6 research outputs found

    Development of autonomous demand response system for electric load management

    Get PDF
    This paper presents a proposed framework for developing a device in which allowing users to autonomously manage electricity load demand through monitoring, controlling and scheduling mechanism. The proposed framework utilizes the principle of Demand Side Management in order to save energy by monitoring and re-arranging appliances load curve, of which resulted by either individual load or the whole loads in their premises. The system is comprised of the load metering, minimum system as controller, and wireless communication. The accessibility of the system is improved by the inclusion of the Internet of Things platform

    Special Issue on “Intelligent Infrastructure”

    Full text link

    Chapter Securing the Home Energy Management Platform

    Get PDF
    Recently, many efforts have been done to chemically functionalize sensors surface to achieve selectivity towards diagnostics targets, such as DNA, RNA fragments and protein tumoural biomarkers, through the surface immobilization of the related specific receptor. Especially, some kind of sensors such as microcantilevers (gravimetric sensors) and one-dimensional photonics crystals (optical sensors) able to couple Bloch surface waves are very sensitive. Thus, any kind of surface modifications devoted to functionalize them has to be finely controlled in terms of mass and optical characteristics, such as refractive index, to minimize the perturbation, on the transduced signal, that can affect the response sensitivity towards the detected target species

    Data-Driven Understanding of Smart Service Systems Through Text Mining

    Get PDF
    Smart service systems are everywhere, in homes and in the transportation, energy, and healthcare sectors. However, such systems have yet to be fully understood in the literature. Given the widespread applications of and research on smart service systems, we used text mining to develop a unified understanding of such systems in a data-driven way. Specifically, we used a combination of metrics and machine learning algorithms to preprocess and analyze text data related to smart service systems, including text from the scientific literature and news articles. By analyzing 5,378 scientific articles and 1,234 news articles, we identify important keywords, 16 research topics, 4 technology factors, and 13 application areas. We define ???smart service system??? based on the analytics results. Furthermore, we discuss the theoretical and methodological implications of our work, such as the 5Cs (connection, collection, computation, and communications for co-creation) of smart service systems and the text mining approach to understand service research topics. We believe this work, which aims to establish common ground for understanding these systems across multiple disciplinary perspectives, will encourage further research and development of modern service systems

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated
    corecore