56 research outputs found

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure

    Fabricate

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association

    What\u27s past is prologue : our legacy - our future, 1990 National Interpreters Workshop

    Get PDF
    ... the topics of the papers presented at the 1990 National Interpreters Workshop reflect a dynamic NAI membership. While firmly rooted to principles which have been developed in over a millennium, presenters show a healthy use of past knowledge as prologue to an active, vital present ...https://scholarworks.sfasu.edu/ebooks/1005/thumbnail.jp

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation

    An explicitly structured control model for exploring search space: chorale harmonisation in the style of J.S. Bach

    Get PDF
    In this research, we present our computational model which performs four part har-monisation in the style of J.S. Bach. Harmonising Bach chorales is a hard AI problem, comparable to natural language understanding. In our approach, we explore the issue of gaining control in an explicit way for the chorale harmonisation tasks. Generally, the control over the search space may be from both domain dependent and domain inde-pendent control knowledge. Our explicit control emphasises domain dependent control knowledge. The control gained from domain d ependent control enables us to map a clearer relationship between the control applied and its effects. Two examples of do-main dependent control are a plan of tasks to be done and heuristics stating properties of the domain. Examples of domain independent control are notions such as temperature values in an annealing method; mutation rates in Genetic Algorithms; and weights in Artificial Neural Networks.The appeal of the knowledge based approach lies in the accessibility to the control if required. Our system exploits this concept extensively. Control is explicitly expressed by weaving different atomic definitions {i.e. the rules, tests and measures) together with appropriate control primitives. Each expression constructed is called a control definition, which is hierarchical by nature.One drawback of the knowledge based approach is that, as the system grows bigger, the exploitation of the new added knowledge grows exponentially. This leads to an intractable search space. To reduce this intractability problem, we partially search the search space at the meta-level. This meta-level architecture reduces the complexity in the search space by exploiting search at the meta-level which has a smaller search space.The experiment shows that an explicitly structured control offers a greater flexibility in controlling the search space as it allows the control definitions to be manipulated and modified with great flexibility. This is a crucial clement in performing partial search over a big search space. As the control is allowed to be examined, the system also potentially supports elaborate explanations of the system activities and reflections at the meta-level

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Planning simultaneous perception and manipulation

    Get PDF
    This thesis is concerned with deriving planning algorithms for robot manipulators. Manipulation has two effects, the robot has a physical effect on the object, and it also acquires information about the object. This thesis presents algorithms that treat both problems. First, I present an extension of the well-known piano mover’s problem where a robot pushing an object must plan its movements as well as those of the object. This requires simultaneous planning in the joint space of the robot and the configuration space of the object, in contrast to the original problem which only requires planning in the latter space. The effects of a robot action on the object configuration are determined by the non-invertible rigid body mechanics. To solve this a two-level planner is presented that coordinates planning in each space. Second, I consider planning under uncertainty and in particular planning for information effects. I consider the case where a robot has to reach and grasp an object under pose uncertainty caused by shape incompleteness. The main novel outcome is to enable tactile information gain planning for a dexterous, highdegree of freedom manipulator with non- Gaussian pose uncertainty. The method is demonstrated in trials with both simulated and real robots
    • …
    corecore