary

signal, followed by downsampling. However, upsampling in general does not preserve

stationarity. Therrien [228] describes the conditions under which upsampling a signal

with a linear filter maintains stationarity. In particular, the upsampling filter must be

band-limited, such as the sinc filter: sinc(x) = sin(x)/x. If stationarity is preserved

the covariance in the next layer is given by K↑
x(t1, t2) = Kx(t1/τ, t2/τ).

Skip connections. Modern convolutional networks have skip connections where

outputs from two layers are added Z = X + Y or concatenated Z = [X;Y ]. In both

cases, if X and Y are stationary GPs so is Z. See [69] for a discussion.

5.3 Bayesian inference for deep image prior

5.3.1 Maximum likehoood estimation

Let’s revisit the deep image prior for a denoising task. Given an noisy image ŷ

the deep image prior solves

min
θ,x

||ŷ − f(x, θ)||22,
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where x is the input and θ are the parameters of an appropriately chosen convolutional

network. Both x and θ are initialized randomly from a prior distribution. Optimiza-

tion is performed using stochastic gradient descent (SGD) over x and θ (optionally

x is kept fixed) and relying on early stopping to avoid overfitting (see Figures 5.1

and 5.2). The denoised image is obtained as y∗ = f(x∗, θ∗).

The inference procedure can be interpreted as a maximum likelihood estimate

(MLE) under a Gaussian noise model: ŷ = y + ϵ, where ϵ = N(0, σ2
nI). Bayesian

inference suggests we add a suitable prior p(x, θ) over the parameters and reconstruct

the image by integrating the posterior to get y∗ =
∫
p(x, θ | ŷ)f(x, θ)dxdθ, The

obvious computational challenge is computing this posterior average. An intermediate

option is maximum a posteriori (MAP) inference where the argmax of the posterior

is used. However, both MLE and MAP do not capture parameter uncertainty and

can overfit to the data.

5.3.2 Maximum a posterior estimation

In standard MCMC the integral is replaced by a sample average of a Markov

chain that converges to the true posterior. However, convergence with MCMC tech-

niques is generally slower than backpropagation for deep networks. Stochastic gra-

dient Langevin dynamics (SGLD) [247] provides a general framework to derive an

MCMC sampler from SGD by injecting Gaussian noise into the gradient updates.

Let w = (x, θ). The SGLD update is:

∆w =
ϵ

2

(
∇w log p(ŷ | w) +∇w log p(w)

)
+ ηt

ηt ∼ N(0, ϵ).

(5.8)

where ϵ is the step size. Under suitable conditions, e.g.,
∑

ϵt = ∞ and
∑

ϵ2t < ∞

and others, it can be shown that w1, w2, . . . converges to the posterior distribution.

The log-prior term is implemented as weight decay.
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Figure 5.2: The PSNR curve for different learning methods on the “pep-
pers" image of Figure 5.1. The SGD and its variants use early stopping to avoid
overfitting. MAP inference by adding a prior term (WD: weight decay) shown as
the black curve doesn’t avoid overfitting. Moving averages (dashed lines) and adding
noise to the input improves performance. By contrast, samples from SGLD after
“burn-in" remain stable and the posterior mean improves over the highest PSNR of
the other approaches.

Our strategy for posterior inference with the deep image prior thus adds Gaussian

noise to the gradients at each step to estimate the posterior sample averages after a

“burn in" phase. As seen in Figure 5.1(a), due to the Gaussian noise in the gradients,

the MSE with respect to the noisy image does not go to zero, and converges to a

value that is close to the noise level as seen in Figure 5.1(b). It is also important to

note that MAP inference alone doesn’t avoid overfitting. Figure 5.2 shows a version

where weight decay is used to regularize parameters, which also overfits the noise.

5.4 Experiments
We organized our experiments as follows: Section 5.4.1 illustrates how the input

distribution and network architecture influence the stationary GP kernel and illus-

trate posterior inference using SGLD on a number of toy 1D examples; Section 5.4.3

compares the prior samples and posterior of DIP and its equivalent GP.
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5.4.1 Toy examples

We first study the effect of the architecture and input distribution on the covari-

ance function of the stationary GP using 1D convolutional networks. We consider two

architectures: (1) AutoEncoder: where d conv + downsampling blocks are followed

by d conv + upsampling blocks, and (2) Conv: where convolutional blocks without

any upsampling or downsampling. We use ReLU non-linearity after each conv layer

in both cases. We also vary the input covariance Kx. Each channel of X is first

sampled iid from a zero-mean Gaussian with a variance σ2. A simple way to obtain

inputs with a spatial covariance Kx equal to a Gaussian with standard deviation σ is

to then spatially filter channels of X with a Gaussian filter with standard deviation
√
2σ.

Figure 5.3 shows the covariance function cos θt1,t2 = Kz(t1−t2)/Kz(0), induced by

varying the σ and depth d of the two architectures (Figure 5.3a-b). We empirically

estimated the covariance function by sampling many networks and inputs from the

prior distribution. The covariance function for the convolutional-only architecture is

also calculated using the recursion in Equation 5.7. For both architectures increasing

σ and d introduce longer-range spatial covariances. For the auto-encoder upsampling

induces longer-range interactions even when σ is zero shedding some light on the role

of upsampling in the deep image prior. Our network architectures have 128 filters,

even so, the match between the empirical covariance and the analytic one is quite

good as seen in Figure 5.3(b).

Figure 5.3(c) shows samples drawn from the prior of the convolutional-only archi-

tecture. Figure 5.3(d) shows the posterior mean and variance with SGLD inference

where we randomly dropped 90% of the data from a 1D signal. Changing the covari-

ance influences the mean and variance which is qualitatively similar to choosing the

scale of the stationary kernel in the GP: larger scales (bigger input σ or depth) lead

to smoother interpolations.
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Figure 5.3: Priors and posterior with 1D convolutional networks. The covariance
function cos θt1,t2 = K(t1 − t2)/K(0) for the (a) AutoEncoder and (b) Conv architectures
estimated empirically for different values of depth and input covariance. For the Conv archi-
tecture we also compute the covariance function analytically using recursion in Equation 5.7
shown as dashed lines in panel (b). The empirical estimates were obtained with networks
with 256 filters. The agreement is quite good for the small values of Sigma. For larger offsets
the convergence towards a Gaussian is approximate. Panel c) shows samples from the prior
of the Conv architecture with two different configurations, and panel (d) shows the posterior
means and variances estimated using SGLD.

5.4.2 Natural images

Throughout our experiments, we adopt the network architecture reported in [237]

for image denoising and inpainting tasks for a direct comparison with their results.

These architectures are 5-layer auto-encoders with skip connections and each layer

contains 128 channels. We consider images from the standard image reconstruction

datasets [49, 97]. For inference, we use a learning rate of 0.01 for image denoising

and 0.001 for image inpainting. We compare the following inference schemes:

1. SGD+Early: Vanilla SGD with early stopping.

2. SGD+Early+Avg: Averaging the predictions with an exponential sliding win-

dow of the vanilla SGD.

3. SGD+Input+Early: Perturbing the input x with an additive Gaussian noise

with mean zero and standard deviation σp at each learning step of SGD.
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4. SGD+Input+Early+Avg: Averaging the predictions of the earlier approach

with an exponential window.

5. SGLD: Averaging after burn-in iterations of posterior samples with SGLD in-

ference.

We manually set the stopping iteration in the first four schemes to one with

essentially the best reconstruction error — note that this is an oracle scheme and

cannot be implemented in real reconstruction settings. For the image denoising task,

the stopping iteration is set as 500 for the first two schemes and 1800 for the third

and fourth methods. For the image inpainting task, this parameter is set as 5000 and

11000 respectively.

The third and fourth variants were described in the supplementary material of [237]

and in the released codebase. We found that injecting noise into the input during

inference consistently improves results. However, as observed in [237], regardless of

the noise variance σp, the network is able to drive the objective to zero, it overfits to

the noise. This is also illustrated in Figure 5.1 (a-b).

Since the input x can be considered as part of the parameters, adding noise to

the input during inference can be thought of as approximate SGLD. It is also not

beneficial to optimize x in the objective and is kept constant (though adding noise

still helps). SGLD inference includes adding noise to all parameters, x and θ, sampled

from a Gaussian distribution with variance scaled as the learning rate η, as described

in Equation 5.4. We used 7K burn-in iterations and 20K training iterations for the

image denoising task, 20K and 30K for image inpainting tasks. Running SGLD longer

doesn’t improve results further. The weight-decay hyper-parameter for SGLD is set

inversely proportional to the number of pixels in the image and equal to 5e-8 for a

1024×1024 image. For the baseline methods, we did not use weight decay, which, as

seen in Figure 5.2, doesn’t influence results for SGD.
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Image denoising

We first consider the image-denoising task using various inference schemes. Each

method is evaluated on a standard dataset for image denoising [49], which consists of

9 colored images corrupted with the noise of σ = 25.

Figure 5.2 presents the peak signal-to-noise ratio (PSNR) values with respect to

the clean image over the optimization iterations. This experiment is on the “peppers"

image from the dataset as seen in Figure 5.1. The performance of SGD variants (red,

black and yellow curves) reaches a peak but gradually degrades. By contrast, samples

using SGLD (blue curves) are stable with respect to PSNR, alleviating the need for

early stopping. SGD variants benefit from exponential window averaging (dashed

red and yellow lines), which also eventually overfits. Taking the posterior mean after

burn-in with SGLD (dashed blue line) consistently achieves better performance. The

posterior mean at the 20K iteration (dashed blue line with markers) achieves the best

performance among the various inference methods.

Figure 5.4 shows a qualitative comparison of SGD with early stopping to the pos-

terior mean of SGLD, which contains fewer artifacts. Table 5.1 shows the quantitative

comparisons between the SGLD and the baselines. We run each method 10 times and

report the mean and standard deviations. SGD consistently benefits from perturbing

the input signal with noise-based regularization, and from moving averaging. How-

ever, as noted, these methods still have to rely on early stopping, which is hard to set

in practice. By contrast, SGLD outperforms the baseline methods across all images.

Our reported numbers (SGD + Input + Early + Avg) are similar to the single-run

results reported in prior work (30.44 PSNR compared to ours of 30.33±0.03 PSNR.)

SGLD improves the average PNSR to 30.81. As a reference, BM3D [49] obtains an

average PSNR of 31.68.
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Figure 5.4: Image denoising results. Denoising the input noisy image with SGD
and SGLD inference.

Image inpainting

For image inpainting, we experiment on the same task as [237] where 50% of the

pixels are randomly dropped. We evaluate various inference schemes on the standard

image inpainting dataset [97] consisting of 11 grayscale images.

Table 5.2 presents a comparison between SGLD and the baseline methods. Similar

to the image denoising task, the performance of SGD is improved by perturbing the

input signal and, additionally by averaging the intermediate samples during optimiza-

tion. SGLD inference provides additional improvements; it outperforms the baselines

and improves over the results reported in [237] from 33.48 to 34.51 PSNR. Figure

5.5 shows qualitative comparisons between SGLD and SGD. The posterior mean of

SGLD has fewer artifacts than the best result generated by SGD variants.

Besides gains in performance, SGLD provides estimates of uncertainty. This is

visualized in Figure 5.1(d). Observe that uncertainty is low in missing regions that

are surrounded by areas of relatively uniform appearance such as the window and

floor, and higher in non-uniform areas such as those near the boundaries of different

objects in the image.

5.4.3 Equivalence between GP and DIP

We compare the deep image prior (DIP) and its Gaussian process (GP) counter-

part, both as prior and for posterior inference, and as a function of the number of
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House Peppers Lena Baboon F16 Kodak1 Kodak2 Kodak3 Kodak12 Average

SGD + Early 26.74 28.42 29.17 23.50 29.76 26.61 28.68 30.07 29.78 28.08
±0.41 ±0.22 ±0.25 ±0.27 ±0.49 ±0.19 ±0.18 ±0.33 ±0.17 ±0.09

SGD + Early + Avg 28.78 29.20 30.26 23.82 31.17 27.14 29.88 31.00 30.64 29.10
±0.35 ±0.08 ±0.12 ±0.11 ±0.1 ±0.07 ±0.12 ±0.11 ±0.12 ±0.05

SGD + Input + Early 28.18 29.21 30.17 22.65 30.57 26.22 30.29 31.31 30.66 28.81
±0.32 ±0.11 ±0.07 ±0.08 ±0.09 ±0.14 ±0.13 ±0.08 ±0.12 ±0.04

SGD + Input + Early + Avg 30.61 30.46 31.81 23.69 32.66 27.32 31.70 32.86 31.87 30.33
±0.3 ±0.03 ±0.03 ±0.09 ±0.06 ±0.06 ±0.03 ±0.08 ±0.1 ±0.03

SGLD 30.86 30.82 32.05 24.54 32.90 27.96 32.05 33.29 32.79 30.81
±0.61 ±0.01 ±0.03 ±0.04 ±0.08 ±0.06 ±0.05 ±0.17 ±0.06 ±0.08

CMB3D [49] 33.03 31.20 32.27 25.95 32.78 29.13 32.44 34.54 33.76 31.68

Table 5.1: Image denoising task. Comparison of various inference schemes with
the deep image prior for image denoising (σ=25). Bayesian inference with SGLD
avoids the need for early stopping while consistently improving results. Details are
described in Section 5.4.2.

Method Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage Average

SGD + Early 28.48 31.54 35.34 35.00 30.40 27.05 30.55 32.24 31.37 31.32 30.21 31.23
±0.99 ±0.23 ±0.45 ±0.25 ±0.59 ±0.35 ±0.19 ±0.16 ±0.35 ±0.29 ±0.82 ±0.11

SGD + Early + Avg 28.71 31.64 35.45 35.15 30.48 27.12 30.63 32.39 31.44 31.50 30.25 31.34
±0.7 ±0.28 ±0.46 ±0.18 ±0.6 ±0.39 ±0.18 ±0.12 ±0.31 ±0.39 ±0.82 ±0.08

SGD + Input + Early 32.48 32.71 36.16 36.91 33.22 29.66 32.40 32.79 33.27 32.59 33.15 33.21
±0.48 ±1.12 ±2.14 ±0.19 ±0.24 ±0.25 ±2.07 ±0.94 ±0.07 ±0.14 ±0.46 ±0.36

SGD + Input + Early + Avg 33.18 33.61 37.00 37.39 33.53 29.96 33.30 33.17 33.58 32.95 33.80 33.77
±0.45 ±0.3 ±2.01 ±0.14 ±0.31 ±0.3 ±0.15 ±0.77 ±0.19 ±0.16 ±0.6 ±0.23

SGLD 33.82 34.26 40.13 37.73 33.97 30.33 33.72 33.41 34.03 33.54 34.65 34.51
±0.19 ±0.12 ±0.16 ±0.05 ±0.15 ±0.15 ±0.1 ±0.04 ±0.03 ±0.06 ±0.72 ±0.08

Ulyanov et al. [237] 32.22 33.06 39.16 36.16 33.05 29.80 32.52 32.84 32.77 32.2 34.54 33.48
Papyan et al. [169] 28.44 31.44 34.58 35.04 31.11 27.90 31.18 31.34 32.35 31.92 28.05 31.19

Table 5.2: Image inpainting task. Comparison of various inference schemes
with the deep image prior for image inpainting. SGLD estimates are more accurate
while also providing a sensible estimate of the variance. Details are described in
Section 5.4.2.

filters in the network. For efficiency, we used a U-Net architecture with two down-

sampling and upsampling layers for the DIP.
The above figure shows two samples each drawn from the DIP (with 256 chan-

nels per layer) and GP with the equivalent kernel. The samples are nearly identical

suggesting that the characterization of the DIP as a stationary GP also holds for

2D signals. Next, we compare the DIP and GP on an inpainting task shown in Fig-

ure 5.6. The image size here is 64×64. Figure 5.6 top (a) shows the RBF and DIP

kernels as a function of the offset. The DIP kernels are heavy-tailed in comparison

to Gaussian with support at larger length scales. Figure 5.6 bottom (a) shows the
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(a) DIP prior samples (b) GP prior samples

(a) Input (b) SGD (19.23 dB) (c) SGD + Input (19.59 dB) (d) SGLD mean (21.86 dB)

Figure 5.5: Image inpainting using the deep image prior. The posterior mean
using SGLD (Panel (d)) achieves higher PSNR values and has fewer artifacts than
SGD variants.

performance (PSNR) of the DIP as a function of the number of channels from 16 to

512 in each layer of the U-Net, as well as of a GP with the limiting DIP kernel. The

PSNR of the DIP approaches the GP as the number of channels increases suggesting

that for networks of this size 256 filters are enough for the asymptotic GP behavior.

Figure 5.6 (d-e) shows that a GP with the DIP kernel is more effective than one with

the RBF kernel, suggesting that the long-tail DIP kernel is better suited for modeling

natural images.

While DIPs are asymptotically GPs, the SGD optimization may be preferable

because GP inference is expensive for high-resolution images. The memory usage is

O(n2) and running time is O(n3) for exact inference where n is the number of pixels

(e.g., a 500×500 image requires 233 GB memory). The DIP’s memory footprint, on

the other hand, scales linearly with the number of pixels, and inference with SGD is

practical and efficient. This emphasizes the importance of SGLD, which addresses

the drawbacks of vanilla SGD and makes the DIP more robust and effective. Finally,
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Figure 5.6: Inpainting with a Gaussian process (GP) and deep image prior
(DIP). Top (a) Comparison of the Radial basis function (RBF) kernel with the length
scale learned on observed pixels in (c) and the stationary DIP kernel. Bottom (a)
PSNR of the GP posterior with the DIP kernel and DIP as a function of the number
of channels. DIP approaches the GP performance as the number of channels increases
from 16 to 512. (d - f) Inpainting results (with the PSNR values) from GP with the
RBF (GP RBF) and DIP (GP DIP) kernel, as well as the deep image prior. The DIP
kernel is more effective than the RBF.

while we showed that the prior distribution induced by the DIP is asymptotically a

GP and the posterior estimated by SGD or SGLD matches the GP posterior for small

networks, it remains an open question if the posterior matches the GP posterior for

deeper networks.

5.5 Conclusion and subsequent works

We presented a novel Bayesian view of the deep image prior, which parameterizes

a natural image as the output of a convolutional network with random parameters and

a random input. First, we showed that the output of a random convolutional network

converges to a stationary zero-mean GP as the number of channels in each layer goes

to infinity, and showed how to calculate the realized covariance. This characterized

the deep image prior as approximately a stationary GP. Our work differs from prior

work relating GPs and neural networks by analyzing the spatial covariance of network

activations on a single input image. We then used SGLD to conduct fully Bayesian

posterior inference in the deep image prior, which improves performance and prevents

the need for early stopping.
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Subsequent to our research, Gadelha et al. [68] built a deep manifold prior for

manifold structured data (e.g., surfaces of 3D shapes), demonstrated its effectiveness

in a variety of manifold reconstruction applications (e.g., point cloud denoising and

interpretation), and characterized its limiting behavior with Gaussian processes.

Historically, using a deep network to parameterize a small number of images was

viewed as a limited approach, primarily due to the widespread belief that training

a neural network required a substantial volume of data. However, this viewpoint

has been significantly challenged, largely driven by a surge in research following the

Neural Radiance Fields (NeRF) model [149], which optimizes a fully connected neural

network on multiple views to represent a 3D scene. Our work potentially offers

valuable insights into the NeRF.
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CHAPTER 6

3D GENERATION AND MANIPULATION

Creating and editing the shape and color of 3D objects require tremendous hu-

man effort and expertise. In this chapter, we will introduce several machine learning

techniques that can automate this task. In particular, Sec. 6.1 introduces a generic

multi-modal generative model that couples the 2D modalities and implicit 3D rep-

resentations through shared latent spaces. With this model, versatile 3D generation

and manipulation are enabled by simply propagating the editing from a specific 2D

controlling modality through the latent spaces. For example, editing the 3D shape by

drawing a sketch, re-colorizing the 3D surface via painting color scribbles on the 2D

rendering, or generating 3D shapes of a certain category given one or a few reference

images. Sec. 6.2 presents an approach for jointly estimating the camera pose and

scene representation from images from a single scene. This approach allows us to

operate in the general SE(3) pose setting, unlike the baselines. It works favorably on

low-texture and low-resolution images, demonstrating complementary performance

to classical Structure-from-Motion (SfM) pipelines.

6.1 Cross-modal 3D shape generation and manipulation

6.1.1 Overview

With the growth in 3D acquisition and visualization technology, there is an in-

creasing need of tools for 3D content creation and editing tasks such as deforming the

shape of an object, changing the color of a part, or inserting or removing a compo-

nent. The graphics and vision community has proposed a number of tools for these
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tasks [5, 51, 173, 193]. Yet, manipulating 3D still requires tremendous human labor

and expertise, prohibiting wide-scale adoption by non-professionals. Compared to the

traditional 3D user interfaces, 2D interactions on view-dependent image planes can be

a more intuitive way to edit the shape. This has motivated the community to lever-

age advances in shape representations using deep networks [37, 147, 170, 205] for 3D

shape manipulation with 2D controls, such as mesh reconstruction from sketches [83]

and color editing with scribbles [134]. However, most prior works on 2D-to-3D shape

manipulation are tailored to a particular editing task and interaction format, which

makes generalization to new editing tasks or controls challenging, or even infeasible.

This is important because there is often no single interaction that fits every use case

– the preferred 2D user control depends on the editing goals, scenarios, devices, or

targeted users.

3D reconstruction from RGB Color editing via scribble

Shape editing via sketch3D reconstruction from sketch A Latent space

3D shape

2D sketch 2D RGB viewsGenerator

A Multi-modal Generative Model Cross-modal 3D Generation and Manipulation

Figure 6.1: Overview. We propose a multi-modal generative model that bridges
multiple 2D (e.g., sketch, color views) and 3D modalities via shared latent spaces
(left). Versatile 3D shape generation and manipulation tasks can be tackled via a
simple latent optimization method (right).

Motivated by this, we propose a 2D-to-3D framework that not only works on a

single control modality but also enjoys the flexibility of handling various types of

2D interactions without the need for changing the architecture or even re-training

(Fig. 6.1 left). Our framework bridges various 2D interaction modalities and the

target 3D shape through a uniform editing propagation mechanism. The key is to

construct a shared latent representation across generative models of each of the 2D
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and 3D modalities. The shared latent representation enforces that an arbitrary latent

code corresponds to a 3D model that is consistent with every modality, in terms of

both shape and color. With our model, any editing can be achieved by an objective

that aims to match the corresponding editing modality and backpropagating the error

to estimate the latent code. Moreover, different editing operations and modalities can

be combined and interleaved leading to a versatile tool for editing the shape (Fig. 6.1

right). The approach can be extended to a new user control by simply adding a

generator for the corresponding modality in the framework.

We evaluate our framework on two representative 2D modalities, i.e., grayscale

line sketches, and rendered color images. We provide extensive quantitative and

qualitative results in shape and color editing with sketches and scribbles, as well

as single-view, few-shot, or even partial-view cross-modal shape generation. The

proposed method is conceptually simple, easy to implement, robust to input domain

shifts, and generalizable to new modalities with no special requirement on the network

architecture.

6.1.2 Related works

Methods Manipulation Generation
Shape Color Single view Partial view Few shot

Sketch2Mesh [83] ✓ ✗ ✓ ✗ ✗

DualSDF [87] ✓ ✗ ✗ ✗ ✗

EditNeRF [134] ✓ ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

Table 6.1: Comparisons to cross-modal 3D editing and generation works.

Multi-Modal Generative Models. There has been much work on learning a

joint distribution of multiple modalities p(x0, . . . ,xn) where each modality xi rep-

resents one representation (e.g., images, text) of underlying signals. Multi-modal

VAEs [113, 201, 215, 254, 255] learn a joint distribution pθ(x0, . . . ,xn | z) conditioned
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on common latent variables z ∈ Z. Without the assumption of paired multi-modal

data, multi-modal GANs [42, 77, 131] learn the joint distribution by sharing a latent

space and model parameters across modalities. These multi-modal generative models

have enabled versatile applications such as cross-modal image translation [42, 131]

and domain adaptation [131]. Similar to these works, we build a multi-modal gen-

erative model that bridges multiple modalities via a shared latent space. However,

we generate and edit 3D shapes with sparse 2D inputs (e.g., scribbles, sketches) and

build a 2D-3D generative model based on variational auto-decoders (VADs) [87, 276].

Prior work [276] has shown that VADs excel at generative modeling from incomplete

data. In this work, we demonstrate that the multi-modal VADs (MM-VADs) are

ideally suited for the task of 3D generation and manipulation from sparse 2D inputs

(e.g., color scribble or partial inputs).

Tab. 6.1 summarizes the commons and differences between our work and recent

efforts [83, 87, 134] on 3D manipulation and generation. Similar to Sketch2Mesh [83],

we edit and reconstruct 3D shapes from 2D sketches. However, we tackle this prob-

lem via a novel multi-modal generative model that performs more robustly to input

domain shift (e.g., partial input, sparse color scribble). Furthermore, the shape and

color edits can be combined and interleaved with our model; Like EditNeRF, we edit

the appearance of 3D shapes via 2D color scribbles. However, we conduct the 3D

editing via a simple latent optimization, instead of finetuning the network weights

per edit; Akin to DualSDF [87], we build a generative model for 3D manipulation,

yet we generate and edit shapes from 2D modalities which is more intuitive to edit

the shape than using 3D primitives. Moreover, our generative model can be adapted

to generate 3D shapes of a certain category (e.g., armchairs) given a few 2D examples,

namely, few-shot cross-modal shape generation.
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6.1.3 Approach

We describe the Variational Auto-Decoders (VADs) [276] in § 6.1.3.1, introduce the

proposed VAD-based multi-modal generative model (dubbed MM-VADs) in § 6.1.3.2,

and illustrate the application of MM-VADs in cross-modal 3D shape generation and

manipulation tasks in § 6.1.3.3.

6.1.3.1 Background: Variational Auto-Decoder

Given observation variables x ∼ p(x) and latent variables z ∼ p(z), a variational

auto-decoder (VAD) approximates the data distribution p(x) via a parametric family

of distributions pθ(x | z) with parameters θ. Similar to variational auto-encoders

(VAEs) [113], VADs are trained by maximizing the marginal distribution p(x) =∫
pθ(x | z)p(z)dz. In practice this integral is expensive or intractable, so the model

parameters θ are learned instead by maximizing the Evidence Lower Bound (ELBO):

V(ϕ, θ | x) =− KL
(
qϕ(z | x) ∥ p(z)

)
+ Eqϕ(z|x)

[
log pθ(x | z)

]
, (6.1)

where KL(· ∥ ·) is the Kullback-Leibler divergence that encourages the posterior

distribution to follow the latent prior p(z), and qϕ(z | x) is an approximation of the

posterior p(z | x). In VAEs, qϕ(z | x) is parametrized by a neural network and

ϕ are the parameters of the encoder. In VADs, ϕ are instead learnable similar to

the parameters θ in the decoder pθ(x | z). For example, the multivariate Gaussian

approximate posterior for a data instance xi is defined as:

qϕ(z | xi) := N (z;µi,Σi), (6.2)

where ϕ = {µi,Σi}. The reparametrization trick is applied in order to back-propagate

the gradients to the mean µi and variance Σi in VADs. In comparison, VAEs back-

propagate the gradients through the mean µi and variance Σi to learn the parameters

of the encoder. At inference time, the parameters ϕ of the approximate posterior dis-

tribution can be estimated by maximizing the ELBO in Eqn. 6.1 while the parameters

θ of the decoder are frozen:
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ϕ∗ = argmax
ϕ

V(ϕ | θ,xi). (6.3)

Despite the similarity between VAEs and VADs, prior works [276] demonstrate

that VADs perform approximate posterior inference more robustly on incomplete data

and input domain shifts than VAEs.

6.1.3.2 Multi-Modal Variational Auto-Decoder

We consider two modalities x,w and an i.i.d. dataset with paired instances

(X,W ) = {(x0,w0), . . . , (xN ,wN)}. We target at learning a joint distribution of

both modalities p(x,w). Like VADs [276], the multi-modal VADs (MM-VADs) are

trained by maximizing the ELBO:

V(ϕ, θ | x,w) =− KL
(
qϕ(z | x,w) ∥ p(z)

)
+ Eqϕ(z|x,w)

[
log pθ(x,w | z)

]
, (6.4)

where z is the latent variable shared by the two modalities x and w, pθ(x,w | z) =

pθx(x | z)pθw(w | z) under the assumption that the two modalities x and w are

independent conditioned on the latent variable z (i.e., x ⊥⊥ w | z). In practice,

pθx(x | z) or pθw(w | z) can be parameterized by different networks for the two

modalities x and w respectively. The parameters ϕ of the approximate posterior

distribution qϕ(z | x,w) are learnable parameters where ϕ = {µ,Σ} under the

assumption of multivariate Gaussian posterior distribution. At inference time, the

parameters ϕ are estimated via maximizing the ELBO with frozen decoder parameters

θ:

ϕ∗ = argmax
ϕ

V(ϕ | θ,xi,wi). (6.5)

When one of the modalities is missing during inference, the inputs of the missing

modalities are simply set to zero. This is the case when we want to infer one modality

from the other (e.g., 3D reconstruction from 2D sketch). This framework can be

trivially extended to learn a joint distribution of more than two modalities.
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6.1.3.3 Learning a Joint 2D-3D Prior with MM-VADs

Here we introduce the application of MM-VADs in cross-modal 3D shape gen-

eration and manipulation. Specifically, we learn a joint distribution of 2D and 3D

modalities with MM-VADs. Once trained, MM-VADs can be applied to versatile

shape generation and editing tasks via a simple posterior inference (or latent op-

timization). We explore three representative modalities, including 3D shapes with

colorful surfaces, 2D sketches in grayscale, and 2D rendered images in RGB color, do-

nated as C,S,R respectively. Given a dataset {(Ci,Si,Ri)}, we target at learning

a joint distribution of the three modalities p(C,S,R). Fig. 6.2 presents the overview

of the MM-VADs framework. We provide more details in the following sections.
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Figure 6.2: Network architec-
ture. We propose a multi-modal
variational auto-decoder consist-
ing of a compact shape and color
latent space shared across multi-
ple 2D (e.g., sketch, RGB views)
or 3D modalities (e.g., signed dis-
tance function and 3D surface
color).

Joint Latent Space. The MM-VADs share a common latent space Z across different

modalities (Eqn. 6.4). Targeting at editing 3D shape and surface color independently,

we further disentangle the shared latent space into the shape and color subspaces,

denoted as Zs and Zc respectively. Therefore, each latent code z = zs ⊕ zc, where

zs ∈ Zs, zc ∈ Zc, and ⊕ denotes the concatenation operator.

3D Colorful Shape. Targeting at generating and editing 3D shapes and their ap-

pearance, we use the 3D colorful shape as one of our modalities. Among various

representations of 3D shapes (e.g., voxel, mesh, point clouds), the implicit represen-

tations [147, 170, 205] model 3D shapes as isosurfaces of functions and are capable

of capturing high-level details. We adopt the DeepSDF [170] to regress the signed
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distance functions (SDFs) from point samples directly using an MLP-based 3D shape

network Fα(zs ⊕ p), whose input is a shape latent code zs ∈ Zs and 3D coordinates

p ∈ R3. We predict the surface color with another feed-forward 3D color network

Fβ(zc⊕zk
s ), whose input is a color latent code zc ∈ Zc and the intermediate features

from the k-th layer of 3D shape network Fα. The generator of the 3D modality GC

is the combination of the 3D shape and color network:

GC(zs ⊕ zc ⊕ p) =
{
Fα(zs ⊕ p),Fβ(zc ⊕ zk

s )
}
. (6.6)

Both networks are trained using the same set of spatial points. The objective function

LC for GC is the L1 loss defined between the prediction and the ground-truth SDF

values and surface colors on the sampled points.

2D Sketch. The 2D sketch depicts the 3D structures and provides a natural way

for the user to manipulate the 3D shapes. For the purpose of generalization, we

adopt a simple and standard fully convolutional network [177] as our sketch generator

GS(zs ⊕ v) with the shape code zs ∈ Zs and the viewpoint v as input. The objective

function LS is defined as a cross-entropy loss between the reconstructed and ground-

truth sketches.

2D Rendering. The 2D color rendering reflects a view-dependent appearance of

the 3D surface. Drawing 2D scribbles on the renderings provides an efficient and

straightforward interactive tool for the user to edit the 3D surface color. Similar to

the 2D sketch modality, we use the standard fully convolutional architecture [177]

as our 2D rendering generator GR(zs ⊕ zc ⊕ v), which takes the concatenation of

the shape code zs ∈ Zs, the color code zc ∈ Zc and the viewpoint v. We adopt

Laplacian-L1 loss [8] to train GR:

LR(zi ⊕ v,Ri) =
1

N

J∑
j

4−j
∥∥Lj(GR(zi ⊕ v))− Lj(Ri)

∥∥
1
, (6.7)

where zi is the concatenation of the shape and color codes for the target image Ri,

N is the total number of pixels in the image Ri, J is the total number of levels of the
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Laplacian pyramid (e.g., 3 by default), and Lj(x) is the j-th level in the pyramid of

image x [25]. This loss encourages sharper output [8] compared to the standard L1

or MSE loss.

Summary. The proposed MM-VAD framework for learning the joint distribution of

the three modalities can be learned with the following objective:

V(ϕ, θ | C,S,R) = −KL
(
qϕ(z | C,S,R) ∥ p(z)

)
+ Eqϕ(z|C,S,R)

[
log pθ(C,S,R | z)

]
,

(6.8)

where the first term regularizes the posterior distribution to a latent prior (e.g.,

N (0, I)), and the second term can be factorized into three components under the

assumption that modalities are independent conditioned on the shared latent vari-

able z:

Eqϕ(z|C,S,R)

[
log pθ(C,S,R | z)

]
= Eqϕ(z|C)

[
log pθ(C | z)

]
+ Eqϕ(z|C)

[
log pθ(S | z)

]
+ Eqϕ(z|C)

[
log pθ(R | z)

]
= LC + LS + LR,

(6.9)

where each term corresponds to the reconstruction loss per modality as described

above. Notice that the 3D shape modality C contains all the information in the

latent variable z, therefore qϕ(z | C,S,R) = qϕ(z | C).

6.1.3.4 Cross-Modal Shape Manipulation with MM-VADs

Given an initial latent code z0 that corresponds to the initial 3D shape GC(z0)

and any 2D control GM (z0) of the 2D modality M ∈ {S,R}, the shape manipulation

is conducted by optimizing within the latent space to get the updated code ẑ such

that G(ẑ)M matches the 2D edits eM :

ẑ = argmin
z

Ledit(GM (z), eM ) + Lreg(z), (6.10)

where Ledit could be any loss (e.g., L1 loss) that encourages the 2D modalities G(ẑ)M

to match the 2D edits eM , and Lreg(z) encourages the latent code to stay in the latent
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prior of MM-VADs. We apply the regularization loss proposed in DualSDF [87]:

Lreg = γmax(∥z∥22, β), (6.11)

where γ and β control the strength of the regularization loss. The latent optimization

is closely related to the posterior inference (Eqn. 6.5) of MM-VADs.

MM-VADs allow free-form edits eM . For example, the edits eM could be local

modifications on the sketch or sparse color scribbles on 2D renderings. This makes

the MM-VADs ideally suited for interactive 3D manipulation tasks. In comparison,

the encoder-decoder networks [83] are not robust to the input domain shift (e.g.,

incomplete data [276]) and require re-training per type of user interactions (e.g.,

sketch, color scribble).

6.1.3.5 Cross-Modal Shape Generation with MM-VADs

Single-View Reconstruction. Given a single input xM of the 2D modality M ∈

{C,R}, the task of single-view cross-modal shape generation is to reconstruct the

corresponding 3D shape satisfying the 2D constraint. Without the need of training

one model per pair of 2D and 3D modalities [83, 220] or designing differentiable

renderers [132] for each 2D modalities [83], like shape manipulation (§6.1.3.4), this

task can be tackled via the latent optimization:

ẑ = argmin
z

Lrecon(GM (z),xM ) + Lreg(z), (6.12)

Partial-View Reconstruction. The MM-VADs are flexible to reconstruct 3D

shapes from partially visible inputs. More interestingly, when the input is ambigu-

ous, it provides diverse 3D reconstructions by performing the latent optimization with

different initialization of the latent code z. This property has practical applications.

For example, the MM-VAD could provide multiple 3D shape suggestions interactively

while the user is drawing sketches.

Few-Shot Generation. Given a few 2D images spanning a subspace in the 3D

distribution that represents a certain semantic attribute (e.g., armchairs, red chairs),
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the task of few-shot shape generation is to learn a 3D shape generative model that

conceptually aligns with the provided 2D images. Given our pre-trained MM-VAD, we

tackle this task by steering the latent space with adversarial loss, borrowing the idea

from MineGAN [245]. Specifically, we learn a mapping function hω(z) that maps the

prior distribution of the latent space z ∼ p̂(z) (i.e., N (0, I)) to a new distribution such

that samples from the 2D generators GM (hω(z)) aligns the target data distribution

x ∼ p̂(x) depicted by the provided 2D images. We apply the WGAN-GP loss [84]

with frozen generators to learn the mapping function hω(z):

min
ω

max
D

Ex∼p̂(x)

[
D(x)

]
− Ez∼p(z)

[
D(GM (hω(z)))

]
, (6.13)

where both the mapping function hω and the discriminator D are trained from scratch.

6.1.4 Experiments

This section provides qualitative and quantitative results of the proposed MM-

VADs in versatile tasks of 3D shape manipulation (§ 6.1.4.1) and generation (§ 6.1.4.2).

Dataset. We conduct evaluations and comparisons mainly on 3D ShapeNet dataset [28].

For 3D shapes, We follow DeepSDF [170] to sample 3D points and their signed dis-

tances to the object surface. The points that are far from the surface (i.e., with

an absolute distance higher than a threshold) are assigned a pre-defined background

color (e.g., white) while points surrounding the surface are assigned the color of the

nearest surface point. For 2D sketches, we use suggestive contours [50] to generate the

synthetic sketches. For 2D renderings, we randomize the surface color of 3D shapes

per semantic part. We use ShapeNet chairs and airplanes with the same training and

test splits as DeepSDF [170].

Implementation Details. We use an 8-layer MLP as the 3D shape network which

outputs SDF and a 3-layer MLP as the 3D color network which predicts RGB. We

concatenate the features from the 6-th hidden layer of the 3D shape network with

99



Remove engines Add engines Remove curve Add curve

Be
fo

re
 e

di
tin

g
Af

te
r e

di
tin

g

Figure 6.3: Editing shape via sketch. The proposed method enables fine-grained
editing of shape geometry, e.g., removing the engine of an airplane or reshaping the
back of a chair. Interestingly, new engines often appear at the tail of an airplane after
removing the engines on the wing. This is because airplanes without any engines
rarely exist in the domain of our generative model. The edited local regions are
highlighted in red bounding boxes.

the color code as the input to the 3D color network. We train our MM-VADs using

Adam [112].

Baselines. We use the following state-of-the-arts as our baselines:

• Encoder-Decoder Networks [83]. This model is trained per task of 3D

generation from 2D modalities (sketches or RGB images). We do not use the

differentiable rendering proposed in [83] which requires auxiliary information

(e.g., segmentation mask, depth) and is applicable to MM-VADs.

• EditNeRF [134]. This model edits 3D neural radiance field (including shape

and color) by updating the neural network weights based on the user’s scribbles.

We make comparisons with the pre-trained EditNeRF models.

6.1.4.1 Cross-modal Shape Manipulation

Sketch-Based Shape Manipulation. The proposed MM-VADs allow users to edit

the fine geometric structures via 2D sketches, as described in § 6.1.3.4. We provide

users with an interactive interface where users can edit the initial sketch by adding

or removing a certain part or even deforming a contour line. Fig. 6.3 presents some
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Airplane Chair
− engine + engine − curve + curve

Initial shape 0.096 0.123 0.066 0.085
Edited shape 0.059 0.134 0.054 0.124

Table 6.2: Editing shape via sketch. We report the Chamfer distance (CD)
between the manually edited shapes and our editing results (lower is better).

qualitative results of sketch-based shape manipulation. Interestingly, we find that our

manipulation is semantics-aware. For example, removing the airplane engines on the

wings will automatically add new engines to the tail. Such shape priors are absent in

non-generative models (e.g., EditNeRF [134]).

It is challenging to quantitatively evaluate sketch-based shape editing due to the

lack of ground-truth paired 3D shapes before and after editing. For this reason,

prior works [83] report the quantitative results of 3D reconstruction from sketches

as a proxy. We follow prior works and report the same quantitative evaluations in

Sec. 6.1.4.2. Furthermore, we manually edit the 3D shapes presented in Fig. 6.3 such

that their sketches align with the human edits. Tab. 6.2 reports the Chamfer distance

(CD) between the manually edited shapes and our editing results. We see that CD

improves when removing a part, but adding parts unfortunately increases the CD as

it induces more changes to the overall shape. This is often desirable, but the CD

metric does not reflect that.

Fig. 6.4 provides a comparison with DualSDF [87]. A fair comparison is not

possible, as DualSDF edits shape via 3D primitives instead of 2D views. We find

that DualSDF requires users to select right primitives to achieve certain edits (e.g.,

adding a curve to the chair back). In comparison, our sketch-based shape editing is

more intuitive.

Scribble-Based Color Manipulation. MM-VADs allow users to edit the appear-

ance of 3D shapes via color scribbles. Fig. 6.5 shows that MM-VADs propagate the
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Figure 6.4: Comparison with DualSDF. Left: DualSDF [87] edits 3D shapes via
3D primitives. Editing different primitives on the same part may lead to dramatically
different editing results (2nd - 4th columns). Right: our sketch-based interactions is
more intuitive for the user.
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(a) Init. (b) Color editing (a) Init. (b) Color editing

Figure 6.5: Editing shape via color scribble. (a) presents the initial 2D and
3D view of the object. (b) shows the 2D color scribbles and 3D color editing results.

sparse color scribbles into desired regions (e.g., from the left wing of the airplanes to

the right, from the left leg of chairs to the right). As a quantitative evaluation, we

select 10 shapes per category (including airplanes and chairs) and edit the surface

color to make it visually similar to reference shapes with the same geometry yet dif-

ferent surface color. The editing quality is measured by the similarity between the

renderings of the edited 3D shapes and the reference shapes. Tab. 6.3 reports the

PSNR and LPIPS [280] metrics of the evaluation. The surface color of 3D shapes is

much closer to the reference after editing, compared to the initial shapes, suggesting

the effectiveness of our MM-VAD model in editing color via scribbles.
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A similar task has recently been explored in EditNeRF [134]. However, an apple-

to-apple comparison with EditNeRF is not possible due to the intrinsically different

3D representations (NeRF [149] vs SDFs [170]). Moreover, the proposed MM-VADs

are generative models while EditNeRF is non-generative; The MM-VADs bridge 2D

and 3D via shared latent spaces while EditNeRF relies on differentiable rendering.

We provide qualitative comparisons with EditNeRF on chairs with similar structures

using their pre-trained models. Fig. 6.6 shows that the color editing from MM-

VADs is on par with EditNeRF. The MM-VADs achieve the editing via simple latent

optimization (Eqn. 6.12), while EditNeRF requires updating the network weights per

instance and fails to generate meaningful color editing results via optimizing the color

code alone. Furthermore, MM-VADs take 0.06 seconds per edit and 6.78 seconds to

render our 3D shapes into 256×256 RGB images, while EditNeRF takes over a minute

per edit including rendering.

Methods Airplane Chair
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Initial 19.84 0.23 16.20 0.33
Edited 26.41 0.13 22.08 0.20

Table 6.3: Quantitative results of editing 3D via 2D scribbles. We edit the
surface color of 3D shape based on reference shapes, and report the similarity between
the editing results and the target (bottom row). As a reference, we also report the
metrics before editing (top row).

6.1.4.2 Cross-Modal Shape Generation

Single-View and Partial-View Shape Reconstruction. Fig. 6.7 compares the

performance of our model and the encoder-decoder networks [83] under different occlu-

sion ratios in the lower part of the objects in 2D views. The proposed model only has

a slight performance drop as the occluded parts increase (Fig. 6.7a), mainly because

of the ambiguity of 3D reconstruction given partial views. In fact, our reconstructions
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Figure 6.6: Comparison with EditNeRF. Our model (bottom) achieves compa-
rable editing performance with EditNeRF [134] (top). We provide three color edits on
2D views (odd columns), each followed by the 3D editing result (even columns).

results fit the partial views quite well. Even though our model performs slightly worse

than the encoder-decoder networks on full-view inputs, the proposed model is more

robust to the input domain shift. This is because compared to task-specific training,

our model achieves a better trade-off between reconstruction accuracy and domain

generalization. More interestingly, our model can achieve diverse and reasonable 3D

reconstruction by sampling different initialization for latent optimization (Fig. 6.7b).

Few-Shot Shape Generation. The proposed method is able to adapt the pre-

trained multi-modal generative model with as few as 10 training samples of a specific

2D modality. Fig. 6.8 presents some of the few-shot cross-modal shape generation

results. To quantitatively evaluate the few-shot shape generation performance, we

render the 3D shapes into 2D RGB images and report the Frechet Inception Distance

(FID) scores [99] between the rendered images and the ground-truth samples. Since

the FID score is not sensitive to the semantic difference between two image sets, we

also report the classification error on the random samples from the model before and

after the adaptation. Specifically, we train a binary image classifier to identify the

target image categories (e.g., armchairs vs. other chairs), and we run the trained

classifier on the 2D renderings of the 3D samples before and after the adaptation. As

presented in Tab. 6.4, our pre-trained generative model can be effectively adapted to

a certain shape subspace given as few as 10 2D examples. This capability allows us to

agilely adapt our generative model to a subspace defined by a few unlabelled samples,
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(a) Robustness to domain shift (b) 3D reconstruction with full or  partial 2D inputs

Input Ours (two runs) Enc-Dec Input Ours (two runs) Enc-Dec

Figure 6.7: 3D reconstruction. (a) Robustness to domain shift. We re-
port the Chamfer distance (lower is better) between 3D reconstructions and the
groundtruth under different ratios of image occlusion. (b) 3D reconstruction with
full or partial 2D inputs. When the full views are available, our model produces
consistent 3D reconstruction in different trials. When only partial views are given, our
model produces multiple different 3D reconstructions. In comparison, the encoder-
decoder networks [83] trained on full-view sketches are not robust to the domain shift
induced by occlusion and unable to provide multiple 3D shapes given partial views.
Notice that the predictions of surface color is not available in the encoder-decoder
networks from the prior work [83].

so that users can easily narrow down the target shape during the manipulation by

providing a few samples of a common attribute, such as a specific category, style, or

color. We are unaware of any prior works that can tackle this task in the literature.

Shape and Color Transfer. Transferring shape and color across different 3D in-

stances can be achieved by simply swapping the latent codes. Fig. 6.9 shows that the

shape and color are well disentangled in the proposed generative model. The transfer

results also are semantically meaningful, i.e., the color is only transferred across the

same semantic parts (e.g., seats for the chair, wings for the airplane) even though the

geometry of the source and target instances are quite different.

6.1.4.3 Case Study on Real Images

The workflow of 3D designers usually starts by drawing a 2D sketch to portray

the coarse 3D geometry and then colorizes the sketch to depict the 3D appearance.

These 2D arts are used as a reference to build 3D objects. Undoubtedly this procedure
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(a) Initial samples (b) Armchairs (c) Side chairs (d) Pink chairs

Figure 6.8: Few-shot cross-modal shape generation. (a) presents random 3D
samples from our model before the adaptation. Given a few 2D exemplars of a certain
category (e.g., armchair), our model can be adapted to generate corresponding 3D
shapes (b-d).

Stage Metrics Arm Side Red Avg.

Init. FID ↓ 138.1 95.2 93.7 109.0
Cls.Err. ↓ 0.79 0.64 0.82 0.75

Adapt. FID ↓ 130.4 92.4 93.0 105.3
Cls.Err. ↓ 0.01 0.10 0.00 0.04

Table 6.4: Quantitative results of few-shot cross-modal shape generation.
We report Frechet Inception Distance (FID) (lower is better) and classification error
(Cls. Err) (lower is better). We effectively adapt the pretrained multi-modal VAD
model using a few 2D images to a desired 3D shape generator. As a reference, we
report the metrics before the few-shot adaptation (top row).

So
ur
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Target color codeTarget shape code

Figure 6.9: Shape and color trans-
fer. The reference 3D shapes (top row)
provide the shape codes or color codes for
each source instances (first column).

(a) Real sketch (b) 3D Recon.

(c) Edit color (d) Result

Figure 6.10: Our model enables con-
secutive 3D reconstruction and manip-
ulation given a hand-drawn sketch.
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requires extensive human efforts and expertise. Such tasks can be automated with our

MM-VADs. As shown in Fig. 6.10, we first reconstruct the 3D shape from a hand-

drawn sketch. We then assign a surface color by randomly sampling a color code

from the latent space of the MM-VADs, which can be easily edited by drawing color

scribbles on the surface. Our model does not require any re-training on each of these

steps and provides a tool to conduct shape generation and color editing consecutively.

Such a task is infeasible with the existing works that train an encoder-decoder network

to predict 3D shape from sketch [83].

6.1.5 Conclusion

We propose a multi-modal generative model which bridges multiple 2D and 3D

modalities through a shared latent space. One limitation of the proposed method

is that we are only able to provide editing results in the prior distribution of our

generative model. Despite this limitation, our model has enabled versatile cross-

modal 3D generation and manipulation tasks without the need of re-training per task

and demonstrates strong robustness to input domain shift.

6.2 Joint estimation of 3D scene and camera poses

6.2.1 Overview

NeRF [149] was introduced as a powerful method to tackle the problem of learn-

ing neural scene representations and photorealistic view synthesis, and subsequent

research has focused on addressing its limitations to extend its applicability to a

wider range of use cases (see [221, 267] for surveys). One of the few remaining hur-

dles for view synthesis in the wild is the need for accurate localization. As images

captured in the wild have unknown poses, these approaches often use Structure-from-

Motion (SfM) [167, 196] to determine the camera poses. There is often no recourse
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Figure 6.11: Jointly optimizing camera poses and scene representation over
a full scene is difficult and under-constrained. This example is the Lego scene
with 100 images from the Blender dataset. Left: When provided noisy observations
of the true camera locations, BARF [126] cannot converge to the correct poses. Mid-
dle: GNeRF [145] assumes a 2D camera representation (azimuth, elevation) which is
accurate for the Blender dataset which has that exact configuration (upright cameras
on a sphere). However, GNeRF also requires an accurate prior distribution on poses
for sampling. The Lego images live on one hemisphere, but when GNeRF’s prior
distribution is the full sphere it also fails to localize the images accurately. Right:
Our full model, LU-NeRF+Sync, is able to recover poses almost perfectly in this
particular example. By taking a local-to-global approach, we avoid having strong
assumptions about camera representation or pose priors. Following [126, 145] pose
errors for each method are reported after optimal global alignment of estimated poses
to ground truth poses. To put the translation errors in context, the Blender cameras
are on a sphere of radius 4.03.

when SfM fails (see Fig. 6.17 for an example), and in fact, even small inaccuracies in

camera pose estimation can have a dramatic impact on photorealism.

Few prior attempts have been made to reduce the reliance on SfM by integrat-

ing pose estimation directly within the NeRF framework. However, the problem is

severely underconstrained (see Fig. 6.11) and current approaches make additional

assumptions to make the problem tractable. For example, NeRf−− [246] focuses

on pose estimation in forward-facing configurations, BARF [126] initialization must

be close to the true poses, and GNeRF [145] assumes a 2D camera model (upright

cameras on a hemisphere).

We propose an approach for jointly estimating the camera pose and scene repre-

sentation from images from a single scene while allowing for a more general camera

configuration than previously possible. Conceptually, our approach is organized in
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a local-to-global learning framework using NeRFs. In the local processing stage we

partition the scene into overlapping subsets, each containing only a few images (we

call these subsets mini-scenes). Knowing images in a mini-scene are mostly nearby

is what makes the joint estimation of pose and scene better conditioned than per-

forming the same task globally. In the global stage, the overlapping mini-scenes are

registered in a common reference frame through pose synchronization, followed by

jointly refining all poses and learning the global scene representation.

This organization into mini-scenes requires learning from a few local unposed

images. Although methods exist for few-shot novel view synthesis [30, 31, 54, 117,

158, 275], and separately for optimizing unknown poses [126, 145, 246], the combined

setting presents new challenges. Our model must reconcile the ambiguities prevalent

in the local unposed setting – in particular the mirror symmetry ambiguity [165],

where two distinct 3D scenes and camera configurations produce similar images under

affine projection.

We introduce a Local Unposed NeRF (LU-NeRF) model to address these chal-

lenges in a principled way. The information from the LU-NeRFs (estimated poses,

confidences, and mirror symmetry analysis) is used to register all cameras in a com-

mon reference frame through pose synchronization [52, 89, 181], after which we refine

the poses and optimize the neural scene representations using all images. In summary,

our key contributions are:

• A local-to-global pipeline that learns both the camera poses in a general con-

figuration and a neural scene representation from only an unposed image set.

• LU-NeRF, a novel model for few-shot local unposed NeRF. LU-NeRF is tailored

to the unique challenges we have identified in this setting, such as reconciling

mirror-symmetric configurations.
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Each phase along our local-to-global process is designed with robustness in mind,

and the consequence is that our pipeline can be successful even when the initial

mini-scenes contain frequent outliers (see Sec 6.2.4 for a discussion on different mini-

scene construction techniques). The performance of our method surpasses prior works

that jointly optimize camera poses and scene representation, while also being flexible

enough to operate in the general SE(3) pose setting unlike prior techniques. Our

experiments indicate that our pipeline is complementary to the feature-based SfM

pipelines used to initialize NeRF models, and is more reliable in low-texture or low-

resolution settings.

6.2.2 Related works

Neural scene representation with unknown poses. BARF [126] and GARF [40]

jointly optimize neural scene and camera poses, but require good initialization (e.g.,

within 15◦ of the groundtruth). NeRF−− [246], X-NeRF [176], SiNeRF [258], and

SaNeRF [33] only work on forward-facing scenes; SAMURAI [22] aims to handle

coarsely specified poses (octant on a sphere) using a pose multiplexing strategy dur-

ing training; GNeRF [145] and VMRF [278] are closest to our problem setting. They

do not require accurate initialization and work on 360◦ scenes. However, they make

strong assumptions about the pose distribution, assuming 2DoF and a limited eleva-

tion range. Performance degrades when the constraints are relaxed.

Approaches that combine visual SLAM with neural scene representations [182,

212, 292] typically rely on RGB-D streams and are exclusively designed for video

sequences. The use of depth data significantly simplifies both scene and pose estima-

tion processes. There are several parallel efforts to ours in this field. For instance,

NoPe-NeRF [19] trains a NeRF without depending on pose priors; however, it re-

lies on monocular depth priors. In a manner akin to our approach, LocalRF [148]

progressively refines camera poses and radiance fields within local scenes. Despite
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this similarity, it presumes monocular depth and optical flow as supervision, and its

application is limited to ordered image collections; MELON [123] optimizes NeRF

with unposed images using equivalence class estimation, yet it is limited to SO(3);

RUST [188] and FlowCam [206] learn a generalizable neural scene representation from

unposed videos.

In summary, prior work on neural scene representation with unknown poses as-

sumes either small perturbations [40, 126, 246, 258], a narrow distribution of camera

poses [145, 278], or depth priors [19, 148]. To the best of our knowledge, we are the

first to address the problem of neural rendering with unconstrained unknown poses

for both ordered and unordered image collections.

Few-shot scene estimation. Learning scene representations from a few images has

been studied in [30, 31, 54, 117, 158, 275]. PixelNeRF [275] uses deep CNN features

to construct NeRFs from few or even a single image. MVSNeRF [30] leverages cost-

volumes typically applied in multi-view stereo for the same task, while DS-NeRF [54]

assumes depth supervision is available to enable training with fewer views. Our

approach to handle the few-shot case relies on a standard neural field optimization

with strong regularization, similar to RegNeRF [158].

Unsupervised pose estimation. There are a number of techniques that can learn

to predict object pose from categorized image collections without explicit pose super-

vision. Multiple views of the same object instance are used in [104, 235] to predict

the shape and pose while training is self-supervised through shape rendering. Rota-

tionNet [110] uses multiple views of an object instance to predict both poses and class

labels but is limited to a small set of discrete uniformly spaced camera viewpoints.

The multi-view input is relaxed in [151, 256] which operates on single image collec-

tions for a single category. UNICORN [151] learns a disentangled representation that

includes pose and utilizes cross-instance consistency at training, while an assumption

about object symmetry guides the training in [256].
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Figure 6.12: Proposed method. (A) shows the ground truth locations of each
image (we show this only for visualization). Edge colors show the grouping within
mini-scenes. We create a mini-scene for each image, though here only three mini-
scenes are highlighted; the ones centered at image 2 (red edges), image 5 (green edges),
and image 7 (blue edges). Depending on the strategy used to create mini-scenes, the
grouped images can contain outlier images far from the others. (B) LU-NeRF takes
unposed images from a single mini-scene and optimizes poses without any constraints
on the pose representation. (C) The reference frame and scene scale learned by LU-
NeRF is unique to each mini-scene. This, plus estimation errors, means the relative
poses between images in overlapping mini-scenes will not perfectly agree. To register
the cameras in a common reference frame, we utilize pose synchronization which seeks
a globally optimal positioning of all cameras from noisy relative pose measurements
– this is possible since we have multiple relative pose estimations for many pairs of
images. (D) Lastly, we jointly refine the synchronized camera poses and learn a scene
representation.

6.2.3 Approach

An illustration of our approach is shown in Figure 6.12. At the core of our method

is the idea of breaking up a large scene into mini-scenes to overcome the non-convexity

of global pose optimization without accurate initialization. When the camera poses

in the mini-scene are close to one another, we are able to initialize the optimization

with all poses close to the identity and optimize for relative poses. In Sec. 6.2.4, we

describe how we construct mini-scenes, and below we describe the process of local

shape estimation followed by global synchronization.
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6.2.3.1 Local pose estimation

The local pose estimation step takes in mini-scenes of typically three to five images

and returns the relative poses between the images. The model, denoted LU-NeRF-1,

is a small NeRF [149] that jointly optimizes the camera poses as extra parameters as

in BARF [126]. In contrast with BARF, in this stage, we are only interested in a rough

pose estimation that will be improved upon later, so we aim for a lightweight model

with faster convergence by using small MLPs and eliminating positional encoding and

view dependency. As we only need to recover relative poses, without loss of generality,

we freeze one of the poses at identity and optimize all the others.

Few-shot radiance field optimization is notoriously difficult and requires strong

regularization [158]. Besides the photometric ℓ2 loss proposed in NeRF, we found

that adding a loss term for the total variation of the predicted depths over small

patches is crucial for the convergence of both camera pose and scene representation:

1

|R|
∑
r∈R

K∑
i,j=1

(
dθ(ri,j)− dθ(ri,j+1)

)2
+
(
dθ(ri,j)− dθ(ri+1,j)

)2
where R is a set of ray samples, dθ(r) is the depth rendering function for a ray r,

θ are the model parameters and camera poses, K is the patch size, and (i, j) is the

pixel index.

6.2.3.2 Mirror-symmetry ambiguity

The ambiguities and degeneracies encountered when estimating 3D structure have

been extensively studied [16, 44, 217]. One particularly relevant failure mode of

SfM is distant small objects, where the perspective effects are small and can be

approximated by an affine transform, and one cannot differentiate between reflections

of the object around planes parallel to the image plane [165]. When enforcing multi-

view consistency, this effect, known as mirror-symmetry ambiguity, can result in

two different configurations of structure and motion that cannot be told apart (see
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Fig. 6.13). We notice, perhaps for the first time, that neural radiance fields with

unknown poses can degenerate in the same way.

One potential solution to this problem would be to keep the two possible solutions

and drop one of them when new observations arrive. This is not applicable to our case

since at this stage the only information available is the few images of the mini-scene.

To mitigate the issue, we introduce a second stage for the training, denoted LU-

NeRF-2. We take the estimated poses in world-to-camera frame {Ri} from LU-NeRF-

1, and the reflected cameras {RπRi}, where Rπ is a rotation around the optical axis.

Note that this is different than post-multiplying by Rπ, which would correspond to

a global rotation that wouldn’t change the relative poses that we are interested in at

this stage. We then train two new models, with the scene representation started from

scratch and poses initialized as the original and reflected sets, and resolve the ambi-

guity by picking the one with the smallest photometric training loss. The rationale is

that while the issue is caused by LU-NeRF-1 ignoring small perspective distortions,

the distortions can be captured on the second round of training, which is easier since

one of the initial sets of poses is expected to be reasonable.

6.2.3.3 Local to global pose estimation

After training LU-NeRF-2, we have sets of relative poses for each mini-scene in

some local frame. The problem of finding a global alignment given a set of noisy

relative poses is known as pose synchronization or pose averaging. It is formalized as

optimizing the set of N global poses {Pi} given relative pose observations Rij,

argmin
P∈SE(3)N

d(Pij, PjP
⊤
i ), (6.14)

for some metric d : SE(3) × SE(3) 7→ R. The problem is challenging due to non-

convexity and is an active subject of research [7, 52, 181]. We use the Shonan rotation

method [52] to estimate the camera rotations, followed by a least-squares optimization

of the translations.
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Figure 6.13: Mirror symmetry ambiguity. Under affine projection, a 3D scene
(S0) and its reflection (S1) across a plane (R) will produce the same image viewed
from affine camera C. The consequence of this is that two distinct 3D scenes and
camera poses will produce similar images. In this illustration, scene S0 viewed from
camera P0 will produce the same image as the reflected scene S1 viewed from P1.
While this relationship is exact in the affine model, we observe that the mini-scene
configuration with respect to the scene structure is often well-approximated as affine
and training can converge to the near-symmetric solutions. Our LU-NeRF model is
explicitly designed to anticipate this failure mode. This illustration is inspired by a
similar diagram in [165].

Global pose and scene refinement. After pose averaging, the global pose esti-

mates are expected to be good enough such that any method that requires cameras

initialized close to the ground truth should work (e.g., BARF [126], GARF [40]). We

apply BARF [126] at this step, which results in both accurate poses and a scene

representation accurate enough for realistic novel view synthesis. We refer to the full

pipeline as LU-NeRF+Sync.

6.2.4 Experiments

Our method as described in Sec. 6.2.3 starts from a set of mini-scenes that covers

the input scene. We evaluate different approaches to constructing mini-scenes, each

with different assumptions on the input.

The most strict assumption is that we have an optimal graph connecting each

image to its nearest neighbors in camera pose space. While this seems unfeasible

115



Chair Hotdog Lego Mic Drums Ship

rot trans rot trans rot trans rot trans rot trans rot trans
COLMAP 0.12 0.01 1.24 0.04 2.29 0.10 8.37 0.18 5.91 0.28 0.17 0.01

+BARF 0.14 0.01 1.20 0.01 1.88 0.09 3.73 0.15 8.71 0.54 0.15 0.01
VMRF 120◦ 4.85 0.28 – – 2.16 0.16 1.39 0.07 1.28 0.08 16.89 0.71
GNeRF 90◦ 0.36 0.02 2.35 0.12 0.43 0.02 1.87 0.03 0.20 0.01 3.72 0.18
GNeRF 120◦ 4.60 0.16 17.19 0.74 4.00 0.20 2.44 0.08 2.51 0.11 31.56 1.38
GNeRF 150◦ 16.10 0.76 23.53 0.92 4.17 0.36 3.65 0.26 5.01 0.18 – –
GNeRF 180◦ (2DOF) 24.46 1.22 36.74 1.46 8.77 0.53 12.96 0.66 9.01 0.49 – –
Ours (3DOF) 2.64 0.09 0.24 0.01 0.09 0.00 6.68 0.10 12.39 0.23 – –

Table 6.5: Camera pose estimation on unordered image collection. GN-
eRF [145] and VMRF [278] constrain the elevation range, where the maximum ele-
vation is always 90◦. For example, GNeRF 120◦ only samples elevations in [−30◦,
90◦]. The 180◦ variations don’t constrain elevation and are closest to our method,
but they are still limited to 2 degrees of freedom for assuming upright cameras. Bold
numbers indicate superior performance between the bottom two rows, which are the
fairest comparison among NeRF-based methods, although our method is still solving
a harder 3DOF problem versus 2DOF of GNeRF. We outperform GNeRF in all but
one scene in this comparison. COLMAP [196] results in its best possible scenario
are shown for reference (higher resolution images and assuming optimal graph to set
unregistered poses to the closest registered pose). COLMAP+BARF runs a BARF
refinement on top of these initial results, and even in this best-case scenario, our
method still outperforms it in some scenes, which shows that LU-NeRF can com-
plement COLMAP and work in scenes COLMAP fails. Our model fails on the Ship
scene due to outliers in the connected graph; GNeRF with fewer constraints also fails
on it.

in practice, some real-life settings approximate this, for example, when images are

deliberately captured in a pattern such as a grid, or if they are captured with camera

arrays.

In a less constrained version of the problem, we assume an ordered image collection,

where the images form a sequence, from where a line graph is trivially built. This is

a mild assumption that is satisfied by video data, as well as the common setting of a

camera physically moving around a scene sequentially capturing images.

In the most challenging setting, we assume nothing about the scene and only take

an unordered image collection.

Building graphs from unordered image collections. We evaluate two simple

ways of building graphs from unordered image collections. The first is to use deep

features from a self-supervised model trained on large image collections. We use the
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Pose error: 24.46º (R), 1.22(T)Pose error: 4.60º (R), 0.16 (T)Pose error: 0.36º (R), 0.02 (T) Pose error: 2.64º (R), 0.09 (T)
GNeRF with elevation range (0,90) GNeRF with elevation range (-30,90) GNeRF with elevation range (-60,90) Ours: unconstrained LU-NeRF

Figure 6.14: Camera pose estimation on unordered image collections. The
performance of GNeRF drops dramatically when the pose prior is expanded beyond
the true distribution. In comparison, our method does not rely on any prior knowledge
of pose distribution.

Chair Drums Lego Mic

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
GNeRF 90◦ 31.30 0.95 0.08 24.30 0.90 0.13 28.52 0.91 0.09 31.07 0.96 0.06
GNeRF 120◦ 25.01 0.89 0.15 20.63 0.86 0.20 22.95 0.85 0.16 23.68 0.93 0.11
GNeRF 150◦ 22.18 0.88 0.20 19.05 0.83 0.27 21.39 0.84 0.18 23.22 0.92 0.13
VMRF 120◦ 26.05 0.90 0.14 23.07 0.89 0.16 25.23 0.89 0.12 27.63 0.95 0.08
VMRF 150◦ 24.53 0.90 0.17 21.25 0.87 0.21 23.51 0.86 0.14 24.39 0.94 0.10

GNeRF 180◦ (2DOF) 21.27 0.87 0.23 18.08 0.81 0.33 18.22 0.82 0.24 17.22 0.86 0.32
VMRF 180◦ (2DOF) 23.18 0.89 0.16 20.01 0.84 0.29 21.59 0.83 0.18 20.29 0.90 0.22
Ours (3DOF) 30.57 0.95 0.05 23.53 0.89 0.12 28.29 0.92 0.06 22.58 0.91 0.08

Table 6.6: Novel view synthesis on unordered collections. Our method out-
performs the baselines on most scenes while being more general for considering ar-
bitrary rotations with 3 degrees-of-freedom. Here we quote the baseline results from
VMRF [278], where hotdog is not available.

off-the-shelf DINO model [4, 27] to extract image features and build the graph based

on the cosine distance between these features. The second is to simply use the ℓ1

distance in pixel space against slightly shifted and rotated versions of the images.

Neither of these approaches is ideal. The deep features are typically coarse and too

general, failing to detect specific subtle changes on the scene. The ℓ1 distance has

the opposite issue, where small changes can result in large distances. Exploring other

methods for finding a proxy metric for the relative pose in image space is a direction

for future work.

Datasets. We compare with prior works on the synthetic-NeRF dataset [149]. We

use the training split of the original dataset as our unordered image collection which

consists of 100 unordered images per 3D scene. We use the first 8 images from
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GroundtruthGNeRF 120º (2DoF) GNeRF 150º (2DoF) GNeRF 180º (2DoF) Ours (3DoF)

Figure 6.15: Novel view synthesis on unordered image collections. GNeRF
makes assumptions on the elevation range, where the maximum elevation is always
90◦. For instance, GNeRF 150◦ only samples elevations in [-60◦, 90◦]. The 180◦

variations don’t constrain elevation and are closest to our method, but they are still
limited to 2 degrees of freedom for assuming upright cameras. The performance of
GNeRF drops as prior poses are less constrained. Please zoom into the figure to see
the details in the renderings.

the validation set as our test set for the novel view synthesis task, following prior

works [145, 278]

To evaluate on image sequences, where the order of images is known, we further

render a Blender ordered image collection with 100 images along a spiral path per

scene. The images are resized to 400× 400 in our experiments.

We also evaluate on real images from the object-centric videos in Objectron [3].

The dataset provides ground truth poses computed using AR solutions at 30fps, and
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Image size Chair Hotdog Lego Mic Drums Ship

400×400 100 88 100 15 74 45
800×800 100 98 100 80 84 100

Table 6.7: Number of images registered by COLMAP on Blender.

we construct a wider-baseline dataset by subsampling every 15th frame and selecting

videos with limited texture (Fig. 6.17).

Evaluation metrics. We evaluate the tasks of camera pose estimation and novel

view synthesis. For camera pose estimation, we report the camera rotation and

translation error using Procrustes analysis as in BARF [126]. For novel view synthesis,

we report the PSNR, SSIM, and LPIPS [281].

Baseline methods. We compare with GNeRF [145], VMRF [278], and COLMAP [196]

throughout our experiments. GNeRF samples camera poses from a predefined prior

pose distribution and trains a GAN-based neural rendering model to build the cor-

respondence between the sampled camera poses and 2D renderings. The method

provides accurate pose estimation under proper prior pose distribution. However, its

performance degrades significantly when the prior pose distribution doesn’t match

the groundtruth. VMRF attempts to relieve the reliance of GNeRF on the prior pose

distribution but still inherits its limitations. In our experiments, we evaluate with the

default pose priors of GNeRF on the NeRF-synthetic dataset, azimuth ∈ [0◦, 360◦]

and elevation ∈ [0◦, 90◦], and also on less constrained cases. COLMAP works reliably

in texture-rich scenes but may fail dramatically on texture-less surfaces.

Implementation details. We use a compact network for LU-NeRF to speed up the

training and minimize the memory cost. Specifically, we use a 4-layer MLP without

positional encoding and conditioning on the view directions. We stop the training

early when the change of camera poses on mini-scenes is under a predefined threshold.

To resolve the mirror symmetry ambiguity (Sec. 6.2.3.2), we train two additional LU-
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Chair Drums Lego Materials Mean

rot trans rot trans rot trans rot trans rot trans

GNeRF 90◦ 11.6 0.49 8.03 0.29 7.89 0.19 6.80 0.12 8.91 0.30
GNeRF 180◦ 27.7 1.17 130 6.23 123 4.31 30.9 1.40 94.9 3.27
Ours (3DOF) 0.72 0.03 0.07 0.08 1.96 0.00 0.31 0.00 0.76 0.03

Table 6.8: Pose estimation on the Blender ordered image collections. We
report rotation errors in degrees and translation at the input scene scale. Our method
can be more easily applied to ordered image collections since the graph-building step
becomes trivial. In this case, we outperform GNeRF even when it is aided by known
and constrained pose distributions.

NeRFs for a fixed number of training iterations (50k by default). The weight of the

depth regularization is 10 times larger than the photometric ℓ2 loss throughout our

experiments.

6.2.4.1 Unordered Image Collections

Chair Drums Lego Materials

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
GNeRF 90◦ 27.22 0.93 0.17 20.88 0.84 0.29 22.83 0.83 0.25 22.58 0.85 0.20

GNeRF 180◦ (2DOF) 23.50 0.91 0.26 11.01 0.81 0.56 9.78 0.78 0.53 9.48 0.65 0.50
Ours (3DOF) 33.94 0.98 0.03 25.29 0.91 0.08 15.90 0.72 0.20 29.73 0.96 0.03

Table 6.9: Novel view synthesis on Blender ordered image collections. The
relative improvement of our method with respect to GNeRF is larger with an ordered
image collection, since we avoid the difficult step of building the initial graph.

Pose error: 30.9º (R), 1.4 (T)Pose error: 6.8º (R), 0.12 (T) Pose error: 0.31º (R), 0 (T)
GNeRF with elevation range (0,90) GNeRF with elevation range (-90,90) Ours: unconstrained LU-NeRF

Figure 6.16: Pose estimation on the Blender Materials ordered image col-
lection. The performance of GNeRF degrades with unconstrained elevation (left vs.
middle). The proposed method achieves accurate pose estimation without assump-
tions on the prior pose distribution.
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Camera pose estimation. Tab. 6.5 compares our method to GNeRF, VMRF, and

COLMAP in the camera pose estimation task. GNeRF achieves high pose estima-

tion accuracy when the elevation angles are uniformly sampled from a 90◦ interval;

however, its performance drops significantly when the range of elevation is enlarged.

Our method outperforms GNeRF in most scenes when the prior pose distribution is

unknown, since we do not require any prior knowledge of the camera poses. Fig. 6.14

provides the visualization of the estimated camera poses from GNeRF under different

prior pose distributions and our method.

Tab. 6.7 shows the number of images COLMAP registers out of 100 in each scene.

COLMAP is sensitive to image resolution, and its performance drops significantly on

low-resolution images. For instance, COLMAP only registers 15 images out of 100 on

the Mic scene when the image size is 400× 400. Our method provides accurate pose

estimation for all cameras given 400×400 images. Tab. 6.5 also reports how COLMAP

performs in the pose estimation task on the Blender scenes. We use the most favorable

settings for COLMAP – 800× 800 images and set the poses of unregistered cameras

to the poses of the nearest registered camera, assuming the optimal graph is known,

while our method makes no such assumption. Nevertheless, our model achieves better

performance than COLMAP in some scenes, even when a BARF refinement is applied

to initial COLMAP results. This shows that LU-NeRF complements COLMAP by

working in scenes where COLMAP fails.

Novel view synthesis. Fig. 6.15 and Tab. 6.6 show our results in the task of novel

view synthesis on unordered image collections. The results are consistent with the

quantitative pose evaluation – our model outperforms both VMRF and GNeRF when

no priors on pose distribution are assumed.
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6.2.4.2 Ordered Image Collections

Blender. Tab. 6.8, Tab. 6.9, and Fig. 6.16 summarize the results on the Blender

ordered image collection. Our method outperforms GNeRF with both constrained

and unconstrained pose distributions even though the elevation of the cameras in this

dataset is constrained. Our method utilizes the image order to build a connected

graph and does not make any assumptions about the camera distribution. Results

in Tab. 6.9 show that the view synthesis results are in sync with the pose estimation

results. GNeRF degrades significantly under unconstrained pose priors, while our

method outperforms GNeRF consistently across different scenes.

Objectron. We further compare with COLMAP on real images from the Objectron

dataset. COLMAP can be improved with modern feature extraction and matching

algorithms [190] such as SuperPoint [56] and SuperGLUE [191] (denoted COLMAP-

SPSG), or LoFTR [213] (denoted COLMAP-LoFTR), but these still struggle in scenes

with little or repeated texture. Tab. 6.10 and Fig. 6.17 show our results without BARF

refinement on difficult scenes from Objectron.

Bike Cup Laptop Book

Figure 6.17: Camera pose estimation on textureless scenes. COLMAP fails
to register any cameras in these Objectron scenes. Ground truth cameras are in
purple, our predictions in blue.

6.2.4.3 Analysis

This section provides additional analysis of our approach. All the experiments

discussed below were conducted on the unordered image collection.

Mirror symmetry ambiguity. Tab. 6.11 shows the performance of our full method

with and without the proposed solution to the mirror-symmetry ambiguity (Sec. 6.2.3.2).
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Bike Chair Cup Laptop Shoe Book

Rotation:
COLMAP – 17.2 – – 14.1 –
COLMAP-SPSG 129 28.3 – – 8.3 –
COLMAP-LoFTR 1.1 6.7 6.3 9.5 14.5 83.4
Ours 15.6 2.6 6.1 17.8 8.8 3.2

Translation:
COLMAP – 0.04 – – 0.03 –
COLMAP-SPSG 1.71 0.12 – – 0.04 –
COLMAP-LoFTR 0.10 0.07 0.03 0.34 0.14 0.67
Ours 0.13 0.03 0.11 0.16 0.20 0.03

Table 6.10: Comparison with COLMAP on Objectron [3]. We report rotation
(°) and translation errors on select scenes from Objectron that are challenging to
COLMAP. “–" denotes failure to estimate any camera poses. COLMAP-SPSG is an
improved version [190] with SuperPoint [56] and SuperGLUE [191] as descriptor and
matcher, respectively. COLMAP-LoFTR improves COLMAP with LoFTR [213], a
detector-free feature matcher. Translation errors are in the scale of the ground truth
scene.

Resolving the ambiguity improves performance consistently, confirming the impor-

tance of this component to our pipeline. For closer inspection, we present qualitative

results for LU-NeRF with and without ambiguity resolution for select mini-scenes in

Fig. 6.18. Fig. 6.18 presents a visual comparison between LU-NeRF with and without

the proposed solution to the mirror-symmetry ambiguity. Without the ambiguity res-

olution, the predicted depths are reflected across a plane parallel to the image plane

(having the effect of inverted disparity maps), and the poses are reflected across the

center camera of a mini-scene. Our LU-NeRF-2 rectifies the predicted geometry and

local camera poses, which effectively resolves the ambiguity.

6.2.5 Conclusion

In this work, we propose to estimate the neural scene representation and camera

poses jointly from an unposed image collection through a process of synchronizing

local unposed NeRFs. Unlike prior works, our method does not rely on a proper
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24.39 dB, 27.18◦ 25.10 dB, 3.43◦

27.49 dB, 18.37◦ 27.73 dB, 0.37◦

19.09 dB, 16.89◦ 19.66 dB, 1.33◦

19.98 dB, 20.81◦ 21.74 dB, 0.42◦

23.00 dB, 21.06◦ 24.32 dB, 2.57◦

w/o ambiguity resolution w/ambiguity resolution

Figure 6.18: Mirror symmetry ambiguity. For specific mini-scenes, we present
renderings, disparity maps, PSNRs between the renderings and the groundtruth, and
relative rotation errors (lower is better) for LU-NeRF with and without the proposed
solution to the mirror-symmetry ambiguity. Brightness is inversely related to depth
in the disparity map. The groundtruth depth maps are not available with the dataset.

prior pose distribution and is flexible enough to operate in general SE(3) pose set-

tings. Our framework works reliably in low-texture or low-resolution images and thus
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Ambiguity Chair Hotdog Lego Mic Drums

w/o resolution 39.14 138.9 0.48 107.9 11.35
w/ resolution 4.24 0.23 0.07 0.84 0.05

Table 6.11: Mirror symmetry ambiguity. The mean rotation error in degrees
for our pipeline (starting with the optimal graph), with and without the proposed
strategy to resolve the ambiguity.

complements the feature-based SfM algorithms. Our pipeline also naturally exploits

sequential image data, which is easy to acquire in practice.

One limitation of our method is the computational cost, which can be relieved

by recent advances in neural rendering [221]. Another limitation is the difficulty in

building graphs for unordered scenes, which is a promising direction for future work.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

This dissertation addresses a fundamental challenge of deep learning — the de-

pendency on costly human supervision in terms of data collection, annotations, and

neural network architecture design. We have developed a variety of label-efficient

algorithms geared towards landmark detection and pose estimation. Furthermore, we

have proposed a learning approach that is robust to noise for object detection and

demonstrated its applicability in large-scale ecological studies. From a theoretical

standpoint, we have explored the understanding of deep neural network architec-

tures, viewing them through the lens of Gaussian processes. Lastly, our efforts in the

realm of 3D generation and manipulation have also been thoroughly reviewed within

the dissertation.

7.2 Future work

Towards the goal of building intelligent agents capable of understanding and in-

teracting with the 3D visual world, I aim to explore the following directions in the

near future.

Holistic 3D scene understanding and reconstruction. We humans have a

holistic understanding of the 3D visual world — we can easily perceive the object

categories, their location, and shapes and even interact with them. This is a funda-

mental capability required of intelligent agents to navigate and interact with the 3D

environment. Besides this, reconstructing a realistic and immersive virtual 3D world
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has many applications in VR/AR, robotics, and autonomous driving. However, such

holistic 3D scene understanding and generation are beyond the current state-of-the-

art computer vision systems. There are several critical challenges to address. First,

scene understanding and 3D reconstruction are usually studied separately, which I

believe should be integrated in a way that they are mutually beneficial; Second, com-

pared to 2D tasks, the lack of human annotations becomes even more problematic for

3D tasks (e.g., 3D object detection and segmentation, 3D pose estimation); Third, un-

like 2D images, 3D models are expensive to acquire, especially for deformable objects

such as animals; I aim to build a system to holistically understand and reconstruct

the 3D scene with minimal human supervision. I plan to design end-to-end mod-

els that learn visual understanding and 3D reconstruction modules simultaneously;

I will leverage video datasets to learn the shape and structure of object categories

and advances in neural rendering to perform joint 2D/3D reasoning. I will also sys-

tematically evaluate the state-of-the-art self-supervised learning (SSL) methods (e.g.,

masked auto-encoding) for 3D vision tasks and explore more effective SSL methods.

Multi-modal machine perception. Humans learn to perceive the physical world

through multi-sensory systems — vision, audition, touch, smell, etc. These modal-

ities are overlapped and temporally aligned and thus can supervise each other. I

envision a future where intelligent agents equipped with multiple sensors could learn

to understand the world by simply perceiving and acting in the world. Multi-modal

perception not only plays a fundamental role in the development of human intelli-

gence but also becomes increasingly important in real applications. For example, data

collection capability in ecological research has been drastically increased by the recent

development of sensory techniques, such as remote sensing, camera traps, and acous-

tic sensors. However, there is a mismatch between the ever-growing multi-sensory

archives and our ability to distill biological information from the data collections. I

plan to build generic network architectures that handle data from different sensors
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and can be trained with correspondence among different modalities. I will also col-

laborate with experts from other disciplines, such as NLP, robotics, and ecology, to

develop machine learning tools to analyze domain-specific multi-sensory data.

Learning to see in the wild. The field of computer vision has been driven by

machine learning models trained on massive data collections. Despite the significant

progress in the past decade, the literature mainly focuses on training and evaluating

models on curated benchmarks (e.g., ImageNet). However, the curated datasets are

only a limited fraction of the general data distribution. This raises the concern that

our progress in controlled settings may not be applicable in real-life applications

(e.g., autonomous driving and mobile home assistants). Manually curating datasets

becomes even more prohibitive for self-supervised and semi-supervised learning on

the sheer volume of unlabeled images or videos. Our prior work [211] shows that

existing semi-supervised learning methods do not work out-of-the-box in realistic

benchmarks where data exhibits a long-tailed distribution of fine-grained categories.

Inspired by this work, I will strive to train and evaluate machine learning models in

the wild. I plan to build new benchmarks that match the realistic data distribution

and then systematically assess prior works on the new datasets. I will also design

novel algorithms to tackle the challenges conveyed by these realistic evaluations.

Multidisciplinary collaborations. I’ve established broad collaborations with re-

searchers from the industry (e.g., Google, Adobe, and Snap) to tackle both funda-

mental and applied research problems related to Graphics [222] and Robotics [223?

]. I’ve also been collaborating with ecologists from Cornell Lab of Ornithology and

Colorado State University to solve challenges in ecology with AI techniques [17, 55,

174, 224, 227], as well as chemists from the Chemical Engineering Department at

UMass Amherst to discover novel materials [135]. I’ll continue such multidisciplinary

collaborations and promote the application of AI in different scientific fields.

128



BIBLIOGRAPHY

[1] Abdal, Rameen, Qin, Yipeng, and Wonka, Peter. Image2stylegan: How to
embed images into the stylegan latent space? In ICCV (2019), pp. 4432–4441.

[2] Achille, Alessandro, and Soatto, Stefano. Emergence of invariance and disen-
tanglement in deep representations. The Journal of Machine Learning Research
(2018).

[3] Ahmadyan, Adel, Zhang, Liangkai, Ablavatski, Artsiom, Wei, Jianing, and
Grundmann, Matthias. Objectron: A large scale dataset of object-centric videos
in the wild with pose annotations. In CVPR (2021), pp. 7822–7831.

[4] Amir, Shir, Gandelsman, Yossi, Bagon, Shai, and Dekel, Tali. Deep vit features
as dense visual descriptors. arXiv preprint arXiv:2112.05814 2, 3 (2021), 4.

[5] An, Xiaobo, Tong, Xin, Denning, Jonathan D, and Pellacini, Fabio. Appwarp:
Retargeting measured materials by appearance-space warping. In Proceedings
of the 2011 SIGGRAPH Asia Conference (2011), pp. 1–10.

[6] Arandjelovic, Relja, Gronat, Petr, Torii, Akihiko, Pajdla, Tomas, and Sivic,
Josef. Netvlad: Cnn architecture for weakly supervised place recognition. In
CVPR (2016).

[7] Arrigoni, Federica, Rossi, Beatrice, and Fusiello, Andrea. Spectral synchroniza-
tion of multiple views in se(3). SIAM Journal on Imaging Sciences (2016).

[8] Athar, ShahRukh, Burnaev, Evgeny, and Lempitsky, Victor. Latent convolu-
tional models. In ICLR (2018).

[9] Aygun, Mehmet, and Mac Aodha, Oisin. Demystifying unsupervised semantic
correspondence estimation. In ECCV (2022).

[10] Bachman, Philip, Hjelm, R Devon, and Buchwalter, William. Learning repre-
sentations by maximizing mutual information across views. In NeurIPS (2019).

[11] Baranchuk, Dmitry, Voynov, Andrey, Rubachev, Ivan, Khrulkov, Valentin, and
Babenko, Artem. Label-efficient semantic segmentation with diffusion models.
In ICLR (2022).

[12] Barron, Jonathan T, Mildenhall, Ben, Tancik, Matthew, Hedman, Peter,
Martin-Brualla, Ricardo, and Srinivasan, Pratul P. Mip-nerf: A multiscale
representation for anti-aliasing neural radiance fields. In ICCV (2021).

129



[13] Barron, Jonathan T., Mildenhall, Ben, Verbin, Dor, Srinivasan, Pratul P., and
Hedman, Peter. Mip-nerf 360: Unbounded anti-aliased neural radiance fields.
CVPR (2022).

[14] Bau, David, Liu, Steven, Wang, Tongzhou, Zhu, Jun-Yan, and Torralba, Anto-
nio. Rewriting a deep generative model. In ECCV (2020), Springer, pp. 351–
369.

[15] Bau, David, Strobelt, Hendrik, Peebles, William, Zhou, Bolei, Zhu, Jun-Yan,
Torralba, Antonio, et al. Semantic photo manipulation with a generative image
prior. arXiv preprint arXiv:2005.07727 (2020).

[16] Belhumeur, Peter N, Kriegman, David J, and Yuille, Alan L. The bas-relief
ambiguity. IJCV .

[17] Belotti, Maria Carolina TD, Deng, Yuting, Zhao, Wenlong, Simons, Victo-
ria F, Cheng, Zezhou, Perez, Gustavo, Tielens, Elske, Maji, Subhransu, Shel-
don, Daniel R, Kelly, Jeffrey F, et al. Long-term analysis of persistence and size
of swallow and martin roosts in the us great lakes. Remote Sensing in Ecology
and Conservation (2022).

[18] Bespalov, Iaroslav, Buzun, Nazar, and Dylov, Dmitry V. Brulé: Barycenter-
regularized unsupervised landmark extraction. arXiv preprint arXiv:2006.11643
(2020).

[19] Bian, Wenjing, Wang, Zirui, Li, Kejie, Bian, Jia-Wang, and Prisacariu, Vic-
tor Adrian. Nope-nerf: Optimising neural radiance field with no pose prior.
arXiv preprint arXiv:2212.07388 (2022).

[20] Blei, David M, Kucukelbir, Alp, and McAuliffe, Jon D. Variational inference:
A review for statisticians. Journal of the American Statistical Association 112,
518 (2017).

[21] Borovykh, Anastasia. A Gaussian Process Perspective on Convolutional Neural
Networks. arXiv:1810.10798 (2018).

[22] Boss, Mark, Engelhardt, Andreas, Kar, Abhishek, Li, Yuanzhen, Sun, Deqing,
Barron, Jonathan T., Lensch, Hendrik P.A., and Jampani, Varun. SAMURAI:
Shape And Material from Unconstrained Real-world Arbitrary Image collec-
tions. In NeurIPS (2022).

[23] Bridge, Eli S, Pletschet, Sandra M, Fagin, Todd, Chilson, Phillip B, Horton,
Kyle G, Broadfoot, Kyle R, and Kelly, Jeffrey F. Persistence and habitat
associations of purple martin roosts quantified via weather surveillance radar.
Landscape ecology 31, 1 (2016).

[24] Brodley, Carla E, and Friedl, Mark A. Identifying mislabeled training data.
Journal of artificial intelligence research (1999).

130



[25] Burt, Peter J, and Adelson, Edward H. The laplacian pyramid as a compact
image code. In Readings in computer vision. Elsevier, 1987, pp. 671–679.

[26] Caron, Mathilde, Touvron, Hugo, Misra, Ishan, Jégou, Hervé, Mairal, Julien,
Bojanowski, Piotr, and Joulin, Armand. Emerging properties in self-supervised
vision transformers. In ICCV (October 2021), pp. 9650–9660.

[27] Caron, Mathilde, Touvron, Hugo, Misra, Ishan, Jégou, Hervé, Mairal, Julien,
Bojanowski, Piotr, and Joulin, Armand. Emerging properties in self-supervised
vision transformers. In ICCV (2021).

[28] Chang, Angel X, Funkhouser, Thomas, Guibas, Leonidas, Hanrahan, Pat,
Huang, Qixing, Li, Zimo, Savarese, Silvio, Savva, Manolis, Song, Shuran, Su,
Hao, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015).

[29] Chatfield, Ken, Simonyan, Karen, Vedaldi, Andrea, and Zisserman, Andrew.
Return of the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531 (2014).

[30] Chen, Anpei, Xu, Zexiang, Zhao, Fuqiang, Zhang, Xiaoshuai, Xiang, Fanbo, Yu,
Jingyi, and Su, Hao. Mvsnerf: Fast generalizable radiance field reconstruction
from multi-view stereo. In CVPR (2021).

[31] Chen, Di, Liu, Yu, Huang, Lianghua, Wang, Bin, and Pan, Pan. GeoAug: Data
augmentation for few-shot nerf with geometry constraints. In ECCV (2022).

[32] Chen, Kevin, Choy, Christopher B, Savva, Manolis, Chang, Angel X,
Funkhouser, Thomas, and Savarese, Silvio. Text2shape: Generating shapes
from natural language by learning joint embeddings. In ACCV (2018), Springer,
pp. 100–116.

[33] Chen, Shu, Zhang, Yang, Xu, Yaxin, and Zou, Beiji. Structure-aware nerf
without posed camera via epipolar constraint. CoRR abs/2210.00183 (2022).

[34] Chen, Ting, Kornblith, Simon, Norouzi, Mohammad, and Hinton, Geoffrey.
A simple framework for contrastive learning of visual representations. ICML
(2020).

[35] Chen, Ting, Kornblith, Simon, Swersky, Kevin, Norouzi, Mohammad, and Hin-
ton, Geoffrey. Big self-supervised models are strong semi-supervised learners.
NeurIPS (2020).

[36] Chen, Xinlei, Fan, Haoqi, Girshick, Ross, and He, Kaiming. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020).

[37] Chen, Zhiqin, and Zhang, Hao. Learning implicit fields for generative shape
modeling. In CVPR (2019), pp. 5939–5948.

131



[38] Cheng, Zezhou, Su, Jong-Chyi, and Maji, Subhransu. On equivariant and in-
variant learning of object landmark representations. In ICCV (2021), pp. 9897–
9906.

[39] Chilson, Carmen, Avery, Katherine, McGovern, Amy, Bridge, Eli, Sheldon,
Daniel, and Kelly, Jeffrey. Automated detection of bird roosts using nexrad
radar data and convolutional neural networks. Remote Sensing in Ecology and
Conservation 5, 1 (2019).

[40] Chng, Shin-Fang, Ramasinghe, Sameera, Sherrah, Jamie, and Lucey, Simon.
GARF: Gaussian activated radiance fields for high fidelity reconstruction and
pose estimation. In ICCV (2021).

[41] Cho, Youngmin, and Saul, Lawrence K. Kernel Methods for Deep Learning. In
NeurIPS (2009), pp. 342–350.

[42] Choi, Yunjey, Choi, Minje, Kim, Munyoung, Ha, Jung-Woo, Kim, Sunghun,
and Choo, Jaegul. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In CVPR (2018), pp. 8789–8797.

[43] Choy, Christopher B, Xu, Danfei, Gwak, JunYoung, Chen, Kevin, and Savarese,
Silvio. 3d-r2n2: A unified approach for single and multi-view 3d object recon-
struction. In ECCV (2016), Springer, pp. 628–644.

[44] Chum, Ondrej, Werner, Tomás, and Matas, Jiri. Two-view geometry estimation
unaffected by a dominant plane. In CVPR (2005).

[45] Cimpoi, Mircea, Maji, Subhransu, and Vedaldi, Andrea. Deep filter banks for
texture recognition and segmentation. In CVPR (2015).

[46] Cohen, Taco, and Welling, Max. Group equivariant convolutional networks. In
ICML (2016).

[47] Collins, Edo, Achanta, Radhakrishna, and Susstrunk, Sabine. Deep feature
factorization for concept discovery. In ECCV (2018).

[48] Crum, Timothy D, and Alberty, Ron L. The WSR-88D and the WSR-88D
operational support facility. Bulletin of the American Meteorological Society
74, 9 (1993).

[49] Dabov, Kostadin, Foi, Alessandro, Katkovnik, Vladimir, and Egiazarian, Karen.
Image Denoising by Sparse 3-D Transform-domain Collaborative Filtering.
IEEE Transactions on image processing 16, 8 (2007), 2080–2095.

[50] DeCarlo, Doug, Finkelstein, Adam, Rusinkiewicz, Szymon, and Santella, An-
thony. Suggestive contours for conveying shape. In ACM SIGGRAPH 2003
Papers. 2003, pp. 848–855.

132



[51] Delanoy, Johanna, Aubry, Mathieu, Isola, Phillip, Efros, Alexei A, and
Bousseau, Adrien. 3d sketching using multi-view deep volumetric prediction.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1,
1 (2018), 1–22.

[52] Dellaert, Frank, Rosen, David M., Wu, Jing, Mahony, Robert, and Carlone,
Luca. Shonan rotation averaging: Global optimality by surfing so(p)n. In
ECCV (2020).

[53] Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li.
Imagenet: A large-scale hierarchical image database. In CVPR (2009).

[54] Deng, Kangle, Liu, Andrew, Zhu, Jun-Yan, and Ramanan, Deva. Depth-
supervised NeRF: Fewer views and faster training for free. In CVPR (June
2022).

[55] Deng, Yuting, Belotti, Maria Carolina TD, Zhao, Wenlong, Cheng, Zezhou,
Perez, Gustavo, Tielens, Elske, Simons, Victoria F, Sheldon, Daniel R, Maji,
Subhransu, Kelly, Jeffrey F, et al. Quantifying long-term phenological patterns
of aerial insectivores roosting in the great lakes region using weather surveillance
radar. Global Change Biology (2022).

[56] DeTone, Daniel, Malisiewicz, Tomasz, and Rabinovich, Andrew. Superpoint:
Self-supervised interest point detection and description. In CVPRW (2018),
pp. 224–236.

[57] Divon, Gilad, and Tal, Ayellet. Viewpoint estimation—insights & model. In
ECCV (2018), pp. 252–268.

[58] Dokter, Adriaan M., Desmet, Peter, Spaaks, Jurriaan H., van Hoey, Stijn, Veen,
Lourens, Verlinden, Liesbeth, Nilsson, Cecilia, Haase, Günther, Leijnse, Hidde,
Farnsworth, Andrew, Bouten, Willem, and Shamoun-Baranes, Judy. bioRad:
biological analysis and visualization of weather radar data. Ecography (2018).

[59] Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk,
Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias,
Heigold, Georg, Gelly, Sylvain, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[60] Dosovitskiy, Alexey, Springenberg, Jost Tobias, Riedmiller, Martin, and Brox,
Thomas. Discriminative unsupervised feature learning with convolutional neu-
ral networks. In NeurIPS (2014).

[61] Esteves, Carlos, Allen-Blanchette, Christine, Makadia, Ameesh, and Daniilidis,
Kostas. Learning so(3) equivariant representations with spherical cnns. In
ECCV (2018), pp. 52–68.

[62] Esteves, Carlos, Makadia, Ameesh, and Daniilidis, Kostas. Spin-weighted spher-
ical cnns. NeurIPS 33 (2020), 8614–8625.

133



[63] Everingham, Mark, Van Gool, Luc, Williams, Christopher KI, Winn, John, and
Zisserman, Andrew. The pascal visual object classes (voc) challenge. IJCV 88,
2 (2010), 303–338.

[64] Fan, Haoqiang, Su, Hao, and Guibas, Leonidas J. A point set generation
network for 3d object reconstruction from a single image. In CVPR (2017),
pp. 605–613.

[65] Fang, Hao-Shu, Wang, Chenxi, Gou, Minghao, and Lu, Cewu. Graspnet-
1billion: A large-scale benchmark for general object grasping. In CVPR (2020),
pp. 11444–11453.

[66] Feng, Zhen-Hua, Kittler, Josef, Awais, Muhammad, Huber, Patrik, and Wu,
Xiao-Jun. Wing loss for robust facial landmark localisation with convolutional
neural networks. In CVPR (2018).

[67] Fu, Jianlong, Zheng, Heliang, and Mei, Tao. Look closer to see better: Recurrent
attention convolutional neural network for fine-grained image recognition. In
CVPR (2017).

[68] Gadelha, Matheus, Wang, Rui, and Maji, Subhransu. Deep manifold prior. In
ICCV (2021), pp. 1107–1116.

[69] Garriga-Alonso, Adrià, Aitchison, Laurence, and Rasmussen, Carl Edward.
Deep Convolutional Networks as Shallow Gaussian Processes. arXiv:1808.05587
(2018).

[70] Geiger, Andreas, Lenz, Philip, and Urtasun, Raquel. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In CVPR (2012), IEEE,
pp. 3354–3361.

[71] Gens, Robert, and Domingos, Pedro M. Deep symmetry networks. In NeurIPS
(2014).

[72] Ghosh, Aritra, Kumar, Himanshu, and Sastry, PS. Robust loss functions under
label noise for deep neural networks. In AAAI (2017), pp. 1919–1925.

[73] Gidaris, Spyros, Singh, Praveer, and Komodakis, Nikos. Unsupervised repre-
sentation learning by predicting image rotations. In ICLR (2018).

[74] Gkioxari, Georgia, Malik, Jitendra, and Johnson, Justin. Mesh r-cnn. In ICCV
(2019), pp. 9785–9795.

[75] Goel, Shubham, Kanazawa, Angjoo, and Malik, Jitendra. Shape and viewpoint
without keypoints. In ECCV (2020), Springer, pp. 88–104.

[76] Gonzalez-Garcia, Abel, Modolo, Davide, and Ferrari, Vittorio. Do semantic
parts emerge in convolutional neural networks? IJCV (2018).

134



[77] Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-
Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative
Adversarial Networks. In NeurIPS (2014).

[78] Gower, John C. Generalized procrustes analysis. Psychometrika 40, 1 (1975),
33–51.

[79] Goyal, Priya, Mahajan, Dhruv, Gupta, Abhinav, and Misra, Ishan. Scaling and
benchmarking self-supervised visual representation learning. In ICCV (2019).

[80] Grabner, Alexander, Roth, Peter M, and Lepetit, Vincent. 3d pose estimation
and 3d model retrieval for objects in the wild. In CVPR (2018), pp. 3022–3031.

[81] Grady, Leo. Random walks for image segmentation. IEEE TPAMI 28, 11
(2006), 1768–1783.

[82] Gu, Jinjin, Shen, Yujun, and Zhou, Bolei. Image processing using multi-code
gan prior. In CVPR (2020), pp. 3012–3021.

[83] Guillard, Benoit, Remelli, Edoardo, Yvernay, Pierre, and Fua, Pascal.
Sketch2mesh: Reconstructing and editing 3d shapes from sketches. In ICCV
(2021).

[84] Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Martin, Dumoulin, Vincent, and
Courville, Aaron. Improved training of wasserstein gans. In NeurIPS (2017).

[85] Gutmann, Michael, and Hyvärinen, Aapo. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In AISTATS (2010).

[86] Hadsell, Raia, Chopra, Sumit, and LeCun, Yann. Dimensionality reduction by
learning an invariant mapping. In CVPR (2006).

[87] Hao, Zekun, Averbuch-Elor, Hadar, Snavely, Noah, and Belongie, Serge. Du-
alsdf: Semantic shape manipulation using a two-level representation. In CVPR
(2020), pp. 7631–7641.

[88] Hariharan, Bharath, Arbeláez, Pablo, Girshick, Ross, and Malik, Jitendra. Hy-
percolumns for object segmentation and fine-grained localization. In CVPR
(2015).

[89] Hartley, Richard, Trumpf, Jochen, Dai, Yuchao, and Li, Hongdong. Rotation
Averaging. IJCV 101, 2 (2013).

[90] Hartley, Richard, and Zisserman, Andrew. Multiple view geometry in computer
vision. Cambridge university press, 2003.

[91] Hartley, Richard, and Zisserman, Andrew. Multiple view geometry in computer
vision. Cambridge university press, 2003.

135



[92] He, Kaiming, Chen, Xinlei, Xie, Saining, Li, Yanghao, Dollár, Piotr, and Gir-
shick, Ross. Masked autoencoders are scalable vision learners. In CVPR (2022),
pp. 16000–16009.

[93] He, Kaiming, Fan, Haoqi, Wu, Yuxin, Xie, Saining, and Girshick, Ross. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR
(2020).

[94] He, Kaiming, Fan, Haoqi, Wu, Yuxin, Xie, Saining, and Girshick, Ross. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR
(2020), pp. 9729–9738.

[95] He, Kaiming, Gkioxari, Georgia, Dollár, Piotr, and Girshick, Ross. Mask r-cnn.
In ICCV (2017), pp. 2961–2969.

[96] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual
learning for image recognition. In CVPR (2016).

[97] Heide, Felix, Heidrich, Wolfgang, and Wetzstein, Gordon. Fast and Flexible
Convolutional Sparse Coding. In Computer Vision and Pattern Recognition
(CVPR) (2015).

[98] Hénaff, Olivier J, Srinivas, Aravind, De Fauw, Jeffrey, Razavi, Ali, Doersch,
Carl, Eslami, SM, and Oord, Aaron van den. Data-efficient image recognition
with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019).

[99] Heusel, Martin, Ramsauer, Hubert, Unterthiner, Thomas, Nessler, Bernhard,
and Hochreiter, Sepp. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. NeurIPS 30 (2017).

[100] Hjelm, R Devon, Fedorov, Alex, Lavoie-Marchildon, Samuel, Grewal, Karan,
Bachman, Phil, Trischler, Adam, and Bengio, Yoshua. Learning deep represen-
tations by mutual information estimation and maximization. In ICLR (2019).

[101] Ho, Jonathan, Jain, Ajay, and Abbeel, Pieter. Denoising diffusion probabilistic
models. NeurIPS 33 (2020), 6840–6851.

[102] Hodan, Tomáš, Haluza, Pavel, Obdržálek, Štepán, Matas, Jiri, Lourakis, Mano-
lis, and Zabulis, Xenophon. T-less: An rgb-d dataset for 6d pose estimation of
texture-less objects. In WACV (2017), IEEE, pp. 880–888.

[103] Hoen, B. D., Diffendorfer, J. E., Rand, J. T., Kramer, L. A., Garrity, C. P., and
Hunt, H.E. United states wind turbine database. U.S. Geological Survey, Amer-
ican Wind Energy Association, and Lawrence Berkeley National Laboratory data
release: USWTDB V1.3. (2019). https://eerscmap.usgs.gov/uswtdb.

[104] Insafutdinov, Eldar, and Dosovitskiy, Alexey. Unsupervised learning of shape
and pose with differentiable point clouds. In NeurIPS (2018).

136



[105] Jakab, Tomas, Gupta, Ankush, Bilen, Hakan, and Vedaldi, Andrea. Unsuper-
vised learning of object landmarks through conditional image generation. In
NeurIPS (2018).

[106] Jakab, Tomas, Gupta, Ankush, Bilen, Hakan, and Vedaldi, Andrea. Self-
supervised learning of interpretable keypoints from unlabelled videos. In CVPR
(2020).

[107] Jiang, Huaizu, and Learned-Miller, Erik. Face detection with the Faster R-
CNN. In FG (2017), IEEE.

[108] Jin, Aobo, Fu, Qiang, and Deng, Zhigang. Contour-based 3d modeling through
joint embedding of shapes and contours. In Symposium on Interactive 3D
Graphics and Games (2020), pp. 1–10.

[109] Kanazawa, Angjoo, Tulsiani, Shubham, Efros, Alexei A, and Malik, Jiten-
dra. Learning category-specific mesh reconstruction from image collections.
In ECCV (2018), pp. 371–386.

[110] Kanezaki, Asako, Matsushita, Yasuyuki, and Nishida, Yoshifumi. Rotationnet:
Joint object categorization and pose estimation using multiviews from unsuper-
vised viewpoints. In CVPR (2018).

[111] Karras, Tero, Laine, Samuli, and Aila, Timo. A style-based generator architec-
ture for generative adversarial networks. In CVPR (2019), pp. 4401–4410.

[112] Kingma, Diederik P, and Ba, Jimmy. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[113] Kingma, Diederik P, and Welling, Max. Auto-encoding variational Bayes. In
ICLR (2014).

[114] Klare, Brendan F, Klein, Ben, Taborsky, Emma, Blanton, Austin, Cheney,
Jordan, Allen, Kristen, Grother, Patrick, Mah, Alan, and Jain, Anil K. Push-
ing the frontiers of unconstrained face detection and recognition: Iarpa janus
benchmark a. In CVPR (2015), pp. 1931–1939.

[115] Koestinger, Martin, Wohlhart, Paul, Roth, Peter M, and Bischof, Horst. Anno-
tated facial landmarks in the wild: A large-scale, real-world database for facial
landmark localization. In ICCVW (2011).

[116] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classifica-
tion with deep convolutional neural networks. NeurIPS 25 (2012).

[117] Kulhánek, Jonáš, Derner, Erik, Sattler, Torsten, and Babuška, Robert. View-
Former: NeRF-free neural rendering from few images using transformers. In
ECCV (2022).

137



[118] Laughlin, Andrew J., Sheldon, Daniel R., Winkler, David W., and Taylor,
Caz M. Quantifying non-breeding season occupancy patterns and the timing
and drivers of autumn migration for a migratory songbird using doppler radar.
Ecography 39, 10 (10 2016), 1017–1024.

[119] Lee, Jaehoon, Bahri, Yasaman, Novak, Roman, Schoenholz, Sam, Pennington,
Jeffrey, and Sohl-dickstein, Jascha. Deep Neural Networks as Gaussian Pro-
cesses. ICLR (2018).

[120] Lempitsky, Victor, Kohli, Pushmeet, Rother, Carsten, and Sharp, Toby. Image
segmentation with a bounding box prior. In ICCV (2009), IEEE, pp. 277–284.

[121] Lenc, Karel, and Vedaldi, Andrea. Understanding image representations by
measuring their equivariance and equivalence. In CVPR (2015).

[122] Levin, Anat, Lischinski, Dani, and Weiss, Yair. Colorization using optimization.
In ACM SIGGRAPH 2004 Papers. 2004, pp. 689–694.

[123] Levy, Axel, Matthews, Mark, Sela, Matan, Wetzstein, Gordon, and Lagun,
Dmitry. MELON: Nerf with unposed images using equivalence class estimation.
arXiv:preprint (2023).

[124] Li, Yin, Sun, Jian, Tang, Chi-Keung, and Shum, Heung-Yeung. Lazy snapping.
ACM TOG 23, 3 (2004), 303–308.

[125] Liao, Shuai, Gavves, Efstratios, and Snoek, Cees GM. Spherical regression:
Learning viewpoints, surface normals and 3d rotations on n-spheres. In CVPR
(2019), pp. 9759–9767.

[126] Lin, Chen-Hsuan, Ma, Wei-Chiu, Torralba, Antonio, and Lucey, Simon. BARF:
Bundle-adjusting neural radiance fields. In ECCV (2022).

[127] Lin, Tsung-Yi, Maire, Michael, Belongie, Serge, Hays, James, Perona, Pietro,
Ramanan, Deva, Dollár, Piotr, and Zitnick, C Lawrence. Microsoft coco: Com-
mon objects in context. In ECCV (2014), Springer, pp. 740–755.

[128] Lin, Tsung-Yu, RoyChowdhury, Aruni, and Maji, Subhransu. Bilinear cnn
models for fine-grained visual recognition. In ICCV (2015).

[129] Lin, Tsung-Yu, Winner, Kevin, Bernstein, Garrett, Mittal, Abhay, Dokter,
Adriaan M., Horton, Kyle G., Nilsson, Cecilia, Van Doren, Benjamin M.,
Farnsworth, Andrew, La Sorte, Frank A., Maji, Subhransu, and Sheldon,
Daniel. MistNet: Measuring historical bird migration in the US using archived
weather radar data and convolutional neural networks. Methods in Ecology and
Evolution 10, 11 (2019), 1908–1922.

[130] Lindenberger, Philipp, Sarlin, Paul-Edouard, Larsson, Viktor, and Pollefeys,
Marc. Pixel-perfect structure-from-motion with featuremetric refinement. In
ICCV (2021).

138



[131] Liu, Ming-Yu, and Tuzel, Oncel. Coupled generative adversarial networks.
NeurIPS 29 (2016), 469–477.

[132] Liu, Shaohui, Zhang, Yinda, Peng, Songyou, Shi, Boxin, Pollefeys, Marc, and
Cui, Zhaopeng. Dist: Rendering deep implicit signed distance function with
differentiable sphere tracing. In CVPR (2020), pp. 2019–2028.

[133] Liu, Shichen, Li, Tianye, Chen, Weikai, and Li, Hao. Soft rasterizer: A differen-
tiable renderer for image-based 3d reasoning. In ICCV (2019), pp. 7708–7717.

[134] Liu, Steven, Zhang, Xiuming, Zhang, Zhoutong, Zhang, Richard, Zhu, Jun-Yan,
and Russell, Bryan. Editing conditional radiance fields. In ICCV (2021).

[135] Liu, Yachan, Perez, Gustavo, Cheng, Zezhou, Sun, Aaron, Hoover, Samuel,
Fan, Wei, Maji, Subhransu, and Bai, Peng. Zeonet: 3d convolutional neural
networks for predicting adsorption in nanoporous zeolites. Journal of Materials
Chemistry A (2023).

[136] Liu, Ziwei, Luo, Ping, Wang, Xiaogang, and Tang, Xiaoou. Deep learning face
attributes in the wild. In ICCV (2015).

[137] Lorenz, Dominik, Bereska, Leonard, Milbich, Timo, and Ommer, Bjorn. Unsu-
pervised part-based disentangling of object shape and appearance. In CVPR
(2019).

[138] Lowe, David G. Distinctive image features from scale-invariant keypoints. IJCV
(2004).

[139] Lowe, David G. Distinctive image features from scale-invariant keypoints. IJCV
(2004).

[140] Mahendran, Aravindh, and Vedaldi, Andrea. Visualizing deep convolutional
neural networks using natural pre-images. IJCV (2016).

[141] Mahendran, Siddharth, Ali, Haider, and Vidal, René. 3d pose regression using
convolutional neural networks. In ICCVW (2017), pp. 2174–2182.

[142] Mann, Henry B, and Wald, Abraham. On Stochastic Limit and Order Rela-
tionships. The Annals of Mathematical Statistics 14, 3 (1943), 217–226.

[143] Mariotti, Octave, Mac Aodha, Oisin, and Bilen, Hakan. Viewnet: Unsupervised
viewpoint estimation from conditional generation. In ICCV (2021), pp. 10418–
10428.

[144] Matthews, Alexander G de G, Rowland, Mark, Hron, Jiri, Turner, Richard E,
and Ghahramani, Zoubin. Gaussian Process Behaviour in Wide Deep Neural
Networks. arXiv:1804.11271 (2018).

139



[145] Meng, Quan, Chen, Anpei, Luo, Haimin, Wu, Minye, Su, Hao, Xu, Lan, He,
Xuming, and Yu, Jingyi. GNeRF: GAN-based Neural Radiance Field without
Posed Camera. In ICCV (2021).

[146] Menon, Aditya, Van Rooyen, Brendan, Ong, Cheng Soon, and Williamson,
Bob. Learning from corrupted binary labels via class-probability estimation. In
ICML (2015), PMLR, pp. 125–134.

[147] Mescheder, Lars, Oechsle, Michael, Niemeyer, Michael, Nowozin, Sebastian, and
Geiger, Andreas. Occupancy networks: Learning 3d reconstruction in function
space. In CVPR (2019), pp. 4460–4470.

[148] Meuleman, Andreas, Liu, Yu-Lun, Gao, Chen, Huang, Jia-Bin, Kim, Changil,
Kim, Min H, and Kopf, Johannes. Progressively optimized local radiance fields
for robust view synthesis. arXiv preprint arXiv:2303.13791 (2023).

[149] Mildenhall, Ben, Srinivasan, Pratul P., Tancik, Matthew, Barron, Jonathan T.,
Ramamoorthi, Ravi, and Ng, Ren. Nerf: Representing scenes as neural radiance
fields for view synthesis. In ECCV (2020).

[150] Mnih, Volodymyr, and Hinton, Geoffrey E. Learning to label aerial images from
noisy data. In ICML (2012).

[151] Monnier, Tom, Fisher, Matthew, Efros, Alexei A., and Aubry, Mathieu. Share
With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consis-
tency. In ECCV (2022).

[152] Müller, Thomas, Evans, Alex, Schied, Christoph, and Keller, Alexander. Instant
neural graphics primitives with a multiresolution hash encoding. ACM TOG
(2022).

[153] Mur-Artal, Raúl, Montiel, J. M. M., and Tardós, Juan D. ORB-SLAM: a ver-
satile and accurate monocular SLAM system. IEEE Transactions on Robotics
(2015).

[154] Murphy, Kieran, Esteves, Carlos, Jampani, Varun, Ramalingam, Srikumar, and
Makadia, Ameesh. Implicit-pdf: Non-parametric representation of probability
distributions on the rotation manifold. arXiv preprint arXiv:2106.05965 (2021).

[155] Mustikovela, Siva Karthik, Jampani, Varun, Mello, Shalini De, Liu, Sifei, Iqbal,
Umar, Rother, Carsten, and Kautz, Jan. Self-supervised viewpoint learning
from image collections. In CVPR (2020), pp. 3971–3981.

[156] Neal, Radford M. Bayesian Learning for Neural Networks. PhD thesis, Univer-
sity of Toronto, 1995.

[157] Nettleton, David F, Orriols-Puig, Albert, and Fornells, Albert. A study of
the effect of different types of noise on the precision of supervised learning
techniques. Artificial intelligence review (2010).

140



[158] Niemeyer, Michael, Barron, Jonathan T., Mildenhall, Ben, Sajjadi, Mehdi
S. M., Geiger, Andreas, and Radwan, Noha. Regnerf: Regularizing neural
radiance fields for view synthesis from sparse inputs. In CVPR (2022).

[159] Noroozi, Mehdi, and Favaro, Paolo. Unsupervised learning of visual represen-
tations by solving jigsaw puzzles. In ECCV (2016).

[160] Novak, Roman, Xiao, Lechao, Bahri, Yasaman, Lee, Jaehoon, Yang, Greg,
Hron, Jiri, Abolafia, Daniel A, Pennington, Jeffrey, and Sohl-Dickstein, Jascha.
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Pro-
cesses. In ICLR (2019).

[161] Novotny, David, Larlus, Diane, and Vedaldi, Andrea. Anchornet: A weakly
supervised network to learn geometry-sensitive features for semantic matching.
In CVPR (2017).

[162] Novotny, David, Larlus, Diane, and Vedaldi, Andrea. Learning 3d object cate-
gories by looking around them. In ICCV (2017), pp. 5218–5227.

[163] Oord, Aaron van den, Li, Yazhe, and Vinyals, Oriol. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[164] Oquab, Maxime, Bottou, Léon, Laptev, Ivan, and Sivic, Josef. Is object local-
ization for free?-weakly-supervised learning with convolutional neural networks.
In CVPR (2015).

[165] Ozden, Kemal Egemen, Schindler, Konrad, and Gool, Luc Van. Multibody
structure-from-motion in practice. IEEE TPAMI (2010).

[166] Ozuysal, Mustafa, Lepetit, Vincent, and Fua, Pascal. Pose estimation for cate-
gory specific multiview object localization. In CVPR (2009), IEEE, pp. 778–785.

[167] Özyeşil, Onur, Voroninski, Vladislav, Basri, Ronen, and Singer, Amit. A survey
of structure from motion. Acta Numerica 26 (2017).

[168] Pan, Xingang, Zhan, Xiaohang, Dai, Bo, Lin, Dahua, Loy, Chen Change, and
Luo, Ping. Exploiting deep generative prior for versatile image restoration and
manipulation. In ECCV (2020), Springer, pp. 262–277.

[169] Papyan, Vardan, Romano, Yaniv, Elad, Michael, and Sulam, Jeremias. Convo-
lutional Dictionary Learning via Local Processing. In International Conference
on Computer Vision (2017), pp. 5306–5314.

[170] Park, Jeong Joon, Florence, Peter, Straub, Julian, Newcombe, Richard, and
Lovegrove, Steven. Deepsdf: Learning continuous signed distance functions for
shape representation. In CVPR (2019), pp. 165–174.

[171] Pathak, Deepak, Krahenbuhl, Philipp, Donahue, Jeff, Darrell, Trevor, and
Efros, Alexei A. Context encoders: Feature learning by inpainting. In CVPR
(2016).

141



[172] Patrini, Giorgio, Rozza, Alessandro, Krishna Menon, Aditya, Nock, Richard,
and Qu, Lizhen. Making deep neural networks robust to label noise: A loss
correction approach. In CVPR (2017), pp. 1944–1952.

[173] Pellacini, Fabio, Battaglia, Frank, Morley, R Keith, and Finkelstein, Adam.
Lighting with paint. ACM TOG 26, 2 (2007), 9–es.

[174] Perez, Gustavo, Zhao, Wenlong, Cheng, Zezhou, Belotti, Maria, Deng, Yuting,
Simons, Victoria, Tielens, Elske, Kelly, Jeffrey, Horton, Kyle, Maji, Subhransu,
et al. Using spatio-temporal information in weather radar data to detect and
track communal bird roosts. bioRxiv (2022).

[175] Pinheiro, Pedro O, Almahairi, Amjad, Benmaleck, Ryan Y, Golemo, Florian,
and Courville, Aaron. Unsupervised learning of dense visual representations.
NeurIPS (2020).

[176] Poggi, Matteo, Ramirez, Pierluigi Zama, Tosi, Fabio, Salti, Samuele, Mattoccia,
Stefano, and Di Stefano, Luigi. Cross-spectral neural radiance fields. arXiv
preprint arXiv:2209.00648 (2022).

[177] Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[178] Ren, Shaoqing, He, Kaiming, Girshick, Ross, and Sun, Jian. Faster R-CNN:
Towards real-time object detection with region proposal networks. In NeurIPS
(2015).

[179] Ren, Xiaofeng. Finding people in archive films through tracking. In CVPR
(2008).

[180] Ronneberger, Olaf, Fischer, Philipp, and Brox, Thomas. U-net: Convolutional
networks for biomedical image segmentation. Springer, pp. 234–241.

[181] Rosen, David M, Carlone, Luca, Bandeira, Afonso S, and Leonard, John J.
SE-Sync: A certifiably correct algorithm for synchronization over the special
euclidean group. IJRR (2019).

[182] Rosinol, Antoni, Leonard, John J, and Carlone, Luca. Nerf-slam: Real-
time dense monocular slam with neural radiance fields. arXiv preprint
arXiv:2210.13641 (2022).

[183] Rother, Carsten, Kolmogorov, Vladimir, and Blake, Andrew. " grabcut" inter-
active foreground extraction using iterated graph cuts. ACM TOG 23, 3 (2004),
309–314.

[184] Rublee, Ethan, Rabaud, Vincent, Konolige, Kurt, and Bradski, Gary. Orb: An
efficient alternative to sift or surf. In ICCV (2011).

142



[185] Sagonas, Christos, Tzimiropoulos, Georgios, Zafeiriou, Stefanos, and Pantic,
Maja. 300 faces in-the-wild challenge: The first facial landmark localization
challenge. In ICCVW (2013).

[186] Saha, Oindrila, Cheng, Zezhou, and Maji, Subhransu. Ganorcon: Are genera-
tive models useful for few-shot segmentation? arXiv preprint arXiv:2112.00854
(2021).

[187] Saharia, Chitwan, Chan, William, Chang, Huiwen, Lee, Chris A, Ho, Jonathan,
Salimans, Tim, Fleet, David J, and Norouzi, Mohammad. Palette: Image-to-
image diffusion models. arXiv preprint arXiv:2111.05826 (2021).

[188] Sajjadi, Mehdi S. M., Mahendran, Aravindh, Kipf, Thomas, Pot, Etienne,
Duckworth, Daniel, Lučić, Mario, and Greff, Klaus. RUST: Latent Neural
Scene Representations from Unposed Imagery. CVPR (2023).

[189] Sanchez, Enrique, and Tzimiropoulos, Georgios. Object landmark discovery
through unsupervised adaptation. In NeurIPS (2019).

[190] Sarlin, Paul-Edouard, Cadena, Cesar, Siegwart, Roland, and Dymczyk, Marcin.
From coarse to fine: Robust hierarchical localization at large scale. In CVPR
(2019).

[191] Sarlin, Paul-Edouard, DeTone, Daniel, Malisiewicz, Tomasz, and Rabinovich,
Andrew. Superglue: Learning feature matching with graph neural networks. In
CVPR (2020), pp. 4938–4947.

[192] Saxe, Andrew M., Koh, Pang Wei, Chen, Zhenghao, Bhand, Maneesh, Suresh,
Bipin, and Ng, Andrew Y. On Random Weights and Unsupervised Feature
Learning. In ICML (2011).

[193] Schmidt, Thorsten-Walther, Pellacini, Fabio, Nowrouzezahrai, Derek, Jarosz,
Wojciech, and Dachsbacher, Carsten. State of the art in artistic editing of
appearance, lighting and material. In Computer Graphics Forum (2016), vol. 35,
Wiley Online Library, pp. 216–233.

[194] Schonberger, Johannes L, and Frahm, Jan-Michael. Structure-from-motion re-
visited. In CVPR (2016), pp. 4104–4113.

[195] Schönberger, Johannes L, Zheng, Enliang, Frahm, Jan-Michael, and Pollefeys,
Marc. Pixelwise view selection for unstructured multi-view stereo. In ECCV
(2016), Springer, pp. 501–518.

[196] Schönberger, Johannes Lutz, and Frahm, Jan-Michael. Structure-from-motion
revisited. In CVPR (2016).

[197] Sedaghat, Nima, and Brox, Thomas. Unsupervised generation of a viewpoint
annotated car dataset from videos. In ICCV (2015), pp. 1314–1322.

143



[198] Sermanet, Pierre, Frome, Andrea, and Real, Esteban. Attention for fine-grained
categorization. ICLRW (2015).

[199] Shen, Yujun, Gu, Jinjin, Tang, Xiaoou, and Zhou, Bolei. Interpreting the latent
space of gans for semantic face editing. In CVPR (2020), pp. 9243–9252.

[200] Shen, Yujun, Yang, Ceyuan, Tang, Xiaoou, and Zhou, Bolei. Interfacegan:
Interpreting the disentangled face representation learned by gans. IEEE TPAMI
(2020).

[201] Shi, Yuge, Siddharth, Narayanaswamy, Paige, Brooks, and Torr, Philip HS.
Variational mixture-of-experts autoencoders for multi-modal deep generative
models. arXiv preprint arXiv:1911.03393 (2019).

[202] Shu, Zhixin, Sahasrabudhe, Mihir, Alp Guler, Riza, Samaras, Dimitris, Para-
gios, Nikos, and Kokkinos, Iasonas. Deforming autoencoders: Unsupervised
disentangling of shape and appearance. In ECCV (2018).

[203] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[204] Simonyan, Karen, and Zisserman, Andrew. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[205] Sitzmann, Vincent, Zollhöfer, Michael, and Wetzstein, Gordon. Scene represen-
tation networks: Continuous 3d-structure-aware neural scene representations.
arXiv preprint arXiv:1906.01618 (2019).

[206] Smith, Cameron, Du, Yilun, Tewari, Ayush, and Sitzmann, Vincent. Flow-
cam:training generalizable 3d radiance fields without camera poses via pixel-
aligned scene flow. arXiv preprint arXiv:2306.00180 (2023).

[207] Sohl-Dickstein, Jascha, Weiss, Eric, Maheswaranathan, Niru, and Ganguli,
Surya. Deep unsupervised learning using nonequilibrium thermodynamics. In
ICML (2015), PMLR, pp. 2256–2265.

[208] Song, Xibin, Wang, Peng, Zhou, Dingfu, Zhu, Rui, Guan, Chenye, Dai, Yuchao,
Su, Hao, Li, Hongdong, and Yang, Ruigang. Apollocar3d: A large 3d car
instance understanding benchmark for autonomous driving. In CVPR (2019),
pp. 5452–5462.

[209] Stepanian, Phillip M, Horton, Kyle G, Melnikov, Valery M, Zrnić, Dušan S,
and Gauthreaux, Sidney A. Dual-polarization radar products for biological
applications. Ecosphere 7, 11 (2016).

[210] Su, Hao, Qi, Charles R, Li, Yangyan, and Guibas, Leonidas J. Render for cnn:
Viewpoint estimation in images using cnns trained with rendered 3d model
views. In ICCV (2015), pp. 2686–2694.

144



[211] Su, Jong-Chyi, Cheng, Zezhou, and Maji, Subhransu. A Realistic Evaluation
of Semi-supervised Learning for Fine-grained Classification. In CVPR (2021).

[212] Sucar, Edgar, Liu, Shikun, Ortiz, Joseph, and Davison, Andrew J. imap: Im-
plicit mapping and positioning in real-time. In ICCV (2021).

[213] Sun, Jiaming, Shen, Zehong, Wang, Yuang, Bao, Hujun, and Zhou, Xiaowei.
Loftr: Detector-free local feature matching with transformers. In CVPR (2021).

[214] Sun, Xingyuan, Wu, Jiajun, Zhang, Xiuming, Zhang, Zhoutong, Zhang,
Chengkai, Xue, Tianfan, Tenenbaum, Joshua B, and Freeman, William T.
Pix3d: Dataset and methods for single-image 3d shape modeling. In CVPR
(2018), pp. 2974–2983.

[215] Suzuki, Masahiro, Nakayama, Kotaro, and Matsuo, Yutaka. Joint multimodal
learning with deep generative models. arXiv preprint arXiv:1611.01891 (2016).

[216] Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott,
Anguelov, Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich,
Andrew. Going deeper with convolutions. In CVPR (2015), pp. 1–9.

[217] Szeliski, Rick, and Kang, Sing Bing. Shape ambiguities in structure from mo-
tion. IEEE TPAMI (1997).

[218] Taketomi, Takafumi, Uchiyama, Hideaki, and Ikeda, Sei. Visual slam algo-
rithms: A survey from 2010 to 2016. IPSJ Transactions on Computer Vision
and Applications (2017).

[219] Tanaka, Daiki, Ikami, Daiki, Yamasaki, Toshihiko, and Aizawa, Kiyoharu. Joint
optimization framework for learning with noisy labels. In CVPR (2018).

[220] Tatarchenko, Maxim, Richter, Stephan R, Ranftl, René, Li, Zhuwen, Koltun,
Vladlen, and Brox, Thomas. What do single-view 3d reconstruction networks
learn? In CVPR (2019), pp. 3405–3414.

[221] Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Yifan,
W., Lassner, C., Sitzmann, V., Martin-Brualla, R., Lombardi, S., Simon, T.,
Theobalt, C., Nießner, M., Barron, J. T., Wetzstein, G., Zollhöfer, M., and
Golyanik, V. Advances in neural rendering. CGF (2022).

[222] Cheng, Zezhou, Chai, Menglei, Ren, Jian, Lee, Hsin-Ying, Olszewski, Kyle,
Huang, Zeng, Maji, Subhransu, and Tulyakov, Sergey. Cross-Modal 3D Shape
Generation and Manipulation. In ECCV (2022).

[223] Cheng, Zezhou, Esteves, Carlos, Jampani, Varun, Kar, Abhishek, Maji,
Subhransu, and Makadia, Ameesh. Lu-nerf: Synchronizing local unposed nerfs
for unsupervised pose estimation. In ICCV (2023).

145



[224] Cheng, Zezhou, Gabriel, Saadia, Bhambhani, Pankaj, Sheldon, Daniel, Maji,
Subhransu, Laughlin, Andrew, and Winkler, David. Detecting and Tracking
Communal Bird Roosts in Weather Radar Data. In AAAI (2020).

[225] Cheng, Zezhou, Gadelha, Matheus, and Maji, Subhransu. Accidental turnta-
bles: Learning 3d pose by watching objects turn. In ICCVW (2023).

[226] Cheng, Zezhou, Gadelha, Matheus, Maji, Subhransu, and Sheldon, Daniel. A
Bayesian Perspective on the Deep Image Prior. In CVPR (2019).

[227] Cheng, Zezhou, Maji, Subhransu, and Sheldon, Daniel. AI for conservation:
learning to track birds with radar. XRDS: Crossroads, The ACM Magazine for
Students (2021).

[228] Therrien, Charles W. Issues in Multirate Statistical Signal Processing. In
Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth
Asilomar Conference on (2001), vol. 1, IEEE, pp. 573–576.

[229] Thewlis, James, Albanie, Samuel, Bilen, Hakan, and Vedaldi, Andrea. Unsu-
pervised learning of landmarks by descriptor vector exchange. In ICCV (2019).

[230] Thewlis, James, Bilen, Hakan, and Vedaldi, Andrea. Unsupervised learning of
object frames by dense equivariant image labelling. In NeurIPS (2017).

[231] Thewlis, James, Bilen, Hakan, and Vedaldi, Andrea. Unsupervised learning of
object landmarks by factorized spatial embeddings. In ICCV (2017).

[232] Tian, Yonglong, Krishnan, Dilip, and Isola, Phillip. Contrastive multiview
coding. ECCV (2020).

[233] Tishby, Naftali, Pereira, Fernando C, and Bialek, William. The information
bottleneck method. arXiv preprint physics/0004057 (2000).

[234] Tishby, Naftali, and Zaslavsky, Noga. Deep learning and the information bot-
tleneck principle. In 2015 IEEE Information Theory Workshop (ITW) (2015).

[235] Tulsiani, Shubham, Efros, Alexei A., and Malik, Jitendra. Multi-view consis-
tency as supervisory signal for learning shape and pose prediction. In CVPR
(2018).

[236] Tulsiani, Shubham, and Malik, Jitendra. Viewpoints and keypoints. In CVPR
(2015), pp. 1510–1519.

[237] Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor. Deep Image Prior.
In Computer Vision and Pattern Recognition (CVPR) (2018).

[238] USGS, NLCD. Land cover (2011 edition, amended 2014), national geospatial
data asset (ngda) land use land cover, 2011, editor. 2011. US Geological Survey
(2011).

146



[239] Ustyuzhaninov, Ivan, Brendel, Wieland, Gatys, Leon A, and Bethge, Matthias.
Texture Synthesis using Shallow Convolutional Networks with Random Filters.
arXiv:1606.00021 (2016).

[240] Van Horn, Grant, Mac Aodha, Oisin, Song, Yang, Cui, Yin, Sun, Chen, Shep-
ard, Alex, Adam, Hartwig, Perona, Pietro, and Belongie, Serge. The iNaturalist
species classification and detection dataset. In CVPR (2018).

[241] Van Rooyen, Brendan, Menon, Aditya, and Williamson, Robert C. Learning
with symmetric label noise: The importance of being unhinged. In NIPS (2015).

[242] Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. The Caltech-
UCSD Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Insti-
tute of Technology, 2011.

[243] Wang, He, Sridhar, Srinath, Huang, Jingwei, Valentin, Julien, Song, Shuran,
and Guibas, Leonidas J. Normalized object coordinate space for category-level
6d object pose and size estimation. In CVPR (2019), pp. 2642–2651.

[244] Wang, Nanyang, Zhang, Yinda, Li, Zhuwen, Fu, Yanwei, Liu, Wei, and Jiang,
Yu-Gang. Pixel2mesh: Generating 3d mesh models from single rgb images. In
ECCV (2018), pp. 52–67.

[245] Wang, Yaxing, Gonzalez-Garcia, Abel, Berga, David, Herranz, Luis, Khan,
Fahad Shahbaz, and Weijer, Joost van de. Minegan: effective knowledge transfer
from gans to target domains with few images. In CVPR (2020), pp. 9332–9341.

[246] Wang, Zirui, Wu, Shangzhe, Xie, Weidi, Chen, Min, and Prisacariu, Vic-
tor Adrian. NeRF−−: Neural radiance fields without known camera parame-
ters. arXiv preprint arXiv:2102.07064 (2021).

[247] Welling, Max, and Teh, Yee W. Bayesian Learning via Stochastic Gradient
Langevin Dynamics. In ICML (2011).

[248] Wen, Bowen, Mitash, Chaitanya, Ren, Baozhang, and Bekris, Kostas E. se
(3)-tracknet: Data-driven 6d pose tracking by calibrating image residuals in
synthetic domains. In IROS (2020), IEEE, pp. 10367–10373.

[249] Wiles, Olivia, Koepke, A, and Zisserman, Andrew. Self-supervised learning of
a facial attribute embedding from video. In BMVC (2018).

[250] Williams, Christopher K. I., and Rasmussen, Carl Edward. Gaussian Processes
for Regression. In NeurIPS (1996), pp. 514–520.

[251] Williams, Christopher KI. Computing with Infinite Networks. In NeurIPS
(1997).

[252] Winkler, David W. Roosts and migrations of swallows. Hornero 21, 2 (2006),
85–97.

147



[253] Winkler, David W., Hallinger, Kelly K., Ardia, Daniel R., Robertson, R. J.,
Stutchbury, B. J., and Cohen, R. R. Tree Swallow (Tachycineta bicolor), version
2.0. In The Birds of North America, P. G. Rodewald, Ed. Cornell Lab of
Ornithology, 2011.

[254] Wu, Mike, and Goodman, Noah. Multimodal generative models for scalable
weakly-supervised learning. NeurIPS 31 (2018).

[255] Wu, Mike, and Goodman, Noah. Multimodal generative models for composi-
tional representation learning. arXiv preprint arXiv:1912.05075 (2019).

[256] Wu, Shangzhe, Rupprecht, Christian, and Vedaldi, Andrea. Unsupervised learn-
ing of probably symmetric deformable 3d objects from images in the wild. In
CVPR (2020).

[257] Wu, Zhirong, Xiong, Yuanjun, Yu, Stella, and Lin, Dahua. Unsupervised feature
learning via non-parametric instance discrimination. In CVPR (2018).

[258] Xia, Yitong, Tang, Hao, Timofte, Radu, and Van Gool, Luc. Sinerf: Sinusoidal
neural radiance fields for joint pose estimation and scene reconstruction. arXiv
preprint arXiv:2210.04553 (2022).

[259] Xiang, Yu, Kim, Wonhui, Chen, Wei, Ji, Jingwei, Choy, Christopher, Su, Hao,
Mottaghi, Roozbeh, Guibas, Leonidas, and Savarese, Silvio. Objectnet3d: A
large scale database for 3d object recognition. In ECCV (2016), Springer,
pp. 160–176.

[260] Xiang, Yu, Mottaghi, Roozbeh, and Savarese, Silvio. Beyond pascal: A bench-
mark for 3d object detection in the wild. In WACV (2014), IEEE, pp. 75–82.

[261] Xiang, Yu, Schmidt, Tanner, Narayanan, Venkatraman, and Fox, Dieter.
Posecnn: A convolutional neural network for 6d object pose estimation in clut-
tered scenes. arXiv preprint arXiv:1711.00199 (2017).

[262] Xiao, Shengtao, Feng, Jiashi, Xing, Junliang, Lai, Hanjiang, Yan, Shuicheng,
and Kassim, Ashraf. Robust facial landmark detection via recurrent attentive-
refinement networks. In ECCV (2016).

[263] Xiao, Tianjun, Xu, Yichong, Yang, Kuiyuan, Zhang, Jiaxing, Peng, Yuxin, and
Zhang, Zheng. The application of two-level attention models in deep convolu-
tional neural network for fine-grained image classification. In CVPR (2015).

[264] Xiao, Tong, Xia, Tian, Yang, Yi, Huang, Chang, and Wang, Xiaogang. Learning
from massive noisy labeled data for image classification. In CVPR (2015).

[265] Xiao, Yang, Du, Yuming, and Marlet, Renaud. Posecontrast: Class-agnostic
object viewpoint estimation in the wild with pose-aware contrastive learning. In
2021 International Conference on 3D Vision (3DV) (2021), IEEE, pp. 74–84.

148



[266] Xiao, Yang, Qiu, Xuchong, Langlois, Pierre-Alain, Aubry, Mathieu, and Marlet,
Renaud. Pose from shape: Deep pose estimation for arbitrary 3d objects. arXiv
preprint arXiv:1906.05105 (2019).

[267] Xie, Yiheng, Takikawa, Towaki, Saito, Shunsuke, Litany, Or, Yan, Shiqin, Khan,
Numair, Tombari, Federico, Tompkin, James, Sitzmann, Vincent, and Sridhar,
Srinath. Neural fields in visual computing and beyond. CGF (2022).

[268] Xu, Jiarui, and Wang, Xiaolong. Rethinking self-supervised correspon-
dence learning: A video frame-level similarity perspective. In ICCV (2021),
pp. 10075–10085.

[269] Xu, Qiangeng, Wang, Weiyue, Ceylan, Duygu, Mech, Radomir, and Neumann,
Ulrich. Disn: Deep implicit surface network for high-quality single-view 3d
reconstruction. arXiv preprint arXiv:1905.10711 (2019).

[270] Xu, Yinghao, Yang, Ceyuan, Liu, Ziwei, Dai, Bo, and Zhou, Bolei. Unsuper-
vised landmark learning from unpaired data. arXiv preprint arXiv:2007.01053
(2020).

[271] Yang, Gengshan, Sun, Deqing, Jampani, Varun, Vlasic, Daniel, Cole, Forrester,
Chang, Huiwen, Ramanan, Deva, Freeman, William T, and Liu, Ce. Lasr:
Learning articulated shape reconstruction from a monocular video. In CVPR
(2021), pp. 15980–15989.

[272] Yang, Linjie, Luo, Ping, Change Loy, Chen, and Tang, Xiaoou. A large-scale
car dataset for fine-grained categorization and verification. In CVPR (2015),
pp. 3973–3981.

[273] Yang, Shuo, Luo, Ping, Loy, Chen-Change, and Tang, Xiaoou. Wider face: A
face detection benchmark. In CVPR (2016), pp. 5525–5533.

[274] YM., Asano, C., Rupprecht, and A., Vedaldi. A critical analysis of self-
supervision, or what we can learn from a single image. In ICLR (2020).

[275] Yu, Alex, Ye, Vickie, Tancik, Matthew, and Kanazawa, Angjoo. pixelNeRF:
Neural radiance fields from one or few images. In CVPR (2021).

[276] Zadeh, Amir, Lim, Yao-Chong, Liang, Paul Pu, and Morency, Louis-Philippe.
Variational auto-decoder: A method for neural generative modeling from in-
complete data. arXiv preprint arXiv:1903.00840 (2019).

[277] Zeiler, Matthew D, and Fergus, Rob. Visualizing and understanding convolu-
tional networks. In ECCV (2014), Springer.

[278] Zhang, Jiahui, Zhan, Fangneng, Wu, Rongliang, Yu, Yingchen, Zhang, Wen-
qing, Song, Bai, Zhang, Xiaoqin, and Lu, Shijian. Vmrf: View matching neural
radiance fields. In ACM MM (2022).

149



[279] Zhang, Richard, Isola, Phillip, and Efros, Alexei A. Colorful image colorization.
In ECCV (2016).

[280] Zhang, Richard, Isola, Phillip, Efros, Alexei A, Shechtman, Eli, and Wang,
Oliver. The unreasonable effectiveness of deep features as a perceptual metric.
In CVPR (2018).

[281] Zhang, Richard, Isola, Phillip, Efros, Alexei A., Shechtman, Eli, and Wang,
Oliver. The unreasonable effectiveness of deep features as a perceptual metric.
In CVPR (June 2018).

[282] Zhang, Richard, Zhu, Jun-Yan, Isola, Phillip, Geng, Xinyang, Lin, Angela S,
Yu, Tianhe, and Efros, Alexei A. Real-time user-guided image colorization with
learned deep priors. ACM TOG 9, 4 (2017).

[283] Zhang, Song-Hai, Guo, Yuan-Chen, and Gu, Qing-Wen. Sketch2model: View-
aware 3d modeling from single free-hand sketches. In CVPR (2021), pp. 6012–
6021.

[284] Zhang, Yuting, Guo, Yijie, Jin, Yixin, Luo, Yijun, He, Zhiyuan, and Lee,
Honglak. Unsupervised discovery of object landmarks as structural representa-
tions. In CVPR (2018).

[285] Zhang, Yuxuan, Ling, Huan, Gao, Jun, Yin, Kangxue, Lafleche, Jean-Francois,
Barriuso, Adela, Torralba, Antonio, and Fidler, Sanja. Datasetgan: Efficient
labeled data factory with minimal human effort. In CVPR (2021), pp. 10145–
10155.

[286] Zhang, Zhanpeng, Luo, Ping, Loy, Chen Change, and Tang, Xiaoou. Facial
landmark detection by deep multi-task learning. In ECCV (2014).

[287] Zhang, Zhanpeng, Luo, Ping, Loy, Chen Change, and Tang, Xiaoou. Learning
deep representation for face alignment with auxiliary attributes. IEEE TPAMI
(2015).

[288] Zhong, Yue, Gryaditskaya, Yulia, Zhang, Honggang, and Song, Yi-Zhe. Deep
sketch-based modeling: Tips and tricks. In 3DV (2020), pp. 543–552.

[289] Zhou, Bolei, Khosla, Aditya, Lapedriza, Agata, Oliva, Aude, and Torralba, An-
tonio. Learning deep features for discriminative localization. In CVPR (2016).

[290] Zhou, Yi, Barnes, Connelly, Lu, Jingwan, Yang, Jimei, and Li, Hao. On the
continuity of rotation representations in neural networks. In CVPR (2019),
pp. 5745–5753.

[291] Zhu, Jiapeng, Shen, Yujun, Zhao, Deli, and Zhou, Bolei. In-domain gan inver-
sion for real image editing. In ECCV (2020), Springer, pp. 592–608.

150



[292] Zhu, Zihan, Peng, Songyou, Larsson, Viktor, Xu, Weiwei, Bao, Hujun, Cui,
Zhaopeng, Oswald, Martin R, and Pollefeys, Marc. Nice-slam: Neural implicit
scalable encoding for slam. In CVPR (2022).

[293] Zhuang, Chengxu, Zhai, Alex Lin, and Yamins, Daniel. Local aggregation for
unsupervised learning of visual embeddings. In ICCV (2019).

151


	Learning to See with Minimal Human Supervision
	Recommended Citation

	tmp.1697036488.pdf.SiS0W

