496 research outputs found

    Sample matching by inferred agonal stress in gene expression analyses of the brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression patterns in the brain are strongly influenced by the severity and duration of physiological stress at the time of death. This agonal effect, if not well controlled, can lead to spurious findings and diminished statistical power in case-control comparisons. While some recent studies match samples by tissue pH and clinically recorded agonal conditions, we found that these indicators were sometimes at odds with observed stress-related gene expression patterns, and that matching by these criteria still sometimes results in identifying case-control differences that are primarily driven by residual agonal effects. This problem is analogous to the one encountered in genetic association studies, where self-reported race and ethnicity are often imprecise proxies for an individual's actual genetic ancestry.</p> <p>Results</p> <p>We developed an Agonal Stress Rating (ASR) system that evaluates each sample's degree of stress based on gene expression data, and used ASRs in <it>post hoc </it>sample matching or covariate analysis. While gene expression patterns are generally correlated across different brain regions, we found strong region-region differences in empirical ASRs in many subjects that likely reflect inter-individual variabilities in local structure or function, resulting in region-specific vulnerability to agonal stress.</p> <p>Conclusion</p> <p>Variation of agonal stress across different brain regions differs between individuals, revealing a new level of complexity for gene expression studies of brain tissues. The Agonal Stress Ratings quantitatively assess each sample's extent of regulatory response to agonal stress, and allow a strong control of this important confounder.</p

    Analyzing Patient Trajectories With Artificial Intelligence

    Full text link
    In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories. To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Facial expression of pain: an evolutionary account.

    Get PDF
    This paper proposes that human expression of pain in the presence or absence of caregivers, and the detection of pain by observers, arises from evolved propensities. The function of pain is to demand attention and prioritise escape, recovery, and healing; where others can help achieve these goals, effective communication of pain is required. Evidence is reviewed of a distinct and specific facial expression of pain from infancy to old age, consistent across stimuli, and recognizable as pain by observers. Voluntary control over amplitude is incomplete, and observers can better detect pain that the individual attempts to suppress rather than amplify or simulate. In many clinical and experimental settings, the facial expression of pain is incorporated with verbal and nonverbal vocal activity, posture, and movement in an overall category of pain behaviour. This is assumed by clinicians to be under operant control of social contingencies such as sympathy, caregiving, and practical help; thus, strong facial expression is presumed to constitute and attempt to manipulate these contingencies by amplification of the normal expression. Operant formulations support skepticism about the presence or extent of pain, judgments of malingering, and sometimes the withholding of caregiving and help. To the extent that pain expression is influenced by environmental contingencies, however, "amplification" could equally plausibly constitute the release of suppression according to evolved contingent propensities that guide behaviour. Pain has been largely neglected in the evolutionary literature and the literature on expression of emotion, but an evolutionary account can generate improved assessment of pain and reactions to it
    corecore