4,887 research outputs found

    Injecting problem-dependent knowledge to improve evolutionary optimization search ability

    Full text link
    The flexibility introduced by evolutionary algorithms (EAs) has allowed the use of virtually arbitrary objective functions and constraints even when evaluations require, as for real-world problems, running complex mathematical and/or procedural simulations of the systems under analysis. Even so, EAs are not a panacea. Traditionally, the solution search process has been totally oblivious of the specific problem being solved, and optimization processes have been applied regardless of the size, complexity, and domain of the problem. In this paper, we justify our claim that far-reaching benefits may be obtained from more directly influencing how searches are performed. We propose using data mining techniques as a step for dynamically generating knowledge that can be used to improve the efficiency of solution search processes. In this paper, we use Kohonen SOMs and show an application for a well-known benchmark problem in the water distribution system design literature. The result crystallizes the conceptual rules for the EA to apply at certain stages of the evolution, which reduces the search space and accelerates convergence. (C) 2015 Elsevier B.V. All rights reserved.Izquierdo SebastiĂĄn, J.; Campbell-Gonzalez, E.; Montalvo Arango, I.; PĂ©rez GarcĂ­a, R. (2016). Injecting problem-dependent knowledge to improve evolutionary optimization search ability. Journal of Computational and Applied Mathematics. 291:281-292. doi:10.1016/j.cam.2015.03.019S28129229

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    Resilient Bioinspired Algorithms: A Computer System Design Perspective

    Get PDF
    This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Cotta, C., Olague, G. (2022). Resilient Bioinspired Algorithms: A Computer System Design Perspective. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_39Resilience can be defined as a system's capability for returning to normal operation after having suffered a disruption. This notion is of the foremost interest in many areas, in particular engineering. We argue in this position paper that is is a crucial property for bioinspired optimization algorithms as well. Following a computer system perspective, we correlate some of the defining requirements for attaining resilient systems to issues, features, and mechanisms of these techniques. It is shown that bioinspired algorithms do not only exhibit a notorious built-in resilience, but that their plasticity also allows accommodating components that may boost it in different ways. We also provide some relevant research directions in this area.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tec

    On the effects of seeding strategies: a case for search-based multi-objective service composition

    Get PDF
    Service composition aims to search a composition plan of candidate services that produces the optimal results with respect to multiple and possibly conflicting Quality-Of-Service (QoS) attributes, e.g., latency, throughput and cost. This leads to a multi-objective optimization problem for which evolutionary algorithm is a promising solution. In this paper, we investigate different ways of injecting knowledge about the problem into the Multi-Objective Evolutionary Algorithm (MOEA) by seeding. Specifcally, we propose four alternative seeding strategies to strengthen the quality of the initial population for the MOEA to start working with. By using the real-world WS-DREAM dataset, we conduced experimental evaluations based on 9 different work flows of service composition problems and several metrics. The results confirm the effectiveness and efficiency of those seeding strategies. We also observed that, unlike the discoveries for other problem domains, the implication of the number of seeds on the service composition problems is minimal, for which we investigated and discussed the possible reasons
    • 

    corecore