798 research outputs found

    Gaussian Processes for Machine Learning in Robotics

    Get PDF
    Mención Internacional en el título de doctorNowadays, machine learning is widely used in robotics for a variety of tasks such as perception, control, planning, and decision making. Machine learning involves learning, reasoning, and acting based on the data. This is achieved by constructing computer programs that process the data, extract useful information or features, make predictions to infer unknown properties, and suggest actions to take or decisions to make. This computer program corresponds to a mathematical model of the data that describes the relationship between the variables that represent the observed data and properties of interest. The aforementioned model is learned based on the available training data, which is accomplished using a learning algorithm capable of automatically adjusting the parameters of the model to agree with the data. Therefore, the architecture of the model needs to be selected accordingly, which is not a trivial task and usually depends on the machine-learning engineer’s insights and past experience. The number of parameters to be tuned varies significantly with the selected machine learning model, ranging from two or three parameters for Gaussian processes (GP) to hundreds of thousands for artificial neural networks. However, as more complex and novel robotic applications emerge, data complexity increases and prior experience may be insufficient to define adequate mathematical models. In addition, traditional machine learning methods are prone to problems such as overfitting, which can lead to inaccurate predictions and catastrophic failures in critical applications. These methods provide probabilistic distributions as model outputs, allowing for estimating the uncertainty associated with predictions and making more informed decisions. That is, they provide a mean and variance for the model responses. This thesis focuses on the application of machine learning solutions based on Gaussian processes to various problems in robotics, with the aim of improving current methods and providing a new perspective. Key areas such as trajectory planning for unmanned aerial vehicles (UAVs), motion planning for robotic manipulators and model identification of nonlinear systems are addressed. In the field of path planning for UAVs, algorithms based on Gaussian processes that allow for more efficient planning and energy savings in exploration missions have been developed. These algorithms are compared with traditional analytical approaches, demonstrating their superiority in terms of efficiency when using machine learning. Area coverage and linear coverage algorithms with UAV formations are presented, as well as a sea surface search algorithm. Finally, these algorithms are compared with a new method that uses Gaussian processes to perform probabilistic predictions and optimise trajectory planning, resulting in improved performance and reduced energy consumption. Regarding motion planning for robotic manipulators, an approach based on Gaussian process models that provides a significant reduction in computational times is proposed. A Gaussian process model is used to approximate the configuration space of a robot, which provides valuable information to avoid collisions and improve safety in dynamic environments. This approach is compared to conventional collision checking methods and its effectiveness in terms of computational time and accuracy is demonstrated. In this application, the variance provides information about dangerous zones for the manipulator. In terms of creating models of non-linear systems, Gaussian processes also offer significant advantages. This approach is applied to a soft robotic arm system and UAV energy consumption models, where experimental data is used to train Gaussian process models that capture the relationships between system inputs and outputs. The results show accurate identification of system parameters and the ability to make reliable future predictions. In summary, this thesis presents a variety of applications of Gaussian processes in robotics, from trajectory and motion planning to model identification. These machine learning-based solutions provide probabilistic predictions and improve the ability of robots to perform tasks safely and efficiently. Gaussian processes are positioned as a powerful tool to address current challenges in robotics and open up new possibilities in the field.El aprendizaje automático ha revolucionado el campo de la robótica al ofrecer una amplia gama de aplicaciones en áreas como la percepción, el control, la planificación y la toma de decisiones. Este enfoque implica desarrollar programas informáticos que pueden procesar datos, extraer información valiosa, realizar predicciones y ofrecer recomendaciones o sugerencias de acciones. Estos programas se basan en modelos matemáticos que capturan las relaciones entre las variables que representan los datos observados y las propiedades que se desean analizar. Los modelos se entrenan utilizando algoritmos de optimización que ajustan automáticamente los parámetros para lograr un rendimiento óptimo. Sin embargo, a medida que surgen aplicaciones robóticas más complejas y novedosas, la complejidad de los datos aumenta y la experiencia previa puede resultar insuficiente para definir modelos matemáticos adecuados. Además, los métodos de aprendizaje automático tradicionales son propensos a problemas como el sobreajuste, lo que puede llevar a predicciones inexactas y fallos catastróficos en aplicaciones críticas. Para superar estos desafíos, los métodos probabilísticos de aprendizaje automático, como los procesos gaussianos, han ganado popularidad. Estos métodos ofrecen distribuciones probabilísticas como salidas del modelo, lo que permite estimar la incertidumbre asociada a las predicciones y tomar decisiones más informadas. Esto es, proporcionan una media y una varianza para las respuestas del modelo. Esta tesis se centra en la aplicación de soluciones de aprendizaje automático basadas en procesos gaussianos a diversos problemas en robótica, con el objetivo de mejorar los métodos actuales y proporcionar una nueva perspectiva. Se abordan áreas clave como la planificación de trayectorias para vehículos aéreos no tripulados (UAVs), la planificación de movimientos para manipuladores robóticos y la identificación de modelos de sistemas no lineales. En el campo de la planificación de trayectorias para UAVs, se han desarrollado algoritmos basados en procesos gaussianos que permiten una planificación más eficiente y un ahorro de energía en misiones de exploración. Estos algoritmos se comparan con los enfoques analíticos tradicionales, demostrando su superioridad en términos de eficiencia al utilizar el aprendizaje automático. Se presentan algoritmos de recubrimiento de áreas y recubrimiento lineal con formaciones de UAVs, así como un algoritmo de búsqueda en superficies marinas. Finalmente, estos algoritmos se comparan con un nuevo método que utiliza procesos gaussianos para realizar predicciones probabilísticas y optimizar la planificación de trayectorias, lo que resulta en un rendimiento mejorado y una reducción del consumo de energía. En cuanto a la planificación de movimientos para manipuladores robóticos, se propone un enfoque basado en modelos gaussianos que permite una reducción significativa en los tiempos de cálculo. Se utiliza un modelo de procesos gaussianos para aproximar el espacio de configuraciones de un robot, lo que proporciona información valiosa para evitar colisiones y mejorar la seguridad en entornos dinámicos. Este enfoque se compara con los métodos convencionales de planificación de movimientos y se demuestra su eficacia en términos de tiempo de cálculo y precisión de los movimientos. En esta aplicación, la varianza proporciona información sobre zonas peligrosas para el manipulador. En cuanto a la identificación de modelos de sistemas no lineales, los procesos gaussianos también ofrecen ventajas significativas. Este enfoque se aplica a un sistema de brazo robótico blando y a modelos de consumo energético de UAVs, donde se utilizan datos experimentales para entrenar un modelo de proceso gaussiano que captura las relaciones entre las entradas y las salidas del sistema. Los resultados muestran una identificación precisa de los parámetros del sistema y la capacidad de realizar predicciones futuras confiables. En resumen, esta tesis presenta una variedad de aplicaciones de procesos gaussianos en robótica, desde la planificación de trayectorias y movimientos hasta la identificación de modelos. Estas soluciones basadas en aprendizaje automático ofrecen predicciones probabilísticas y mejoran la capacidad de los robots para realizar tareas de manera segura y eficiente. Los procesos gaussianos se posicionan como una herramienta poderosa para abordar los desafíos actuales en robótica y abrir nuevas posibilidades en el campo.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Jesús Romero Cardalda.- Secretaria: María Dolores Blanco Rojas.- Vocal: Giuseppe Carbon

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    Long-term Informative Path Planning with Autonomous Soaring

    Get PDF
    The ability of UAVs to cover large areas efficiently is valuable for information gathering missions. For long-term information gathering, a UAV may extend its endurance by accessing energy sources present in the atmosphere. Thermals are a favourable source of wind energy and thermal soaring is adopted in this thesis to enable long-term information gathering. This thesis proposes energy-constrained path planning algorithms for a gliding UAV to maximise information gain given a mission time that greatly exceeds the UAV's endurance. This thesis is motivated by the problem of probabilistic target-search performed by an energy-constrained UAV, which is tasked to simultaneously search for a lost ground target and explore for thermals to regain energy. This problem is termed informative soaring (IFS) and combines informative path planning (IPP) with energy constraints. IFS is shown to be NP-hard by showing that it has a similar problem structure to the weight-constrained shortest path problem with replenishments. While an optimal solution may not exist in polynomial time, this thesis proposes path planning algorithms based on informed tree search to find high quality plans with low computational cost. This thesis addresses complex probabilistic belief maps and three primary contributions are presented: • First, IFS is formulated as a graph search problem by observing that any feasible long-term plan must alternate between 1) information gathering between thermals and 2) replenishing energy within thermals. This is a first step to reducing the large search state space. • The second contribution is observing that a complex belief map can be viewed as a collection of information clusters and using a divide and conquer approach, cluster tree search (CTS), to efficiently find high-quality plans in the large search state space. In CTS, near-greedy tree search is used to find locally optimal plans and two global planning versions are proposed to combine local plans into a full plan. Monte Carlo simulation studies show that CTS produces similar plans to variations of exhaustive search, but runs five to 20 times faster. The more computationally efficient version, CTSDP, uses dynamic programming (DP) to optimally combine local plans. CTSDP is executed in real time on board a UAV to demonstrate computational feasibility. • The third contribution is an extension of CTS to unknown drifting thermals. A thermal exploration map is created to detect new thermals that will eventually intercept clusters, and therefore be valuable to the mission. Time windows are computed for known thermals and an optimal cluster visit schedule is formed. A tree search algorithm called CTSDrift combines CTS and thermal exploration. Using 2400 Monte Carlo simulations, CTSDrift is evaluated against a Full Knowledge method that has full knowledge of the thermal field and a Greedy method. On average, CTSDrift outperforms Greedy in one-third of trials, and achieves similar performance to Full Knowledge when environmental conditions are favourable

    Decomposition-based mission planning for fixed-wing UAVs surveying in wind

    Get PDF
    This paper presents a new method for planning fixed-wing aerial survey paths that ensures efficient image coverage of a large complex agricultural field in the presence of wind. By decomposing any complex polygonal field into multiple convex polygons, the traditional back-and-forth boustrophedon paths can be used to ensure coverage of these decomposed regions. To decompose a complex field in an efficient and fast manner, a top-down recursive greedy approach is used to traverse the search space in order to minimise flight time of the survey. This optimisation can be computed fast enough for use in the field. As wind can severely affect flight time, it is included in the flight time calculation in a systematic way using a verified cost function that offer greatly reduced survey times in wind. Other improved cost functions have been developed to take into account real world problems, e.g. No Fly Zones, in addition to flight time. A number of real surveys are performed in order to show the flight time in wind model is accurate, to make further comparisons to previous techniques and to show that the proposed method works in real-world conditions providing total image coverage. A number of missions are generated and flown for real complex agricultural fields. In addition to this, the wind field around a survey area is measured from a multi-rotor carrying an ultrasonic wind speed sensor. This shows that the assumption of steady uniform wind holds true for the small areas and time scales of a Unmanned Aerial Vehicle (UAV) aerial survey.</div

    A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors

    Get PDF
    Understanding atmospheric transport and dispersal events has an important role in a range of scenarios. Of particular importance is aiding in emergency response after an intentional or accidental chemical, biological or radiological (CBR) release. In the event of a CBR release, it is desirable to know the current and future spatial extent of the contaminant as well as its location in order to aid decision makers in emergency response. Many dispersion phenomena may be opaque or clear, thus monitoring them using visual methods will be difficult or impossible. In these scenarios, relevant concentration sensors are required to detect the substance where they can form a static network on the ground or be placed upon mobile platforms. This paper presents a review of techniques used to gain information about atmospheric dispersion events using static or mobile sensors. The review is concluded with a discussion on the current limitations of the state of the art and recommendations for future research

    Active Localization of Gas Leaks using Fluid Simulation

    Get PDF
    Sensors are routinely mounted on robots to acquire various forms of measurements in spatio-temporal fields. Locating features within these fields and reconstruction (mapping) of the dense fields can be challenging in resource-constrained situations, such as when trying to locate the source of a gas leak from a small number of measurements. In such cases, a model of the underlying complex dynamics can be exploited to discover informative paths within the field. We use a fluid simulator as a model, to guide inference for the location of a gas leak. We perform localization via minimization of the discrepancy between observed measurements and gas concentrations predicted by the simulator. Our method is able to account for dynamically varying parameters of wind flow (e.g., direction and strength), and its effects on the observed distribution of gas. We develop algorithms for off-line inference as well as for on-line path discovery via active sensing. We demonstrate the efficiency, accuracy and versatility of our algorithm using experiments with a physical robot conducted in outdoor environments. We deploy an unmanned air vehicle (UAV) mounted with a CO2 sensor to automatically seek out a gas cylinder emitting CO2 via a nozzle. We evaluate the accuracy of our algorithm by measuring the error in the inferred location of the nozzle, based on which we show that our proposed approach is competitive with respect to state of the art baselines.Comment: Accepted as a journal paper at IEEE Robotics and Automation Letters (RA-L

    Learning to soar: exploration strategies in reinforcement learning for resource-constrained missions

    Get PDF
    An unpowered aerial glider learning to soar in a wind field presents a new manifestation of the exploration-exploitation trade-off. This thesis proposes a directed, adaptive and nonmyopic exploration strategy in a temporal difference reinforcement learning framework for tackling the resource-constrained exploration-exploitation task of this autonomous soaring problem. The complete learning algorithm is developed in a SARSA() framework, which uses a Gaussian process with a squared exponential covariance function to approximate the value function. The three key contributions of this thesis form the proposed exploration-exploitation strategy. Firstly, a new information measure is derived from the change in the variance volume surrounding the Gaussian process estimate. This measure of information gain is used to define the exploration reward of an observation. Secondly, a nonmyopic information value is presented that captures both the immediate exploration reward due to taking an action as well as future exploration opportunities that result. Finally, this information value is combined with the state-action value of SARSA() through a dynamic weighting factor to produce an exploration-exploitation management scheme for resource-constrained learning systems. The proposed learning strategy encourages either exploratory or exploitative behaviour depending on the requirements of the learning task and the available resources. The performance of the learning algorithms presented in this thesis is compared against other SARSA() methods. Results show that actively directing exploration to regions of the state-action space with high uncertainty improves the rate of learning, while dynamic management of the exploration-exploitation behaviour according to the available resources produces prudent learning behaviour in resource-constrained systems
    corecore