
Statistical Methods
in Data Mining and
Physics-Informed
Neural Networks
Manuel Cabral
Master’s degree in Mathematical Engineering
Department of Mathematics
2022

Orientador
Prof. Dr. Joaquim Pinto da Costa, Department of Mathematics, Faculty of
Sciences of the University of Porto

mailto:up201203567@up.pt
https://matematica.fc.up.pt/
mailto:jpcosta@fc.up.pt

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Statistical Methods
in Data Mining and
Physics-Informed
Neural Networks
Manuel Cabral
Dissertação de Mestrado apresentada à
Faculdade de Ciências da Universidade do Porto em
Engenharia Matemática

2022

2º
CICLO

M
S
c

FCUP
2022

StatisticalM
ethods

in
D
ata

M
ining

and
Physics-Inform

ed
N
euralN

etw
orks

M
anuelC

abral

UNIVERSITY OF PORTO

MASTERS THESIS

Statistical Methods in Data Mining and
Physics-Informed Neural Networks

Author:

Manuel CABRAL

Supervisor:

Prof. Dr. Joaquim PINTO DA

COSTA

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Mathematical Engineering

at the

Faculty of Sciences of the University of Porto

Department of Mathematics

September 30, 2022

mailto:up201203567@up.pt
mailto:jpcosta@fc.up.pt
mailto:jpcosta@fc.up.pt

Sworn Statement

I, Manuel Maria Pacheco do Valle Pereira Cabral, enrolled in the Master’s Degree in

Mathematical Engineering at the Faculty of Sciences of the University of Porto hereby

declare, in accordance with the provisions of paragraph a) of Article 14 of the Code of

Ethical Conduct of the University of Porto, that the content of this dissertation reflects

perspectives, research work and my own interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction is

protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Manuel Cabral,

September 30, 2022

iii

Acknowledgements

I would like to thank Prof. Dr. Joaquim Pinto da Costa for his guidance throughout

this year, and for keeping me on track when I got lost in the in-betweens.

I would also like to thank my family, in particular my parents, for giving me the con-

ditions to focus entirely on my studies, without any other concern, which is not always

the case as an older student.

Finally, I thank my friends for their unconditional support; in particular, João António

for the countless advice and endless discussions.

UNIVERSITY OF PORTO

Abstract

Faculty of Sciences of the University of Porto

Department of Mathematics

MSc. Mathematical Engineering

Statistical Methods in Data Mining and Physics-Informed Neural Networks

by Manuel CABRAL

In a world with ever-growing amounts of data, Machine Learning, and, in particular,

Data Mining, have become of paramount importance in order to extract hidden structure

and make informed decisions from data in a wide range of areas of knowledge.

In the first chapter of this dissertation, a state-of-the-art of statistical methods in Data

Mining is presented. The topics covered range from Statistics, to traditional methods in

Machine Learning, to more recent developments in Deep Learning. Given the scope of the

area, and how rapidly new advances are being published, a work of this nature is always

bound to be, no matter how extensive, incomplete, and, no matter how recent, ephemeral.

We do believe, however, that it constitutes an important tool for any researcher in the field.

The vast majority of the methods presented in the aforementioned chapter have the

need for high volumes of data, in order to be able to find correlations and patterns within.

In the second chapter, we cover one of the few examples where Data Mining can be

extended for the small-data regime: Physics-informed Neural Networks (PINNs). PINNs

combine Machine Learning with Natural Sciences, making use of prior knowledge of the

system, like known symmetries, conservation laws or governing equations to constrain

the solution of the problem to live in this embedding (or close to it, in the case of soft con-

straints). Natural Sciences have been perhaps the last area where Machine Learning has

failed to cause a major impact, due to the difficulty to obtain significant amounts of data.

PINNs present a deceptively simple new framework, that can tackle any amount of data,

and that has found promising applications in the physical sciences, since its introduction

three years ago. This chapter covers the theory behind them, optimization techniques and

the challenges for the future.

mailto:up201203567@up.pt

UNIVERSITY OF PORTO

Resumo
Faculty of Sciences of the University of Porto

Department of Mathematics

Mestrado em Engenharia Matemática

Métodos Estatı́sticos em Data Mining e Physics-Informed Neural Networks

por Manuel CABRAL

Num mundo com sempre crescentes quantidades de dados, Machine Learning, e, em

particular, Data Mining, têm-se tornado ferramentas de extrema importância para extrair

padrões e tomar decisões informadas apartir dos dados, numa vasta gama de áreas do

conhecimento.

No primeiro capı́tulo da presente dissertação, um estado da arte de métodos estatı́sticos

em Data Mining é apresentado. Os tópicos abrangidos vão da Estatı́stica, a métodos tra-

dicionais em Data Mining, a desenvolvimentos mais recentes em Deep Learning. Dada a

abrangência da área, e a rapidez com que novos avanços estão a ser publicados, um tra-

balho desta natureza está sempre destinado a ser, por mais extenso que seja, incompleto,

e, por mais actualizado que esteja, efémero. Acreditamos, contudo, que constitui uma

ferramenta importante para qualquer investigador neste campo.

A grande maioria dos métodos apresentados no capı́tulo mencionado tem a necis-

sidade de um grande volume de dados, de forma a conseguir encontrar correlações e

padrões nestes.

No segundo capı́tulo, apresentamos um dos poucos exemplos em que Data Mining

pode ser alargado a casos com reduzido número de dados: Physics-informed Neural Networks

(PINNs). As PINNs combinam Machine Learning com as Ciências Naturais, fazendo uso

do conhecimento prévio do sistema que possamos ter, como simetrias, leis de conservação

ou equações governantes, restringindo a solução do problema a viver neste embedding (ou

perto dele, no caso de restrições soft). As Ciências Naturais são talvez a última área onde

Machine Learning ainda não causou um impacto significativo. As PINNs apresentam um

novo framework, enganosamente simples, que pode lidar com qualquer quantidade de da-

dos, e que encontrou já promissoras aplicações nas ciências fı́sicas, desde a sua introdução

mailto:up201203567@up.pt

há três anos. Este capı́tulo cobre a teoria que lhes está subjacente, técnicas de optimização

e os desafios para o futuro.

Contents

Sworn Statement iii

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Statistical Methods in Data Mining 1
1.1 Introduction . 1
1.2 Statistical Significance . 2
1.3 High-Dimensional Data . 3
1.4 Regression . 7
1.5 Other Recent Developments in Supervised Classification Methods 9
1.6 Statistical Learning . 12
1.7 Neural Networks and Deep Learning . 17

1.7.1 Introduction . 17
1.7.2 A Statistical View of Deep Learning 19
1.7.3 Examples of Deep Neural Networks 20

1.7.3.1 Convolutional Neural Network (CNN) & Computer Vision 20
1.7.3.2 Recurrent Neural Network (RNN) for Time Series Data

and other Sequential Data 24
1.7.3.3 Autoencoders for Dimensionality Reduction and Applica-

tions . 25
1.7.3.4 Generative Adversarial Networks (GAN) for Density Esti-

mation and Applications . 25
1.7.3.5 Other Applications of Deep Learning 26

1.8 Clustering . 27
1.9 Software Applications . 29
1.10 Closing Remarks . 30

xi

xii
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2 Physics-Informed Neural Networks 31
2.1 Introduction . 31
2.2 Foundations . 32

2.2.1 Motivation . 33
2.2.2 Theory . 36

2.2.2.1 Neural Networks . 40
2.2.2.2 Automatic differentiation . 41
2.2.2.3 Loss Function and Feedback Mechanism 45

2.2.3 Collocation Points Sampling . 48
2.2.3.1 Static Distributions . 48
2.2.3.2 Adaptive Residual-based Distributions 50

2.2.4 Activation Function . 51
2.2.5 Optimization Method . 51
2.2.6 Number of Points Sampled . 51
2.2.7 Solving PDEs with PINNs . 54
2.2.8 Exotic PINNs . 57

2.2.8.1 Symmetry-preserving Physics-Informed Neural Networks
(S-PINNs) . 57

2.2.8.2 Gradient-enhanced Physics-Informed Neural Networks (gPINNs)
. 57

2.2.8.3 Conservative Physics-Informed Neural Networks (cPINNs) 58
2.2.8.4 Extended Physics-Informed Neural Networks (xPINNs) . . 58
2.2.8.5 Fractional Physics-Informed Neural Networks (fPINNs) . . 58
2.2.8.6 Bayesian Physics-Informed Neural Networks (B-PINNs) . . 58
2.2.8.7 Deep Operator Network (DeepONet) 58

2.3 Fluid Mechanics . 59
2.4 Closing Remarks . 61

Bibliography 63

A Python Code 89

List of Figures

1.1 Parameter domains for RIDGE, LASSO and ElasticNet heuristics; β̂LSM is
the usual least squares estimator. 4

1.2 Generic neural network. 17
1.3 Configuration of a typical convolutional network. 21
1.4 Different methods on image analysis. From left to right, original image,

image recognition, image segmentation, and pose estimation. 22

2.1 Data and Physics dependency. 33
2.2 Generic Physics-Informed Neural Network (PINN). 38
2.3 Generic feed-forwardNeural Network (NN). 40

2.4 Computational graph of the function f (x1, x2) = x1 exp(x2)− sin
(

x1
x2

)
. . . . 42

2.5 The four most common static collocation points’ distributions. In blue, inte-
rior domain collocation points - 64 points in the domain (0, 1]× (0, 1)-, and,
in gray, boundary collocation points (the case represented is when spatial
boundaries, x = 0 and x = 1, are known and the initial boundary, at t = 0,
is also known). 49

2.6 L2 relative error for the 4 static distributions mentioned. In shade, it is
represented one standard deviations over the 10 runs; given the logarithmic
nature of the y-axis, the lower band of the error takes the entirety of the
lower region of the graph; for clarity, we opted for only representing the
top band. 50

2.7 L2 relative error for varying Nres (λ constant). For clarity, only represented
top error shaded band. 52

2.8 Computing time for PINNs with different Nres. 53
2.9 L2 relative error for varying λ. 54
2.10 Exact solutions to Burgers’ Equation (BE) and Wave Equation (WE). 56

xiii

List of Tables

1.1 A comparison between traditional regression methods and pure prediction
algorithms, as shown in table 5 of [41]. 14

1.2 Comparison table between the forementioned methods on the COCO dataset
benchmark. 23

2.1 Forward Accumulation Mode . 44
2.2 Reverse Accumulation Mode. 44
2.3 Comparison between the performance for PINNs with different Nres. 53

xv

List of Abbreviations

AD Automatic Differentiation 38, 39, 41–43, 58

BE Burgers’ Equation xiii, 49, 52, 54–56

CFD Computational Fluid Dynamics 59, 60

DL Deep Learning 31, 51

DM Data Mining 1, 2, 7, 10, 27, 30

FE Fractional Equation 32

FEM Finite Elements Method 31, 34, 35, 48, 50, 59

IDE Integral-Differential Equation 32

ML Machine Learning 31, 33, 42, 43, 60

NN Neural Network xiii, 19, 32–35, 37–42, 45–51, 54, 57, 58, 60

NSE Navier-Stokes Equation 36, 59, 60

PDE Partial Differential Equation 31, 32, 34–37, 45, 47, 49, 51, 53–55, 57, 58, 61

PIML Physics-Informed Machine Learning 32, 59, 61

PINN Physics-Informed Neural Network xiii, xv, 32–39, 41, 42, 45, 46, 48–51, 53–55, 57–

61, 90

WE Wave Equation xiii, 54–56

xvii

Chapter 1

Statistical Methods in Data Mining

Disclaimer: the entirety of this first chapter corresponds to the paper published on a special issue of

the journal ’Mathematics’ dedicated to Statistical Methods in Data Mining [1]. Small corrections

and updates were made, but the content is, in its majority, faithful to the original. The work was

done in equal parts by Prof. Dr. Joaquim Pinto da Costa and I.

1.1 Introduction

Data Mining (DM) is the process of finding patterns and correlations within large data sets

to predict outcomes. Through techniques that range from statistics, to machine learning

or to artificial intelligence, DM has entered all areas of knowledge by allowing us to take

informed decisions based on the the data itself.

In this review, we will provide the state of the art in statistical methods in DM, by

going over the most cited papers in the most impactful journals over the period spanning

mainly from 2020 to the present, 2022.

Given the vast range of topics that DM covers, it is not possible to have a strict proce-

dure on which papers to choose. Statistical journals and computer science journals differ

substantially in the way articles are shared and have their success and impact measured.

Given this impossibility for an absolute procedure, each subsection has the most relevant

recently published papers in the area.

In the special issue of Statistical Methods in Data Mining *,

”Statistics is, nowadays, more important than ever because of the availability

of large amounts of data in many domains like science, finance, engineering,

*https : //www.mdpi.com/journal/mathematics/special issues/Statistical Methods Data Mining

1

https://www.mdpi.com/journal/mathematics/special_issues/Statistical_Methods_Data_Mining
https://www.mdpi.com/journal/mathematics/special_issues/Statistical_Methods_Data_Mining

2
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

medicine, etc. For a long time, statistics has developed as a sub-discipline

of mathematics. Nevertheless, computing is also a very important tool for

statistics. This is particularly true in statistical methods in DM, which is an in-

terdisciplinary field involving the analysis of large existing databases in order

to discover patterns and relationships in the data. It differs from traditional

statistics on the size of the data set and on the fact that the data were not

initially collected according to some experimental design but rather for other

purposes. On the other hand, asymptotic analysis, which has for a long time

been an important area of statistics approaching problems where the sample

size (and more recently, also, the number of variables) tends to infinity, is ob-

viously also appropriate in DM for dealing with huge amounts of data.”

In the next sections, we will write about the problem of Statistical Significance (the

famous p-value), which is very relevant in the presence of large number of tests; then, we

discuss high-dimensional data, including LASSO, RIDGE, PCA and other topics. Other

recent topics in Regression will follow and then other recent developments in supervised

classification methods. Although all of these topics can be cast in the area of Statistical

Learning, we consider next a new section devoted to other recent developments in Statis-

tical Learning. We proceed with a more extensive section of Neural Networks and Deep

Learning, including applications to Computer Vision, Time-Series and other sequence

data, Dimensionality Reduction, Density Estimation, etc. The last three sections are de-

voted to Clustering, Software Applications and Closing Remarks.

1.2 Statistical Significance

We will start by briefly discussing recent views on the topic of statistical significance - the

claim that a result from experiment is not likely to occur randomly or by chance but is

instead likely to be attributable to a specific cause. Many areas of knowledge that depend

on data analysis and research, such as physics, medicine or economy, need this metric as

a way to evaluate the accuracy of the conclusions.

The most broadly accepted metric in the science community is the p-value; results

that have a p-value less than the threshold (usually, 0.05) are said to be statistically sig-

nificant, while the rest are branded inconclusive. The drawbacks of this classification are

well known ([2]) and recently, there has been a pull against this binary classification, as

1. STATISTICAL METHODS IN DATA MINING 3

many studies are labeled contradictory and many research goes to waste [3]. A group of

authors in [4] proposed tightening the p threshold to 0.005. In [5], the authors go further

by proposing to abandon completely the absolute screening role of statistical significance.

They instead propose to treat the p-value as a continuous metric, that, helped by the other

metrics - e.g. data quality, related prior evidence, plausibility of mechanism, study design,

and other factors that vary by research domain - leads to a more complete decision on the

study in question.

A related fundamental question in statistical significance is whether two means differ

or not. For this, the most popular approach is the t-test, having a primary role in many

of the empirical sciences. In recent years, several different Bayesian t-tests have been in-

troduced, due to their theoretical and practical advantages. In [6], it is proposed a flexible

t-prior for standardized effect size that gives the possibility to compute the Bayes factor

by evaluating a single numerical integral. It generalizes prior work, having the previous

objective and subjective t-test Bayes factors as special cases.

Another relevant question in the area is on how to combine individual p-values to ag-

gregate multiple small effects. In order to overcome computational issues that performing

this operations with the traditional methods in large and complex data sets provoke, in

[7], the authors propose a new test that is defined as a weighted sum of Cauchy transfor-

mation of the individual p-values. They show that this new test is not only accurate, but

also equally as simple to perform as the classic t-test or z-test.

When performing model selection, often different criteria used reach different con-

clusions, and justification of their use and why it was chosen is often lacking in research

papers. In [8], the case of Information criteria (ICs) based on penalized likelihood is anal-

ysed and a different view on these criteria that can help in interpreting their practical im-

plications in more complex situations in order to make informed decisions is presented.

1.3 High-Dimensional Data

In this section we discuss the case when the number of features p is much larger than

the number of observations N, p >> N. Data in this category suffers from the curse of

dimensionality: computational burden, statistical inaccuracy, and algorithmic instability.

An overview of methods in high-dimensional data can be found in [9]. In this section,

we consider penalized regression and feature selection, feature screening for ultra-high

4
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

dimensional problems, estimation and inversion of covariance matrices and Linear Dis-

criminant Analysis in high dimensions, statistical inference for longitudinal data with

ultrahigh dimensional covariates and a new method of Principal Component Analysis.

In the case of regression, the most common approach consists is using regularization,

that is, to apply penalties on the size of the regression coefficients, performing feature

selection and model fitting simultaneously. In general, given input data X ∈ Rp and

response data Y ∈ R, with a Tikhonov regularization term given by 1
2γ ||β||22, the problem

becomes finding the parameters β that,

min
β

1
2
||Y− Xβ||22 +

1
2γ
||β||22

s.t. ||β||k ≤ λ (1.1)

For LASSO, we drop the Tikhonov regularization term and use k = 1, for RIDGE re-

gression we also drop the Tikhonov regularization term and use k = 2, and for Elastic Net,

we keep the full formulation with k = 1. An equivalent and more common formulation

for Elastic Net is:

min
β
||Y− Xβ||22 + λ1||β||1 + λ2||β||22 (1.2)

FIGURE 1.1: Parameter domains for
RIDGE, LASSO and ElasticNet heuris-
tics; β̂LSM is the usual least squares esti-

mator.

The LASSO regression has the advan-

tage over RIDGE of, not only reducing

the size of the coefficients, but also setting

several to zero, thus reducing the dimen-

sionality of the data. However, LASSO

does poorly with highly correlated fea-

tures, tending to choose one of them and

ignore the others, and generally selects n

features before saturating. To overcome

this limitation, Elastic net combines the two

approaches. In Figure 1.1 one can see

why LASSO usually sets some of the co-

efficients to zero, since the point inside the

corresponding parameter space closest to

1. STATISTICAL METHODS IN DATA MINING 5

the least squares solution is in a corner; that is, has the first coordinate equal zero (in the

case of the figure). In the case of a higher dimensional space, the number of corners and

flat edges is considerably higher, increasing therefore the possibility of zero coefficients.

One traditional approach for selecting features consists in finding the best subset of

the p original features; unfortunately, it is not feasible in practice when p is moderately

large. This is also a particular case of formulation (1.1) if we drop the Tikhonov regular-

ization term and use k = 0 and is known as the sparse regression problem [10] (actually,

||β||0 is not really a norm). This case has the advantage of sparsifying the regressor with-

out unwanted shrinking, while using the l1-norm leads to biased regression regressors,

penalizing both large and small coefficients.

In [10], a new binary convex reformulation, which is equivalent to (1.1) with k = 0, and

a novel cutting plane algorithm that solves to provable optimality exact sparse regression

problems are presented which can deal with regressor dimensions in the 100,000’s, a two

orders of magnitude improvement over similar known methods, while being faster than

the method discussed, in particular, faster than LASSO. Their results show that exact

sparse regression can solve high-dimensional problems, refuting the idea that heuristic

methods are necessary (see table 1 in [10]).

When performing a regression model on high dimensional data, if the data is dis-

tributed (meaning, large-scale data stored in L different local machines), traditional meth-

ods discussed above as LASSO are not applicable due to storage and computation limita-

tions. Furthermore, if the data has heavy-tailed noise, most theories, namely least squares

and Huber loss based statistics, won’t work as the assumption of a finite variance for the

noise is not fulfilled. The common approach to such problem is the averaging divide-and-

conquer approach, where one builds, on each machine, a local estimator β̂k by solving

β̂k = argmin
β∈Rp+1

1
m ∑

i∈Hk

ρτ(Yi − XT
i β) + λm|β|1 (1.3)

,where Hk is the set of data indexes from the kth machine, m = n
L and ρτ is the quantile

regression loss function (see Roger Koenker. Quantile regression. Cambridge university

press, 2005), and then averaging over all machines: β̂avg = 1
L ∑L

k=1 β̂k. Similar constructed

de-biased approaches also exist but they all suffer from several problems, namely being

computationally costly and that the local estimator no longer being sparse. In [11], the au-

thors propose a new distributed estimator for estimating high-dimensional linear model

6
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

with heavy-tailed noise that achieves the same convergence rate as the ideal case with

pooled data, while establishing the support recovery guarantee.

For ultra-high-dimensional problems, the seminal work by Fan and Lv [12] introduces

the notion of sure screening and proposes a new method called sure independence screen-

ing based on correlation learning in order to reduce dimensionality from high to a mod-

erate scale below the sample size. In [13], the authors also use screening procedures that

make some assumptions on the the data. Their approach, which eliminates redundant

covariates in high-dimensional data, is a model free feature screening procedure. The

method, called covariate information number-sure independence screening (CIS), can be

used for data with continuous features, with any kind of response. The new method is

based on a covariate information number (CIN), which captures marginal association of

each feature with the response without assuming any specific underlying model, and can

be interpreted in terms of the traditional Fisher information in Statistics. A first model-

free forward screening based on the concept of cumulative divergence is introduced in

[14]. Cumulative divergence is a new correlation metric that characterizes functional de-

pendence; it is robust to the presence of outliers in the conditioning variable. Contrarily to

marginal screening approaches, in this new model, the joint correlations among features

are considered, while also being robust to model misspecification.

In statistical methods, we often need to use covariance matrices and its inversion; their

calculation can be innacurate, numerically unstable and unfeasible in high-dimensional

problems. The authors in [15] establish the first analytic formula for nonlinear shrinkage

estimation of covariance matrices. It performs better than previous similar models, being

about 1000 times faster, with similar accuracy, when compared with Quantized Eigen-

values Sampling Transform (QuEST), and is also able to deal with covariance matrices

of dimension of the order up to 10,000. Methods like Linear Discriminant Analysis are

heavily dependent on a good estimation the mean vectors and the population covari-

ance matrix, while being based on the premise of an equal population covariance matrix

among all classes. In [16], the authors introduce an improved LDA classifier based on the

assumption that the covariance matrices follow a spiked covariance model (see [16] for

further details).

In [17], the authors approach the problem of statistical inference for longitudinal data

1. STATISTICAL METHODS IN DATA MINING 7

with ultra-high-dimensional features, by introducing a novel quadratic decorrelated in-

ference function approach. It simultaneously eliminates the effect of unwanted parame-

ters and accounts for the correlation to improve the efficiency of the estimation process.

Simulation studies conducted by the authors show that the newly proposed method can

control Type I error for testing a low dimensional parameter of interest and the false dis-

covery rate in the multiple testing problem.

Linear combinations of covariates is a traditional way of reducing dimension like for

instance Principal Component Analysis (PCA), although the components retained have

some loss of information which, sometimes, is crucial for other tasks. In [18], the au-

thors introduce a new paradigm which replace high dimensional covariates with a small

number of linear combinations in the context of regression, which does not cause loss of

information. In [19], a new method of PCA, called Tensor Robust Principal Component

Analysis (TRPCA), is introduced. It aims to exactly recover the low-rank and sparse com-

ponents. This same low-rank tensor recovery has applications in many areas given the

amount of high-dimensional data available nowadays, often un-labelled. In [20], the au-

thors analyze the case of visual data, that can be easily corrupted and noisy, and introduce

a unified presentation of the surrogate-based formulations that include simultaneously

the features of rectification and alignment, and establish error bounds for the recovered

tensor.

1.4 Regression

Regression is one of the oldest areas of DM that this paper covers, but it is still one of the

most active fields of research given its important and wide uses across science. In this

section we will cover some of these recents developments.

When dealing with big data sets, dividing the data among several machines is a com-

mon approach to work around hardware limitations. Recently, this divide and conquer

technique has been adapted in the field of statistics to include inferential procedures,

based on the mean and other measures of central tendency. These approaches have some

shortcomings, namely assuming homoskedastic errors or sub-Gaussian tails. In order to

tackle these issues, the work in [21] proposes to use quantile regression in order to extract

features of the conditional distribution of the response in a two-step model that doesn’t

sacrifice accuracy.

8
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

The RIDGE formulation we have seen in the High-dimensional Data section (eq. (1.2)

with λ1 = 0) attempts to find the best balance between variance and bias, by fine-tuning

the parameter λ2. However, in practice, the best solution found is often setting λ2 = 0

and finding the minimum-norm solution among those that interpolate the training data.

In [22], the authors isolate what appears to be a new phenomenon of implicit regularization

for interpolated minimum-norm solutions in Kernel “Ridgeless” Regression.

The Maximum likelihood estimator (MLE), on which methods like logistic regression

heavily rely on, has been shown to not always exist. In particular, the MLE doesn’t exist

if and only if there is no overlap of data points, i.e., there is a hyper plane separating

the data classes in logistic regression. Working on this, the authors in [23] establish the

existence of a phase transition in the logistic model with Gaussian features, and computes

the phase transition boundary explicitly (see [24] for an R package, mlt, that implements

maximum likelihood estimation in the class of conditional transformation models).

In [25], the authors propose a new framework that allows to approximate the eigende-

composition using only the eigendecomposition of the Laplacian and the spectral density

of the covariance function. The method allows for theoretical analysis of the error caused

by the truncation of the series and the boundary effects. This has vast applications, in

diverse areas, like in medical imaging.

When dealing with strong prior information and weak data, it may happen that the

fitted variance is higher than total variance; in this case, the proportion of variance ex-

plained, R2, can be greater than one, which is a problem. In [26], the authors propose

a generalization that has a Bayesian interpretation as a variance decomposition, by sug-

gesting the alternative definition of the variance of the predicted values divided by the

variance of predicted values plus the expected variance of the errors.

In [27], the authors reformulate the modal regression problem from a statistical learn-

ing viewpoint, which renders the problem dimension-independent.

Although modern massive and high-dimensional data promises the discovery of sub-

tle patterns that might not be possible with a small dataset, it brings also great challenges

both computational and statistical. Large progress has been made in this century for ob-

taining useful information from large datasets with high-dimensional covariates and sub-

Gaussian tails. However, sub-Gaussian tails are not a valid assumption in many practical

applications; in fact, heavy-tailed distributions and outliers are a common presence for

high-dimensional data. In 1973, Peter Huber introduced the concept of robust regression,

1. STATISTICAL METHODS IN DATA MINING 9

which is not very much affected by some violations of the linear model assumptions as the

traditional least squares model is; for instance in the presence of outliers and heavy-tailed

distributions. However, the robustification parameter is set fixed in the works about ro-

bust regression, and this brings problems of estimation when the sample distribution is

not symmetric. In [28] an adaptive Huber regression for robust estimation and inference

is proposed where the robustification parameter adapts to the sample size, dimension and

moments for optimal balance between bias and robustness. Their methodology, which is

extended to allow both heavy-tailed predictors and observation noise, shows to be more

robust and predictive in a real life application.

In [29] a new method, SuSiE, is introduced for variable selection in linear regression.

It focus on quantifying uncertainty in which variables should be selected. For this, the

sparse vector of regression coefficients are written as a sum of ‘single-effect’ vectors, each

with one non-zero element. Also, a Bayesian analogue of stepwise selection (IBSS) is

introduced which, instead of selecting a single variable at each step, computes a distribu-

tion on variables to capture uncertainty in which variable to select. Their method is very

appropriate in the presence of higly correlated and sparse variables such as in genetic fine

mapping applications, which they illustrate. In [29] it is also discussed the possibility of

applying these methods to generic variable-selection problems.

1.5 Other Recent Developments in Supervised Classification Meth-

ods

We will now describe some recents developments in other supervised classification meth-

ods, like Decision Trees, Support Vector Machines, K-NN, etc.

The oldest method of supervised classification is Linear Discriminant Analysis (LDA)

of Fisher (1936) for two classes and Rao (1948) for more than two. Somewhat similar to

PCA, LDA projects the data into a space of lower dimension (K − 1); however, unlike

PCA, which finds the space where data has maximum dispersion, LDA finds the space

where the classes are well separated and then, in the prediction phase, for a new query,

it chooses the class whose projected mean is closest. In [30] by using the connection that

naturally exists between LDA and Linear Regression, a penalized LDA is introduced,

called the moderately clipped LASSO (MCL), which can be applied when the number of

10
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

variables is larger than the sample size. In numerical studies they find that it has better

finite sample performance than LASSO.

On the topic of linear boundaries, when the data can be perfectly separated by a hy-

perplane, the Support Vector Machine (SVM) finds the hyperplane that maximizes the

margin between the classes, which is different from the LDA hiperplane. Statistical Learn-

ing Theory suggests also that this hiperplane has good generalization properties. It is

of course rare that the classes are linearly separable and for that reason, SVMs use the

Kernel trick, which consists in projecting the data into a space of larger dimension, even-

tually infinite, hoping that data are linearly separable there. This is done without actu-

ally needing to define the mapping. Since all we need is an inner product in the final

space, a Kernel function is used that corresponds to an inner product. If w is a vec-

tor defining the hiperplane that maximizes the margin (2/||w||), our problem consists

in min ||w||2 s.t. Yi(wTzi + b) ≥ 1, ∀i = 1, 2, ..., n, where (xi, Yi) are the initial data,

x ∈ RK, Y ∈ {−1, 1} and Zi corresponds to the projected values of Xi. Of course, even

in the larger space data might not be linearly separable and for that reason, SVMs use a

relaxation, which consists in using slack variables ξi ≥ 0 and the problem becomes,

min
1
2
||w||2 + C

n

∑
i=1

ξi s.t. Yi(wTzi + b) ≥ 1− ξi, ∀i = 1, 2, ..., n (1.4)

SVMs have been implemented in many research fields, ranging from text classifica-

tion, face recognition, financial application, etc. Although SVMs have good properties,

like a small number of parameters to estimate, possibility of finding the global optimum

(unlike neural nets), fast in predicting (since only the support vectors are used), they take

long time to train, of the order of n2. For that reason they are not very popular with very

large data sets and there is not much work about it. Recently, in [31], the authors explore

support vector machines in DM classification algorithms and summarize the research sta-

tus of various improved methods of SVM. They find a solution to speed up the SVM

algorithm and conclude that it can be widely used in the context of big data. The perfor-

mance of SVMs depends highly upon the choice of kernel functions and its parameters

and also on the distance used. Many improvements have been made in the last decade to

enhance the accuracy of SVM (see [32]), like twin SVM (TWSVM), which has a computa-

tional cost of approximately one-fourth of the SVM. It requires to solve two small sized

quadratic programming problems in lieu of solving a single large size one (SVM) in order

to find two nonparallel hyperplanes. In [33] a comprehensive review on twin support

1. STATISTICAL METHODS IN DATA MINING 11

vector machines (TWSVM) and twin support vector regression (TSVR) is given with ap-

plications in Classification, Regression, Semi-Supervised Learning, Clustering and with

applications like Alzheimer’s disease prediction, speaker recognition, text categorization,

image denoising, etc.

Many improvements of TWSVM have been proposed by researchers due to its favor-

able performance especially in-case of handling large datasets.

Decision Trees (DT) are a non-parametric supervised learning method used for clas-

sification and regression. The objective is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features. A tree

can be seen as a piece-wise constant approximation. It approximates the data via a series

of if-then-else decision rules. It facilitates feature importance and data relations analysis,

being easy to interpret.

Despite being a simple model to understand, DTs, by themselves, have some draw-

backs. Namely, they are unstable to changes in data, often quite inaccurate and calcula-

tions can get quite complex if a right pruning algorithm is not applied jointly.

In [34], it is proposed generalized random forests, a method for nonparametric statisti-

cal estimation based on random forests (Breiman,2001). Forests estimate µ(x) = E(Y|X =

x) and theoretical results about the consistency and confidence intervals exist for such es-

timates (see [34]). This paper extends Breiman’s random forests into a flexible method for

estimating any quantity θ(x), not just µ(x), and use their approach to create new methods

for non-parametric quantile regression, conditional average partial effect estimation, and

heterogeneous treatment effect estimation via instrumental variables. A software imple-

mentation is also provided.

Bayesian additive regression trees (BART) provides an alternative to the parametric

assumptions of the linear regression model. In [35], extensions of the original BART to

new models are introduced for several different data types and changes to the BART prior

to deal with higher dimensions and smooth regression functions. It is also presented and

discussed recent theoretical results about BART, as well as the application of methods

based on BART to causal inference problems. The paper describes also available software

and challenges it may face in the future.

Another non-parametric method of supervised classification is the well known KNN,

which, although coming from the non-parametric estimation of the densities fk, k =

1, ..., K, it results in classifying any new query to the most dominant class amongst its K

12
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

neighbors. In [36], authors seek estimators for the entropy of a density distribution, which

represents the average information content of an observation, and can be seen as a mea-

sure of unpredictability of the system. This has applications in many statistical moethods,

namely to test goodness-of-fit and independent component analysis. They use weighted

averages of existing estimators based on the k-nearest neighbour distances of a sample of

n independent and identically distributed random vectors. They obtain efficient estima-

tors for larger dimensions than the original estimators and also confidence intervals for

the entropy asymptotically valid.

In practice, when applying regression or classification models, we can have underfit-

ting (large error in both training and testing) or overfitting (low training error and large

expected test error). By using regularization techniques, we can address this gap be-

tween the training error and the test error in overfitting. The work [37] introduces a new

regularization method for semi-supervised learning that identifies the direction in which

the classifier’s behavior is most sensitive. Naturally occurring systems and several stud-

ies suggest that a predictor robust against random and local perturbations is effective in

semi-supervised learning. For instance, with neural networks, it is possible to improve

the general performance by applying random perturbations to each input in order to cre-

ate artificial input points and encouraging the model to assign similar outputs to the set

of artificial inputs derived from the same point (see [37]). It has been found, however,

that random noise and random data augmentation often causes the predictor to be very

vulnerable to a small perturbation in a specific direction, called the adversarial direction;

for instance when using L1 and L2 regularization. Adversarial training (Goodfellow et

al. 2015) is an attempt to solve this problem that succeeded in improving generalization

performance and made the model robust against adversarial perturbation. Unlike ad-

versarial training, the work [37] proposes a method that defines the adversarial directions

(only “virtually” adversarial, in fact) without label information and can, for this reason, be

applied in semi-supervised learning. The application to supervised and semi-supervised

learning tasks on many benchmark datasets demonstrates very competitive performance

when compared to state-of-the-art methods.

1.6 Statistical Learning

The concept of Statistical Learning refers to a set of tools for modeling and understanding

complex data sets, and it combines the areas of statistics and machine learning. It covers

1. STATISTICAL METHODS IN DATA MINING 13

a wide range of concepts. In this section it will be discussed those not covered on other

sections, normally filed under the topic of statistical learning themselves.

Zero-shot learning aims to recognize objects whose instances may not have been seen

during training (classifying images where there is a lack of labeled training data). In the

past few years, there has been a rapid increase in the number of new zero-shot learning

methods that have been proposed. These are due to the many cases where AI needs to

adapt to previously unseen data, from self-driving cars to new diseases’ diagnosis - like

COVID-19. In [38], the authors present a comprehensive review on the state-of-the-art of

the area, comparing all methods and presenting a new data set to perform the testing in

order to have common metrics between models.

When the data in study is corrupted or heavy-tailed, recently introduced median-of-

means (MOM) based procedures have been shown to outperform classical least-squares

estimators (e.g., LASSO). MOM estimators partition the data set into k blocks, (Zi)i∈Bk ,

k = 1, ..., K of the same cardinality, and then calculate the median of the K empirical

means of each block:

MOMk(Z) = median

{
1
|Bk| ∑

i∈Bk

Zi, k = 1, ..., K

}
(1.5)

In [39], the authors introduce a min-max MOM estimators and demonstrate that, both in

small and high-dimensional statistics, they obtain similar sub-Gaussian deviation bounds

as the alternatives models, while being efficient under moments assumptions on data that

may have been corrupted by a few outliers.

In many areas of knowledge, non-parametric estimation of a probability density func-

tion is an essential tool in the analysis. Using local polynomial techniques, in [40], the

authors introduce a novel non-parametric estimator of a density function. The distinctive

feature of this estimator is that it adapts to the boundaries of the support of the density

automatically; it doesn’t require particular data modification or choosing additional tun-

ing parameters, something almost all state-of the art methods are incapable of performing

without compromising the finite and large-sample properties of the estimator.

Many of the new methods cited in this paper - namely, neural nets, deep learning,

boosting, support vector machines, random forests - have became widely popular and

are widely used in all kinds of data sets due to their well known advantages. In [41],

the author compares these new ’trends’ with the classic approaches, like ordinary least

14
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

squares and logistic regression, centering on the differences between prediction and es-

timation or prediction and attribution (significance testing). The author concludes that

there is not one best global approach, but rather that each problem might require a dif-

ferent solution. Furthermore, modern pure prediction algorithms, like black-box models,

even if more accurate in general, suffer from lack of interpretability. The paper discusses

how and when to combine both approaches and its main results are summarized in table

1.1 (table 5 in the paper).

Traditional regressions methods Pure prediction algorithms

Surface plus noise models Direct prediction
(continuous, smooth) (possibly discrete, jagged)

Scientific truth Empirical prediction accuracy
(long-term) (possibly short-term)

Parametric modeling Nonparametric
(causality) (black box)

Parsimonious modeling Anti-parsimony
(researchers choose covariates) (algorithm chooses predictors)

xp× n: with p≪ n p≫ n, both possibly enormous
(homogenous data) (mixed data)

Theory of optimal inference Training/test paradigm
(mle, Neyman–Pearson) (Common Task Framework)

TABLE 1.1: A comparison between traditional regression methods and pure prediction
algorithms, as shown in table 5 of [41].

Given the increasing size and complex structure of data sets in the most varied ar-

eas, black-box supervised learning models like neural networks, boosted trees, random

forests, k-nearest neighbors or support vector regression, commonly replace more trans-

parent linear and logistic regression models in order to capture nonlinear phenomena.

They are, however, difficult to interpret in terms of fully understanding the effects of the

features on the response. In many cases, this relationship is vital information. Generally,

the solution is using Partial dependence (PD) plots. However, they can produce bad re-

sults if the covariates are strongly correlated, because they require extrapolation of the

response at predictor values that are significantly outside the multivariate envelope of

the training data. To solve this, in [42], the authors present a new visualization approach

1. STATISTICAL METHODS IN DATA MINING 15

called accumulated local effects (ALE) plots, which, besides being computationally less

expensive, does not require this unreliable extrapolation with correlated features.

In [43], the authors review and introduce a general framework on the area of meta-

research. Meta-research is the area of research that studies research itself, in order to

investigate quality, bias, and efficiency. Its work is important in maintaining credibility of

the scientific method.

A concept we have all familiarize ourselves with (even if unknowingly) is prediction-

based decision-making. It has made its way to government policy decisions, environ-

mental discussions or industry standards. Decisions based on predictions of an outcome

have become the norm. This newly acquired attention has focused on how consequen-

tial predictive models may be biased, in aspects such as race, gender, or class. Studying

and correcting such biases has motivated a field of research called algorithmic fairness.

The work [44] provides a framework for this scattered topic, setting terminology, nota-

tion and definitions, offering a concise reference frame for thinking through the choices,

assumptions, and fairness considerations of prediction-based decision-making.

In social sciences, structural equation modeling (SEM) - which explain the relation-

ships between measured variables and latent variables, and relationships between latent

variables themselves - has become the standard. Recently however, partial least squares

path modeling (PLS-PM), a composite-based approach to SEM, has been gaining traction

in a wide range of uses, as it allows researchers to estimate complex models with many

constructs and indicator variables, even at low sample sizes. In [45], the authors explore

whether, and when, the in-sample measures such as the model selection criteria can sub-

stitute for out-of-sample criteria that require a holdout sample.

MCMC methods are a fundamental tool for Bayesian Inference and use the Metropo-

lis–Hastings (MH) algorithm ([46, 47]), which is used to produce samples from distribu-

tions that may otherwise be difficult to sample from and is generally used for sampling

from multi-dimensional distributions, especially when the number of dimensions is high.

Yet, when faced with big data, these methods do not work well. In [48], a new family

of Monte Carlo methods is introduced which is based upon a multidimensional version

of the Zig-Zag process of [49]. This new method has often more favourable convergence

properties. A sub-sampling version of the Zig-Zag process is introduced which seems to

work well with big data.

16
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Low-rank matrix estimation, which is used in mathematical modelling and data com-

pression consists in finding an approximating matrix to a given data matrix and is related

to PCA, factor analysis, etc. Many of these estimators are NP-hard but fortunately, some

computationally efficient algorithms using leading eigenvectors exist. The authors in [50]

investigate the behavior of eigenvectors for a large class of random matrices whose ex-

pectations are low-rank.

In many large scale regression problems, matrix products like XTWX are needed and

in [51] a new and considerably more efficient way to compute XTWX is presented. Start-

ing from discretized covariates,these new algorithms manage to be more efficient than

previous algorithms, thereby substantially reducing the computational burden for large

data sets.

In [52] the authors introduce an alternative procedure to the Minimum Covariance

Determinant (MCD) approach. MCD estimates the location and scatter matrix using the

subset of given size with lowest sample covariance determinant; this is useful for instance,

to avoid outliers. However, the MCD approach cannot be applied when the dimension

of the data, p, exceeds the subset size, h. In [52], the auhtors introduce the minimum

regularized covariance determinant (MRCD) approach. It can be applied when p > h

and it differs from the MCD in that the scatter matrix is a convex combination of a tar-

get matrix and the sample covariance matrix of the subset. The aim is to substitute the

subset-based covariance with a regularized covariance estimate, defined as a weighted

average of the sample covariance of the h-subset and a predetermined positive definite

target matrix. This estimated covariance matrix is guaranteed to be invertible, performs

in higher dimensions, it is suitable for computing robust distances, and for linear discrim-

inant analysis and graphical modeling.

In machine learning and statistics, the most common is to have data which consists of

vectors of features. However, in the era of big data, other types of data exist, like graphs

recommender systems (users and products with transactions and rating relations), on-

tologies (concepts with relations), computational biology (protein-protein interactions),

computational finance (web of companies with competitor, customer, subsidiary rela-

tions, supply chain graph, graph of customer-merchant transactions), etc (see [53]). It

is of course possible to ignore relations and treat these data as vectors of features; how-

ever, these relations have additional valuable information. Most of the research on graphs

1. STATISTICAL METHODS IN DATA MINING 17

has been done on static graphs (fixed nodes and edges). Many applications, however, in-

volve dynamic graphs, that change over time, and in [53] a survey is presented of the

recent advances in representation learning for dynamic graphs with several prominent

applications and widely used datasets.

KNN Classification also has relevant applications in many different areas. In particu-

lar, in [54], the authors discuss geo-spatial applications, like road networks, by introduc-

ing a sparse reconstruction approach to select the optimized neighbors for each object,

that outperforms existing methods, while being robust to noise.

1.7 Neural Networks and Deep Learning

1.7.1 Introduction

The function obtained by a neural network with input vector X = (X1, X2, ..., Xp), one

hidden layer T = (T1, T2..., Tl) and output Y = (Y1, Y2, ..., YK) is such that,

Yj = fo(b +
l

∑
i=1

wh
ij fh(a +

p

∑
m=1

wI
miXm)),

where the parameters b, a, and matrices WI and Wh are to be estimated from data and

the activation functions fo, fh are usually the hiperbolic tangent, sigmoid, RELU, etc. Deep

networks have many more hidden layers and so, the final function becomes quite difficult

to differentiate in order to estimate the parameters, which has to be done using some form

of gradient descent (GD). Back-propagation was a breakthrough that allowed the training

of multi-layer networks of neurons and new architectures (SOM, RBF, Hopfield,...) and

applications appeared. In the 1990s the use of neural networks was generalized and new

developments emerged.

FIGURE 1.2: Generic neural network.

18
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Deep Learning or deep neural networks (see chapter 14 of [55] and [56] for an overview)

has achieved tremendous success in the last decade in many areas like artificial intelli-

gence, statistics, applied mathematics, clinical research, etc. Deep Learning uses many

compositions of linear transformations followed by nonlinear ones in order to approxi-

mate high-dimensional functions and has greatly improved the performance on complex

datasets such as images, texts and voices in applications such as computer vision, natural

language processing, machine translation, etc. The tremendous success of Deep Learning

is due in part to their response to the bias-variance tradeoff, since by using huge datasets,

with millions of samples, the variance is reduced and at the same time, due to the current

availability of enormous computing power, one can train large neural networks, which

reduces biases. On the other hand, given the huge number of parameters to be estimated,

sometimes more parameteres than data observations, the training of a deep neural net-

work requires the use of some form of regularization in order to prevent the parameters

to ’explode’ and the overfitting of the model. The regularization consists in adding a

penalty to the loss to be optimized and it results in simpler models. For instance, L2

regularization or weight decay is very popular in training neural networks.

On the other hand, L1 regularization introduces sparsity in the weights by forcing

some of the weights to be zero which in particular makes some of the features to be dis-

carded. Other forms of regularization exist like Dropout (which has some resemblance

to bagging introduced by Breiman in 1996 [57] where during training some number of

connections are randomly ignored, with probability p, although during test all of the con-

nections are taken into account.

Popular Deep Learning softwares use computational graphs, which allow an efficient

way of representing function composition and computing gradients by back-propagation.

In addition, in order to minimize the total ”error” or loss, that is, the average of the errors

between the output value given by the network and the real value, for each data obser-

vation, another important aspect is the use of stochastic gradient descent (SGD). Thus, in

each pass, instead of computing the gradient for the entire dataset, which is very compu-

tationally costly, the gradient is only computed for a small random sample. By the law of

large numbers this stochastic gradient should be close to the full sample one, converges

faster than GD and is widely used in ML. Other important aspects that contribute to the

success of Deep Learning will emerge as we introduce some popular models below.

Despite the huge success of Deep Learning, one must remember that according to

1. STATISTICAL METHODS IN DATA MINING 19

the universal approximation theorem, a neural network with a single hidden layer and

a linear output layer may approximate any Borel measurable functions arbitrarily accu-

rately. In practice, one hidden-layer neural network with a large number of nodes can still

achieve high prediction performance. Using this fact, recently the authors in [58] intro-

duced a training algorithm, called Local Linear Approximation (LLA), which starts with

a one-hidden-layer NN that, by using the first order Taylor expansion to locally approxi-

mate activation functions of each neuron, like RELU, can be used in both regression and

classification problems. They also generalize it for deep NN.

Note that, while any state-of-the-art review always runs the risk of quickly becoming

outdated, this section in particular moves fast, and any top method at the time of publish-

ing will likely be surpassed on the benchmark tests by next month. For this reason, the

selection of the papers cited in this topic will follow the methods that caused a paradigm

shift in the approaches used, as most of the others are combinations and variations on

these. This is the case for instance of computer vision.

A historical survey on deep learning in neural networks can be found in [59].

1.7.2 A Statistical View of Deep Learning

In [60], the authors present a survey of recent progress in Statistical Learning Theory, that

are useful in Deep Learning.

Acording to them,

”Broadly interpreted, deep learning can be viewed as a family of highly non-

linear statistical models that are able to encode highly nontrivial representa-

tions of data. A prototypical example is a feed-forward neural network with L

layers, which is a parameterized family of functions x 7→ f (x; θ) defined on Rd

by

f (x; θ) := σL(WLσL−1(WL−1 . . . σ1(W1x) . . .)) (1.6)

where the parameters are θ = (W1, ..., WL) with Wl ∈ Rdl×dl−1 and d0 = d, and

σl : Rdl → Rdl are fixed non-linearities, called activation functions.”

20
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

These authors conclude that, surprisingly, deep learning models find solutions that

give a near-perfect fit to noisy training data, and at the same time, lead to excellent pre-

diction performance on test data; and this is achieved with no explicit effort to control

model complexity.

The classical approach in statistical learning involves a rich, high-dimensional model,

combined with some kind of regularization, to encourage simple models but allowing

more complexity if that is warranted by the data. The deep learning models, on the other

hand, are built on two surprising empirical discoveries: 1) As deep learning uses models

with many parameters, the fit to the training data simplifies and simple, local optimiza-

tion approaches, variants of stochastic gradient methods, are extraordinarily successful in

finding near-optimal fits to training data. The idea of over-parametrization seems contra-

dictory from the point of view of classical learning theory, which states that these models

should not generalize well. 2) Deep learning models are, in fact, outside the realms of

classical learning theory, are trained with no explicit regularization and, although they

typically over-fit the training data, exhibiting a near-perfect fit, with empirical risk close

to zero, they produce nonetheless excellent test prediction performance in a number of

settings. They conclude that deep learning practice has demonstrated that poor predic-

tive accuracy is not an inevitable consequence of this benign overfitting.

See the work in [60] for further theoretical details for understanding this behavior of

deep learning models and see why, although there is no explicit regularization, implicitly

they impose regularization.

1.7.3 Examples of Deep Neural Networks

1.7.3.1 Convolutional Neural Network (CNN) & Computer Vision

Methods in computer vision have vastly improved in recent years. Object detection - where

the goal is to classify individual objects and localize each using a bounding box and se-

mantic detection/image segmentation - where the task consists in clustering parts of an image

together which belong to the same object class are the two main problems. A performance

comparison between all these methods in different benchmark test sets with accompany-

ing papers can be found here *, while a review in object detection using deep learning can

be found in [61] and a review in image segmentation can be found in [62].

*https://paperswithcode.com/area/computer-vision

https://paperswithcode.com/area/computer-vision
https://paperswithcode.com/area/computer-vision

1. STATISTICAL METHODS IN DATA MINING 21

Currently, the vast majority of computer vision algorithms use convolutional neural

networks (CNNs). CNNs are a specialized kind of neural network for processing data

that has a known grid-like topology. Their uses are diverse, but they are more commonly

used on input of the form of an image data (2-D).

The idea of using this mathematical concept in computer vision was first introduced

by LeCun et al [63] in 1998, to help solve the problem of recognition of hand-written digits.

CNNs are simply neural networks that use convolution in place of matrix multiplication

in at least one of their initial layers. This, however, speeds the learning period immensely

as matrix multiplication is computationally costly, and, in these applications, usually re-

turns a sparse matrix which a CNN can obtain with less redundant information (for more

details, see chapter 9 of [64]).

FIGURE 1.3: Configuration of a typical convolutional network.

In fig. 1.3 we can see the usual configuration of a CNN: in the first stage, the layer

performs several convolutions in parallel to produce a set of linear activations; in the

second stage, each linear activation is run through a nonlinear activation function, such

as the rectified linear activation function (RELU); in the third stage, we use a pooling

function to modify the output in order to make it invariant to small translations of the

imput while, typically, reducing the size of the data - the most common pooling function

is max pooling which returns the maximum output within a rectangular neighborhood.

In the end, the output is flattened into a 1-D array so it can be ran throught a neural

network for classification. Most popular image classification algorithms, including LeNet

[63] and AlexNet [65], follow this structure, varying the number of convolutional layers

and changing the hyperparameters like the pooling width and stride.

22
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

While traditional object detectors would usually consist of three stages - frame candi-

date regions on a specified image and locate the object; extract features of these candidate

regions; use the trained classifier for classification -, current state-of-the-art object detec-

tors either have two stages or only one stage. A two-stage detector is a proposal-driven

mechanism, where it initially uses a Region Proposal Network to generate Regions of

Interest (RoIs), and, on the second stage, sends the region proposals down the pipeline

for object classification and bounding-box regression. They are the most precise frame-

work, but also slower when compared to their counter parts. One of the most successful

two-stage detector is Region-based Convolutional Neural Network (R-CNN) [66], which

obtains a manageable number of candidate regions and evaluates convolutional networks

independently on each region of interest, by classifying each candidate location as one of

the foreground classes or as background. On the other hand, there have also been promis-

ing results on one-stage detectors, namely YOLO [67] and SSD [68], which lose 10%-40%

to the best two-stage methods in terms of accuracy, but are considerably faster. In [69],

the authors present a simple two-stage dense detector named RetinaNet which match the

speed of previous one-stage detectors while surpassing the accuracy of all existing state-

of-the-art two-stage detectors, including the ones mentioned in this section.

FIGURE 1.4: Different methods on image analysis. From left to right, original image,
image recognition, image segmentation, and pose estimation.

In [70], the authors present a new general framework called Mask R-CNN for in-

stance segmentation, which combines elements from the two classic computer vision tasks

mentioned before in a simple and efficient way, claiming to surpass all previous meth-

ods. Most of the advances in computer vision have been driven by powerful baseline

systems like Fast/Faster R-CNN [71, 72] and Fully Convolutional Network (FCN) [73]

frameworks. Faster R-CNN is built on the R-CNN framework by learning the attention

mechanism with a Region Proposal Network (RPN). Building on Faster R-CNN, Mask

1. STATISTICAL METHODS IN DATA MINING 23

R-CNN adds a branch for predicting segmentation masks on each region of interest in

parallel with the existing branch for bounding box regression. That is, to the previous

outputs - class label and bounding box offset - for each candidate object, it adds a third

branch that outputs the mask that bounds the object. It improves on previous instance

segmentation algorithms, while also excelling at object detection; it is also easily gener-

alized to perform different vision tasks, like human pose estimation as the paper shows.

Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running

at 5 fps.

At the time of publishing, the best performing model in both object detection and

instance segmentation on the COCO test-dev data set is SwinV2-G (HTC++) [74], with

63.1% object AP (average precision) on the former, and 54.4% mask AP on the latter.

Model Backbone Architecture Date Box AP Mask AP

Mask R-CNN ResNetXt-101-FPN Jan/2018 39.8% 37.1%
SpineNet-190, 1536×1536 Jun/2020 - 46.1%

RetinaNet ResNetXt-101-FPN Feb/2018 40.8% -
SwinV2-G HTC++ Nov/2021 63.1% 54.4%

TABLE 1.2: Comparison table between the forementioned methods on the COCO dataset
benchmark.

An important challenge in vision tasks is the diversity of the scale of the features we

are trying to identify. Convolutional neural networks (CNNs) naturally learn coarse-to-

fine

multi-scale features through a stack of convolutional operators. Such inherent multi-

scale feature extraction ability of CNNs leads to effective representations for solving nu-

merous vision tasks. How to design a more efficient network architecture is the key to

further improving the performance of CNNs. In [75], a new multi-scale backbone archic-

tecture is introduced, Res2Net, which adds a new dimension, scale, to the previous exist-

ing dimensions of depth, width and cardinality.

By exploiting the multi-scale potential at a granular level, orthogonal to existing meth-

ods that utilize layer-wise operations, it can be easily added to previous CNN models, like

ResNet or DLA, further improving them.

24
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

A common practice used in convolutional neural networks is flattening a layer fol-

lowed by a fully connected layer. Despite empirical success, this method discards possi-

ble multi-linear structures within the data. A solution is proposed in [76] of using tensor

algebraic operations, thus preserving this multilinear structure at every layer. The au-

thors propose Tensor Contraction Layers (TCLs) - that reduce the dimensionality of their

input while preserving their multi-linear structure using tensor contraction - and Tensor

Regression Layers (TRLs) - that express outputs through a low-rank multi-linear mapping

from a high-order activation tensor to an output tensor of arbitrary order - as end-to-end

trainable components of neural networks. By replacing fully connected layers with ten-

sor contractions, this method aggregates long-range spatial information while preserving

multi-modal structure, while by enforcing low rank, it reduces the number of parameters

needed significantly with minimal impact on accuracy.

Extracting low-rank tensors from data, where unknown deformations and sparse but

arbitrary errors exist, is an important problem with lot of applications across fields. Noise

pollution, missing observations, partial occlusion, misalignments and other degradation

factors are common occurrence in visual data, from mobile phones, to cameras, to surveil-

lance cameras, to medical imaging equipments. In [77], a general framework that incorpo-

rates the features of rectification and alignment simultaneously, and establish worst-case

error bounds of the recovered tensor is presented. Previous state-of-the-art methods, like

RASL or TILT, are paricular cases of this formulation.

1.7.3.2 Recurrent Neural Network (RNN) for Time Series Data and other Sequential

Data

Recurrent Neural Networks (RNNs) are a class of neural networks that allow previous

outputs to be used as inputs while having hidden states. They are naturally suited for

processing time-series data and other sequential data, allowing inputs of arbitrary length.

They consists of several successive recurrent layers, and these layers are sequentially

modeled in order to map the sequence with other sequences. RNN have a strong ca-

pability of capturing the contextual data from a sequence. They are mostly used for nat-

ural language processing and speech recognition. RNNs can solve many different kind

of problems and can be categorized into the following: One to One - standard mode for

classification without RNN (e.g., image classification); Many to One - sequence of inputs

and a single output (e.g., sentiment analysis); One to Many - takes an input and produces

1. STATISTICAL METHODS IN DATA MINING 25

a sequence of outputs (e.g., image captioning); Many to Many - sequences of inputs and

outputs (e.g., text translation) or sequence to sequence learning (e.g., video classification).

RNNs, alone or together with other neural network types, have had applications in

the most diverse areas in the past few years. From enhancing the resolution of images

[78], to predicting the price of the stock market [79], to predicting the behavior of chaotic

systems [80] or detecting process fault [81].

A review on RNNs and Long Short-Term Memory (LSTM) networks can be found in

[82].

1.7.3.3 Autoencoders for Dimensionality Reduction and Applications

An autoencoder is a deep neural network that is trained to attempt to copy its input to its

output. It is an unsupervised artificial network that efficiently compresses the data from

the reduced encoded representation to a representation that is as close to the original

input as possible. In doing so, it learns a lower-dimensional representation (encoding)

of the higher-dimensional data, capturing the most important parts of the input. Its uses

are diverse, from reduction of dimensionality (actually, Principal Component Analysis is

a special case of autoencoders), to anomaly detection, to image denoising.

In particular, in recent years, it has been shown to work in character recognition [83],

unsupervised image clustering [84], denoising RNA sequences [85], in cybersecurity [86]

(see survey of deep learning methods in cybersecurity in [87]), in 3D MRI brain segmenta-

tion [88], fault diagnosis [89] and unsupervised anomaly detection in high energy physics

[90].

1.7.3.4 Generative Adversarial Networks (GAN) for Density Estimation and Applica-

tions

In classical density estimators, the density function is defined in relatively low dimen-

sions. Generative Adversarial Network ([91]), on the other hand, is an implicit density

estimator in much higher dimensions, such as data from images, natural scenarios or

handwrittings. GANs put more emphasis on sampling from the distribution PX rather

than estimation and define the density implicitly through a source distribution PZ and a

generator function g(.) which is usually a deep neural network [55].

26
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

GANs use an unsupervised algorithm that discovers and learns regularities and pat-

terns in input data in such a way that it can be used to generate new examples that plau-

sibly could have been drawn from the original dataset. It combines two models: a model

that generates candidate outputs and a classifier that evaluates if the data created by the

first model is either real or computer generated. The algorithm ’fools’ the classifier when

half of the input is misclassified. GANs are one of the most cited topic in DL. Its fame is

mostly due to the ability to create photorealist objects and people or to change settings in

a scene [92], but GAN’s uses are not only limited to image processing. Speech and audio

processing, medical information processing and many other areas have active research in

this field.

Recently, due to the outbreak of Covid-19, GANs have been used to improve positive

cases detection and treatment ([93] and [94]). Other uses include fault diagnosis ([95] and

[96]), or de-rain images (i.e., take out weather effects such as rain or snow from images;

[97]). A literature review on the topic can be found in [98], a comparative analysis of Deep

Convolutional GAN and Conditional GAN can be found in [99] and a review on progress

and research issues in [100].

1.7.3.5 Other Applications of Deep Learning

Graph Neural Networks (GNNs) are a class of deep learning methods designed to per-

form inference on data described by graphs. A comprehensive survey on GNNs can be

found in [101].

Reinforcement learning (RL) is about an agent interacting with the environment, learn-

ing an optimal policy, by trial and error, for sequential decision making problems. It began

with Google DeepMind, becoming popular when it was used to beat the the best chess

player and go player in the world. An overview in deep reinforcement learning can be

found in [102] and in [103].

Most machine learning methods are built on a common premise: the training and test

data are drawn from the same feature space and the same distribution. If this distribution

changes, the majority of the models described in this papar have to be rebuilt from scratch

using newly collected training data. This can be expensive or even impossible to recollect

the needed training data and rebuild the models in many practical examples. In such

cases, knowledge transfer or transfer learning between task domains would be desirable.

A network is trained with a big amount of data, with the model learning the weights

1. STATISTICAL METHODS IN DATA MINING 27

and bias during during training. These weights can be transferred to other networks for

testing or retraining a similar new model, so that the network can start with pre-trained

weights instead of training from zero. An overview on the topic can be found in [104] and

an application to natural language processing can be found in [105].

Drug design aims to identify (new) molecules with a set of specified properties. Given

that it still is a lengthy, expensive, difficult, and inefficient process with a low rate of

new therapeutic discovery, there is a great interest in developing automated techniques

to discover sizeable numbers of plausible, diverse, and novel candidate molecules with

desirable properties. In [106] it is proposed a novel variational autoencoder for molecu-

lar graphs, whose encoder and decoder are specially designed to account for the unique

characteristics of molecular graphs. Experiments reveal that their variational autoencoder

can discover plausible, diverse and novel molecules more effectively than several state of

the art models.

A new area that has gather momentum in deep learning is Physics-Informed Neural

Networks (PINNs) - neural networks that are trained to solve a problem while obeying

physical laws (either explicitly or using system’s symmetries and conservation laws), or

to find the physical laws from existing data. Its framework was introduced in [107], and a

current state of the art can be found in [108]. This concept of data-driven discover of gov-

erning equations has also had significant advances recently on the topic of the discovery

of coordinates and universal embedding of non-linear dynamic systems [109], [110] (see

[111] for a review in Koopman’s theory for non-linear dynamics).

Speech recognition ([112], [113], [114]), machine translation ([115] and [116] (Google))

are other applications of deep learning.

1.8 Clustering

In DM, we are often faced with high dimensional data where observations have from a

few dozen to thousands of features or dimensions. In order to cope with the difficulties

associated, like visualization of the data and the curse of dimensionality (enumeration of

all subspaces is prohibitive), a dimensionality reduction technique or feature selection is

often employed beforehand. However, the results obtained depend on the dimensional-

ity reduction technique used and many dimensions can be irrelevant to clustering and

identifying them is not easy.

28
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Subspace Clustering tries to circumvent these problems, by clustering, simultaneously,

features and observations. This in turn might result in overlapping clusters in both the

space of features and observations. This means that, for instance, it might be possible to

identify a cluster of the observations in a subspace with 10% of the dimensions that was

not possible to identify in the entire space. There are: 1) bottom up approaches which

start by finding clusters in low dimensional spaces and iteratively merge them to find

clusters in higher dimensional spaces; 2) Top down approaches, wich find clusters in

the full set of dimensions and then, for each cluster, find the corresponding subspace.

In addition, subspace clustering approaches can be categorized into iterative methods,

algebraic approaches, statistical methods and spectral clustering-based methods (see [117]

).

Subspace clustering has been successfully applied to many applications. Recently

novel subspace clustering models have been proposed which uses multiple views of the

data, not just one, in order to decrease the influence the original features have when the

observations are insufficient. These methods produce v subspace representations Z(v) and

feature matrix X(v), corresponding to the optimization problem,

min
{Z(v)}V

v=1

L
(
{(X(v), X(v)Z(v))}V

v=1

)
+ λΩ

(
{Z(v)}V

v=1

)
, (2)

where L is a loss function and Ω a regularization term.

As a way to explore the relationships between data points and effectively deal with

noise, the work [117] proposes using a latent representation for multiple views (Latent

Multi-view Subspace Clustering). Their method learns a latent representation to encode

complementary information from multi-view features and produces a common subspace

representation for all views rather than that of each individual view. Furthermore, they

generalize their model for non-linear correlation, and propose generalized Latent Multi-

view Subspace Clustering (gLMSC). They show by experimenting on both synthetic and

benchmark datasets significant advantages of the learned latent representation for multi-

view subspace clustering when compared to the other moder multi-view clustering ap-

proaches.

As another illustration/application of the use of multiple views in Clustering, in [118]

a new method is proposed for detecting coherent groups in crowd scenes.

Other types of data are also subject to clustering algorithms nowadays; for instance,

longitudinal data, which differs from time-series data because series, although being

1. STATISTICAL METHODS IN DATA MINING 29

shorter, are in much larger numbers. For that reason, is is of very practical importance

to cluster them. Recently, in [119] the authors introduce a new confinement index and

a new way of comparing countries, by using clustering of three dimensional longitudi-

nal trajectories, in the context of COVID-19. Also in [120], new methods of clustering

longitudinal data are presented.

1.9 Software Applications

With the amount and diversity of algorithms and applications, one of the current chal-

lenges in software is to explain its outputs to a broader audience. AI Explainability 360

presented in [121], is another step in that direction by providing an open-source Python

toolkit that provides explainability, interpretability and transparency to the algorithms.

In [122] the package Tslearn, a Python machine learning library, is introduced to han-

dle Time Series Data. It includes pre-processing routines, feature extractors, and machine

learning models for classification, regression and clustering and can treat both univariate

as well as multivariate time series data. It treats also series with variable length. In [123],

a similar package for time-series classification in Python is presented, called pyts. It pro-

vides implementations of several algorithms published in the literature, preprocessing

tools, and data set loading utilities.

For time series using deep learning, the Gluon Time Series Toolkit (GluonTS) in-

troduced in [124] provides the necessary components and tools for quick model develop-

ment, as well as efficient experimentation and evaluation. It is based on the Gluon API2 of

the MXNet deep learning framework. Based in this same structure, in [125] the libraries

GluonCV and GluonNLP are introduced . They are deep learning toolkits for computer

vision and natural language processing, which provide state-of-the-art pre-trained mod-

els, in order to facilitate rapid prototyping and promote reproducible research. They are

flexible, being applicable to different programming languages.

Given the rapid growth in diverse areas of graph-structured data, the authors of [126]

introduce GraKeL, a library that unifies several graph kernels into a common framework,

and can be easily combined with other modules of the scikit-learn interface.

Graphical models are very popular in order to identify patterns amongst a set of ob-

served variables in many disciplines. Often, there are a mix of variable types, like binary,

categorical, ordinal, counts, continuous, skewed, etc. In addition, if measurements are

taken across time, we can be interested in studying the relations between variables not

30
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

only at one time point (Mixed Graphical Models (MGMs)) but also across time (mixed

Autoregressive (mVAR) Models). In [127], the mgm package is introduced for estimating

time-varying mixed graphical models in high-dimensional data which extend graphical

models for only one variable type, since data sets consisting of mixed types of variables

are very common in applications. It is written in R and uses the glmnet package (Fried-

man, Hastie, and Tibshirani 2010) for Generalized Linear Models (GLMs). The mgm

package is used to estimate Mixed Graphical Models (MGMs) and mixed Autoregressive

(mVAR) Models, both as stationary models (mgm() and mvar()) and time-varying mod-

els (tvmgm() and tvmvar()). In [127], the authors provide the background implemented

methods and also examples that illustrate how to use the package.

1.10 Closing Remarks

Any state-of-the-art paper in DM runs the risk of quickly being outdated. Any article-

driven review in such specialized sub-topics runs the risk of appearing disjointed in some

parts. Any review paper runs certainly the risk of leaving out important developments

in the area. Despite trying to be as objective as possible in the criteria used to choose the

papers here presented, many other choices of topics and papers would be equally valid.

Chapter 2

Physics-Informed Neural Networks *

2.1 Introduction

Despite the huge strides Machine Learning (ML), and, in particular, Deep Learning (DL),

have achieved over the past decade, in a wide range of areas - from computer vision to

natural language processing, and everything in between -, understanding and forecasting

physical systems remains a problem too complex to solve.

Physical and biological systems tend to cover a wide range of scales, both spatial and

temporal, and the varied level of accuracy that the data obtained from these systems

usually have, say Earth’s ecosystem or fluid dynamics, makes simulating these environ-

ments computationally costly and the multiple source of uncertainties makes prediction

of chaotic systems like these irrelevant past short time scales. The universe is mostly

governed by Partial Differential Equations (PDEs), and solving them accurately and effi-

ciently is essential for a more complete understanding and to able to harness its potential

in our favour. While traditional methods, like Finite Elements Methods (FEMs), finite

differences or spectral methods do very well at solving PDEs, they struggle in this multi-

physics, multi-scaled, multi-fidelity case described. Furthermore, inverse problems - infer

models or parameters from the set of observations - and dealing with noisy or gappy real

data is often simply not possible. DL, on the other hand, can deal with imperfect data

and extract meaningful features and hidden structures from observations, but it requires

a large amount of data in order to learn its many parameters, which is not available in

many complex physical/biological systems. Under this limitation, most algorithms fail

*An early version of this chapter - Deep Learning for Physics: new tools for model, coordinates, and dynamics
discovery - was presented at Young Researchers Conference in Porto (IJUP), in May of 2022, where it received
the distinction of ’Best Oral Presentation in Mathematics’.

31

32
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

to provide meaningful conclusions about the data, fitting the training data well, but fail-

ing to generalize, often giving solutions that are not physically consistent.

Physics-Informed Machine Learning (PIML) attempts to solve this issue by enforcing

the system’ solution to obey physical governing laws and any other priors about the do-

main we might have. This chapter will focus on a particular subset of this recent area,

PINNs.

Given the limited-data regime most physical systems are in, PINNs use prior knowl-

edge about the system - like known symmetries, conservation laws (symmetries in time)

or known dynamics -, to constrain the search space for a solution from the entire set of

functions to the the set of functions that are consistent with these laws. For example,

in the case of incompressible fluid flows, these constraints come in the form conserva-

tion of mass, ∇ · v = 0, and conservation of momentum, ρ
(
∂tv + (v · ∇)v

)
= −∇p +

µ∇2v + ∑ F. Due to the way these constraints are encoded into their NN architecture,

PINNs have the particularity of being able to deal with any amount of data, including no

data. This means that PINNs can be used to solve PDEs [128], high-dimensional PDEs

[129], stochastic PDEs [130, 131], Fractional Equations (FEs) [132] or Integral-Differential

Equations (IDEs) [133, 134].

Applications of PINNs can be found diverse areas such as fluid mechanics [135–138],

parameter estimation in biology [139, 140], edge plasma control in magnetic confinement

in fusion [141], epidemiology [142, 143] or quantum chemistry [144].

This chapter will cover the theory behind this new and exciting area, as well as present

recent variations on the original concept and current avenues of research.

2.2 Foundations

Despite recent results that show theoretically the consistency of PINNs [145], it remains

mostly an experimental area, with most advances being empirical. Many aspects of the

PINN algorithm, such as choice of optimizer and activation function, have been borrowed

from other areas of knowledge where deep-NN are used, as computer vision or language

processing. Naturally, these out-of-the-box methods are not always the best choice, and,

recently, new methods tailored for solving PDEs have been put forward. Finding ways to

optimize PINNs is an ongoing effort.

This section introduces the main architecture and the important elements of PINNs,

that will then serve to study variants and ways of optimizing PINNs.

2. PHYSICS-INFORMED NEURAL NETWORKS 33

2.2.1 Motivation

The explosive rate of the amount of data available has allowed for deeper NN, that are

able to learn better hidden structure in data. The top part of figure 2.1 is often reproduced

in literature, exemplifying how in the small data regime traditional methods in ML (in-

cluding shallow NNs) tend to perform better, but, as the size of the data grows, the price

of having a large number of parameters can be met, and the flexibility of deep NNs allows

them to learn deep hidden structures, surpassing significantly other methods in the big

data regime.

FIGURE 2.1: Data and Physics dependency.

When dealing with physical systems, we are often in the small data regime, as obtain-

ing data can be too costly or even impossible. However, these systems also often follow

known laws that constraint their behaviour. The bottom part of figure 2.1 represents that

inverse relationship often found, and that can be used to simulate these environments.

PINNs are a way to incorporate this physical knowledge into the network, by encod-

ing this information into the loss function, which is a way of imposing constraints on the

parameters of the model. They can deal with any amount of data, working in the three

34
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

regimes mentioned in figure 2.1: from big data (closer to a generic NN), to small or no

data (solving a generic PDE).

Despite the explosive rate of advances in the area over the past few years, the idea be-

hind solving a physical problem using an artificial NN is not new. It was first presented

in 1990, by Lee et al [146], further developed by Lagaris et al [147, 148] and, later, by Rudd

[149], until recently, making use of recent computational advances, namely automatic dif-

ferentiation, the framework of PINNs that all posterior work builds upon was formulated

[150, 151].

PINNs impose the system’s priors as soft constraints, by adding a penalty to the loss

function depending on the networks performance (soft boundary conditions). There is

also a related concept, called Physics-Constrained Neural Networks [152–154], where the

priors are entirely enforced, i.e., via specially designed network architectures with strong

inductive bias, the model is forced to obey to the initial and boundary conditions (hard

boundary conditions); this comes at the cost of implementation complexity, and, eventu-

ally, run-time. This variation has some interesting applications [155, 156], but this work

will focus on the first kind as it allows for more flexibility.

While in the mixed data-physics regime, the utility of PINNs is clear, it might not be

obvious why use them in a no-data regime, to solve PDEs. In fact, for well posed, forward

problems (with well behaved solutions), PINNs offer no improvement over previous meth-

ods. In fact, the time it takes to train them is significantly longer than the time it takes to

run FEMs, often by orders of magnitude. Moreover, PINNs give no guarantee of unique

solution, as they solve non-convex optimization problems, which might have different

solutions. The choice of hyper parameters and initial values might affect the obtained

solution (to avoid being stuck at a local minima, it is useful to run the program several

times and choose the run with better accuracy; newer variations of PINNs - covered in

section 2.2.8 - can avoid these pathologies and assure convergence in most cases; besides

the network’s architecture, the sampling of the residual points can also be improved to

avoid these failure modes [157] - covered in section 2.2.3). There are several other in-

stances, however, where PINNs excel, where traditional, grid-based methods do not. In

particular, the following reasons make PINNs not only very promising, but already the

state-of-the-art method in some applications:

• solving not only forward problems, but also inverse problems [150], with mini-

mal changes to the code: unknown parameters can be treated as general parameters

2. PHYSICS-INFORMED NEURAL NETWORKS 35

to be optimized by the network, so the same code used for forward problems (solve

PDEs) can be used to infer properties of the system from the data (e.g., finding a

fluid’s properties from sensor data);

• the code is general: while FEM methods generally require the algorithm to be tai-

lored to the problem they are tackling, the code used in PINNs stays essential the

same for different problems;

• dealing with high-dimensionality: deep NN can, under some assumptions, break

the curse of dimensionality [158] (hence their use in areas like image or language

processing); this allows them to tackle high-dimensional PDEs, where traditional

methods fail (e.g., high-dimensional Black–Scholes, Hamilton–Jacobi–Bellman and

Allen–Cahn equations [159]);

• dealing with noisy and gappy data: as PINNs solutions are smoth and differen-

tiable, they can deal with imperfect or incomplete data. For this, it is useful to also

incorporate the Bayesian approach for uncertainty quantification [159], the so called

B-PINNs [160].

• mesh-free: PINNs do not rely on fixed grids (any point in the domain can be taken

as input), which generation is computationally expensive; this allows them to tackle

not only high-dimensional domains, but also complex-geometry domains [161]. An-

other advantage is that a trained PINN can be used to predict values on grids of dif-

ferent resolutions without re-training, and thus, the simulation time does not scale

with the number of grid point like in traditional methods [162].

• running code in parallel: the mesh-less property of PINNs allows to divide the

domain in sections that can be run in different GPUs, in parallel, with different NN

in each, in order to speed up the training; this is particularly useful when tackling

multi-scale problems.

36
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2.2.2 Theory

The idea behind PINNs is to combine the optimization problem of minimizing the error

of prediction over a data-set, with the physical knowledge of the system, given by a PDE.

In the case of fluid dynamics, for example, one intends to minimize the error of prediction

of eventual velocity data points, while obeying the Navier-Stokes Equations (NSEs):

θ∗ = argmin
θ

1
Ndata

Ndata

∑
i=1

∥∥v̂i(θ)− vi
∥∥2 (2.1a)

s.t. ρ
(
∂tv + (v · ∇)v

)
+∇p− µ∇2v−∑ F = 0 (2.1b)

∇ · v = 0 (for incompressible flows) (2.1c)

∇× v = 0 (for irrotational flows) (2.1d)

In general, for PDE given by f , we have the following constrained optimization prob-

lem:

θ∗ = argmin
θ

1
Ndata

Ndata

∑
i=1

∥∥ûθ(zi)− ui
∥∥2 (2.2a)

s.t. f

(
t, x;

∂uθ

∂x1
, ...,

∂uθ

∂xd
;

∂2uθ

∂x1∂x1
, ...,

∂2uθ

∂x1∂xd
; ...; µ

)
= 0, (t, x) ∈ [0, T)×Ω (2.2b)

where x = (x1, ..., xd), Ω is the spatial domain, f is the PDE in question, rearranged

such that it takes the value 0, uθ is the solution of f (parameterized by θ) and µ are pa-

rameters of the PDE, that can also be learned as an inverse problem using PINNs. Note

that we are using the word data in a broad sense, for points on the domain for which the

value is known; it can be simply points along the boundary, ∂Ω.

To solve this problem, we start by transforming the constraint f into a multi-dimensional

integral over the domain, and applying a Lagrange multiplier, λ, as shown in eq. 2.3. Note

that f is now squared so that minimizing the second term of eq. 2.3 is the same as obeying

the constraint in eq. 2.2b.

θ∗ = argmin
θ

1
Ndata

Ndata

∑
i=1

∥∥ûθ(zi)− ui
∥∥2

+ λ
∫
· · ·

∫
[0,T)×Ω

f

(
t, x;

∂uθ

∂x1
, ...,

∂uθ

∂xd
;

∂2uθ

∂x1∂x1
, ...,

∂2uθ

∂x1∂xd
; ...; µ

)2

dtdx1 . . . dxd

(2.3)

2. PHYSICS-INFORMED NEURAL NETWORKS 37

Other than trivial cases, the integral in the second term is not solvable. A common

approach is to numerically integrate this term via Monte Carlo methods, by sampling

Nphys points across the domain and discretize the integral into a sum over those points:

θ∗ = argmin
θ

1
Ndata

Ndata

∑
i=1

∥∥ûθ(zi)− ui
∥∥2

+ λ
1

Nphys

Nphys

∑
i=1

f

(
t, x;

∂uθ

∂x1
, ...,

∂uθ

∂xd
;

∂2uθ

∂x1∂x1
, ...,

∂2uθ

∂x1∂xd
; ...; µ

)2 (2.4)

It is this optimization problem, over the augmented data set of Nphys + Nbound + Ndata,

that PINNs are designed to solve.

Note that, unlike NNs, PINNs are not bounded by the necessity of having data as in-

put: they can deal with any amount of data, including no data. In this no-data regime,

usually when solving PDEs, the input can simply be points uniformly distributed across

the domain (this is not, however, the most efficient distribution, and optimizing colloca-

tion points’ sampling is an active area of research - see Section 2.2.3).

During this chapter, we will use the more common notation for the terms of eq. 2.4 of

loss, L:



Ldata =
1

Nd

Nd

∑
i=1

∥∥ûθ(zi)− ui
∥∥2

Lres =
1

Nc

Nc

∑
i=1

∥∥rθ(zi)
∥∥2

Lbound = 1
Nb

Nb

∑
i=1
B(ûθ(zi))

2

(2.5)

Some literature divides the boundary term in an initial conditions term and a bound-

ary (spatial) conditions term. In order to keep this formulation as general as possible, we

opted to treat time in a similar fashion to space dimensions. When dealing with partic-

ular examples, however, it is often useful to make that distinction, so that they are given

different weights and the network can better infer from their relevance to the learning

procedure.

The problem is then to find the parameters θ that minimize L(Θ):

38
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

PINNs Optimization Problem

θ∗ = argmin
θ

L(θ) (2.6)

L(θ) = ωdataLdata + ωresLres + ωboundLbound (2.7)

, where ωi are the weights given to each loss component.

PINNs are constituted of four main building blocks: NN, automatic differentiation,

loss function and feedback mechanism.

FIGURE 2.2: Generic PINN.

Figure 2.2, represents schematically the process of PINNs: propagate the data in a

feed-forward-NN, keep a tape of all necessary derivatives using Automatic Differentia-

tion (AD), calculate the loss functions, adjust weights on the NN in order to minimize the

total loss, and repeat the process until the error is smaller than a pre-set value ϵ.

2. PHYSICS-INFORMED NEURAL NETWORKS 39

Algorithm: Training PINNs

1. Sample N collocation points {tj, xj}N
j=1 in Ω and Nbound boundary points

{xj}N
j=1 in ∂Ω, following a distribution P .

2. Set NN architecture – width, depth, activation function, weights initialization

distribution -, learning parameters – learning rate lr, batch size m, number of

epochs -, and choose the loss function’ weights ωj.

3. Initialize model parameters θ (the weights and biases of the NN).

4. for in range(epochs):

i. perform forward pass of m collocation points;

ii. during forward pass, use AD to keep a tape of all partial derivatives

needed;

iii. calculate loss function from residuals;

iv. backward propagate, adjusting parameters θ using (stochastic) gradient

descent.

5. Return û(x, t)

In order to understand the elements that make PINNs unique, it is useful to review

the concepts of NNs’ architecture, so we can remark the differences between the two.

40
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2.2.2.1 Neural Networks

NNs have been used to solve a wide variety of problems in different areas. In particu-

lar, their well known capabilities as universal approximators of any (Borel measurable)

function makes them incredibly versatile [163, 164] *:

Universal Approximation Theorem for Neural Networks

A Neural Network with one hidden layer with a finite number of neurons can ap-

proximate arbitrarily well any continuous function f : [0, 1]n → [0, 1].

The dual version of this theorem - a NN of fixed width (number of neurons per hidden

layer) and arbitrary depth (number of layers) - has been recently proved [165], providing

evidence that the number of hidden layers may be more important than the number of

neurons per hidden layer for expressiveness in networks which use ReLU = max(0, x) as

a non-linear activation function.

FIGURE 2.3: Generic feed-forwardNN.

A feed-forward-NN (schematically represented in figure 2.3) takes a batch of the train-

ing data and propagates it forward, by multiplying the inputs by the weights of the con-

nections, wij, adding a bias, bj, and then applying a non-linear activation function, σ (pic-

tured, the two most common: sigmoid and ReLU).

hk
j = σ

(
∑

k
wl

jkhl−1
k + bl

j

)
(2.8)

*in fact, another important and similar result that goes mostly unnoticed is that a neural network with a
single layer can approximate accurately any non-linear continuous functional or non-linear operator. This
theorem will be discussed in section 2.2.8.7, when presenting DeepONet.

2. PHYSICS-INFORMED NEURAL NETWORKS 41

The network then learns via backpropagation: the weights are adjusted proportionally

to the gradient of the error function between the output and the labeled result from the

input data. The magnitude of this adjustment is controlled by the learning rate parameter,

α.

wl
ij ← wl

ij − α
∂E(X, Θ)

∂wl
ij

(2.9)

∂E(X, Θ)

∂wl
ij

=
1
N

N

∑
d=1

∂

∂wl
ij

(
1
2
(ûd − ud)

2
)

(2.10)

This process is repeated over several epochs, and, given enough training data, the ad-

justment of the network’ weights will allow it to approximate the true hidden function

and provide meaningful predictions of the labels. Its accuracy is then measured in a test

set, unknown to the NN during the training phase. Significant discrepancies between the

accuracy in both sets are usually dealt with using regularization techniques (e.g., dropout).

In PINNs, the training data set becomes the collocation points; the only labeled

data is the (external) data points - that are optional; and the loss function becomes com-

posite of several loss functions and governs the learning phase. All other remaining

components here described remain true.

2.2.2.2 Automatic differentiation

The advent of PINNs in the past few years was only made possible, in practice, due to

the unreasonable efficiency of AD [166]. Traditionally methods for computing deriva-

tives, like numerical differentiation, are computationally costly, prone to round-off and

truncation errors and scale poorly, struggling with high-dimensional data. Symbolic dif-

ferentiation, on the other hand, while fast and exact, can result in complex and redundant

formulas and has limited applications due to the necessity of closed-form expressions.

AD decomposes the problem in a graph (or network) of interconnected nodes, where

each connection represents an elementary mathematical operation - addition, subtraction,

multiplication, division, exponentiation, or transcendental functions like trigonometric or

logarithmic functions -, for which the derivative is already known. The accumulation of

the values of all the nodes gives the final value of the derivative; AD does not give an

expression for the derivative. The graph nature of AD allows for loops, recursion and

42
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

branching. Furthermore, it calculates the value of the derivative at machine precision,

and it only adds a small constant factor of processing to the original program [166].

AD is the backbone of ML frameworks like Tensorflow [167] (used in this paper) or

PyTorch [168], being responsible for the incredible advances in the area, over the past

decade. The backpropagation algorithm [169] mentioned in section 2.2.2.1, in the context

of NNs, is a particular case of AD * (a special case of the reverse mode, where the objective

function is the NN’s error function, and the derivative is with respect to the network’s

weights).

Given the importance of this algorithm for PINNs usefulness, it is relevant to show

how it works with an example. It is a common critique in literature that AD is often

presented via examples, lacking the formal treatment that makes it so powerful and with

so many other applications; however, for the purpose and depth of this thesis, we believe

an example is the right choice. A more complete view on AD can be found in [170].

Let’s then evaluate the partial derivatives of the function f (x1, x2) = x1 exp(x2) −

sin
(

x1
x2

)
, at the point (x1, x2) = (2, 3).

We start by decomposing the expression into its elementary components, and saving

the intermediate values in new variables vi:

FIGURE 2.4: Computational graph of the function f (x1, x2) = x1 exp(x2)− sin
(

x1
x2

)
.

Note that, in this example, symbolic differentiation can quickly give the exact deriva-

tive expression. However, as the complexity of the function grows, so does the size of the

expression, while the computational graph presented in figure 2.4 remains more manage-

able.

The first step is to fill in the intermediate values vi, and record the inter-variable de-

pendencies in the computational graph, by doing a forward pass of the graph, starting at

the input variables v−1 and v0, and finishing at the output variable v5 = f (x1, x2). This is

the Forward Primal Trace, and can be seen in tables 2.1a and 2.2a.

*in ML, the names backpropagation and autodiff are often used interchangeably.

2. PHYSICS-INFORMED NEURAL NETWORKS 43

AD has two main modes, depending on the direction the graph is travelled: forward

accumulation mode (or tangent linear mode) and reverse accumulation mode (or adjoin-

t/cotangent mode).

Each pass in the forward mode computes one column of the Jacobian matrix -
(

∂ f1
∂xi

, ..., ∂ fm
∂xi

)
-, while each pass in the reverse mode computes one line of the Jacobian -

(
∂ fi
∂x1

, ..., ∂ fi
∂xn

)
. In

general, this means that, for functions f : Rn → Rm, the forward mode is more suitable

when n < m and the reverse mode otherwise. In our example, as the number of inputs

is greater than the number of outputs, the reverse mode is more efficient. In table 2.2, we

can see that it only takes one reverse pass to evaluate both ∂ f
∂x1

and ∂ f
∂x2

, while, in table 2.1,

we need one pass to evaluate ∂ f
∂x1

(table 2.1b) and one for ∂ f
∂x2

(table 2.1c).

In ML, often the function being studied is of the type f : Rn → R. As the reverse

mode can evaluate ∇ f =
(

∂ f
∂x1

, ..., ∂ f
∂xn

)
in a single pass, it is the main mode used in ML

(often in the form of backpropagation).

Forward mode, table 2.1, works in an intuitively way. To evaluate
(

∂ f1
∂xi

, ..., ∂ fm
∂xi

)
, we:

1. associate the intermediate variables vi to their derivative v̇j =
∂vj
∂xi

;

2. set the derivatives of the initial variables, v̇−, to ẋ = ei, as ei is the direction along

which we want to differentiate our function;

3. evaluate v̇i in succession, following the computational graph in figure 2.4;

4. obtain the final intended result, ∂f
∂xi

= v̇k, at the point (x1, ..., xn).

Note that, during step 2, if instead of setting ẋ = ei, we set ẋ = r, for some vector r, we

obtain the directional derivative of f along the vector r, ∇ f · r.

Reverse mode, table 2.2, propagates derivatives backwards, from the output f to the in-

puts x. To evaluate
(

∂ fi
∂x1

, ..., ∂ fi
∂xn

)
, we:

1. associate the intermediate variables vi with an adjoint variable v̄j =
∂ fi
∂vj

- this vari-

able represents the sensitivity of f to changes in vj;

2. set the adjoint of output, v̄k = f̄, equal to 1;

3. following the computational graph, use the chain rule to write v̄j as a function of the

adjoint variables connected to j, e.g., in figure 2.4, v0 connects to v1 and v2, so:

v̄0 =
∂ f
∂v0

=
∂ f
∂v1

∂v1

∂v0
+

∂ f
∂v2

∂v2

∂v0
= v̄1

∂v1

∂v0
+ v̄2

∂v2

∂v0

44
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Fo
rw

ar
d

pr
op

ag
at

io
n

y

v−1 = x1 = 2

v0 = x2 = 3

v1 = v−1
v0

= 2/3

v2 = exp(v0) = exp(3)

v3 = sin(v1) = 0.618

v4 = v−1 × v2 = 40.171

v5 = v4 − v3 = 39.553

y = v5 = 39.553

(A) Forward Primal Trace.

Fo
rw

ar
d

pr
op

ag
at

io
n

y

v̇−1 = ẋ1 = 1

v̇0 = ẋ2 = 0

v̇1 = v̇−1v0−v−1 v̇0
v2

0
= 1/3

v̇2 = v̇0 × v2 = 0

v̇3 = v̇1 cos(v1) = 0.262

v̇4 = v̇−1 × v2 + ν−1 × v̇2 = 20.086

v̇5 = v̇4 − v̇3 = 19.824

∂y
∂x1

= v̇5 = 19.824

(B) Forward mode, with ẋ = e1 for ∂ f
∂x1

.

Fo
rw

ar
d

pr
op

ag
at

io
n

y

v̇−1 = ẋ1 = 0

v̇0 = ẋ2 = 1

v̇1 = v̇−1v0−v−1 v̇0
v2

0
= −2/9

v̇2 = v̇0 × v2 = exp(3)

v̇3 = v̇1 cos(v1) = −0.175

v̇4 = v̇−1 × v2 + v−1 × v̇2 = 40.171

v̇5 = v̇4 − v̇3 = 40.346

∂y
∂x2

= v̇5 = 40.346

(C) Forward mode, with ẋ = e2 for ∂ f
∂x2

.

TABLE 2.1: Forward Accumulation Mode

For simplicity, we will represent this step incrementally, as in [166],

v̄0 = v̄2
∂v2

∂v0

, and

v̄0 = v̄0 + v̄1
∂v1

∂v0

4. evaluate v̄i in succession, following the computational graph in figure 2.4;

5. obtain the final intended result,
(

∂ fi
∂x1

, ..., ∂ fi
∂xn

)
= v̄−, at the point (x1, ..., xn).

Fo
rw

ar
d

pa
ss

y

v−1 = x1 = 2

v0 = x2 = 3

v1 = v−1
v0

= 2/3

v2 = exp(v0) = exp(3)

v3 = sin(v1) = 0.618

v4 = v−1 × v2 = 40.171

v5 = v4 − v3 = 39.553

y = v5 = 39.553

(A) Forward Primal Trace.

R
ev

er
se

pa
ss

x

x̄1 = v̄−1 = 19.824
x̄2 = v̄0 = 40.346

v̄−1 = v̄−1 + v̄1
∂v1

∂v−1
= v̄−1 + v̄1 × 1

v0
= 19.824

v̄0 = v̄0 + v̄1
∂v1
∂v0

= v̄0 + v̄1 ×
(
− v−1

v2
0

)
= 40.346

v̄−1 = v̄4
∂v4

∂v−1
= v̄4 × v2 = 20.086

v̄0 = v̄2
∂v2
∂v0

= v̄2 × exp(v0) = 40.171
v̄1 = v̄3

∂v3
∂v1

= v̄3 × cos(v1) = −0.786
v̄2 = v̄4

∂v4
∂v2

= v̄4 × v−1 = 2
v̄3 = v̄5

∂v5
∂v3

= v̄5 × (−1) = −1
v̄4 = v̄5

∂v5
∂v4

= v̄5 × 1 = 1

v̄5 = ȳ = 1

(B) Reverse mode.

TABLE 2.2: Reverse Accumulation Mode.

2. PHYSICS-INFORMED NEURAL NETWORKS 45

2.2.2.3 Loss Function and Feedback Mechanism

In PINNs, the loss function gains a special importance as it is where the physics of the

system is encoded. In general, the loss function is a combination of the loss from the

residual of the interior collocation points, Lres, with the residual of the boundary points,

Lbound, with the classical L2 loss from known training data (as in NNs), Ldata.

L(θ) = ωresLres + ωboundLbound + ωdataLdata (2.11)

, where



Ldata =
1

Nd

Nd

∑
i=1
||ûθ(zi)− ui||2

Lres =
1

Nc

Nc

∑
i=1
||rθ(zi)||2

Lbound = 1
Nb

Nb

∑
i=1
B(ûθ(z))2

(2.12)

, and ωi are the weights that measure how important each of the terms is.

Note that we defined the loss functionsLi using the standard L2 loss. This is the choice

made in the original paper [150], and in virtually all papers since, following the common

practice of using it when dealing with NN, given their smoothness and differentiability

capabilities.

However, recently, some work has suggested that some applications require other

metrics for the loss function. In particular, in ref[171], the authors show that, in the case

of Hamilton-Jacobi-Bellman equation, a high-dimensional non-linear PDE, the L2 is not

suitable so solve them. In fact, stability is only guaranteed for Lp distances where p is

sufficiently large. They showed empirically that, in this case, L∞ is a better choice.

The introduction of the weights ωi in equation 2.11 intends to give some flexibility

to the system, as different sources of loss contribute in different ways for the total error

(e.g., prioritize minimizing the loss on the boundary points may lead to a faster and better

convergence than on the collocation points). However, these hyper-parameters are chosen

at the start and the choice of values is not always clear. Furthermore, in many cases,

regardless of the weights, the PINN is still too ’stiff’ and it will not converge [172, 173].

In order to give the network more flexibility to improve convergence, several methods

that rely on treating the weights ωi as learning parameters have been presented [174].

All vastly improve the NN’s performance. The most relevant ones are Learning Rate

Annealing [172], Neural Tangent Kernel Weighting [173], Minimax Weighting [154] and

46
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Soft Attention Weighting (SA-PINNs) [174]. The latter is the most recent method and,

despite some conceptual differences, can be seen as a more general case of the others. For

this reason, and given their importance in order to optimize PINNs, we will present this

method in this section.

In SA-PINNs the weights in the loss function are updated via gradient descent in

parallel with the NN’s weights and biases. Then, equation 2.11 becomes:

L(θ, λres, λbound, λdata) = Lres(θ, λres) + Lbound(θ, λbound) + Ldata(θ) (2.13)

where λres = (λ1
res, ..., λNc

res) and λbound = (λ1
bound, ..., λNres

b) are trainable, non negative

parameters. Here lies the main difference with the other mentioned methods: in SA-

PINNs each weight corresponds to a point individually.

Equation 2.12 then becomes:



Ldata(θ) =
1

Nd

Nd

∑
i=1
||ûθ(zi)||2

Lres(θ, λres) =
Nc

∑
i=1

m(λi
res)||rθ(zi)− ui||2

Lbound(θ, λbound) =
Nb

∑
i=1

m(λi
bound)B(ûθ(z))2

(2.14)

where m(λ) is the self-adaptation mask function, a non-negative, differentiable, strictly

increasing function of λ. Common choices for m(λ) are polynomial functions, m(λ) =

cλq, for c, q > 0, or sigmoidal functions. Large values of q should be avoided to avoid

numerical overflow, and too sharp sigmoidal functions should be avoided to avoid van-

ishing gradients issues.

The new objective of this PINNs variant is then:

SA-PINNs Optimization Problem

θ∗ = argmin
θ

max
λres,λbound

L(θ, λres, λbound) (2.15)

L(θ, λres, λbound, λdata) = Lres(θ, λres) + Lbound(θ, λbound) + Ldata(θ) (2.16)

The learning procedure for these new variables is done via gradient descent and fur-

ther details can be found in [174].

Note that the parameters λ have to be initiated at the beginning of training, as with

other network parameters. This can be done in an uniform way (e.g., setting them equal

2. PHYSICS-INFORMED NEURAL NETWORKS 47

to 1) or in a random fashion, as with NN’s weights. The authors of [174] suggest a more

PDE informed approach: if a specific set of data is likely to be more important for the con-

vergence, it is useful to inform the network, by setting the corresponding λ to be higher,

and thus avoiding the gradient being stuck in a local minima during the learning phase.

48
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2.2.3 Collocation Points Sampling

One aspect often used to exemplify the simplicity of PINNs’ implementation is how ele-

mentary point distributions, like uniform distribution or random sampling, are sufficient

to assure convergence in most cases. In earlier works, in fact, they have been used in

similar fashion to mesh-grids in FEMs. More recently, however, the distribution of the

collocation points has gained importance, as it was understood that, not only do some

specific distributions provide faster convergence, but, by changing these points through-

out the learning phase, proportionally to the residual function, loss can be significantly

minimized.

This section will cover these two possibilities: static distributions - which remain con-

stant throughout every epoch of learning, and adaptive residual-based distributions -

which change the point distributions, either by adding new points, either by changing

the location of original points, so that the NN is forced to learn better where the residual

is greater.

A comprehensive review on sampling methods for PINNs can be found in [175].

2.2.3.1 Static Distributions

Of the static distributions, uniform sampling (placing points equispaced in the spatio-

temporal domain, figure 2.5a) and random sampling (placing points following an uni-

form probability distribution across the domain, figure 2.5b) are the most simple and can

be used in simpler cases. In PINNs, interior domain points and boundary points are

treated alike, so they are sampled from the same distribution * .

It is known that, when discritizing the domain in order to evaluate numerically inte-

grals, slightly more structured but still random distributions can perform better. Given

the theoretical motivation given in section 2.2.2 of PINNs being a Monte Carlo approach

to the contrained optimization problem posed, it is natural that such distributions per-

form well in this context and that is exactly what simulations show. For this, we chose

Latin Hypercube sampling (LHS) - figure 2.5c -, and Sobol sequences - figure 2.5d.

LHS [176] is a Monte Carlo sampling method that partition the intended region into

non-overlapping intervals of equal probability, following a normal distribution.

*in the random sampling case, typically, instead of sampling N points for x = 0 and other N points
for x = 1, one samples 2N points in the intended domain, and then uses a Bernoulli distribution to ran-
domly attribute the points to each boundary; this allows for more flexibility, at the cost of possibly having an
unbalance set, as is the case of figure 2.5b, where some pieces of the boundary will not be represented well.

2. PHYSICS-INFORMED NEURAL NETWORKS 49

(A) Uniform
sampling.

(B) Random
sampling.

(C) Latin
Hypercube

sampling.

(D) Sobol se-
quences.

FIGURE 2.5: The four most common static collocation points’ distributions. In blue, in-
terior domain collocation points - 64 points in the domain (0, 1] × (0, 1)-, and, in gray,
boundary collocation points (the case represented is when spatial boundaries, x = 0 and

x = 1, are known and the initial boundary, at t = 0, is also known).

Sobol sequences [177] are a quasi-random low-discrepancy *, base-2 †, digital sequences,

that fill the domain in a more structured way.

Figure 2.6, represents the average of 10 runs with the 4 sampling methods mentioned.

It was used the geometric mean, as it is less sensitive to outliers (bad runs) than the arith-

metic mean. It was run over 30k epochs, with 211 main collocation points, 26 points for

t = 0 and 26 for each of the two spatial boundaries. The PDE in question is BE (see section

2.2.7). The NN used had 8 hidden layers, with 20 neurons each; no regularization method

was used.

Note that there is a high variance between runs: if the bottom error band was rep-

resented, there would be an overlap between all results, which does not allow to make

conclusions with statistical significance (more runs would be needed). We can conclude,

however, that this simulation supports other studies, that conclude that uniform sam-

pling is the worst option, followed by random sampling, and that LHC sampling and

Sobol sequences converge better than the other two [132, 150, 175]. Most literature comes

to the conclusion that Sobol sequences are slightly better, while this simulation suggests

the opposite. The data is too scarce, however, to make a definite conclusion on this.

A variation on the methods here described is the algorithm that is most used in PINNs’

papers (that could also be included in the next section, on adaptive distributions): using

the same distribution throughout learning, but re-sample all the points on each iteration

(or every N iteractions). This ensures a much greater robustness of NN, as more domain

*the discrepancy parameter measures how uniform or how random the sequence is.
†for this reason, Sobol sequences require that the number of points sampled is a power of 2.

50
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

FIGURE 2.6: L2 relative error for the 4 static distributions mentioned. In shade, it is
represented one standard deviations over the 10 runs; given the logarithmic nature of the
y-axis, the lower band of the error takes the entirety of the lower region of the graph; for

clarity, we opted for only representing the top band.

will be represented in it, and provides a greater generalization quality and confers multi-

scale properties to the network that truly differentiate them from traditional methods

[133]. In particular, re-sampling with the random distribution as base is called Random-R.

2.2.3.2 Adaptive Residual-based Distributions

Like in FEM, in PINNs, the natural progress from the static distributions is to use dynamic

distributions, that adapt with the need to better learn some regions of the domain over

others. Recent studies have supported this idea, by showing a significant improvement

in performance when using non-uniform adaptive sampling [133, 178].

At the moment of writing, the main methods of adaptive residual-based sampling

are Residual-based adaptive refinement with greed (RAR-G), Residual-based adaptive

distribution (RAD) and Residual-based adaptive refinement with distribution (RAR-

D). All three methods are based on the same idea: repeatedly adding points to the training

set after one (or k) iterations, placing them where the residual is greater so that the NN

minimize the error on that area, where the error is greater. These methods differ on how

greedy their approach is; RAR-G focus on the points at locations with greater residuals,

RAD samples the points following a certain distribution and controls the balance between

2. PHYSICS-INFORMED NEURAL NETWORKS 51

points with high residuals and points with low residuals via the use of hyper-parameters,

and RAR-D is a hybrid of the other two methods, and thus is the more general approach.

An in depth discussion on this topic can be found in [175].

2.2.4 Activation Function

In DL, the most common activation functions used in NNs are ReLU, f (x) = max(0, x),

and the sigmoid function, σ(x) = 1
1+exp(−x) . Other important functions are tanh = exp(x)−exp(−x)

exp(x)+exp(−x)

or swish = x · σ(βx), where σ is the sigmoid function, and β can be either a constant or a

trainable parameter [179].

The choice of the activation function is central for the consistency of PINNs. Sev-

eral works have shown that PINNs require smooth activation functions [162, 180] (hence,

ReLU, ELU, LReLU should not be used). A common choice for the activation function is

the hyperbolic tangent, tanh, given that it is infinitely differentiable (and the activation

function should be, at least, as many times differentiable as the order of the PDE). Note

that the range of the domain is important as most of these functions are linear away from

zero (normalization to the [0, 1] or [−1, 1] is the solution often employed) [181].

In [182], the authors show that the swish activation function, with β as a trainable

parameter, outperforms all other activation functions mentioned.

2.2.5 Optimization Method

In PINN, usually the loss function is optimized via minibatch sampling using ADAM and/or

L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm. Tipically, intially the

networks learns with ADAM, and then L-BFGS is used [183]. Different studies show that,

in many cases, L-BFGS obtains faster convergence rate and reducing computing cost than

other algorithms [181, 184].

2.2.6 Number of Points Sampled

While the time it takes to perform a simulation on a PINN does not scale with the number

of points considered, as traditional methods do, the time it takes to train them does scale

with the number of collocation and boundary points. In fact, it scales linearly, as with any

other NN, O(N). It is relevant, then, to study the tradeoff between longer training with

more points and the accuracy of prediction we get from the same.

52
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

FIGURE 2.7: L2 relative error for varying Nres (λ constant). For clarity, only represented
top error shaded band.

Figure 2.7 represents the difference in performance while varying Nres, averaged over

than runs (geometric mean). We used Nres ∈ {26, 28, 210, 212, 214}. The number of colloca-

tion and boundary points also changed with the Nres, in such a that that λ = log2
Nres

Nbound·Nt=0

remained constant (and equal to 1, as in an uniform grid). It was run over 30k epochs,

using Sobol sequences, and on BE.

As expected, as we feed more collocation points to the network, the error decreases,

but by a smaller amount each time. Figure 2.8 shows how long each of these simulations

took to converge, so we can analyze the trade-off.

Once again, as expected, the running time grows approximately linearly with the

number of collocation points. The reason this relationship is not exact - apart from ran-

dom error - is that we prioritized keeping the ratio λ constant, and thus, the total number

of points does not grow linearly (Nres = Nt=0 · Nbound = C2, so Ntotal = 3C + C2; as

C2 → k · C2, Ntotal = k · Ntotal − 3C
√

k(
√

k− 1), or, in this case, Ntotal = k · Ntotal − 6C).

Table 2.3 resumes figures 2.7 and 2.8, in particular the inverse relationship aforemen-

tioned. There is no particular reason to choose one over the other, the choice should be

made based on the problem in question, the accuracy intended and the availability of

computing power.

Figure 2.9 shows how the L2 error changes with the number of points on the bound-

aries, keeping the number of interior collocation points fixed, i.e., varying λ. We used

2. PHYSICS-INFORMED NEURAL NETWORKS 53

(A) t/tn=16, showing that all proportion be-
tween training per epoch for PINNs with

different Nres is approximately constant.

(B) t/tn=16, for epoch = 30k, in logarithmic
scale.

FIGURE 2.8: Computing time for PINNs with different Nres.

Nres L2 error σ L2(n−1)
L2(n)

tn
tn−1

64 2.36× 10−2 6.25× 10−2 — —
256 6.51× 10−4 1.89× 10−3 36.22 1.27
1024 2.58× 10−5 1.21× 10−5 25.19 2.32
4096 1.12× 10−5 3.76× 10−6 2.32 3.94
16384 8.79× 10−6 4.16× 10−6 1.27 4.55

TABLE 2.3: Comparison between the performance for PINNs with different Nres.

Nres = 213 = 8192, so that λ ∈ {−5,−3,−1, 1, 3, 5, 7, 9}.

Here, the total running time is less relevant than before because, despite growing with

Nbound, for small values of λ, the dominating factor is Nres.

We can see in figure 2.9 that the data suggest that, besides extremely small values

(negative λ), the number of points on the boundaries only slightly affects the performance,

in some cases not in a linear fashion (and well within the error bars). For this reason, we

suggest choosing a small, non-negative value of λ, {0, 1, 2} (the magnitude depending

on the importance of the boundaries for the PDE in question).

54
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

FIGURE 2.9: L2 relative error for varying λ.

2.2.7 Solving PDEs with PINNs

As mentioned before, one of the main applications of PINNs is to solve PDEs.

Consider the following general PDE, parametrized by the parameters λ defined on a

domain Ω:

f

(
x;

∂u
∂x1

, ...,
∂u
∂xd

;
∂2u

∂x1∂x1
, ...,

∂2u
∂x1∂xd

; ...; λ

)
= 0, x = (x1, ..., xd) ∈ Ω (2.17)

, and with boundary conditions defined on a domain ∂Ω:

B(u, x) = 0 on ∂Ω (2.18)

Initial conditions and boundary conditions are treated the similarly. Our goal is to find

a surrogate solution û(x, t) that approximates the true solution for u(x, t)

The choice of PDE in PINN literature is very diverse, normally depending on the

strengths of the method being studied.For low-dimensional PDEs, we suggest using BE

and the WE, with the initial conditions shown in this section, as they have an analytical

solution and they force the NN to adapt to sharp solutions and multi-scaled solutions,

respectively.

2. PHYSICS-INFORMED NEURAL NETWORKS 55

The BE is the most common PDE seen in PINNs’ literature. It corresponds to a one-

dimensional time-depent case of the more general Navier-Stokes equations.

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 , x ∈ [−1, 1], t ∈ [0, 1] (2.19)

In PINNs literature, BE is almost always solved with the following Dirichlet boundary

conditions:

u(x, 0) = − sin(πx), x ∈ [−1, 1]

u(−1, t) = u(1, t) = 0, t ∈ [0, 1]
(2.20)

This is due to the solution’s sharp edge at x = 0 and t >> 0, which makes it useful to

test PINNs accuracy when dealing with shocks. However, with this boundary conditions,

the PDEs has no analytical solution, and thus, we have to obtain a numerical solution via

finite elements to compare. This can be done to arbitrary precision, but, to avoid the risk

of scale choosing and error propagation, we chose to solve the BE with the following (also

Dirichlet) boundary conditions:

u(x, 0) =
2πν sin(πx)

1 + ϵ + cos(πx)
, x ∈ [0, 1]

u(0, t) = u(1, t) = 0, t ∈ [0, 1]
(2.21)

which has the exact solution

u(x, t) =
2πν sin(πx) exp(−π2νt)

1 + ϵ + cos(πx) exp(−π2νt)
, ϵ > 0 (2.22)

The parameter ϵ measures how sharp the solution’s edge, near x = 1 and t = 0, is.

To mimic the same challenge to the network as the BE with eq. 2.20, we chose a small ϵ:

ϵ = ν = 0.01/π. The plot of the solution can be seen in figure 2.10a.

The WE PDE takes the form:

∂2u
∂t2 − 4

∂2u
∂x2 = 0, x ∈ [0, 1], t ∈ [0, 1] (2.23)

Here, we will also choose a very particular set of mixed boundary conditions, in order

to test PINNs ability to find multi-scale solutions.

56
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

u(x, 0) = sin(πx) +
1
2

sin(4πx), x ∈ [0, 1]

u(0, t) = u(1, t) = 0, t ∈ [0, 1]

∂u
∂t

(x, 0) = 0, x ∈ [0, 1]

(2.24)

This has the exact solution, represented in figure 2.10b,

u(x, t) = sin(πx) cos(2πt) +
1
2

sin(4πx) cos(8πt), x ∈ [0, 1], t ∈ [0, 1] (2.25)

(A) Exact solution to BE (eq. 2.22). (B) Exact solution to WE (eq. 2.25).

FIGURE 2.10: Exact solutions to BE and WE.

2. PHYSICS-INFORMED NEURAL NETWORKS 57

2.2.8 Exotic PINNs

The original, vanilla version of PINN is a very general approach, more than an algorithmic

method. So, it is not surprising that over the past few months, a whole zoo of variations of

the standard PINN have been published. Some are simply improvements on the original

paper, while others use the idea as a starting point to explore different applications. In

this section, we present some of the most relevant PINN-derivative acronyms.

2.2.8.1 Symmetry-preserving Physics-Informed Neural Networks (S-PINNs)

S-PINNs, introduced in 2021 in [185], extends the original concept of PINNs to equivariant

NNs, namely with respect to parity and time-reversal. The authors found this formulation

to be superior to the simple version by one or two orders of magnitude. Incorporate all

different kind of symmetries and conservation laws into the network is the most relevant

open problem relating to PINNs [156], and it will be a common theme in the variants

mentioned in this section.

2.2.8.2 Gradient-enhanced Physics-Informed Neural Networks (gPINNs)

gPINNs, introduced in 2021 in [186], add a new penalty term to the loss function that

forces not only the PDE residual to be close to zero, but also its derivative (or more gen-

erally, its gradient):

L(θ) = ωdataLdata + ωresLres + ωboundLbound +
d

∑
i=1

ωgiLgi(θ) (2.26)

,where the new loss is

Lgi(θ) =
1
|Tgi |

∑
x∈Tgi

∣∣∣∣ ∂ f
∂xi

∣∣∣∣2 (2.27)

The authors show that, for the same number of collocation points, gPINNs have a

smaller L2 error than PINNs. However, they also take longer to train due to the extra

term of the loss function. When adding points to the classical PINN, so that the training

time matches, both methods had similar performance. But, given the simplicity of the

concept, we believe that it is a promising concept that should be researched further, and

hence its inclusion here.

58
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2.2.8.3 Conservative Physics-Informed Neural Networks (cPINNs)

cPINNs, introduced in 2020 in [187], are an extension of PINNs that allow for domain de-

composition into non-overlapping sub-domains, which transforms the global PDE prob-

lem to a series of local problems, each one with their own, separate NN. By enforcing in-

terface conditions - from continuity and smoothness to the underlying conservation laws

of the system -, one can guarantee to obtain a global solution consistent with the sym-

metries of the problem, and less prone to error pathologies, as local issues influence less

the solution across the entire domain. The authors show that this formulation ’drastically

increase the convergence rate’.

2.2.8.4 Extended Physics-Informed Neural Networks (xPINNs)

xPINNs were introduced in 2020 in [188], and they further generalize the cPINNs previ-

ously mentioned, by being able to deal with any kind of PDE and with more complex

domains, namely high-dimensional domains.

2.2.8.5 Fractional Physics-Informed Neural Networks (fPINNs)

fPINNs were introduced in 2018 in [132], and are an extension of the original paper to

cover fractional-order PDEs, in particular space-time fractional advection-diffusion equa-

tions. The approach is general, and can also be used to solve integro-differential equa-

tions. The key to the method is its hybrid approach of both AD for the integer-order

operators and numerical discretization for the fractional-order ones.

2.2.8.6 Bayesian Physics-Informed Neural Networks (B-PINNs)

B-PINNs, introduced in 2021 in [160], extend the original concept of PINNs to be able to

deal with noisy data. They achieve this by making use of the Bayesian framework. As

a result, they are able to quantify the aleatoric uncertainty of the predictions, as well as

being robust to outliers.

2.2.8.7 Deep Operator Network (DeepONet)

As mentioned when presenting NNs, they are not only great approximators of functions,

they also approximate with remarkable success operators. DeepONet [189, 190] is a PINN

adapted to learn non-linear operators. It constructs two sub-networks that encode the

2. PHYSICS-INFORMED NEURAL NETWORKS 59

input functions (branch net) and location variables separately (trunk part), that then are

used to identify the operators. Results show that it performs remarkably well even in

small data sets, and it significantly reduces the generalization error when compared with

PINNs.

Other methods recently presented include Physics-Informed Adversarial Training (PIAT)

[191], Weak Physics-Informed neural networks (wPINNs) [192] and Variational Energy

based PINNs (VE-PINNs) [193].

2.3 Fluid Mechanics

One of the main applications of PINNs is Computational Fluid Dynamics (CFD). The

multi-scale, chaotic, turbulent behaviour of fluid dynamics makes them a prime target of

PIML, given its unique capability to deal with high-dimensional systems, noisy data, and

inverse flow problems (like unknown boundary conditions) [136, 194].

Despite the immense progress made over the past decades in solving numerically

compressible and incompressible flow fields given by the NSEs, traditional methods, such

as FEMs or spectral methods, rely either on precise global measures of the fluid’s velocity

and pressure or on defined domain geometry and boundary conditions. In many cases,

this is not feasible: often the problem is ill-defined, and solving all relevant dissipation

scales in a turbulent flow is simply impossible, even with the most powerful computers.

Studies have shown that PINNs can successufully tackle these cases, both for incompress-

ible flows [195] and compressible flows [196]. Note that PINNs and traditional methods

excel in mostly disjoint sets of problems, and, thus, progress in CFD is mostly likely de-

pendent on the cooperation of both approaches for a full understanding of these complex

phenomena. The usefulness and limitations of PINNs when compared with traditional

methods is best presented in [136]:

”PINNs are not meant to be a replacement of the existing CFD codes, and in

fact the current generation of PINNs is not as accurate or as efficient as high-

order CFD codes [197] for solving the standard forward problems. This limi-

tation is associated with the minimization of the loss function, which is a high-

dimensional non-convex function, a limitation which is a grand challenge of

all neural networks for even commercial machine learning. However, PINNs

60
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

perform much more accurately and more efficiently than any CFD solver if

any scattered partial spatio-temporal data are available for the flow problem

under consideration. Moreover, the forward and inverse PINN formulations

are identical so there is no need for expensive data assimilation schemes that

have stalled progress especially for optimization and design applications of

flow problems in the past.”

Applications of PINNs to CFD are many and varied. From high-resolution recon-

struction of flow-field data from low-resolution and noisy measurements [198], to solving

Reynolds-averaged NSEs for incompressible turbulent flows [199], to using non-linear

manifold reduced order models to better approximate high-fidelity model solutions with

a smaller latent space dimension [200].

Although training a NN is typically quite slow, approaches like the ones mentioned

also allow for the use of techniques like transfer learning. For example, one can use a

NN that has been trained for a small Reynolds number to make predictions for a flow

with a higher Reynolds number. Furthermore, important efforts have been made to make

it possible to infer velocity and pressure fields solely from the knowledge of the time-

evolution of a passive scaler [135].

One of the most surprising applications of PINNs relates to the most fundamental

problem of mathematical fluid mechanics: whether initially smooth solutions of the 3D

incompressible Euler equations can form a singularity in finite time (blow up) [201]. The

concept of using numerical computational simulations to solve exactly a theoretical prob-

lem is not new; in fact, a simpler version of this same problem - the one dimensional

version - was solved via computer-assisted proof [202]. In a similar approach, and building

on previous work that hinted that a particular case of flow solutions - periodic cylinder

with solid boundaries - might blow up in finite time [203], the authors of [204] used PINNs

to find smooth self-similar solution that could be the basis for the so sought after proof of

the problem.

For a more complete reviews on ML methods for CFD (not exclusively PINNs) we

suggest reading [136, 194, 205].

BIBLIOGRAPHY 61

2.4 Closing Remarks

As a very recent area, new papers are being published every week that expand the ideas

of the original PINN paper and further our understanding of this still not very well un-

derstood area. Due to this lack of a complete foundational theory supporting it, the re-

sults being published and presented in this chapter are mostly empirical. For this reason,

it is the author’s understanding that it is important to define concrete benchmarks across

PIML, as a first step for a framework of PINNs. It does not suffice to compare convergence

rates in well-behaved PDEs (say, Burger’s equation), as some struggle, for example, with

discontinuous solutions of PDEs such as nonlinear hyperbolic equations. With so many

different methods with different strengths and weaknesses, how to choose the right one

for each task and how to choose the properties of each is a difficult task at the moment.

We hope that this work serve as a state-of-the-art to help progress this discussion, and

as a tool to direct researchers working with this algorithm to the right resources.

Bibliography

[1] J. F. Pinto da Costa and M. Cabral, “Statistical methods with applications in

data mining: A review of the most recent works,” Mathematics, vol. 10, no. 6,

2022. [Online]. Available: https://www.mdpi.com/2227-7390/10/6/993 [Cited on

page 1.]

[2] W. Krämer, “Stephen t. ziliak and deirdre n. mccloskey, the cult of statistical sig-

nificance: how the standard error costs us jobs. justice and lives,” Statistical Papers,

vol. 53, pp. 243–244, 01 2009. [Cited on page 2.]

[3] R. Wasserstein, A. Schirm, and N. Lazar, “Moving to a world beyond p < 0.05,”

American Statistician, vol. 73, pp. 1–19, 2019. [Cited on page 3.]

[4] D. Benjamin, J. Berger, M. Johannesson, B. Nosek, E.-J. Wagenmakers, R. Berk,

K. Bollen, B. Brembs, L. Brown, C. Camerer, D. Cesarini, C. Chambers, M. Clyde,

T. Cook, P. De Boeck, Z. Dienes, A. Dreber, K. Easwaran, C. Efferson, and V. Johnson,

“Redefine statistical significance,” Nature Human Behaviour, vol. 2, 09 2017. [Cited

on page 3.]

[5] B. McShane, D. Gal, A. Gelman, C. Robert, and J. Tackett, “Abandon statistical sig-

nificance,” American Statistician, vol. 73, pp. 235–245, 2019. [Cited on page 3.]

[6] Q. F. Gronau, H. Singmann, and E.-J. Wagenmakers, “bridgesampling : An r

package for estimating normalizing constants,” Journal of Statistical Software, vol. 92,

2020, 20 citations. [Online]. Available: http://www.jstatsoft.org/v92/i10/ [Cited

on page 3.]

[7] Y. Liu and J. Xie, “Cauchy combination test: A powerful test with analytic p-value

calculation under arbitrary dependency structures,” Journal of the American Statisti-

cal Association, vol. 115, pp. 393–402, 2020. [Cited on page 3.]

63

https://www.mdpi.com/2227-7390/10/6/993
http://www.jstatsoft.org/v92/i10/

64
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[8] J. J. Dziak, D. L. Coffman, S. T. Lanza, R. Li, and L. S. Jermiin, “Sensitivity and

specificity of information criteria,” Briefings in Bioinformatics, vol. 21, no. 2, pp.

553–565, 03 2019. [Online]. Available: https://doi.org/10.1093/bib/bbz016 [Cited

on page 3.]

[9] J. Liu, W. Zhong, and R. Li, “A selective overview of feature screening for

ultrahigh-dimensional data,” Science China Mathematics, vol. 58, no. 10, 2015, cited

By 35. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-84942372194&doi=10.1007%2fs11425-015-5062-9&partnerID=40&md5=

d1740291ecbf6498ccb134f020c4bbec [Cited on page 3.]

[10] D. Bertsimas and B. van Parys, “Sparse high-dimensional regression: Exact scalable

algorithms and phase transitions,” Annals of Statistics, vol. 48, pp. 300–323, 2020.

[Cited on page 5.]

[11] X. Chen, W. Liu, X. Mao, and Z. Yang, “Distributed high-dimensional regression

under a quantile loss function,” Journal of Machine Learning Research, vol. 21, 2020.

[Cited on page 5.]

[12] J. Fan and J. Lv, “Sure independence screening for ultrahigh di-

mensional feature space,” Journal of the Royal Statistical Society. Series B:

Statistical Methodology, vol. 70, no. 5, pp. 849–911, 2008, cited By 1291.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-53849086824&doi=10.1111%2fj.1467-9868.2008.00674.x&partnerID=

40&md5=9e192deaf6073173c9b810792b7e3783 [Cited on page 6.]

[13] D. Nandy, F. Chiaromonte, and R. Li, “Covariate information num-

ber for feature screening in ultrahigh-dimensional supervised prob-

lems,” Journal of the American Statistical Association, 2021, cited By 0.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85101058900&doi=10.1080%2f01621459.2020.1864380&partnerID=

40&md5=c2021d754a70c88f71e06f9a70a54fc6 [Cited on page 6.]

[14] T. Zhou, L. Zhu, C. Xu, and R. Li, “Model-free forward screen-

ing via cumulative divergence,” Journal of the American Statistical As-

sociation, vol. 115, no. 531, pp. 1393–1405, 2020, cited By 7.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

https://doi.org/10.1093/bib/bbz016
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942372194&doi=10.1007%2fs11425-015-5062-9&partnerID=40&md5=d1740291ecbf6498ccb134f020c4bbec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942372194&doi=10.1007%2fs11425-015-5062-9&partnerID=40&md5=d1740291ecbf6498ccb134f020c4bbec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942372194&doi=10.1007%2fs11425-015-5062-9&partnerID=40&md5=d1740291ecbf6498ccb134f020c4bbec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53849086824&doi=10.1111%2fj.1467-9868.2008.00674.x&partnerID=40&md5=9e192deaf6073173c9b810792b7e3783
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53849086824&doi=10.1111%2fj.1467-9868.2008.00674.x&partnerID=40&md5=9e192deaf6073173c9b810792b7e3783
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53849086824&doi=10.1111%2fj.1467-9868.2008.00674.x&partnerID=40&md5=9e192deaf6073173c9b810792b7e3783
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101058900&doi=10.1080%2f01621459.2020.1864380&partnerID=40&md5=c2021d754a70c88f71e06f9a70a54fc6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101058900&doi=10.1080%2f01621459.2020.1864380&partnerID=40&md5=c2021d754a70c88f71e06f9a70a54fc6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101058900&doi=10.1080%2f01621459.2020.1864380&partnerID=40&md5=c2021d754a70c88f71e06f9a70a54fc6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516

BIBLIOGRAPHY 65

2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=

40&md5=8484c99d17cd3c0e25dc63fed7c1c516 [Cited on page 6.]

[15] O. Ledoit and M. Wolf, “Analytical nonlinear shrinkage of large-dimensional co-

variance matrices,” Annals of Statistics, vol. 48, pp. 3043–3065, 2020. [Cited on

page 6.]

[16] H. Sifaou, A. Kammoun, and M.-S. Alouini, “High-dimensional linear discriminant

analysis classifier for spiked covariance model ,” Journal of Machine Learning Re-

search, vol. 21, 2020. [Cited on page 6.]

[17] E. Fang, Y. Ning, and R. Li, “Test of significance for high-dimensional

longitudinal data,” Annals of Statistics, vol. 48, no. 5, pp. 2622–2645, 2020, cited By

3. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85092320223&doi=10.1214%2f19-AOS1900&partnerID=40&md5=

aa517bd4193800d09d58dfbd475f3b7e [Cited on page 6.]

[18] Z. Cai, R. Li, and L. Zhu, “Online sufficient dimension reduction through sliced

inverse regression,” Journal of Machine Learning Research, vol. 21, 2020, cited By

7. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85086798987&partnerID=40&md5=f1e5240efc5b486ca05c9736c9ef538b [Cited on

page 7.]

[19] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust principal compo-

nent analysis with a new tensor nuclear norm,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 42, pp. 925–938, 2020. [Cited on page 7.]

[20] X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with

rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 43, pp. 238–255, 2021. [Cited on page 7.]

[21] S. Volgushev, S.-K. Chao, and G. Cheng, “Distributed inference for quantile regres-

sion processes,” Annals of Statistics, vol. 47, pp. 1634–1662, 2019. [Cited on page 7.]

[22] T. Liang and A. Rakhlin, “Just interpolate: Kernel ridgeless regression can general-

ize,” Annals of Statistics, vol. 48, pp. 1329–1347, 2020. [Cited on page 8.]

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090101443&doi=10.1080%2f01621459.2019.1632078&partnerID=40&md5=8484c99d17cd3c0e25dc63fed7c1c516
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092320223&doi=10.1214%2f19-AOS1900&partnerID=40&md5=aa517bd4193800d09d58dfbd475f3b7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092320223&doi=10.1214%2f19-AOS1900&partnerID=40&md5=aa517bd4193800d09d58dfbd475f3b7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092320223&doi=10.1214%2f19-AOS1900&partnerID=40&md5=aa517bd4193800d09d58dfbd475f3b7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086798987&partnerID=40&md5=f1e5240efc5b486ca05c9736c9ef538b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086798987&partnerID=40&md5=f1e5240efc5b486ca05c9736c9ef538b

66
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[23] E. Candès and P. Sur, “The phase transition for the existence of the maximum likeli-

hood estimate in high-dimensional logistic regression,” Annals of Statistics, vol. 48,

pp. 27–42, 2020. [Cited on page 8.]

[24] T. Hothorn, “Most likely transformations: The mlt package,” Journal of Statistical

Software, vol. 92, 2020. [Cited on page 8.]

[25] A. Solin and S. Särkkä, “Hilbert space methods for reduced-rank gaussian process

regression,” Statistics and Computing, vol. 30, pp. 419–446, 2020. [Cited on page 8.]

[26] A. Gelman, B. Goodrich, J. Gabry, and A. Vehtari, “R-squared for bayesian regres-

sion models,” American Statistician, vol. 73, pp. 307–309, 2019. [Cited on page 8.]

[27] Y. Feng, J. Fan, and J. Suykens, “A statistical learning approach to modal regres-

sion,” Journal of Machine Learning Research, vol. 21, 2020. [Cited on page 8.]

[28] Q. Sun, W.-X. Zhou, and J. Fan, “Adaptive huber regression,” Journal of the American

Statistical Association, vol. 115, pp. 254–265, 2020. [Cited on page 9.]

[29] G. Wang, A. Sarkar, P. Carbonetto, and M. Stephens, “A simple new approach to

variable selection in regression, with application to genetic fine mapping,” Journal

of the Royal Statistical Society. Series B: Statistical Methodology, vol. 82, pp. 1273–1300,

2020. [Cited on page 9.]

[30] S. Kwon, S. Lee, and Y. Kim, “Moderately clipped lasso,” Computational Statistics

Data Analysis, vol. 92, pp. 53–67, 2015. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0167947315001589 [Cited on page 9.]

[31] B. Gaye, D. Zhang, and A. Wulamu, “Improvement of support vector machine

algorithm in big data background,” Mathematical Problems in Engineering, vol. 2021,

p. 5594899, Jun 2021. [Online]. Available: https://doi.org/10.1155/2021/5594899

[Cited on page 10.]

[32] J. Chang, H. Moon, and S. Kwon, “High-dimensional linear discriminant

analysis with moderately clipped lasso,” Communications for Statistical Applications

and Methods, vol. 28, no. 1, pp. 21–37, Jan 2021. [Online]. Available: http://http:

//www.csam.or.kr/journal/view.html?doi=10.29220/CSAM.2021.28.1.021 [Cited

on page 10.]

https://www.sciencedirect.com/science/article/pii/S0167947315001589
https://www.sciencedirect.com/science/article/pii/S0167947315001589
https://doi.org/10.1155/2021/5594899
http://http://www.csam.or.kr/journal/view.html?doi=10.29220/CSAM.2021.28.1.021
http://http://www.csam.or.kr/journal/view.html?doi=10.29220/CSAM.2021.28.1.021

BIBLIOGRAPHY 67

[33] M. Tanveer, T. Rajani, R. Rastogi, and Y. Shao, “Comprehensive review on twin

support vector machines,” 05 2021. [Cited on page 10.]

[34] S. Athey, J. Tibshirani, and S. Wager, “Generalized random forests,” Annals of Statis-

tics, vol. 47, pp. 1179–1203, 2019. [Cited on page 11.]

[35] J. Hill, A. Linero, and J. Murray, “Bayesian additive regression trees: A review and

look forward,” Annual Review of Statistics and Its Application, vol. 7, pp. 251–278,

2020. [Cited on page 11.]

[36] T. Berrett, R. Samworth, and M. Yuan, “Efficient multivariate entropy estimation

via k-nearest neighbour distances,” Annals of Statistics, vol. 47, pp. 288–318, 2019.

[Cited on page 12.]

[37] T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: A

regularization method for supervised and semi-supervised learning,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 41, pp. 1979–1993, 2019. [Cited

on page 12.]

[38] Y. Xian, C. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning-a comprehensive

evaluation of the good, the bad and the ugly,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 41, pp. 2251–2265, 2019. [Cited on page 13.]

[39] G. Lecué and M. Lerasle, “Robust machine learning by median-of-means: Theory

and practice,” Annals of Statistics, vol. 48, pp. 906–931, 2020. [Cited on page 13.]

[40] M. Cattaneo, M. Jansson, and X. Ma, “Simple local polynomial density estimators,”

Journal of the American Statistical Association, vol. 115, pp. 1449–1455, 2020. [Cited on

page 13.]

[41] B. Efron, “Prediction, estimation, and attribution,” Journal of the American Statistical

Association, vol. 115, pp. 636–655, 2020. [Cited on pages xv, 13, and 14.]

[42] D. Apley and J. Zhu, “Visualizing the effects of predictor variables in black box

supervised learning models,” Journal of the Royal Statistical Society. Series B: Statistical

Methodology, vol. 82, pp. 1059–1086, 2020. [Cited on page 14.]

[43] T. Hardwicke, S. Serghiou, P. Janiaud, V. Danchev, S. Crüwell, S. Goodman, and

J. Ioannidis, “Calibrating the scientific ecosystem through meta-research,” Annual

Review of Statistics and Its Application, vol. 7, pp. 11–37, 2020. [Cited on page 15.]

68
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[44] S. Mitchell, E. Potash, S. Barocas, A. D’Amour, and K. Lum, “Algorithmic fairness:

Choices, assumptions, and definitions,” Annual Review of Statistics and Its Applica-

tion, vol. 8, pp. 141–163, 2021. [Cited on page 15.]

[45] P. Sharma, G. Shmueli, M. Sarstedt, N. Danks, and S. Ray, “Prediction-oriented

model selection in partial least squares path modeling,” Decision Sciences, vol. 52,

pp. 567–607, 2021. [Cited on page 15.]

[46] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing machines,” The

Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. [Online]. Available:

https://doi.org/10.1063/1.1699114 [Cited on page 15.]

[47] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their

applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 04 1970. [Online]. Available:

https://doi.org/10.1093/biomet/57.1.97 [Cited on page 15.]

[48] J. Bierkens, P. Fearnhead, and G. Roberts, “The zig-zag process and super-efficient

sampling for bayesian analysis of big data ¡sup¿1¡/sup¿,” Annals of Statistics, vol. 47,

pp. 1288–1320, 2019. [Cited on page 15.]

[49] J. Bierkens and G. Roberts, “A piecewise deterministic scaling limit of

lifted Metropolis–Hastings in the Curie–Weiss model,” The Annals of Applied

Probability, vol. 27, no. 2, pp. 846 – 882, 2017. [Online]. Available: https:

//doi.org/10.1214/16-AAP1217 [Cited on page 15.]

[50] E. Abbe, J. Fan, K. Wang, and Y. Zhong, “Entrywise eigenvector analysis of random

matrices with low expected rank,” Annals of Statistics, vol. 48, pp. 1452–1474, 2020.

[Cited on page 16.]

[51] Z. Li and S. Wood, “Faster model matrix crossproducts for large generalized linear

models with discretized covariates,” Statistics and Computing, vol. 30, pp. 19–25,

2020. [Cited on page 16.]

[52] K. Boudt, P. Rousseeuw, S. Vanduffel, and T. Verdonck, “The minimum regularized

covariance determinant estimator,” Statistics and Computing, vol. 30, pp. 113–128,

2020. [Cited on page 16.]

https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1214/16-AAP1217
https://doi.org/10.1214/16-AAP1217

BIBLIOGRAPHY 69

[53] S. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart, “Rep-

resentation learning for dynamic graphs: A survey,” Journal of Machine Learning

Research, vol. 21, 2020. [Cited on pages 16 and 17.]

[54] W. Yu, Y. Zhang, Z. Chen, and T. Ai, “Sparse reconstruction with spatial

structures to automatically determine neighbors,” International Journal of Geograph-

ical Information Science, vol. 36, no. 2, pp. 338–359, 2022. [Online]. Available:

https://doi.org/10.1080/13658816.2021.1885675 [Cited on page 17.]

[55] J. Fan, R. Li, C.-H. Zhang, and H. Zou, Statistical Foundations of Data Science (1st ed.).

Chapman and Hall/CRC, 2020, https://doi.org/10.1201/9780429096280. [Cited on

pages 18 and 25.]

[56] J. Fan, C. Ma, and Y. Zhong, “A selective overview of deep learning,” 2019. [Cited

on page 18.]

[57] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

[Cited on page 18.]

[58] M. Zeng, Y. Liao, R. Li, and A. Sudjianto, “Local linear approximation algorithm

for neural network,” Mathematics, vol. 10, no. 3, 2022. [Online]. Available:

https://www.mdpi.com/2227-7390/10/3/494 [Cited on page 19.]

[59] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0893608014002135 [Cited on page 19.]

[60] P. L. Bartlett, A. Montanari, and A. Rakhlin, “Deep learning: a statistical viewpoint,”

Acta Numerica, vol. 30, p. 87–201, 2021. [Cited on pages 19 and 20.]

[61] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep learning:

A review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, pp.

3212–3232, 2019. [Cited on page 20.]

[62] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and

D. Terzopoulos, “Image segmentation using deep learning: A survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, cited By

113. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

https://doi.org/10.1080/13658816.2021.1885675
https://www.mdpi.com/2227-7390/10/3/494
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417

70
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=

115a97279a77fb75cf00d20ca1578417 [Cited on page 20.]

[63] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[Cited on page 21.]

[64] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org. [Cited on page 21.]

[65] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-

cation with deep convolutional neural networks,” in Advances in Neu-

ral Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bot-

tou, and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc.,

2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf [Cited on page 21.]

[66] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,

2013. [Online]. Available: http://arxiv.org/abs/1311.2524 [Cited on page 22.]

[67] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. [Online].

Available: http://arxiv.org/abs/1506.02640 [Cited on page 22.]

[68] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,

“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015. [Online].

Available: http://arxiv.org/abs/1512.02325 [Cited on page 22.]

[69] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object

detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, pp.

318–327, 2020. [Cited on page 22.]

[70] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 42, pp. 386–397, 2020. [Cited on

page 22.]

[71] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online]. Available:

http://arxiv.org/abs/1504.08083 [Cited on page 22.]

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100948197&doi=10.1109%2fTPAMI.2021.3059968&partnerID=40&md5=115a97279a77fb75cf00d20ca1578417
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1504.08083

BIBLIOGRAPHY 71

[72] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time

object detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015.

[Online]. Available: http://arxiv.org/abs/1506.01497 [Cited on page 22.]

[73] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” CoRR, vol. abs/1411.4038, 2014. [Online]. Available:

http://arxiv.org/abs/1411.4038 [Cited on page 22.]

[74] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, F. Wei,

and B. Guo, “Swin transformer V2: scaling up capacity and resolution,” CoRR,

vol. abs/2111.09883, 2021. [Online]. Available: https://arxiv.org/abs/2111.09883

[Cited on page 23.]

[75] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr, “Res2net:

A new multi-scale backbone architecture,” IEEE transactions on pattern analysis and

machine intelligence, vol. 43, pp. 652–662, 2021. [Cited on page 23.]

[76] J. Kossaifi, Z. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and A. Anand-

kumar, “Tensor regression networks,” Journal of Machine Learning Research, vol. 21,

2020. [Cited on page 24.]

[77] X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework

using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 32, pp. 3005–3019, 2021. [Cited on page 24.]

[78] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network

for image super-resolution,” vol. 2019-June, 2019, pp. 3862–3871, cited By

271. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85074492188&doi=10.1109%2fCVPR.2019.00399&partnerID=40&md5=

69cc956c19c7c0ab44b42e7df3d282ae [Cited on page 25.]

[79] Z. Berradi, M. Lazaar, H. Omara, and O. Mahboub, “Effect of architecture

in recurrent neural network applied on the prediction of stock price,” IAENG

International Journal of Computer Science, vol. 47, no. 3, pp. 436–441, 2020, cited

By 4. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85089796244&partnerID=40&md5=87bd2abbaf6380d018273d6e5bb94318 [Cited

on page 25.]

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1411.4038
https://arxiv.org/abs/2111.09883
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074492188&doi=10.1109%2fCVPR.2019.00399&partnerID=40&md5=69cc956c19c7c0ab44b42e7df3d282ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074492188&doi=10.1109%2fCVPR.2019.00399&partnerID=40&md5=69cc956c19c7c0ab44b42e7df3d282ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074492188&doi=10.1109%2fCVPR.2019.00399&partnerID=40&md5=69cc956c19c7c0ab44b42e7df3d282ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089796244&partnerID=40&md5=87bd2abbaf6380d018273d6e5bb94318
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089796244&partnerID=40&md5=87bd2abbaf6380d018273d6e5bb94318

72
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[80] J. Serrano-Pérez, G. Fernández-Anaya, S. Carrillo-Moreno, and W. Yu,

“New results for prediction of chaotic systems using deep recurrent neural

networks,” Neural Processing Letters, vol. 53, no. 2, pp. 1579–1596, 2021, cited

By 2. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85102234476&doi=10.1007%2fs11063-021-10466-1&partnerID=40&md5=

726c0eb4003f9129a686e63050b2f059 [Cited on page 25.]

[81] G. Chadha, A. Panambilly, A. Schwung, and S. Ding, “Bidirec-

tional deep recurrent neural networks for process fault classifica-

tion,” ISA Transactions, vol. 106, pp. 330–342, 2020, cited By 11.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85087942640&doi=10.1016%2fj.isatra.2020.07.011&partnerID=40&md5=

9f3b5ec281f9d6470ec02034c1165e57 [Cited on page 25.]

[82] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404,

p. 132306, 2020. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0167278919305974 [Cited on page 25.]

[83] A. Gogna and A. Majumdar, “Discriminative autoencoder for fea-

ture extraction: Application to character recognition,” Neural Pro-

cessing Letters, vol. 49, no. 3, pp. 1723–1735, 2019, cited By 18.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85050795257&doi=10.1007%2fs11063-018-9894-5&partnerID=40&md5=

d539da6a743314a39c35aeb41fe89dd0 [Cited on page 25.]

[84] P.-Y. Chen and J.-J. Huang, “A hybrid autoencoder network for unsupervised

image clustering,” Algorithms, vol. 12, no. 6, 2019, cited By 6. [Online]. Available:

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077464645&doi=

10.3390%2fa12060122&partnerID=40&md5=218f7c3f98909d7cbbb04737db854d01

[Cited on page 25.]

[85] G. Eraslan, L. Simon, M. Mircea, N. Mueller, and F. Theis,

“Single-cell rna-seq denoising using a deep count autoencoder,”

Nature Communications, vol. 10, no. 1, 2019, cited By 196. [On-

line]. Available: https://www.scopus.com/inward/record.uri?eid=

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102234476&doi=10.1007%2fs11063-021-10466-1&partnerID=40&md5=726c0eb4003f9129a686e63050b2f059
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102234476&doi=10.1007%2fs11063-021-10466-1&partnerID=40&md5=726c0eb4003f9129a686e63050b2f059
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102234476&doi=10.1007%2fs11063-021-10466-1&partnerID=40&md5=726c0eb4003f9129a686e63050b2f059
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087942640&doi=10.1016%2fj.isatra.2020.07.011&partnerID=40&md5=9f3b5ec281f9d6470ec02034c1165e57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087942640&doi=10.1016%2fj.isatra.2020.07.011&partnerID=40&md5=9f3b5ec281f9d6470ec02034c1165e57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087942640&doi=10.1016%2fj.isatra.2020.07.011&partnerID=40&md5=9f3b5ec281f9d6470ec02034c1165e57
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050795257&doi=10.1007%2fs11063-018-9894-5&partnerID=40&md5=d539da6a743314a39c35aeb41fe89dd0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050795257&doi=10.1007%2fs11063-018-9894-5&partnerID=40&md5=d539da6a743314a39c35aeb41fe89dd0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050795257&doi=10.1007%2fs11063-018-9894-5&partnerID=40&md5=d539da6a743314a39c35aeb41fe89dd0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077464645&doi=10.3390%2fa12060122&partnerID=40&md5=218f7c3f98909d7cbbb04737db854d01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077464645&doi=10.3390%2fa12060122&partnerID=40&md5=218f7c3f98909d7cbbb04737db854d01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1

BIBLIOGRAPHY 73

2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=

21b9d7b9feebb8f5e8cbf3f7972e05a1 [Cited on page 25.]

[86] M. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning

for cyber security intrusion detection: Approaches, datasets, and comparative

study,” Journal of Information Security and Applications, vol. 50, 2020, cited By

169. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85076848850&doi=10.1016%2fj.jisa.2019.102419&partnerID=40&md5=

906855f749daaa4b583980474be8fdc5 [Cited on page 25.]

[87] D. Berman, A. Buczak, J. Chavis, and C. Corbett, “A survey of deep learning

methods for cyber security,” Information (Switzerland), vol. 10, no. 4, 2019, cited

By 130. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85065867536&doi=10.3390%2finfo10040122&partnerID=40&md5=

fac83292d3a127514bb7e9f824aafe64 [Cited on page 25.]

[88] A. Myronenko, “3d mri brain tumor segmentation using au-

toencoder regularization,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), vol. 11384 LNCS, pp. 311–320, 2019, cited By 167.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85063482275&doi=10.1007%2f978-3-030-11726-9 28&partnerID=40&md5=

72bffdf30a9256c75be69f43ecafd89b [Cited on page 25.]

[89] D.-T. Hoang and H.-J. Kang, “A survey on deep learning based bearing

fault diagnosis,” Neurocomputing, vol. 335, pp. 327–335, 2019, cited By

180. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85056325395&doi=10.1016%2fj.neucom.2018.06.078&partnerID=40&md5=

03b33357c05cd62c38691663942959f1 [Cited on page 25.]

[90] T. Finke, M. Krämer, A. Morandini, A. Mück, and I. Oleksiyuk, “Autoencoders for

unsupervised anomaly detection in high energy physics,” Journal of High Energy

Physics, vol. 2021, no. 6, Jun 2021. [Online]. Available: http://dx.doi.org/10.1007/

JHEP06(2021)161 [Cited on page 25.]

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060401600&doi=10.1038%2fs41467-018-07931-2&partnerID=40&md5=21b9d7b9feebb8f5e8cbf3f7972e05a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076848850&doi=10.1016%2fj.jisa.2019.102419&partnerID=40&md5=906855f749daaa4b583980474be8fdc5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076848850&doi=10.1016%2fj.jisa.2019.102419&partnerID=40&md5=906855f749daaa4b583980474be8fdc5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076848850&doi=10.1016%2fj.jisa.2019.102419&partnerID=40&md5=906855f749daaa4b583980474be8fdc5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065867536&doi=10.3390%2finfo10040122&partnerID=40&md5=fac83292d3a127514bb7e9f824aafe64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065867536&doi=10.3390%2finfo10040122&partnerID=40&md5=fac83292d3a127514bb7e9f824aafe64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065867536&doi=10.3390%2finfo10040122&partnerID=40&md5=fac83292d3a127514bb7e9f824aafe64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063482275&doi=10.1007%2f978-3-030-11726-9_28&partnerID=40&md5=72bffdf30a9256c75be69f43ecafd89b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063482275&doi=10.1007%2f978-3-030-11726-9_28&partnerID=40&md5=72bffdf30a9256c75be69f43ecafd89b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063482275&doi=10.1007%2f978-3-030-11726-9_28&partnerID=40&md5=72bffdf30a9256c75be69f43ecafd89b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056325395&doi=10.1016%2fj.neucom.2018.06.078&partnerID=40&md5=03b33357c05cd62c38691663942959f1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056325395&doi=10.1016%2fj.neucom.2018.06.078&partnerID=40&md5=03b33357c05cd62c38691663942959f1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056325395&doi=10.1016%2fj.neucom.2018.06.078&partnerID=40&md5=03b33357c05cd62c38691663942959f1
http://dx.doi.org/10.1007/JHEP06(2021)161
http://dx.doi.org/10.1007/JHEP06(2021)161

74
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[91] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014. [Cited on

page 25.]

[92] M. Mehralian and B. Karasfi, “Rdcgan: Unsupervised representation learning with

regularized deep convolutional generative adversarial networks,” in 2018 9th Con-

ference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Sympo-

sium, 2018, pp. 31–38. [Cited on page 26.]

[93] A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. Pinheiro,

“Covidgan: Data augmentation using auxiliary classifier gan for improved

covid-19 detection,” IEEE Access, vol. 8, pp. 91 916–91 923, 2020, cited By 185.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85085557685&doi=10.1109%2fACCESS.2020.2994762&partnerID=

40&md5=6b60dfb2a4684573e8bc8abe403e00ae [Cited on page 26.]

[94] M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lal-

bakhsh, M. Jamshidi, L. Spada, M. Mirmozafari, M. Dehghani, A. Sabet,

S. Roshani, S. Roshani, N. Bayat-Makou, B. Mohamadzade, Z. Malek,

A. Jamshidi, S. Kiani, H. Hashemi-Dezaki, and W. Mohyuddin, “Artificial

intelligence and covid-19: Deep learning approaches for diagnosis and

treatment,” IEEE Access, vol. 8, pp. 109 581–109 595, 2020, cited By 126.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85087668610&doi=10.1109%2fACCESS.2020.3001973&partnerID=

40&md5=a1b1053892365ba335791cdc2ff13cc4 [Cited on page 26.]

[95] J. Wang, B. Han, H. Bao, M. Wang, Z. Chu, and Y. Shen, “Data augment

method for machine fault diagnosis using conditional generative adversarial

networks,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal

of Automobile Engineering, vol. 234, no. 12, pp. 2719–2727, 2020, cited By

11. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85086039710&doi=10.1177%2f0954407020923258&partnerID=40&md5=

19c40606c555042aeee98ca2206d5ffd [Cited on page 26.]

[96] F. Zhou, S. Yang, H. Fujita, D. Chen, and C. Wen, “Deep learn-

ing fault diagnosis method based on global optimization gan for

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085557685&doi=10.1109%2fACCESS.2020.2994762&partnerID=40&md5=6b60dfb2a4684573e8bc8abe403e00ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085557685&doi=10.1109%2fACCESS.2020.2994762&partnerID=40&md5=6b60dfb2a4684573e8bc8abe403e00ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085557685&doi=10.1109%2fACCESS.2020.2994762&partnerID=40&md5=6b60dfb2a4684573e8bc8abe403e00ae
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087668610&doi=10.1109%2fACCESS.2020.3001973&partnerID=40&md5=a1b1053892365ba335791cdc2ff13cc4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087668610&doi=10.1109%2fACCESS.2020.3001973&partnerID=40&md5=a1b1053892365ba335791cdc2ff13cc4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087668610&doi=10.1109%2fACCESS.2020.3001973&partnerID=40&md5=a1b1053892365ba335791cdc2ff13cc4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086039710&doi=10.1177%2f0954407020923258&partnerID=40&md5=19c40606c555042aeee98ca2206d5ffd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086039710&doi=10.1177%2f0954407020923258&partnerID=40&md5=19c40606c555042aeee98ca2206d5ffd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086039710&doi=10.1177%2f0954407020923258&partnerID=40&md5=19c40606c555042aeee98ca2206d5ffd

BIBLIOGRAPHY 75

unbalanced data,” Knowledge-Based Systems, vol. 187, 2020, cited By

122. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85068868626&doi=10.1016%2fj.knosys.2019.07.008&partnerID=40&md5=

9effe0c57705b8feacacf837341d6e30 [Cited on page 26.]

[97] H. Zhang, V. Sindagi, and V. Patel, “Image de-raining using a con-

ditional generative adversarial network,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 30, no. 11, pp. 3943–3956, 2020, cited By

129. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85095684743&doi=10.1109%2fTCSVT.2019.2920407&partnerID=40&md5=

dd6483eddc8b36e3165b0e4722ecbba0 [Cited on page 26.]

[98] J. Cheng, Y. Yang, X. Tang, N. Xiong, Y. Zhang, and F. Lei, “Generative

adversarial networks: A literature review,” KSII Transactions on Internet

and Information Systems, vol. 14, no. 12, pp. 4625–4647, 2020, cited By

4. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85099381593&doi=10.3837%2ftiis.2020.12.001&partnerID=40&md5=

8faca2e2946b38e13849ca660544d721 [Cited on page 26.]

[99] Prabhat, Nishant, and D. Vishwakarma, “Comparative analysis of deep

convolutional generative adversarial network and conditional generative

adversarial network using hand written digits,” 2020, pp. 1072–1075, cited

By 5. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85087443365&doi=10.1109%2fICICCS48265.2020.9121178&partnerID=

40&md5=19779e422a44b00c933fd1f3c57da81e [Cited on page 26.]

[100] T. Mukhiddin, W. Lee, S. Lee, and T. Rashid, “Research issues on

generative adversarial networks and applications,” 2020, pp. 487–488, cited

By 3. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85084368269&doi=10.1109%2fBigComp48618.2020.00-19&partnerID=

40&md5=33eeaf89e9b8d6cd60f38ba05dd0498e [Cited on page 26.]

[101] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. Yu, “A comprehensive survey on

graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 32, pp. 4–24, 2021. [Cited on page 26.]

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068868626&doi=10.1016%2fj.knosys.2019.07.008&partnerID=40&md5=9effe0c57705b8feacacf837341d6e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068868626&doi=10.1016%2fj.knosys.2019.07.008&partnerID=40&md5=9effe0c57705b8feacacf837341d6e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068868626&doi=10.1016%2fj.knosys.2019.07.008&partnerID=40&md5=9effe0c57705b8feacacf837341d6e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095684743&doi=10.1109%2fTCSVT.2019.2920407&partnerID=40&md5=dd6483eddc8b36e3165b0e4722ecbba0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095684743&doi=10.1109%2fTCSVT.2019.2920407&partnerID=40&md5=dd6483eddc8b36e3165b0e4722ecbba0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095684743&doi=10.1109%2fTCSVT.2019.2920407&partnerID=40&md5=dd6483eddc8b36e3165b0e4722ecbba0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099381593&doi=10.3837%2ftiis.2020.12.001&partnerID=40&md5=8faca2e2946b38e13849ca660544d721
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099381593&doi=10.3837%2ftiis.2020.12.001&partnerID=40&md5=8faca2e2946b38e13849ca660544d721
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099381593&doi=10.3837%2ftiis.2020.12.001&partnerID=40&md5=8faca2e2946b38e13849ca660544d721
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087443365&doi=10.1109%2fICICCS48265.2020.9121178&partnerID=40&md5=19779e422a44b00c933fd1f3c57da81e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087443365&doi=10.1109%2fICICCS48265.2020.9121178&partnerID=40&md5=19779e422a44b00c933fd1f3c57da81e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087443365&doi=10.1109%2fICICCS48265.2020.9121178&partnerID=40&md5=19779e422a44b00c933fd1f3c57da81e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084368269&doi=10.1109%2fBigComp48618.2020.00-19&partnerID=40&md5=33eeaf89e9b8d6cd60f38ba05dd0498e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084368269&doi=10.1109%2fBigComp48618.2020.00-19&partnerID=40&md5=33eeaf89e9b8d6cd60f38ba05dd0498e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084368269&doi=10.1109%2fBigComp48618.2020.00-19&partnerID=40&md5=33eeaf89e9b8d6cd60f38ba05dd0498e

76
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[102] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-

forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,

pp. 26–38, 2017. [Cited on page 26.]

[103] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol. abs/1701.07274,

2017. [Online]. Available: http://arxiv.org/abs/1701.07274 [Cited on page 26.]

[104] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. [Cited on page 27.]

[105] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and

P. Liu, “Exploring the limits of transfer learning with a unified text-to-text trans-

former,” Journal of Machine Learning Research, vol. 21, 2020. [Cited on page 27.]

[106] B. Samanta, A. De, G. Jana, V. Gomez, P. Chattaraj, N. Ganguly, and M. Gomez-

Rodriguez, “Nevae: A deep generative model for molecular graphs,” Journal of Ma-

chine Learning Research, vol. 21, 2020. [Cited on page 27.]

[107] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations,” Journal of Computational Physics, vol. 378,

pp. 686–707, 2019. [Cited on page 27.]

[108] S. Cuomo, V. S. D. Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli,

“Scientific machine learning through physics-informed neural networks: Where

we are and what’s next,” CoRR, vol. abs/2201.05624, 2022. [Online]. Available:

https://arxiv.org/abs/2201.05624 [Cited on page 27.]

[109] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven discovery

of coordinates and governing equations,” Proceedings of the National Academy

of Sciences, vol. 116, no. 45, pp. 22 445–22 451, 2019. [Online]. Available:

https://www.pnas.org/doi/abs/10.1073/pnas.1906995116 [Cited on page 27.]

[110] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear

embeddings of nonlinear dynamics,” Nature Communications, vol. 9, no. 1, p. 4950,

Nov 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07210-0 [Cited

on page 27.]

http://arxiv.org/abs/1701.07274
https://arxiv.org/abs/2201.05624
https://www.pnas.org/doi/abs/10.1073/pnas.1906995116
https://doi.org/10.1038/s41467-018-07210-0

BIBLIOGRAPHY 77

[111] S. Brunton, M. Budišić, E. Kaiser, and J. Kutz, “Modern koopman theory for dynam-

ical systems,” 02 2021. [Cited on page 27.]

[112] J. Hou, S. Wang, Y. Lai, J. Lin, Y. Tsao, H. Chang, and H. Wang, “Audio-visual speech

enhancement based on multimodal deep convolutional neural network,” CoRR,

vol. abs/1703.10893, 2017. [Online]. Available: http://arxiv.org/abs/1703.10893

[Cited on page 27.]

[113] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley, “Convolutional gated

recurrent neural network incorporating spatial features for audio tagging,” CoRR,

vol. abs/1702.07787, 2017. [Online]. Available: http://arxiv.org/abs/1702.07787

[Cited on page 27.]

[114] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,

Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-augmented transformer

for speech recognition,” vol. 2020-October, 2020, pp. 5036–5040, cited By 141.

[Online]. Available: https://www.scopus.com/inward/record.uri?eid=

2-s2.0-85097919414&doi=10.21437%2fInterspeech.2020-3015&partnerID=

40&md5=518f1dea3acf6d5e0b441df0301b810a [Cited on page 27.]

[115] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-

based neural machine translation,” in Proceedings of the 2015 Conference on Em-

pirical Methods in Natural Language Processing. Lisbon, Portugal: Association

for Computational Linguistics, Sep. 2015, pp. 1412–1421. [Online]. Available:

https://aclanthology.org/D15-1166 [Cited on page 27.]

[116] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,

Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,

J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean,

“Google’s neural machine translation system: Bridging the gap between human

and machine translation,” CoRR, vol. abs/1609.08144, 2016. [Online]. Available:

http://arxiv.org/abs/1609.08144 [Cited on page 27.]

[117] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized latent

multi-view subspace clustering,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 42, pp. 86–99, 2020. [Cited on page 28.]

http://arxiv.org/abs/1703.10893
http://arxiv.org/abs/1702.07787
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097919414&doi=10.21437%2fInterspeech.2020-3015&partnerID=40&md5=518f1dea3acf6d5e0b441df0301b810a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097919414&doi=10.21437%2fInterspeech.2020-3015&partnerID=40&md5=518f1dea3acf6d5e0b441df0301b810a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097919414&doi=10.21437%2fInterspeech.2020-3015&partnerID=40&md5=518f1dea3acf6d5e0b441df0301b810a
https://aclanthology.org/D15-1166
http://arxiv.org/abs/1609.08144

78
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[118] Q. Wang, M. Chen, F. Nie, and X. Li, “Detecting coherent groups in crowd scenes by

multiview clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 42, pp. 46–58, 2020. [Cited on page 28.]

[119] J. da Costa and A. Garcia, “New confinement index and new perspective for

comparing countries- COVID-19,” COMPUTER METHODS AND PROGRAMS IN

BIOMEDICINE, vol. 210, p. 106346, 2021, citations: crossref, scopus, unpaywall,

wos. [Cited on page 29.]

[120] J. F. P. da Costa, F. Ferreira, M. Mascarello, and R. Gaio, “Clustering of Longitudinal

Trajectories Using Correlation-Based Distances,” SN Computer Science, vol. 2, no. 6,

2021, citations: crossref, unpaywall. [Cited on page 29.]

[121] V. Arya, R. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. Hoffman, S. Houde,

Q. Liao, R. Luss, A. Mojsilović, D. Wei, and Y. Zhang, “Ai explainability 360: An

extensible toolkit for understanding data and machine learning models,” Journal of

Machine Learning Research, vol. 21, 2020. [Cited on page 29.]

[122] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne,

R. Yurchak, M. Rußwurm, K. Kolar, K. Kolar, and E. Woods, “Tslearn, a machine

learning toolkit for time series data,” Journal of Machine Learning Research, vol. 21,

2020. [Cited on page 29.]

[123] J. Faouzi and H. Janati, “Pyts: A python package for time series classification,”

Journal of Machine Learning Research, vol. 21, 2020. [Cited on page 29.]

[124] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,

T. Januschowski, D. Maddix, S. Rangapuram, D. Salinas, J. Schulz, A. Türkmen,

and Y. Wang, “Gluonts: Probabilistic and neural time series modeling in python,”

Journal of Machine Learning Research, vol. 21, 2020. [Cited on page 29.]

[125] J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha,

S. Zheng, and Y. Zhu, “Gluoncv and gluon nlp: Deep learning in computer vision

and natural language processing,” Journal of Machine Learning Research, vol. 21, 2020.

[Cited on page 29.]

[126] G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, K. Skianis, and M. Vazirgiannis,

“Grakel: A graph kernel library in python,” Journal of Machine Learning Research,

vol. 21, 2020. [Cited on page 29.]

BIBLIOGRAPHY 79

[127] J. M. B. Haslbeck and L. J. Waldorp, “Mgm : Estimating time-varying mixed

graphical models in high-dimensional data,” Journal of Statistical Software, vol. 93,

2020, 43 citations. [Online]. Available: http://www.jstatsoft.org/v93/i08/ [Cited

on page 30.]

[128] J. Blechschmidt and O. G. Ernst, “Three ways to solve partial differential equations

with neural networks — a review,” GAMM-Mitteilungen, vol. 44, no. 2, p.

e202100006, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

10.1002/gamm.202100006 [Cited on page 32.]

[129] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differential

equations using deep learning,” Proceedings of the National Academy of Sciences, vol.

115, no. 34, pp. 8505–8510, 2018. [Online]. Available: https://www.pnas.org/doi/

abs/10.1073/pnas.1718942115 [Cited on page 32.]

[130] D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total

uncertainty in physics-informed neural networks for solving forward and

inverse stochastic problems,” Journal of Computational Physics, vol. 397, p. 108850,

2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0021999119305340 [Cited on page 32.]

[131] D. Zhang, L. Guo, and G. Karniadakis, “Learning in modal space: Solving time-

dependent stochastic pdes using physics-informed neural networks,” SIAM Journal

on Scientific Computing, vol. 42, pp. A639–A665, 01 2020. [Cited on page 32.]

[132] G. Pang, L. Lu, and G. Karniadakis, “fpinns: Fractional physics-informed neural

networks,” SIAM Journal on Scientific Computing, vol. 41, pp. A2603–A2626, 01 2019.

[Cited on pages 32, 49, and 58.]

[133] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning

library for solving differential equations,” SIAM Review, vol. 63, no. 1, pp. 208–228,

2021. [Online]. Available: https://doi.org/10.1137/19M1274067 [Cited on pages 32

and 50.]

[134] N. Kumar, E. Philip, and V. E. Elfving, “Integral transforms in a physics-informed

(quantum) neural network setting: Applications & use-cases,” 2022. [Online].

Available: https://arxiv.org/abs/2206.14184 [Cited on page 32.]

http://www.jstatsoft.org/v93/i08/
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100006
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100006
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://doi.org/10.1137/19M1274067
https://arxiv.org/abs/2206.14184

80
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[135] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning

velocity and pressure fields from flow visualizations,” Science, vol. 367, no. 6481,

pp. 1026–1030, 2020. [Online]. Available: https://www.science.org/doi/abs/10.

1126/science.aaw4741 [Cited on pages 32 and 60.]

[136] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-

informed neural networks (pinns) for fluid mechanics: a review,” Acta

Mechanica Sinica, vol. 37, no. 12, pp. 1727–1738, Dec 2021. [Online]. Available:

https://doi.org/10.1007/s10409-021-01148-1 [Cited on pages 59 and 60.]

[137] M. Raissi, H. Babaee, and P. Givi, “Deep learning of turbulent scalar

mixing,” Phys. Rev. Fluids, vol. 4, p. 124501, Dec 2019. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevFluids.4.124501

[138] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “NSFnets (navier-stokes flow nets):

Physics-informed neural networks for the incompressible navier-stokes equations,”

Journal of Computational Physics, vol. 426, p. 109951, feb 2021. [Online]. Available:

https://doi.org/10.1016%2Fj.jcp.2020.109951 [Cited on page 32.]

[139] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, “Systems biology

informed deep learning for inferring parameters and hidden dynamics,”

PLOS Computational Biology, vol. 16, pp. 1–19, 11 2020. [Online]. Available:

https://doi.org/10.1371/journal.pcbi.1007575 [Cited on page 32.]

[140] M. Daneker, Z. Zhang, G. E. Karniadakis, and L. Lu, “Systems biology:

Identifiability analysis and parameter identification via systems-biology informed

neural networks,” 2022. [Online]. Available: https://arxiv.org/abs/2202.01723

[Cited on page 32.]

[141] A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B. Zhu, and B. N.

Rogers, “Uncovering turbulent plasma dynamics via deep learning from partial

observations,” Physical Review E, vol. 104, no. 2, aug 2021. [Online]. Available:

https://doi.org/10.1103%2Fphysreve.104.025205 [Cited on page 32.]

[142] E. Kharazmi, M. Cai, X. Zheng, Z. Zhang, G. Lin, and G. E. Karniadakis,

“Identifiability and predictability of integer- and fractional-order epidemiological

models using physics-informed neural networks,” Nature Computational Science,

https://www.science.org/doi/abs/10.1126/science.aaw4741
https://www.science.org/doi/abs/10.1126/science.aaw4741
https://doi.org/10.1007/s10409-021-01148-1
https://link.aps.org/doi/10.1103/PhysRevFluids.4.124501
https://doi.org/10.1016%2Fj.jcp.2020.109951
https://doi.org/10.1371/journal.pcbi.1007575
https://arxiv.org/abs/2202.01723
https://doi.org/10.1103%2Fphysreve.104.025205

BIBLIOGRAPHY 81

vol. 1, no. 11, pp. 744–753, Nov 2021. [Online]. Available: https://doi.org/10.1038/

s43588-021-00158-0 [Cited on page 32.]

[143] A. Rodrı́guez, J. Cui, N. Ramakrishnan, B. Adhikari, and B. A. Prakash,

“Einns: Epidemiologically-informed neural networks,” 2022. [Online]. Available:

https://arxiv.org/abs/2202.10446 [Cited on page 32.]

[144] D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, “Ab

initio solution of the many-electron schrodinger equation with deep neural

networks,” Phys. Rev. Research, vol. 2, p. 033429, Sep 2020. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429 [Cited on page 32.]

[145] Y. Shin, “On the convergence of physics informed neural networks for

linear second-order elliptic and parabolic type PDEs,” Communications in

Computational Physics, vol. 28, no. 5, pp. 2042–2074, jun 2020. [Online].

Available: https://doi.org/10.4208%2Fcicp.oa-2020-0193 [Cited on page 32.]

[146] H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal

of Computational Physics, vol. 91, no. 1, pp. 110–131, 1990. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/002199919090007N [Cited on

page 34.]

[147] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving ordi-

nary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9,

no. 5, pp. 987–1000, 1998. [Cited on page 34.]

[148] I. Lagaris, A. Likas, and D. Papageorgiou, “Neural-network methods for boundary

value problems with irregular boundaries,” IEEE Transactions on Neural Networks,

vol. 11, no. 5, pp. 1041–1049, 2000. [Cited on page 34.]

[149] K. Rudd, “Solving partial differential equations using artificial neural networks.”

PhD Thesis, Duke University, 2013. [Online]. Available: https://hdl.handle.net/

10161/8197 [Cited on page 34.]

[150] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations,” Journal of Computational Physics, vol. 378,

pp. 686–707, 2019. [Cited on pages 34, 45, 49, and 90.]

https://doi.org/10.1038/s43588-021-00158-0
https://doi.org/10.1038/s43588-021-00158-0
https://arxiv.org/abs/2202.10446
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://doi.org/10.4208%2Fcicp.oa-2020-0193
https://www.sciencedirect.com/science/article/pii/002199919090007N
https://hdl.handle.net/10161/8197
https://hdl.handle.net/10161/8197

82
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[151] J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving

partial differential equations,” Journal of Computational Physics, vol. 375, pp. 1339–

1364, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0021999118305527 [Cited on page 34.]

[152] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-constrained

deep learning for high-dimensional surrogate modeling and uncertainty quan-

tification without labeled data,” Journal of Computational Physics, vol. 394, pp.

56–81, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0021999119303559 [Cited on page 34.]

[153] L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling for fluid flows based

on physics-constrained deep learning without simulation data,” Computer Methods

in Applied Mechanics and Engineering, vol. 361, p. 112732, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S004578251930622X

[154] D. Liu and Y. Wang, “A dual-dimer method for training physics-constrained neural

networks with minimax architecture,” Neural Networks, vol. 136, pp. 112–125,

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0893608020304536 [Cited on pages 34 and 45.]

[155] R. Kondor, H. Son, H. Pan, B. Anderson, and S. Trivedi, “Covariant compositional

networks for learning graphs,” 01 2018. [Cited on page 34.]

[156] A. Bogatskiy, S. Ganguly, T. Kipf, R. Kondor, D. Miller, D. Murnane, J. Offermann,

M. Pettee, P. Shanahan, C. Shimmin, and S. Thais, “Symmetry group equivariant

architectures for physics,” 03 2022. [Cited on pages 34 and 57.]

[157] A. Daw, J. Bu, S. Wang, P. Perdikaris, and A. Karpatne, “Rethinking the importance

of sampling in physics-informed neural networks,” 07 2022. [Cited on page 34.]

[158] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and when

can deep-but not shallow-networks avoid the curse of dimensionality: A review,”

International Journal of Automation and Computing, vol. 14, no. 5, pp. 503–519, Oct

2017. [Online]. Available: https://doi.org/10.1007/s11633-017-1054-2 [Cited on

page 35.]

https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999119303559
https://www.sciencedirect.com/science/article/pii/S0021999119303559
https://www.sciencedirect.com/science/article/pii/S004578251930622X
https://www.sciencedirect.com/science/article/pii/S0893608020304536
https://www.sciencedirect.com/science/article/pii/S0893608020304536
https://doi.org/10.1007/s11633-017-1054-2

BIBLIOGRAPHY 83

[159] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,

“Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–

440, Jun 2021. [Online]. Available: https://doi.org/10.1038/s42254-021-00314-5

[Cited on page 35.]

[160] L. Yang, X. Meng, and G. E. Karniadakis, “B-pinns: Bayesian physics-informed

neural networks for forward and inverse pde problems with noisy data,”

Journal of Computational Physics, vol. 425, p. 109913, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0021999120306872 [Cited on

pages 35 and 58.]

[161] F. S. Costabal, S. Pezzuto, and P. Perdikaris, “∇-pinns: physics-informed

neural networks on complex geometries,” 2022. [Online]. Available: https:

//arxiv.org/abs/2209.03984 [Cited on page 35.]

[162] S. Markidis, “The old and the new: Can physics-informed deep-learning replace

traditional linear solvers?” 2021. [Online]. Available: https://arxiv.org/abs/2103.

09655 [Cited on pages 35 and 51.]

[163] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. [Online].

Available: https://www.sciencedirect.com/science/article/pii/0893608089900208

[Cited on page 40.]

[164] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, Dec 1989.

[Online]. Available: https://doi.org/10.1007/BF02551274 [Cited on page 40.]

[165] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of

neural networks: A view from the width,” in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,

Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/

32cbf687880eb1674a07bf717761dd3a-Paper.pdf [Cited on page 40.]

[166] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic dif-

ferentiation in machine learning: A survey,” J. Mach. Learn. Res., vol. 18, no. 1, p.

5595–5637, jan 2017. [Cited on pages 41, 42, and 44.]

https://doi.org/10.1038/s42254-021-00314-5
https://www.sciencedirect.com/science/article/pii/S0021999120306872
https://arxiv.org/abs/2209.03984
https://arxiv.org/abs/2209.03984
https://arxiv.org/abs/2103.09655
https://arxiv.org/abs/2103.09655
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1007/BF02551274
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf

84
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[167] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,

and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),

2016, pp. 265–283. [Online]. Available: https://www.usenix.org/system/files/

conference/osdi16/osdi16-abadi.pdf [Cited on page 42.]

[168] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:

An imperative style, high-performance deep learning library,” in Advances in

Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.

8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf [Cited on page 42.]

[169] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct 1986.

[Online]. Available: https://doi.org/10.1038/323533a0 [Cited on page 42.]

[170] C. Elliott, “The simple essence of automatic differentiation,” Proceedings of the ACM

on Programming Languages, vol. 2, pp. 1–29, 07 2018. [Cited on page 42.]

[171] C. Wang, S. Li, D. He, and L. Wang, “Is l2 physics-informed loss always suitable for

training physics-informed neural network?” 06 2022. [Cited on page 45.]

[172] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient

pathologies in physics-informed neural networks,” 01 2020. [Cited on page 45.]

[173] S. Wang, X. Yu, and P. Perdikaris, “When and why pinns fail to train: A neural

tangent kernel perspective,” Journal of Computational Physics, vol. 449, p. 110768,

2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S002199912100663X [Cited on page 45.]

[174] L. McClenny and U. Braga-Neto, “Self-adaptive physics-informed neural

networks using a soft attention mechanism,” 2020. [Online]. Available: https:

//arxiv.org/abs/2009.04544 [Cited on pages 45, 46, and 47.]

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/323533a0
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://arxiv.org/abs/2009.04544
https://arxiv.org/abs/2009.04544

BIBLIOGRAPHY 85

[175] C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu, “A comprehensive study of

non-adaptive and residual-based adaptive sampling for physics-informed neural

networks,” 2022. [Online]. Available: https://arxiv.org/abs/2207.10289 [Cited on

pages 48, 49, and 51.]

[176] M. Stein, “Large sample properties of simulations using latin hypercube

sampling,” Technometrics, vol. 29, no. 2, pp. 143–151, 1987. [Online]. Available:

http://www.jstor.org/stable/1269769 [Cited on page 48.]

[177] I. Sobol’, “On the distribution of points in a cube and the approximate evaluation of

integrals,” USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,

pp. 86–112, 1967. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/0041555367901449 [Cited on page 49.]

[178] M. A. Nabian, R. J. Gladstone, and H. Meidani, “Efficient training of physics-

informed neural networks via importance sampling,” Computer-Aided Civil and

Infrastructure Engineering, vol. 36, no. 8, pp. 962–977, 2021. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12685 [Cited on page 50.]

[179] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2017.

[Online]. Available: https://arxiv.org/abs/1710.05941 [Cited on page 51.]

[180] S. Mishra and R. Molinaro, “Estimates on the generalization error of physics

informed neural networks (pinns) for approximating pdes,” 2020. [Online].

Available: https://arxiv.org/abs/2006.16144 [Cited on page 51.]

[181] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli,

“Scientific machine learning through physics–informed neural networks: Where

we are and what’s next,” Journal of Scientific Computing, vol. 92, no. 3, p. 88, Jul

2022. [Online]. Available: https://doi.org/10.1007/s10915-022-01939-z [Cited on

page 51.]

[182] C. Cheng and G.-T. Zhang, “Deep learning method based on physics informed

neural network with resnet block for solving fluid flow problems,” Water, vol. 13,

no. 4, 2021. [Online]. Available: https://www.mdpi.com/2073-4441/13/4/423

[Cited on page 51.]

https://arxiv.org/abs/2207.10289
http://www.jstor.org/stable/1269769
https://www.sciencedirect.com/science/article/pii/0041555367901449
https://www.sciencedirect.com/science/article/pii/0041555367901449
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12685
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/2006.16144
https://doi.org/10.1007/s10915-022-01939-z
https://www.mdpi.com/2073-4441/13/4/423

86
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

[183] Q. He, D. Barajas-Solano, G. Tartakovsky, and A. M. Tartakovsky, “Physics-

informed neural networks for multiphysics data assimilation with application

to subsurface transport,” Advances in Water Resources, vol. 141, p. 103610,

2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0309170819311649 [Cited on page 51.]

[184] A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B. Zhu, and B. N.

Rogers, “Uncovering turbulent plasma dynamics via deep learning from partial

observations,” Phys. Rev. E, vol. 104, p. 025205, Aug 2021. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevE.104.025205 [Cited on page 51.]

[185] W. Zhu, W. Khademi, E. G. Charalampidis, and P. G. Kevrekidis, “Neural networks

enforcing physical symmetries in nonlinear dynamical lattices: The case example of

the ablowitz–ladik model,” Physica D: Nonlinear Phenomena, vol. 434, p. 133264, jun

2022. [Online]. Available: https://doi.org/10.1016%2Fj.physd.2022.133264 [Cited

on page 57.]

[186] J. Yu, L. Lu, X. Meng, and G. E. Karniadakis, “Gradient-enhanced physics-informed

neural networks for forward and inverse PDE problems,” Computer Methods in

Applied Mechanics and Engineering, vol. 393, p. 114823, apr 2022. [Online]. Available:

https://doi.org/10.1016%2Fj.cma.2022.114823 [Cited on page 57.]

[187] A. Jagtap, E. Kharazmi, and G. Karniadakis, “Conservative physics-informed neu-

ral networks on discrete domains for conservation laws: Applications to forward

and inverse problems,” Computer Methods in Applied Mechanics and Engineering, vol.

365, p. 113028, 06 2020. [Cited on page 58.]

[188] A. D. J. Karniadakis and George Em, “Extended Physics-Informed Neural Net-

works (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep

Learning Framework for Nonlinear Partial Differential Equations,” Communications

in Computational Physics, vol. 28, no. 5, pp. 2002–2041, Jun. 2020. [Cited on page 58.]

[189] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear

operators via DeepONet based on the universal approximation theorem of

operators,” Nature Machine Intelligence, vol. 3, no. 3, pp. 218–229, mar 2021.

[Online]. Available: https://doi.org/10.1038%2Fs42256-021-00302-5 [Cited on

page 58.]

https://www.sciencedirect.com/science/article/pii/S0309170819311649
https://www.sciencedirect.com/science/article/pii/S0309170819311649
https://link.aps.org/doi/10.1103/PhysRevE.104.025205
https://doi.org/10.1016%2Fj.physd.2022.133264
https://doi.org/10.1016%2Fj.cma.2022.114823
https://doi.org/10.1038%2Fs42256-021-00302-5

BIBLIOGRAPHY 87

[190] S. Goswami, A. Bora, Y. Yu, and G. E. Karniadakis, “Physics-informed deep neural

operator networks,” 2022. [Online]. Available: https://arxiv.org/abs/2207.05748

[Cited on page 58.]

[191] S. Shekarpaz, M. Azizmalayeri, and M. H. Rohban, “Piat: Physics informed

adversarial training for solving partial differential equations,” 2022. [Online].

Available: https://arxiv.org/abs/2207.06647 [Cited on page 59.]

[192] T. De Ryck, S. Mishra, and R. Molinaro, “wpinns: Weak physics informed neural

networks for approximating entropy solutions of hyperbolic conservation laws,”

2022. [Online]. Available: https://arxiv.org/abs/2207.08483 [Cited on page 59.]

[193] S. Goswami, C. Anitescu, and T. Rabczuk, “Adaptive fourth-order phase

field analysis using deep energy minimization,” Theoretical and Applied Fracture

Mechanics, vol. 107, p. 102527, 2020. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0167844219306858 [Cited on page 59.]

[194] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid

mechanics,” Annual Review of Fluid Mechanics, vol. 52, no. 1, pp. 477–508, 2020.

[Online]. Available: https://doi.org/10.1146/annurev-fluid-010719-060214 [Cited

on pages 59 and 60.]

[195] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “NSFnets (Navier-Stokes flow nets):

Physics-informed neural networks for the incompressible Navier-Stokes equa-

tions,” Journal of Computational Physics, vol. 426, p. 109951, Feb. 2021. [Cited on

page 59.]

[196] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, “Physics-informed neural networks

for high-speed flows,” Computer Methods in Applied Mechanics and Engineering, vol.

360, p. 112789, 2020. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0045782519306814 [Cited on page 59.]

[197] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational

Fluid Dynamics. Oxford University Press, 06 2005. [Online]. Available: https:

//doi.org/10.1093/acprof:oso/9780198528692.001.0001 [Cited on page 59.]

[198] H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa, “Physics-informed neural

networks for solving reynolds-averaged navier–stokes equations,” Physics of

https://arxiv.org/abs/2207.05748
https://arxiv.org/abs/2207.06647
https://arxiv.org/abs/2207.08483
https://www.sciencedirect.com/science/article/pii/S0167844219306858
https://www.sciencedirect.com/science/article/pii/S0167844219306858
https://doi.org/10.1146/annurev-fluid-010719-060214
https://www.sciencedirect.com/science/article/pii/S0045782519306814
https://www.sciencedirect.com/science/article/pii/S0045782519306814
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001

88
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

Fluids, vol. 34, no. 7, p. 075117, jul 2022. [Online]. Available: https:

//doi.org/10.1063%2F5.0095270 [Cited on page 60.]

[199] H. Eivazi and R. Vinuesa, “Physics-informed deep-learning applications to

experimental fluid mechanics,” 2022. [Online]. Available: https://arxiv.org/abs/

2203.15402 [Cited on page 60.]

[200] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi, “A fast and accurate physics-informed

neural network reduced order model with shallow masked autoencoder,” 2020.

[Online]. Available: https://arxiv.org/abs/2009.11990 [Cited on page 60.]

[201] V. Yudovich, “Eleven great problems of mathematical hydrodynamics,” Moscow

Mathematical Journal, vol. 3, 01 2003. [Cited on page 60.]

[202] J. Chen, T. Y. Hou, and D. Huang, “On the finite time blowup of the de

gregorio model for the 3d euler equations,” Communications on Pure and Applied

Mathematics, vol. 74, no. 6, pp. 1282–1350, apr 2021. [Online]. Available:

https://doi.org/10.1002%2Fcpa.21991 [Cited on page 60.]

[203] G. Luo and T. Y. Hou, “Potentially singular solutions of the 3d axisymmetric

euler equations,” Proceedings of the National Academy of Sciences, vol. 111, no. 36, pp.

12 968–12 973, 2014. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/

pnas.1405238111 [Cited on page 60.]

[204] Y. Wang, C.-Y. Lai, J. Gómez-Serrano, and T. Buckmaster, “Asymptotic self-similar

blow up profile for 3-d euler via physics-informed neural networks,” 2022.

[Online]. Available: https://arxiv.org/abs/2201.06780 [Cited on page 60.]

[205] R. Vinuesa and S. L. Brunton, “Enhancing computational fluid dynamics with

machine learning,” Nature Computational Science, vol. 2, no. 6, pp. 358–366, Jun

2022. [Online]. Available: https://doi.org/10.1038/s43588-022-00264-7 [Cited on

page 60.]

https://doi.org/10.1063%2F5.0095270
https://doi.org/10.1063%2F5.0095270
https://arxiv.org/abs/2203.15402
https://arxiv.org/abs/2203.15402
https://arxiv.org/abs/2009.11990
https://doi.org/10.1002%2Fcpa.21991
https://www.pnas.org/doi/abs/10.1073/pnas.1405238111
https://www.pnas.org/doi/abs/10.1073/pnas.1405238111
https://arxiv.org/abs/2201.06780
https://doi.org/10.1038/s43588-022-00264-7

Appendix A

Python Code

Code to generate the four collocation points sampling, and exemplified in figure 2.5 -

uniform, random , latin hypercube and Sobol.

1 import numpy as np

3 def uniform_dist(l_bound: list, u_bound: list, n: tuple,

lb_x=True,ub_x=True,lb_t=True,ub_t=False):

5 x,t = np.meshgrid(

np.linspace(l_bound[0],u_bound[0],n[0]+lb_x+ub_x)[lb_x:n[0]+lb_x],

7 np.linspace(l_bound[1],u_bound[1],n[1]+lb_t+ub_t)[lb_t:n[1]+lb_t])

return x.ravel(),t.ravel()

9

def random_dist(l_bound: list, u_bound: list, n: int):

11 x,t = (u_bound[0]-l_bound[0])*np.random.rand(n)+l_bound[0],

(u_bound[1]-l_bound[1])*np.random.rand(n)+l_bound[1]

13 return x,t

15 def random_dist_bound(l_bound: int, u_bound: int, n: int):

x,t = np.zeros((2,n))

17 bernoulli = np.random.binomial(size=n, n=1, p=0.5)

for i,r in enumerate(np.random.rand(n)):

19 t[i] = r

if bernoulli[i]: x[i] = u_bound

21 else: x[i] = l_bound

return x,t

23

89

90
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

from scipy.stats import qmc

25

def latinhypercube_dist(l_bound: list, u_bound: list, n: int):

27 sampler = qmc.LatinHypercube(d=2)

sample = sampler.random(n=64)

29 scaled = qmc.scale(sample, l_bound, u_bound)

x,t = scaled[:,0], scaled[:,1]

31 return x,t

33 def sobol_dist(l_bound: list, u_bound: list, n: int):

sampler = qmc.Sobol(d=2)

35 sample = sampler.random_base2(m=int(np.log2(n)))

scaled = qmc.scale(sample, l_bound, u_bound)

37 x,t = scaled[:,0], scaled[:,1]

return x,t

Next, we have the main library for PINNs. Most of the code shown here is the one used

in the seminal papers in the area [150]; small changes and new functions were created for

the purpose of this paper:

import relevant packages

2 import os

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

4 import tensorflow as tf

import numpy as np

6 import matplotlib.pyplot as plt

import scipy.optimize

8 import pickle

import time

10 from tensorflow.keras.layers import Dense, Lambda

12 # set data type

DTYPE=’float32’

14 tf.keras.backend.set_floatx(DTYPE)

16 # # set random seed for reproducible results

tf.random.set_seed(101)

18

BIBLIOGRAPHY 91

set constants (for Burgers Equation)

20 pi = tf.constant(np.pi, dtype=DTYPE)

viscosity = .01/pi

22

24 import sys

sys.path.insert(0, PATH)

26

with open(’exact_solution.pkl’, ’rb’) as f:

28 exact_ = pickle.load(f)

exact = exact_[2].reshape(201*201,1)

30 T_exact, X_exact, U_exact = exact_

32 # Define model architecture

class PINN_NeuralNet(tf.keras.Model):

34 """ Set basic architecture of the PINN model."""

36 def __init__(self, lb, ub,

output_dim=1,

38 num_hidden_layers=8,

num_neurons_per_layer=20,

40 activation=’tanh’,

kernel_initializer=’glorot_normal’,

42 **kwargs):

super().__init__(**kwargs)

44

self.num_hidden_layers = num_hidden_layers

46 self.output_dim = output_dim

self.lb = lb

48 self.ub = ub

50 # Define NN architecture

self.scale = Lambda(lambda x: 2.0*(x - lb)/(ub - lb) - 1.0)

52 self.hidden = [Dense(num_neurons_per_layer,

activation=tf.keras.activations.get(activation),

54 kernel_initializer=kernel_initializer)

for _ in range(self.num_hidden_layers)]

56 self.out = Dense(output_dim)

92
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

58 def call(self, X):

"""Forward-pass through neural network."""

60 Z = self.scale(X)

for i in range(self.num_hidden_layers):

62 Z = self.hidden[i](Z)

return self.out(Z)

64

class PINNSolver():

66 def __init__(self, model, X_r):

self.model = model

68

Store collocation points

70 self.t = X_r[:,0:1]

self.x = X_r[:,1:2]

72

Initialize history of losses and global iteration counter

74 self.hist = []

self.iter = 0

76

self.l2error = []

78 self.time = []

80 def get_r(self):

82 with tf.GradientTape(persistent=True) as tape:

Watch variables representing t and x during this GradientTape

84 tape.watch(self.t)

tape.watch(self.x)

86

Compute current values u(t,x)

88 u = self.model(tf.stack([self.t[:,0], self.x[:,0]], axis=1))

90 u_x = tape.gradient(u, self.x)

92 u_t = tape.gradient(u, self.t)

u_xx = tape.gradient(u_x, self.x)

94

BIBLIOGRAPHY 93

del tape

96

return self.fun_r(self.t, self.x, u, u_t, u_x, u_xx)

98

def loss_fn(self, X, u):

100

Compute phi_r

102 r = self.get_r()

phi_r = tf.reduce_mean(tf.square(r))

104

Initialize loss

106 loss = phi_r

108 # Add phi_0 and phi_b to the loss

for i in range(len(X)):

110 u_pred = self.model(X[i])

loss += tf.reduce_mean(tf.square(u[i] - u_pred))

112

return loss

114

def get_grad(self, X, u):

116 with tf.GradientTape(persistent=True) as tape:

This tape is for derivatives with

118 # respect to trainable variables

tape.watch(self.model.trainable_variables)

120 loss = self.loss_fn(X, u)

122 g = tape.gradient(loss, self.model.trainable_variables)

del tape

124

return loss, g

126

def fun_r(self, t, x, u, u_t, u_x, u_xx):

128 """Residual of the PDE"""

return u_t + u * u_x - viscosity * u_xx

130

def solve_with_TFoptimizer(self, optimizer, X, u, N=1000):

132 """This method performs a gradient descent type optimization."""

94
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

134 @tf.function

def train_step():

136 loss, grad_theta = self.get_grad(X, u)

138 # Perform gradient descent step

optimizer.apply_gradients(zip(grad_theta, self.model.

trainable_variables))

140 return loss

142 for i in range(N+1):

loss = train_step()

144

self.current_loss = loss.numpy()

146 self.callback()

148 def solve_with_ScipyOptimizer(self, X, u, method=’L-BFGS-B’, **kwargs):

150 def get_weight_tensor():

"""Function to return current variables of the model

152 as 1d tensor as well as corresponding shapes as lists."""

154 weight_list = []

shape_list = []

156

Loop over all variables, i.e. weight matrices, bias vectors

158 and unknown parameters

for v in self.model.variables:

160 shape_list.append(v.shape)

weight_list.extend(v.numpy().flatten())

162

weight_list = tf.convert_to_tensor(weight_list)

164 return weight_list, shape_list

166 x0, shape_list = get_weight_tensor()

168 def set_weight_tensor(weight_list):

"""Function which sets list of weights

BIBLIOGRAPHY 95

170 to variables in the model."""

idx = 0

172 for v in self.model.variables:

vs = v.shape

174

Weight matrices

176 if len(vs) == 2:

sw = vs[0]*vs[1]

178 new_val = tf.reshape(weight_list[idx:idx+sw],(vs[0],vs[1]))

idx += sw

180

Bias vectors

182 elif len(vs) == 1:

new_val = weight_list[idx:idx+vs[0]]

184 idx += vs[0]

186 # Variables (in case of parameter identification setting)

elif len(vs) == 0:

188 new_val = weight_list[idx]

idx += 1

190

v.assign(tf.cast(new_val, DTYPE))

192

def get_loss_and_grad(w):

194 """Function that provides current loss and gradient

w.r.t the trainable variables as vector. This is mandatory

196 for the LBFGS minimizer from scipy."""

198 # Update weights in model

set_weight_tensor(w)

200 # Determine value of \phi and gradient w.r.t. \theta at w

loss, grad = self.get_grad(X, u)

202

Store current loss for callback function

204 loss = loss.numpy().astype(np.float64)

self.current_loss = loss

206

Flatten gradient

96
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

208 grad_flat = []

for g in grad:

210 grad_flat.extend(g.numpy().flatten())

212 # Gradient list to array

grad_flat = np.array(grad_flat,dtype=np.float64)

214

Return value and gradient of \phi as tuple

216 return loss, grad_flat

218

return scipy.optimize.minimize(fun=get_loss_and_grad,

220 x0=x0,

jac=True,

222 method=method,

callback=self.callback,

224 **kwargs)

226 def callback(self, xr=None):

if self.iter % 500 == 0:

228 N = 200

tspace = np.linspace(self.model.lb[0], self.model.ub[0], N+1)

230 xspace = np.linspace(self.model.lb[1], self.model.ub[1], N+1)

T, X = np.meshgrid(tspace, xspace)

232 Xgrid = np.vstack([T.flatten(),X.flatten()]).T

upred = self.model(tf.cast(Xgrid,DTYPE))

234 U = upred.numpy().reshape(N+1,N+1)

erro = np.sum((U_exact-U)**2)/np.sum(U_exact**2)

236 print(f’epoch {self.iter}: loss = {self.current_loss:10.8e},

L2 relative error = {erro:10.8e}’)

238 self.l2error.append(erro)

self.time.append(time.time())

240 self.hist.append(self.current_loss)

self.iter+=1

242

def plot_solution(self, **kwargs):

244 N = 200

tspace = np.linspace(self.model.lb[0], self.model.ub[0], N+1)

BIBLIOGRAPHY 97

246 xspace = np.linspace(self.model.lb[1], self.model.ub[1], N+1)

T, X = np.meshgrid(tspace, xspace)

248 Xgrid = np.vstack([T.flatten(),X.flatten()]).T

upred = self.model(tf.cast(Xgrid,DTYPE))

250 U = upred.numpy().reshape(N+1,N+1)

fig = plt.figure(figsize=(9,6))

252 ax = fig.add_subplot(111, projection=’3d’)

ax.plot_surface(T, X, U, cmap=’viridis’, **kwargs)

254 ax.set_xlabel(’t’)

ax.set_ylabel(’x’)

256 ax.set_zlabel(’$u_\\theta(t,x)$’)

ax.view_init(35,35)

258 return ax

260 def plot_l2error(self, filename, ax=None, save=True):

if not ax:

262 fig = plt.figure(figsize=(7,5))

ax = fig.add_subplot(111)

264 ax.semilogy([500*i for i in range(len(self.l2error))], self.l2error,’k-’)

ax.set_xlabel(’No. of Epochs’)

266 ax.set_ylabel(’L_2 relative error’)

if save:

268 f = f’{filename}_L2error.pkl’

with open(f, ’wb’) as f:

270 pickle.dump(self.l2error, f)

return ax

272

def plot_time(self, filename, ax=None, save=True):

274 if not ax:

fig = plt.figure(figsize=(7,5))

276 ax = fig.add_subplot(111)

ax.semilogy([500*i for i in range(len(self.time))], self.time,’k-’)

278 ax.set_xlabel(’No. of Epochs’)

ax.set_ylabel(’Time’)

280 if save:

f = f’{filename}_time.pkl’

282 with open(f, ’wb’) as f:

pickle.dump(self.time, f)

98
STATISTICAL METHODS IN DATA MINING AND PHYSICS-INFORMED NEURAL

NETWORKS

284 return ax

286 def plot_loss_history(self, filename, ax=None, save=True):

if not ax:

288 fig = plt.figure(figsize=(7,5))

ax = fig.add_subplot(111)

290 ax.semilogy(range(len(self.hist)), self.hist,’k-’)

ax.set_xlabel(’n_{epoch}’)

292 ax.set_ylabel(’$\\phi^{n_{epoch}}$’)

if save:

294 f = f’{filename}_hist.pkl’

with open(f, ’wb’) as f:

296 pickle.dump(self.hist, f)

return ax

298

def plot_residual(self, filename, save=True, **kwargs):

300 den=200

N = den

302 tspace = np.linspace(self.model.lb[0], self.model.ub[0], N+1)

xspace = np.linspace(self.model.lb[1], self.model.ub[1], N+1)

304 T, X = np.meshgrid(tspace, xspace)

Xgrid = np.vstack([T.flatten(),X.flatten()]).T

306 upred = self.model(tf.cast(Xgrid,DTYPE))

U = upred.numpy().reshape(den+1,den+1)

308 # Surface plot of solution u(t,x)

fig = plt.figure(figsize=(12,8))

310 ax = fig.add_subplot(111, projection=’3d’)

ax.plot_surface(T_exact, X_exact, -abs(U_exact-U), cmap=’viridis’);

312 ax.view_init(35,35)

ax.set_xlabel(’t’)

314 ax.set_ylabel(’x’)

ax.set_zlabel(’$u_\\theta(t,x)$’)

316 ax.set_title("Residual of Burgers equation’ solution")

if save:

318 f = f’{filename}_residual.pkl’

with open(filename, ’wb’) as f:

320 pickle.dump(-abs(U_exact-U), f)

return ax

BIBLIOGRAPHY 99

322

def save_solution(self, filename):

324 N = 200

tspace = np.linspace(self.model.lb[0], self.model.ub[0], N+1)

326 xspace = np.linspace(self.model.lb[1], self.model.ub[1], N+1)

T, X = np.meshgrid(tspace, xspace)

328 Xgrid = np.vstack([T.flatten(),X.flatten()]).T

upred = self.model(tf.cast(Xgrid,DTYPE))

330 U = upred.numpy().reshape(N+1,N+1)

f = f’{filename}_solution.pkl’

332 with open(filename, ’wb’) as f:

pickle.dump(U, f)

334

def save_time(self, filename):

336 f = f’{filename}_time.pkl’

with open(f, ’wb’) as f:

338 pickle.dump(self.time, f)

340 def save_l2error(self, filename):

f = f’{filename}_L2error.pkl’

342 with open(f, ’wb’) as f:

pickle.dump(self.l2error, f)

