10,903 research outputs found

    Intermittent predictive control of an inverted pendulum

    Get PDF
    Intermittent predictive pole-placement control is successfully applied to the constrained-state control of a prestabilised experimental inverted pendulum

    Performance-oriented model learning for data-driven MPC design

    Get PDF
    Model Predictive Control (MPC) is an enabling technology in applications requiring controlling physical processes in an optimized way under constraints on inputs and outputs. However, in MPC closed-loop performance is pushed to the limits only if the plant under control is accurately modeled; otherwise, robust architectures need to be employed, at the price of reduced performance due to worst-case conservative assumptions. In this paper, instead of adapting the controller to handle uncertainty, we adapt the learning procedure so that the prediction model is selected to provide the best closed-loop performance. More specifically, we apply for the first time the above "identification for control" rationale to hierarchical MPC using data-driven methods and Bayesian optimization.Comment: Accepted for publication in the IEEE Control Systems Letters (L-CSS

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    A Fuzzy Logic-based Tuning Approach of PID Control for Steam Turbines for Solar Applications

    Get PDF
    Abstract This work aims at improving the control concept based on PID controller by jointly exploiting experience and knowledge on the system behaviour and artificial intelligence. A Concentrated Solar Power Plant (CSPP) system has been modelled and a stability and performance analysis has been carried out, focusing on power control loop, which is normally based on standard PID. A hybrid fuzzy PID approach is proposed to improve the steam turbine governor action and its performance are compared to the classical PID tuned according to three different approaches. Compared to the classic PID, the PID fuzzy logic controller extends the simplicity of PID and adapts the control action at actual operating condition by providing the system with a sort of "decision-making skill". The possibility to design implementable algorithms on PLC, which have stringent computational speed and memory requirements, has been explicitly taken into account in the developed work

    Data-driven Invariance for Reference Governors

    Full text link
    This paper presents a novel approach to synthesizing positive invariant sets for unmodeled nonlinear systems using direct data-driven techniques. The data-driven invariant sets are used to design a data-driven reference governor that selects a reference for the closed-loop system to enforce constraints. Using kernel-basis functions, we solve a semi-definite program to learn a sum-of-squares Lyapunov-like function whose unity level-set is a constraint admissible positive invariant set, which determines the constraint admissible states as well as reference inputs. Leveraging Lipschitz properties of the system, we prove that tightening the model-based design ensures robustness of the data-driven invariant set to the inherent plant uncertainty in a data-driven framework. To mitigate the curse-of-dimensionality, we repose the semi-definite program into a linear program. We validate our approach through two examples: First, we present an illustrative example where we can analytically compute the maximum positive invariant set and compare with the presented data-driven invariant set. Second, we present a practical autonomous driving scenario to demonstrate the utility of the presented method for nonlinear systems

    Optimal air and fuel-path control of a diesel engine

    Get PDF
    The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions. [Continues.

    Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    Get PDF

    On power system automation: a Digital Twin-centric framework for the next generation of energy management systems

    Get PDF
    The ubiquitous digital transformation also influences power system operation. Emerging real-time applications in information (IT) and operational technology (OT) provide new opportunities to address the increasingly demanding power system operation imposed by the progressing energy transition. This IT/OT convergence is epitomised by the novel Digital Twin (DT) concept. By integrating sensor data into analytical models and aligning the model states with the observed system, a power system DT can be created. As a result, a validated high-fidelity model is derived, which can be applied within the next generation of energy management systems (EMS) to support power system operation. By providing a consistent and maintainable data model, the modular DT-centric EMS proposed in this work addresses several key requirements of modern EMS architectures. It increases the situation awareness in the control room, enables the implementation of model maintenance routines, and facilitates automation approaches, while raising the confidence into operational decisions deduced from the validated model. This gain in trust contributes to the digital transformation and enables a higher degree of power system automation. By considering operational planning and power system operation processes, a direct link to practice is ensured. The feasibility of the concept is examined by numerical case studies.The electrical power system is in the process of an extensive transformation. Driven by the energy transition towards renewable energy resources, many conventional power plants in Germany have already been decommissioned or will be decommissioned within the next decade. Among other things, these changes lead to an increased utilisation of power transmission equipment, and an increasing number of complex dynamic phenomena. The resulting system operation closer to physical boundaries leads to an increased susceptibility to disturbances, and to a reduced time span to react to critical contingencies and perturbations. In consequence, the task to operate the power system will become increasingly demanding. As some reactions to disturbances may be required within timeframes that exceed human capabilities, these developments are intrinsic drivers to enable a higher degree of automation in power system operation. This thesis proposes a framework to create a modular Digital Twin-centric energy management system. It enables the provision of validated and trustworthy models built from knowledge about the power system derived from physical laws, and process data. As the interaction of information and operational technologies is combined in the concept of the Digital Twin, it can serve as a framework for future energy management systems including novel applications for power system monitoring and control, which consider power system dynamics. To provide a validated high-fidelity dynamic power system model, time-synchronised phasor measurements of high-resolution are applied for validation and parameter estimation. This increases the trust into the underlying power system model as well as the confidence into operational decisions derived from advanced analytic applications such as online dynamic security assessment. By providing an appropriate, consistent, and maintainable data model, the framework addresses several key requirements of modern energy management system architectures, while enabling the implementation of advanced automation routines and control approaches. Future energy management systems can provide an increased observability based on the proposed architecture, whereby the situational awareness of human operators in the control room can be improved. In further development stages, cognitive systems can be applied that are able to learn from the data provided, e.g., machine learning based analytical functions. Thus, the framework enables a higher degree of power system automation, as well as the deployment of assistance and decision support functions for power system operation pointing towards a higher degree of automation in power system operation. The framework represents a contribution to the digital transformation of power system operation and facilitates a successful energy transition. The feasibility of the concept is examined by case studies in form of numerical simulations to provide a proof of concept.Das elektrische Energiesystem befindet sich in einem umfangreichen Transformations-prozess. Durch die voranschreitende Energiewende und den zunehmenden Einsatz erneuerbarer EnergietrĂ€ger sind in Deutschland viele konventionelle Kraftwerke bereits stillgelegt worden oder werden in den nĂ€chsten Jahren stillgelegt. Diese VerĂ€nderungen fĂŒhren unter anderem zu einer erhöhten Betriebsmittelauslastung sowie zu einer verringerten SystemtrĂ€gheit und somit zu einer zunehmenden Anzahl komplexer dynamischer PhĂ€nomene im elektrischen Energiesystem. Der Betrieb des Systems nĂ€her an den physikalischen Grenzen fĂŒhrt des Weiteren zu einer erhöhten StöranfĂ€lligkeit und zu einer verkĂŒrzten Zeitspanne, um auf kritische Ereignisse und Störungen zu reagieren. Infolgedessen wird die Aufgabe, das Stromnetz zu betreiben anspruchsvoller. Insbesondere dort wo Reaktionszeiten erforderlich sind, welche die menschlichen FĂ€higkeiten ĂŒbersteigen sind die zuvor genannten VerĂ€nderungen intrinsische Treiber hin zu einem höheren Automatisierungsgrad in der Netzbetriebs- und SystemfĂŒhrung. Aufkommende Echtzeitanwendungen in den Informations- und Betriebstechnologien und eine zunehmende Menge an hochauflösenden Sensordaten ermöglichen neue AnsĂ€tze fĂŒr den Entwurf und den Betrieb von cyber-physikalischen Systemen. Ein vielversprechender Ansatz, der in jĂŒngster Zeit in diesem Zusammenhang diskutiert wurde, ist das Konzept des so genannten Digitalen Zwillings. Da das Zusammenspiel von Informations- und Betriebstechnologien im Konzept des Digitalen Zwillings vereint wird, kann es als Grundlage fĂŒr eine zukĂŒnftige Leitsystemarchitektur und neuartige Anwendungen der Leittechnik herangezogen werden. In der vorliegenden Arbeit wird ein Framework entwickelt, welches einen Digitalen Zwilling in einer neuartigen modularen Leitsystemarchitektur fĂŒr die Aufgabe der Überwachung und Steuerung zukĂŒnftiger Energiesysteme zweckdienlich einsetzbar macht. In ErgĂ€nzung zu den bereits vorhandenen Funktionen moderner NetzfĂŒhrungssysteme unterstĂŒtzt das Konzept die Abbildung der Netzdynamik auf Basis eines dynamischen Netzmodells. Um eine realitĂ€tsgetreue Abbildung der Netzdynamik zu ermöglichen, werden zeitsynchrone Raumzeigermessungen fĂŒr die Modellvalidierung und ModellparameterschĂ€tzung herangezogen. Dies erhöht die Aussagekraft von Sicherheitsanalysen, sowie das Vertrauen in die Modelle mit denen operative Entscheidungen generiert werden. Durch die Bereitstellung eines validierten, konsistenten und wartbaren Datenmodells auf der Grundlage von physikalischen GesetzmĂ€ĂŸigkeiten und wĂ€hrend des Betriebs gewonnener Prozessdaten, adressiert der vorgestellte Architekturentwurf mehrere SchlĂŒsselan-forderungen an moderne Netzleitsysteme. So ermöglicht das Framework einen höheren Automatisierungsgrad des Stromnetzbetriebs sowie den Einsatz von Entscheidungs-unterstĂŒtzungsfunktionen bis hin zu vertrauenswĂŒrdigen Assistenzsystemen auf Basis kognitiver Systeme. Diese Funktionen können die Betriebssicherheit erhöhen und stellen einen wichtigen Beitrag zur Umsetzung der digitalen Transformation des Stromnetzbetriebs, sowie zur erfolgreichen Umsetzung der Energiewende dar. Das vorgestellte Konzept wird auf der Grundlage numerischer Simulationen untersucht, wobei die grundsĂ€tzliche Machbarkeit anhand von Fallstudien nachgewiesen wird
    • 

    corecore