3,978 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Advancements in Forest Fire Prevention: A Comprehensive Survey

    Get PDF
    Nowadays, the challenges related to technological and environmental development are becoming increasingly complex. Among the environmentally significant issues, wildfires pose a serious threat to the global ecosystem. The damages inflicted upon forests are manifold, leading not only to the destruction of terrestrial ecosystems but also to climate changes. Consequently, reducing their impact on both people and nature requires the adoption of effective approaches for prevention, early warning, and well-coordinated interventions. This document presents an analysis of the evolution of various technologies used in the detection, monitoring, and prevention of forest fires from past years to the present. It highlights the strengths, limitations, and future developments in this field. Forest fires have emerged as a critical environmental concern due to their devastating effects on ecosystems and the potential repercussions on the climate. Understanding the evolution of technology in addressing this issue is essential to formulate more effective strategies for mitigating and preventing wildfires

    Pyroelectric detector signal measurement and processing

    Get PDF
    Práce se zabývá fyzikálními vlastnostmi pyroelektrických senzorů a jejich praktickým využitím. Součástí práce je návrh a realizace měřící aparatury, jež bude využita k měření fyzikálních vlastností senzorů. Pro měření signálů pyroelektrického senzoru bude navržen nízkošumový zesilovač. Součástí práce je také návrh a realizace algoritmu pro lokalizaci infračerveného zdroje záření (plamene) v prostoru, na základě vyhodnoceného analogového signálu.The thesis analyzes the physical properties of the pyroelectric sensors and its practical use. Essential part of the work is the design and realization of the measuring set-up, which is used for the measurements of the sensors physical properties. With this workbench, main parameters of the pyroelectric sensors have been obtained. The second part of the work deals with a low noise preamplifier designing. This device was designed for the pyroelectric sensor signal measurements. The amplifier is designed to be used for a low noise, wide band measuring. During the process of amplifier designing, all the noise components have been investigated separately, using operational amplifiers models. The objective of the last part of this work is to develop the system, which would be able to localize an infrared (IR) emitting source located somewhere in the space between the installed pyroelectric sensors. For this purpose, classical localization methods could be used as well as the artificial neural networks (ANN), which are becoming still more popular these days. The system is able to detect the exact placement of the IR radiation source.

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Intelligent Hardware-Software Processing of High-Frequency Scanning Data

    Get PDF
    The constant emission of polluting gases is causing an urgent need for timely detection of harmful gas mixtures in the atmosphere. A method and algorithm of the determining spectral composition of gas with a gas analyzer using an artificial neural network (ANN) were suggested in the article. A small closed gas dynamic system was designed and used as an experimental bench for collecting and quantifying gas concentrations for testing the proposed method. This device was based on AS7265x and BMP180 sensors connected in parallel to a 3.3 V compatible Arduino Uno board via QWIIC. Experimental tests were conducted with air from the laboratory room, carbon dioxide (CO2), and a mixture of pure oxygen (O2) with nitrogen (N2) in a 9:1 ratio. Three ANNs with one input, one hidden and one output layer were built. The ANN had 5, 10, and 20 hidden neurons, respectively. The dataset was divided into three parts: 70% for training, 15% for validation, and 15% for testing. The mean square error (MSE) error and regression were analyzed during training. Training, testing, and validation error analysis were performed to find the optimal iteration, and the MSE versus training iteration was plotted. The best indicators of training and construction were shown by the ANN with 5 (five) hidden layers, and 16 iterations are enough to train, test and verify this neural network. To test the obtained neural network, the program code was written in the MATLAB. The proposed scheme of the gas analyzer is operable and has a high accuracy of gas detection with a given error of 3%. The results of the study can be used in the development of an industrial gas analyzer for the detection of harmful gas mixtures
    corecore